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The Gauss hypergeometric function is one of the key special functions in
mathematics. It can be defined in many ways, e.g., by either an infinite
series or the Euler integral representation [1]:

F (a, b; c;x) =
∞∑

n=0

(a)n(b)n
n!(c)n

xn =
Γ(c)

Γ(c − b)Γ(b)

∫ 1

0
tb−1(1−t)c−b−1(1−xt)−adt,

(1)
where (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol and Γ(x)
is the Euler gamma function. Admissible domains of parameters for these
representations are not indicated for brevity. This function satisfies the
second-order differential equation with three singular points

x(1 − x)y′′(x) + (c − (a + b + 1)x)y′(x) − aby(x) = 0. (2)

When, say, a is a negative integer, the series terminate and define the well-
known system of Jacobi orthogonal polynomials.

Various extensions of this function have been proposed in the literature
on the basis of generalized plain or q-hypergeometric series [1]. The theory
of quantum and classical completely integrable systems led to a new class
of functions of hypergeometric type related to elliptic curves [3, 5, 6, 9] (for
a brief review of the related results, see [8]).

For |p|, |q| < 1, the infinite products

(z; q)∞ =
∞∏

j=0

(1 − zqj), (z; p, q)∞ =
∞∏

j,k=0

(1 − zpjqk)

are well defined. The odd Jacobi theta function has the form

θ1(u|τ) =
∑

k∈Z+1/2

eπiτk2+2πik(u−1/2) = ip1/8e−πiu (p; p)∞ θ(e2πiu; p), (3)

where p = e2πiτ and θ(z; p) := (z; p)∞(pz−1; p)∞. We have

θ(pz; p) = θ(z−1; p) = −z−1θ(z; p) (4)

and θ(z; p) = 0 for z = pk, k ∈ Z. With the help of compact notation

θ(a1, . . . , ak; p) := θ(a1; p) · · · θ(ak; p), θ(at±; p) := θ(at; p)θ(at−1; p)

the addition formula (a Riemann relation) for theta functions takes the form

θ(xw±, yz±; p) − θ(xz±, yw±; p) = yw−1θ(xy±, wz±; p). (5)
1
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Euler’s gamma function can be defined as a special meromorphic solution
of the functional equation f(u + ω1) = uf(u) for a nonzero constant ω1.
q-Gamma functions are connected to solutions of the equation f(u + ω1) =
(1 − e2πiu/ω2)f(u) with q = e2πiω1/ω2 . For |q| < 1, one of its solutions has
the form Γq(u) = 1/(e2πiu/ω2 ; q)∞ defining the standard q-gamma function
(we skip consideration of the case |q| = 1). Elliptic gamma functions are
analogously connected to the equation

f(u + ω1) = θ(e2πiu/ω2 ; p)f(u). (6)

The ratio

Γ(z; p, q) =
(pqz−1; p, q)∞

(z; p, q)∞
(7)

for z = e2πiu/ω2 yields a particular solution of (6) [5]. Due to the symmetry
between p and q, this elliptic gamma function satisfies two linear difference
equations of the first order

Γ(qz; p, q) = θ(z; p)Γ(z; p, q), Γ(pz; p, q) = θ(z; q)Γ(z; p, q).

The reflection formula for it has the form Γ(z; p, q) Γ(pq/z; p, q) = 1, and
Γ(z; 0, q) = 1/(z; q)∞. There is a partner of this function well defined for
|q| = 1 [8]. According to [2], the elliptic gamma functions are the SL(3; Z)-
group modular objects. Also, they can be represented as particular combi-
nations of four Barnes multiple gamma functions of the third order.

The very well poised elliptic hypergeometric integrals with even number
of parameters are defined by the expression

I(m)(t1, . . . , t2m+6) = κ

∫
T

∏2m+6
j=1 Γ(tjz±; p, q)

Γ(z±2; p, q)
dz

z
, (8)

where T denotes the positively oriented unit circle, κ = (p; p)∞(q; q)∞/4πi,
and the parameters are constrained by the balancing condition

∏2m+6
j=1 tj =

(pq)m+1. Here we use the compact notation

Γ(a1, . . . , ak; p, q) := Γ(a1; p, q) · · ·Γ(ak; p, q),

Γ(tz±; p, q) := Γ(tz; p, q)Γ(tz−1; p, q), Γ(z±2; p, q) := Γ(z2; p, q)Γ(z−2; p, q).

We assume that |tj | < 1, then T separates sequences of poles of the inte-
grand of I(m) converging to zero from their reciprocals going to infinity. An-
alytical continuation of these integrals define meromorphic functions which
can be considered as elliptic analogues of the plain hypergeometric functions
m+1Fm. Indeed, the first member of this hierarchy is known explicitly

Theorem 1. [6]

I(0)(t1, . . . , t6) =
∏

1≤j<k≤6

Γ(tjtk; p, q). (9)
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This is the most general known univariate exact integration formula gener-
alizing Euler’s beta integral [1]. In appropriate p → 0 limit, one obtains the
Rahman q-beta integral, which is a one-parameter extension of the Askey-
Wilson integral [1].

The elliptic beta integral (9) leads to the following recurrence relation

I(m+1)(t1, . . . , t2m+8) =

∏
2m+5≤k<l≤2m+8 Γ(tktl; p, q)

Γ(ρ2
m; p, q)

(10)

× κ

∫
T

∏2m+8
k=2m+5 Γ(ρ−1

m tkw
±; p, q)

Γ(w±2; p, q)
I(m)(t1, . . . , t2m+4, ρmw, ρmw−1)

dw

w
,

where ρ2
m =

∏2m+8
k=2m+5 tk/pq. This recurrence is a special realization of an

integral analogue of the Bailey chains discovered in [7] (for an application of
the Bailey chains technique to the proof of Rogers-Ramanujan type identi-
ties, see, e.g. [1]). It allows us to find a multiple integral representation for
I(m) similar to the one for m+1Fm.

For m = 0, substitution of the explicit expression for I(0) (9) in the right-
hand side of (10) yields the identity

V (t) =
∏

1≤j<k≤4

Γ(tjtk, tj+4tk+4; p, q)V (s), (11)

where V (t) := I(1)(t1, . . . , t8) is our elliptic analogue of the Gauss hyperge-
ometric function and{

sj = ρtj, j = 1, 2, 3, 4
sj = ρ−1tj , j = 5, 6, 7, 8 ; ρ =

√
pq

t1t2t3t4
=

√
t5t6t7t8

pq
,

and |tj |, |sj | < 1. This reflection transformation in the parameter space
appears to belong to the Weyl group for the root system E7 [4]. It represents
an elliptic analogue of the Bailey transformation for four non terminating
10ϕ9-series. Sums of residues of particular finite sequences of the V -function
integrand define elliptic hypergeometric series. However, infinite sums of
such residues in general do not converge and, therefore, the infinite series
representation for the V -function is not well defined.

We denote by V (qtj , q−1tk) elliptic hypergeometric functions contiguous
to V (t) in the sense that tj and tk are respectively replaced by qtj and q−1tk.
The following contiguous relation for the V -functions is true

t7θ
(
t8t

±
7 /q; p

)
V (qt6, q−1t8) − (t6 ↔ t7) = t7θ

(
t6t

±
7 ; p

)
V (t), (12)

where (t6 ↔ t7) denotes the permutation of parameters in the preceding
expression. It is equivalent to the addition formula for theta functions (5)
(V ’s kernel satisfies the same equation).

Considering all possible reflections for the root system E7, one can obtain
many symmetry tansformations for the V -function. Substituting them into
(12), one obtains a large set of contiguous relations connecting V -functions
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with different choices of parameters. An appropriate combination of them
yields the equation

A(t)
(
U(qt6, q−1t7) − U(t)

)
+ (t6 ↔ t7) + U(t) = 0, (13)

where we have denoted U(t) = V (t)/Γ(t6t±8 , t7t
±
8 ; p, q) and

A(t) =
θ(t6/qt8, t6t8, t8/t6; p)

θ(t6/t7, t7/qt6, t6t7/q; p)

5∏
k=1

θ(t7tk/q; p)
θ(t8tk; p)

. (14)

Substituting tj = e2πigj , one can check that the potential A(t) is a modular
invariant elliptic function of the variables g1, . . . , g7 (g8 is considered as a
dependent variable determined from the balancing condition).

If we set t6 = cx, t7 = c/x, then the balancing condition c2t1 · · · t5t8 =
p2q2 does not depend on x. Replacing U(t) in (13) by some function f(x), we
come to the second order q-difference equation with elliptic function coeffi-
cients which is called the elliptic hypergeometric equation. In an appropriate
limit it reduces to the classical hypergeometric equation (2). We have al-
ready one functional solution of this equation given by the U -function, the
second linearly independent solution can be obtained by applying transfor-
mations tk → ptk for k = 1, . . . , 7 or modular transformation which do not
change the function A(t). Particular elliptic hypergeometric series solutions
of this equation lead to a nice set of biorthgonal functions similar to the
Jacobi polynomials [8].

Interesting properties of the V -function follow from the consideration of
recurrence (10) for m = 1 with a special choice of parameters (say, t5t7 =
t6t8 = pq, when the left hand side is computable by the elliptic beta integral).
In particular, one obtains in this way an infinite dimensional module of the
Sklyanin algebra. A detailed account of the related questions will be given
elsewhere.

Analytical properties of the Gauss hypergeometric function 2F1 have their
elliptic analogues (modulo changes like a replacement of the differential
equation by a finite difference equation). However, many features of this
function, like number theoretic or geometric aspects, remain obscure from
the elliptic point of view.
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