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§ 1 Introduction.

1.1. In recent years many papers concern with the relation between number theory and

value distribution theory (Nevanlinna theory) (see [L], [V] I, [V] 2, [W], [0] 1,

[0] 2). In [V] 1 P. Vojta gives a "dictionarytl for translating the results of Nevanlinna

theory in the one-dimensional case to diophantine approximations. Due to tbis dictionary

we can regard the Roth's theorem as an analog of Nevanlinna Second Main Theorem. P.

Vojta has also made quantitative conjectures which generalize Roth's theorem to higher

dimensions by relating the Second Main Theorem of Nevanlinna in higher dimensions

(Griffiths-StoU-earlson-King) to the theory of heights. One cau say that P. Vojta propos­

ed an 11 arithmetic Nevanlinna Theory" in higher dimensions. In the philosophy of Hasse­

Minkowski principle one would naturally have interest to determine how Nevanlinna

theory would look in the p-adic case.

1.2. In [H] 1, [H] 2, [H-M] we constructed a p-adic analog of Nevanlinna theory. In tbis

paper we introduce the notion of heights for p-adic meromorphic functions and thereby

study p-adic holomorphic functions as well as meromorphic ones. Hy using the notion of

heights, in several problemB we only need to consider the behavior of functions when the
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argument passes "critical points". This makes it easier to prove both the p-adic inter­

polation theorem and p-adic analogs of two Main Theorems of Nevanlinna theory. The

notion of heights and the p-a.dic analog of Nevanlinna theory in higher dimensions will be

described in a future paper.

1.3. We first recall Borne facts from classical Nevanlinna theory ([N], [Hay]). Let f(z) be

a meromorphic function in the complex plane 0: and a E 0: be a complex number. One

asks the following question: How "Iarge" is the set of points z E ( at which f(z) takes the

value a or values Ilclose to a 11 ? For every value a Nevanlinna has constructed the follow­

ing functions.

Let n(f,a,z) denote the number of points z E ( for which f(z) = a and Iz I ~ r ,

counting with multiplicity. We set

r

Nffa,r) = f n{J!J /ha,O) di + n(f,a,O)log r

o

2'K

ro(f,a,t) =h flog+__1.---_ drp ,
1r 0 If(rel~-a I

where

and that

+ {lOg x
log x =

o

T(f,a.,r) = N(f,a,r) + m(f,a,r) .

if x > 1

if x ~ 1
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Nevanlinna's First Main Theorem asserts that for every meromorphic function f(z) there

exists a function T(f,r) such that for all a E( ,

T(f,a,r) = T(f,r) + h(f,a,r) ,

where h(f,a,r) is a bounded function of r. Since the function T(f,r) does not depend on

a , we can roughly say that a meromorphic function takes every value a the same number

of times.

Nevanlinna's Second Main Theorem asserts that generaily m(f,a,r) is smail com­

pared with T(f,r) and consequently N(f,a,I:') approximates T(f,r). Namely, one defines

the defect of a as follows:

1:( f)_lim~far -1 1· ~faru a, - -- - - 1m .r-+(J) ,r r ,r
, . -+(1)

Then the set of defect values, i.e. those a such that 6(a) > 0 , is finite or countable, in

addition ~ o(a) ~ 2 , where the sum extends over all defect values.

1.4. In § 2 we define the height for p-adic holomorphic functions. The p-adic Poisson­

Jensen formula is described in terms of heights. In § 3 we cancern with the problems oI

p-adic interpolation of holomorphic functions. We define the height 01 discrete sequences of

points and give a necessary and sufficient condition for a sequence of points to be an

interpolating sequences of a given function. In § 4 we define the height for meromorphic

functions and prove the p-adic analog of two Nevanlinna Main Theorems.

1.5. This paper is written while tJie author ia a member of the Max-Planck-Institut für

Mathematik in Bonn and he would like to thank the Institute for the financial support.
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§ 2. Height of p-adic holomorphic functions.

2.1. Let P be a prime number, ~p the field of p-adic numbers, and (p the p-adic

completion of the algebraic elosure of Qp . The absolute value in qp is normalized so that

Ip I = P-1 . We further use the notion v(z) for the additive valuation on (p which ex­

tends ordp ' Let D be the open unit disk in (p:

Let f(z) be a P-3,dic holomorphic functions on D represented by a convergent series:

(J)

f(z) = l anz
n

n=O

Since we have

I i m {v(an) + nv(z)} = (J)

z-+m

for all v(z) = t > 0 , it follows that for every t > 0 there exists an n for which

v(an) + nt is minimal. Let nt ,t' nr,t be the smallest and the largest values cf n at

which v(an) + nt attains its minimum. We set:
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2.2. Definition. We call ht t' hr t' hf t the light local height, left IOeal height, l2&M, , ,
height of the function f(z) at t = -l0Sp Iz I respectively.

2.3. Definition. The global height f(z) is defined by

H(f,t) = mi n {v(an) + nt}
O~n<m

2.4. Remarks. 1) In [H] 1 we called H(f,t) the Newton polygon of the function f(z).

However the term "Newton polygon" is use<t"in the literature for an another object. We use

here " the height ll which would be more suitable in this context.

2) We have

H(f,t) _._ min {-log la l-nloJLlzl} .
~\ V ( Z ) =t P n ~p

O~n<m

2.5. Lemma..1) If hf t = 0 then the function f(z) f 0 when v(z) = t and one has,

If(z) I = P-H(f,t)

2) If hf t f 0 ,then f(z) has zeros at. v(z) = t and hf t = t • {number of zeros at, ,
v(z) = t }

3) In any finite segment [r,s] , 0 < r < 8 < +m . there are only finitely many t

s&tisfying hf t f 0 . Such points t are called the critica.1 points of f(z) .,

) + - ( )Proof. 1 Assume that hf t = 0 J then n f t = nf t and v an + nt attains its minimum
, J'

m

for a unique il = nt t = nr t . We have H(f,t) = v(ail) + ilt = v( 1: anzn) at v(z) = t ., ,
n=O
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2) and 3) follow from definition 2.2, 2.3 and the properties of the Netwon polygon oI

f(z) (see [M]. [H] 1).

2.6. Example. Consider the function

m n
log(1+z) = 1: (_l)n-l :

n=1

For every t > 0 we have

1 { = nt -log n/log p if n = pk
v((-1)n- In) + nt) k

> nt -log n/log p if n *p

Hence, for any t > 0, nt0 t and niog t have the form pk for some k ~ 0 . 1t is easyg, ,

h + .J. -'f 'f + k-1 - kto see t at n l og,t i n1og,t 1 and only 1 n l og,t = p and n1og,t = p for some k.

In this ca.se we have

1Thus, the function log(l + z) has critical points tk = k k-i (k = 1,2,...) and we
p -p

have: htog,t
k

- ;1' h1og,t
k

= ';-1' h1og,t
k

= 1, h1og,t = 0 for all t:f tk (k = 1,2,... ),

H(log,t) = ;i + [logp(p-1)t] ,where [x] denotes the largest integer being equals or

less than x.

2.7. Theorem. (the p-adic Poisson-Jensen formula). Let f(z) be a holomorphic function

in the unH disk and let to> t > 0 . Then we have:
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H(f,t 0) - H(f, t) = hf i - ht t + l hf 8
,0' ,

tO>8 >t

(1)

Proof: Let to> t1 > t2 > ... > tn ~ t be all the critical points of the function f(z). Note

that the height H(f,s) is a linear function of s in every segment [tk+1, tk] and we

have nf t = nt t ' H(f,s) = v(a + ) + nt t 8 = v(a _ ) + nf t s. From
, k ' k+1 n ' k+1 n ' kf ,tk+1 f,tk

tbis it follows that H(f,tk) - H(f,tk+1) = [v(a _ ) + nf t tk] - [v(a + )
n ' k n. f,t k f ,tk+1

+ nt t tk+1] = nf t (tk - t k+1) . H(f,tO) - H(f,t) = H(f,tO) - H(f,t1) + H(f,t1) -
, k+1 I k

- H(f,t2) + ... + H(f,t ) - H(f,t) = (nft to-nft t1) + (nft t1 -nft t 2) + ... +
n '0'0'1'2

+ (nt t t - nt t t) = hf t + t 1(nft - nft ) + t2(nf t - ntt ) + ... +
'nn 'n '0 '1'0 '2 '1

+ t (nf t - ni t ) - ht t = hf t - ht t + l hf s .
n , n ' n-1 ' ,0' ,

tO>s>t

Theorem 2.7 is proved.

2.8. Remark. Note that the formula (1) ia analogous to the classical Poisson-Jensen for­

mula. In fact, Buppose that to= (1), f(O) f 0 and t is not a critical point of the function

f(z). Then we have H(f,tO) = -logp I f(O) 1, H(f,t) = -logp 1f(z) 1 on the circle

Iz I = p-t, hf,t
o

= 0, l hf,s - ht,t =l-lo~ Izi I , where the sum extends over
tO> 8>t

all the zeros Zi of the function f(z) in the disk I z 1 ~ P-t . Then formula (1) takes the

following form: lo~ 1f(z) I -loJL I f(O) 1 = l-log 1zi 1 . Recall that the classical
v(Z)=t -p. p

Poisson-Jensen formula is the following:
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2,,-

hJlog I{(eiS) Id8 -log I{(O) = I - (ordaf)log Ial ,

o aED
atO

where D is the unit disk in ( and ordaf is the order of f(z) at a.

§ 3. Heights of sequences of points and p-adic interpolation.

3.1. The construction of the p-adic zeta-function by interpolating from a set of integers

([K-L]) caused many people to become interested in the problem of p-adic interpolation.

In [H] 1 we find a necessary and sufficient condition for a discrete sequence of points in

the unH disk D to be an interpolating sequence of a given function f(z). This is the first

theorem of p-adic interpolation of unbounded functions. In tbis section we formulate and

prove the interpolation theorem in terms of heights of p-adic holomorphic functions.

3.2 Definition. Let g(z) be a holomorphic function in the unH disk D. We denote by

o(g) the class of holomorphic functions in D satisfying the following condition

8U p If(z) I = 0 ( sup Ig(z) I)
Iz I=r Iz I=r

when r --+ 1-0 .

3.3. Corollary. f E O(g) if and only if

lim {H(f,t) - H(g,t)} = m
t-tQ
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3.4. Now let u = {uO,ul''''} be a sequence of points in D. In what follows we shall only

consider sequences u for which the number of points ui satisfying v(ui) ~ t ia finite for

every t > 0 . We shall always assume that v(ui) ~ v.(ui+ 1) (i = 0,1,.",) .

3.5. Definition. For every t > 0 the heights h+ t' h- t' h t' H(u,t) are defined by:. u, u, U,

h% t = n% t · t I where n+ t (n- t ) is the number of points u. such that v(u.) > tu, u, u, U, 1 1

(resp. v(ui) ~ t), hu t = h~ t - h~ t and H(u,t) = h~ t - h~ t -, l hu s ' where
, " " 0 )

s>t
to= v(uO) . We shall always assume that li m H(u,t) = --([) .

t-+O

3.6. Example. Far the sequence of primitive pm-roota of unity, m = 1,2,,,. we have:

h:l: t = h%lo t' hu,t = hlag,t, H(u,t) = H(log,t) .u, g,

3.7. Remark. If U = {ui} is the sequence of zeros of the function f(z), then we have

H(f,t) - H(u,t) = 0(1) when t ---t 0 .

3.8 Definition. The sequence u = {uil is called an interpalating sequence oI f(z) if the

sequence of interpolation polynamials for f on u converges to f(z) .

3.9. Theorem. The sequence u = {ui} is an. interpolating sequences oI the function f(z) if

and only if

li m [H(f,t)-H(u,t)] = CD

t ..... O

Proof. Für simplicity we &Saume that u is a sequence of distinct points. In the case oI

dealing with sequences of non-distinct points we need a minor modification of the proof.
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Recall that the interpolation polynomials {Pk(z)} for the function f(z) on the sequence

u are determined by the following relations:.

First of all we prove the following

3.10. Lemma. For all to> 0 and for all k such that tk = v(uk) < t we have

Proof of Lemma 3.10. By the Poisson-Jensen formula we have

From this it follows that

From the definitions of hS ,hu t for k such that v(uk) < t we have
k,t '
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~ (h
S
· -h ) = 0

L k's u,s
tO> s>tk

From this Lemma 3.10 follows.

We now return to prove Theorem 3.9.

1) Necessity. Suppose that H(f,t) - H(u,t) does not tend to infinity. Then we can

find a sequence {si} such that H(f,si) - H(u,si) is bounded. Hence there is an integer kO

such that for k ~ kO we have

In view of Lemma 3.10 for k ~ kO and all i ~ 0 we have:

H(Sk's.) - H(u,s.) >sup{H(f,s.) - H(u,s.)} + 1
1 1 - 1 1

and hence,

(2)

We set MO = inf H(Sk'O). Since lim H(u,t) = --m it suffices to consider the case
05k5ko t~O

when f(z) is unbounded, Le. 1i m H(f,t) = --m . Then there exists a number NO such that
t~O

for all N ~ NO we have
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Thus, the inequality (2) holds for all k ~ 0 and all n ~ NO . By assumption we have

CD

f(z) = l Sk(z) ,

k=O

and this implies the obvioUB inequality

H(f,s ) ~ min {H(Sk,sN)} .
n k~O

This contradicts (1) and proves the necessity.

2) Sufficiency. We first prove the following

3.11. Lemma. For any k we have H(Sk,tk) ~ H(f,tk) or H(Sk,tk+ 1) ~ H(f,tk+ 1)

Proof of Lemma 3.11. By Lazard'slemma ([Laz]) we have:

where deg Qk(z) $ kJ H(Qk,tk) ~ H(f,tk)· On the other hand, Qk(ui) = f(ui),

i = O,... ,k, and then Qk(z) == Pk(z). Thus, H(Pk,tk) ~ H(f,tk). Similarly,

H(Pk+l'tk+ 1) ~ H(f,tk+ 1)· H v(uk+ 1) = V(uk) , Le. tk = t k+ 1 , then we have

H(Sk,tk) ~ H(f,tk) . Assume that tk =F tk+1 . H H(Pk+l'tk) ~ H(f,tk) then we have
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H(Sk,tk) ~ H(f,tk)· Otherwise, H(Pk+ 1,tk) < H(Pk,tk)· Since tk:f: t k+ 1 we have

np t = k+1 and np t = k ~ np t . Thus we have
k+l' k+1 k+l' k k' k

and then H(Sk,tk+ 1) ~ H(f,tk+ 1) .

We now return to the proof of sufficiency. In view of Lemma 3.10, for an arbitrary N

we have H(Sn,tN) ~ H(u,tN) + t N + H(Sn,tn) - H(u,tn) for t n = v(un) < tN .

By Lemma 3.11 we have either H(Sn,tn) ~ H(f,tn) or H(Sn,tn+1) ~ H(f,tn+ 1) , and then

we obtain

From this and the assumption we have

1im H(Sn,tN) = m ,
n-+m

Le. 1im Sn(z) = 0 , and hence there exists P(z) = 1im Pn(z) . 1t remains to prove that
~m ~m

P(z) == f(z) . Since u is an interpolating sequence of P(z) , we must have

1i m [H(P ,t) - H(u,t)] = m
t-+o

Hy setting g(z} = P(z) - f(z) we obtain
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lim [H(g,t) -H(u,t) =m
t-+o

(3)

On the other hand, as g(u.) = 0 for i = 0,1,2'00' ,we find (3) contradicts Remark 3.7.
. 1

Then g(z) =0 and Theorem 3.9 is proved.

We can formulate Theorem 3.9 in terms of locaJ heights.

3.12. Corollary. The sequence u = {ui} is an interpolating sequence of the function f(z)

if

and h+ - h+ is bounded when t --+ 0 .u,t I,t

In fact, under these conditions it follows !rom the Poisson-Jensen formula and the

definition oI H(u,t) that 1i m {H(f,t) - H(u,t)} = m .
t-+o

3.13 Remark. One can find the function .f(z) , the sequence of points u such that

1i m { I h 8 - I hf s} = m while h+ t - ht t is unbounded and H(f,t) - H(u,t) does
t-+o u" u"

s>t 6>t

not converge to infinity.

3.14 Corollary. The sequence u is an interpolating sequence for all functions in o(f) if the

functions

:I:: :I::
n -nf,t u,t

are bounded.



-15­
t

In fact, from the proof of the Poisson-Jensen formula it follows that if for all t > 0

we have nr,t - n~,t < M then H(u,t) - H(f,t) < H(u,tO) - H(f,to+ M to for t < to.
Let g be a function of calss o(f). We have

H(g,f) - H(u,t) = [H(g,t) - H(f,t)] - [H(u,t) - H(f,t)] > [H(g,t) - H(f,t)] ­

- [H(u,tO) - H(f,tO)] - M to--+ m when t --+ 0 .

n
3.15. Corollary. The sequence {;-1} where fJ = 1, n = 1,2,... is an interpolating

sequence for all functions of dass o(log) .

In fad, take for f(z) the function log(l+z) and let u be the sequence in Corollary
:I: :I:

3.15. Then nf ,t - nu,t = 0 (see example 3.6).

A similar result holds for functions of dass o(logk). Note that the p-a.dic

L-functions associated to cusps forms are p-adic holomorphic functions of dass o(logk)

for some k (see [Vish]).

3.16. Corollary. Let {ui} (D and {Qi} ((p be two sequences of values in D and (p'

Let {Pn(z)} be the sequence of polynomials satisfying the conditions: deg Pn(z) ~ n,

Pn(ui) = 0i' i = O, ... ,n . Then we have the following

1) If H(Pn'O) - H(u,tn) --+ m when n --+ m , there exists a holomorphic function

f(z) such that f(ui) = 0i' i = 0,1 ,2,... , f(z) = li m Pn(z)
n-+CD

2) Conversely, if there exists a holomorphic function g(z) = 1im P (z), then
n-+m n

when n --+ CD .
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Proof. We have H(Pn,tn) ~ H(Pn'O) and H(Pn,tn) - H(u,tn) ---4 m when n ---4 m .

Arguments similar to those used to prove Theorem 3.9 give us for every fixed N:

Consequently, I im H(S ,tN) = m and there exists f(z) = tim Pn(z). Obviously that
n~m n

f(n.) = Q., i =0,1,2,...
1 1

Conversely, jf there exists a holomorphic function g(z) = lim P n(z) , then we have

H(Pn,tn) ~ H(g,tn) and then H(Pn'O) ~ H(Pn,tn) - n tn ~ H(g,tn) - n tni

H(Pn'O) - H(u,tn) + n tn ~ H(g,tn) - H(u,tn) --+ m , eince u is an interpolating sequen­

ce of the function g(z) .

3.17. Remark. In many cases we have n tn < m • For example when u is the sequence

{ ;-1} with 1Pn = 1 , Corollary 3.16 gives "a necessary and sufficient condition.

§4. Height for p-adic meromorphic function

4.1 Let ~z) be a meromorphic function on D. Hy definition, ~z) = f(z)/g(z), where f(z)

and g(z) are holomorphic functions on D not having common zeros. We set

H( rp,t) = H(f,t) - H(g,t)

we call H('P,t) the global height of the function ~z). As in the case of holomorphic func­

tions, the (right, leIt) loeal height ~z), at t ia defined by h~ t = ht t - h+g t;
T' , ,

h-t=h-ft-h-gt, h =h- -h+ .tp, , , tp,t tp,t tp,t
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4.2 Remark. h~,t > 0 (h~,t < 0) if and only if ~z) has zeros (poles) at v(z) = t.

4.3 The characteristic function. For a E( we set
p

m(~,a,t) = H+(~,t) = max{H(~,t),O}

N(~,a,t) = 1: n(~,a,8)(8 - t)
8>t

where n( ~,a,s) denotes the number of points z ED such that v(z) = t and ~z) = a,

here every such point is counted according to its multiplicity aB a root of S"{z) = a. We set

T(~,a,t) = N(~,aJt) + m(~,a,t)J

and moreover that

N(~,t) = l hg,s - h~,t
: 8>t

m( ~Jt) = H+(l/ ~Jt)

T(~,t) = N(~Jt) + m(~,t)

we call T( ~,t) the characteristic function of the meromorphic function ~z).

4.4. Theorem Let ~z) be a meromorphic function in D. Then for every a E(p we have

T( ~Ja,t) = T( ~,t) + 0(1) .

We first prove the following
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4.5. Lemma. Let ~'~i (i = 1,2,... ,k) be meromorphic functions on D. Then we have:

k

1) m( l ~i't) ~ m~ {m(~i,t)}
i=l 1

k k
2) m(1f ~i't) ~ l m(~i't)

i=1 i=l
k k

3) N( l ~i't) ~ 1: N( "'i't)
i=1 i=1

k k
4) N(1f ~i't) ~ l N(~i't)

i=1 i=l
k k

5) T( 1: ~i,t) ~ 1: T(~i't)
i=l i=l

k k

6) T(1f ~i,t) ~ l T("'pt)
i=1 i=1

7) T( ~,t) is a decreasing function of t

8) T(~,t) is a bounded function if and only if ~z) is a ration of two bounded holo­

morphic functions.

Proof. 1) and 2) follow from the properties of the height and the definition of the function

m( ~,t). 3) and 4) are proved by the remark that N( ~,t) is the sum of valuations of poles

of ~z) in the disk Iz I ~ P-t. 5) and 6) are consequences oI 1), 2), 3), 4).

We now prove 7). First of all we showthat N(~,t) is a decreasing function. Assume

t I ~ t" > 0 and in the segment (t" ,t ') there is no critical point 01 g(z). Then we have
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N( ~,t ') = 1: hg,s - h~ ,t I - 1: hg,s - hg,t I - h~ ,t I =
s>t ' s>t"

\ h -h- I = \ h -n- ,t ' =L g,s g,t L. g,s g,i
s>t" s>t"

1: hg,s - n1 ,t"t I ~ l hg,s - h1,t" = N( ~,t") (4)
s>t" s>t"

Since every segment [t",t / ] can be divided into a finite number of segments on which

g(z) does not have critica1 points, (4) shows that N(~,t) is a decreasing function.

Now assume that m(~,t/) = 0, then T(~,t/) = N(~,t/) ~ N(~,t") ~ T(~,t"). When

m(~,t/) > 0 we have H(l/~,t/) > 0 and H(~,t/) < 0, Le. m(l/~,t/) = O. Then we

have

T{l/ ~,t ') = N{l/ ~,t ') 5 N{l/ ~,t") ~ T{l/ ""t") (5)

Note that the Poisson-Jensen formula is valid for meromorphic functions when the heights
:i:

h ,h,H are defined as above. We take to 80 that for t > to the function ~z) does not

have critical points and hence h s = 0 for s > t O' We have
~,

From this it follows that
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(6)

Hy combining (5) and (6) we obtain T( ~,t ') ~ T( ~,tl1). To prove (8) we assume that

~z) = f(z)/g(z), where f(z) and g(z) are two bounded holomorphic functions. From (6)

it follows that

N(g,t) + m(g,t) = N(1/g,t) + m(1/g,t) + H(g,tO) - h-g t .
, 0

Then we have

N(1/g,t) = m(g,t) - m(1/g,t) + N(g,t) + H(g,tO) - h-g t
, 0

= -H(g,t) - h-g t + N(g,t)
, 0

Since g is bounded, so are N(g,t), H(g,t) and N(~,t) = N(1/g,t). Then

T(~,t) = N((p,t) + m((p,t) is bounded also.

Now suppose T((p,t) is bounded. Then N(""t) is bounded, and since T(1/(p,t) is

bounded, so ia N(1/ ""t). Suppose that ~z) '= f(z)/g(z). It follows !rom (6) that

m(f,t) - m(l/f,t) = N(l/f,t) - N(f,t) + 0(1)

H{f,t) = N(f,t) + m(f,t) - N{1/f,t) + 0(1)

Since N(1/f,t) = N(l/ (P,t) is bounded, we have H(f,t) > -iI), and consequently f(z) is

bounded. Similarly g(z) is bounded.

We are now in a position to prove theorem 4.4. We have
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Using Lemma 4.5 we obtain

T(~,t) ~ T(""t) + log~a

T(""t) ~ T(~,t) + log~a.

Since T(""a,t) = T(~,t), Theorem 4.4 is proved.

4.6. Theorem Let ~z) be a non~onstant meromorphic function on D, al' ... ,aq be

distinct numbers of 4: . Then we havep

where N1(t) = N(l/ ~' ,tl + 2N( ~,t) - N( ~' ,t)

Proof. Define

q

F(z) = l: (P(~)=ä ..
. 1 11=

By setting 6 = mi n Ia· - a... I we first prove that
i fk 1 --K

q

H+(F,t) ~ l H+(~i't) - q log+1/6
i=l
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If for all i, I~z) - ai I ~ 6 then this inequality is trivial since the value on the right is

negative. Assume for same k, I~z) - ax I < 6 then for i +k one has

and hence

__1_ > 1/6, 1 ~ 1/6 for every i f k.
I~kl I~d

Consequently,

1
IF(z)l = I\?(z)~ I

From this it follows that

q

H+(F,t) = H+( 1 ,t) ~ l H+(9'-ai,t) - q log+1/6

I~kl i=l

On the other hand we have

m(F,t) = m(~ · }- · ~'F,t) ~ m(7,t) + m(}-,t) + m«(O'F,t)

In view of formula (6) we have
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1 1
m(~,t) = T( ~)t) - N(~)t) + 0(1)

Thus,

,
m(F,t) ~ T(~,t) - N(I/~,t) + m(}-,t) + N(}-,t) + m(V"F,t) + 0(1)

q ,

~ m(~.,t) + m(so,t) ~ T(SO,t) -N(~,t) + N(}-,t)
. 1 11=

It follows from fonnula (6) that

Thus we have

q , q,
m(so,t) + ~ m(~.,t) ~ 2T(SO,t) - N1(t) + m(}-,t) + m( ~ ~,t) + 0(1),

. 1 1 . 1 11= 1=

, q,
1t remains to prove that m(L,t) + m( \ ....!:L.-a ,t) is bounded. We prove the following.

~ L tp-.
. 1 11=
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4.7 Lemma. For every meromorphic function ~z) we have

,
m(}-,t) ~ 2t

Proof. Assume ~z) is holomorphic in D:

Then we have

H( tp' ,tl = mi n {v(na) + (n-l)t} ~ mi n {v(na) + nt} - t = H( tp,t) - t.
l~n<m n O~n<m n

Now let tp = f/g where f and g Are holomorphic functions. Then for every t > 0 we

have

Id' -ff;!;.' f' I f' I
m( tp' / tp,t) = m(-=r- ·f,t) =m(r - f,t) ~ m(r,t) + m(f,t) =

g

H+(f.,t) + H+(~,t) = max{H(f,t) - H(f' ,t),O} + max{H(g,t) - H(g' ,t),O} 5 2t

This completes the proof of Lemma 4.7 and Theorem 4.6.

We now return to the Second Main Theorem. We set

N(tp,t) = N(tp' ,tl - N(~,t)
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Then N(~,t) is the number of distinct zeros of ~z) - a in Iz I ~ P4. We set

8(a) = I-11m N(lfr;;ijL
t-+ 0 '1',

4.8 Theorem Let tp{z) be a meromorphic function on D. Then the set of values a E (p

such that 8(a) > 0 is finite or countable and furthermore we have

}: (o(a) + 8(a) ~ }:8(a) ~ 2
a

Proof. given E > 0, for t sufficiently dose to zero it holds

Hence

N(~a,t) < (1 - 6(a) - 8(a) + 2f)T(tp,t)

Thus

8(a) ~ 6(a) + O(a)
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q

Let &p... ,aq be arbitrary distinct numbers of (p' Adding N(~,t) + l N(~.,t) to
. 1 11=

both sides of the inequality in Theorem 4.6 we obtain:

q

(q+l)T(~,t) ~ 1: N(;a.,t) + N(~,t) - N1(t) + 2T(~,t) + 0(1)
. 1 11=

From this it follows that

q

(q-l)T(~,t) ~ \ N(_I_,t) + N(~,t) - N(~,t) + :, ~; .. + 0(1) .
~ ~a. ~-

. 1 11=

We note that N(_I_,t) is the SUffi of valuations v(zk) of zeros ~ of the function ~i'
~i

hut every zero of order l of t.p- a. is a zero of order l- 1 of tp', we obtain:
1

Consequently,

q

(q-l)T(~,t) ~ 1: N((~.,t) + N(~,t) + 0(1).
. 1 11=

Therefore,
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q N(l/~i't) ~

L ~~~ Tl ~,t) + ~~~ Tfi?,IJ ~ q-l,
i=l

q

l (l--8(ai )) + 1 - 8(m) ~ q-l
i=l

q

l EJ(~) + 8(m) ~ 2

i=l

This proves Theorem 4.8.

4.9. From the First and Second Main Theorems we have a number of corollaries about pro­

perties of p-adic meromorphic functions. Since the proofs in many cases are similar to

those in the complex ca.se, we formulate them without proofs.

For each a E (p we let Ea(~) denote the set of points z E D for which ~z) = a,

where every points is taken as many times as its multiplicity of being a root of the equation

~z) -a = o.

Corollary. Suppose that ~l(z) and ~2(z) are two meromorphic functions on D for

which there exiat three distinct values &l'a2,a3 E (p such that Ea.(~1) == Ea.(~2)'
1 1

i = 1,2,3. Assume moreover at least one of them is not a ratio of two bounded holomorphic

functions. Then ~l == ~2'

4.10 Corollary. Let R(u) be a rational function of degree d and f(z) be a meromorphic

function on {z E (p' Iz I < R}, R ~ m. Then we have
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T(R(f),t) = dT(f,t) + 0(1)

when t ---t -lo~R

4.11. Corollary. A meromorphic function f(z) is transcendental if and only if

lim ~=m
t-+-m

4.12 Corollary. For a meromorphic function on D we have
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