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Ellipti
 beta integrals and solvablemodels of statisti
al me
hani
sV. P. SpiridonovAbstra
t. The univariate ellipti
 beta integral was dis
overed by the authorin 2000. Re
ently Bazhanov and Sergeev have interpreted it as a star-trianglerelation (STR). This important observation is dis
ussed in more detail in 
on-ne
tion to author's previous work on the ellipti
 modular double and supersym-metri
 dualities. We des
ribe also a new Faddeev-Volkov type solution of STR,
onne
tions with the star-star relation, and higher-dimensional analogues ofsu
h relations. In this pi
ture, Seiberg dualities are des
ribed by symmetriesof the ellipti
 hypergeometri
 integrals (interpreted as super
onformal indi
es)whi
h, in turn, represent STR and Kramers-Wannier type duality transfor-mations for elementary partition fun
tions in solvable models of statisti
alme
hani
s. Contents1. The simplest ellipti
 hypergeometri
 integrals 12. The ellipti
 beta integral STR solution and star-star relation 73. A hyperboli
 beta integral STR solution 124. Partition fun
tions 175. Con
lusion 20Appendix A. The modi�ed q-gamma fun
tion 24Appendix B. General multiple gamma fun
tions 26Referen
es 281. The simplest ellipti
 hypergeometri
 integralsIn the present paper we dis
uss relations between a new 
lass of spe
ial fun
-tions, 
alled ellipti
 hypergeometri
 fun
tions, and solvable models of statisti
alme
hani
s. We des
ribe the most 
ompli
ated known integrable systems de�nedon 2d (two-dimensional) latti
es representing 
ontinuous spin generalizations of thewell known Ising model and its various extensions. A
tually, these novel integrablemodels 
orrespond to some dis
retized 2d quantum �eld theories. Also we indi
ate2000 Mathemati
s Subje
t Classi�
ation. Primary 82B23, Se
ondary 33E99.Key words and phrases. Ellipti
 beta integrals, integrable systems, statisti
al me
hani
s.Work was supported in part by Russian foundation for basi
 resear
h (RFBR grant no.09-01-00271). 1



2 V. P. SPIRIDONOV
onne
tions with the 4d supersymmetri
 �eld theories, where ellipti
 hypergeomet-ri
 integrals have found re
ently the major appli
ation. We start from a briefte
hni
al introdu
tion to the needed results on spe
ial fun
tions and dis
uss thephysi
al systems they apply to in the following 
hapters.General theory of ellipti
 hypergeometri
 integrals was formulated in [S1, S3,S5℄. We skip the stru
tural de�nition of these integrals and refer for the 
orre-sponding details to a reasonably short survey given in [S9℄.Let us denote (z; q)1 = 1Yk=0(1� zqk); jqj < 1; z 2 C ;the standard in�nite q-produ
t and�(z; p; q) = 1Yi;j=0 1� z�1pi+1qj+11� zpiqj ; jpj; jqj < 1; z 2 C � ;the standard ellipti
 gamma fun
tion. Below we use the 
onventions�(a; b; p; q) := �(a; p; q)�(b; p; q); �(az�1; p; q) := �(az; p; q)�(az�1; p; q);�(az�1y�1; p; q) := �(azy; p; q)�(az�1y; p; q)�(azy�1; p; q)�(az�1y�1; p; q):One has the symmetry �(z; p; q) = �(z; q; p) and the inversion formula��a; pqa ; p; q� = 1; or �(a; a�1; p; q) = 1�(a; p)�(a�1; q) ;whi
h follows from the di�eren
e equations�(qz; p; q) = �(z; p)�(z; p; q); �(pz; p; q) = �(z; q)�(z; p; q);where �(z; p) = (z; p)1(pz�1; p)1is a theta fun
tion. The standard odd Ja
obi theta fun
tion has the form [WW℄�1(uj�) = ��11(u) = �Xk2Ze�i�(k+1=2)2e2�i(k+1=2)(u+1=2)= ip1=8e��iu(p; p)1�(e2�iu; p);where we denoted p = e2�i� .The univariate ellipti
 beta integral [S1℄ forms a 
ornerstone of a new power-ful 
lass of exa
tly 
omputable integrals. It is des
ribed by the following expli
itformula(1.1) � ZTQ6j=1 �(tjz�1; p; q)�(z�2; p; q) dziz = Y1�j<k�6�(tjtk; p; q);where T is the unit 
ir
le with positive orientation,� = (p; p)1(q; q)14� ;and six 
omplex parameters tj ; j = 1; : : : ; 6, satisfy the inequalities jtj j < 1 andthe balan
ing 
ondition(1.2) 6Yj=1 tj = pq:



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS 3We use the word \integral" in two meanings. When referred to the exa
tly
omputable 
ases, like (1.1) or the standard Euler beta integral lying on its bottom,it means either the fun
tion de�ned by the left-hand side or, more often, the wholeidentity. In other 
ases it means an integral representation for a fun
tion of interestor a 
lass of fun
tions with 
ommon stru
ture.As shown in [S3℄, the left-hand side of relation (1.1) serves as the orthogonalitymeasure for the most general known family of biorthogonal fun
tions with theproperties 
hara
teristi
 to 
lassi
al orthogonal polynomials (Chebyshev, Hermite,Laguerre, Ja
obi, : : : , Askey-Wilson polynomials). In the same paper the ellipti
beta integral has been generalized to the following fun
tion(1.3) V (t1; : : : ; t8; p; q) = � ZTQ8j=1 �(tjz�1; p; q)�(z�2; p; q) dziz ;where jtj j < 1 and Q8j=1 tj = (pq)2: This is a natural ellipti
 analogue of the Gausshypergeometri
 fun
tion sin
e its features generalize most of the spe
ial fun
tionproperties of the 2F1-series [S5, S9℄. For tjtk = pq, j 6= k, V -fun
tion redu
esto the ellipti
 beta integral and, for this reason, it 
an be 
alled the ellipti
 betaintegral of a higher order.In [S4℄, the author has introdu
ed the following universal integral transforma-tion for fun
tions analyti
al in the vi
inity of the unit 
ir
le T:(1.4) g(w; t) = � ZT�(t;w; z; p; q)f(z; t)dziz ;where the kernel(1.5) �(t;w; z; p; q) := �(t;w; z) = �(tw�1z�1; p; q); jtj < 1;is a parti
ular produ
t of four ellipti
 gamma fun
tions. In [SW℄, it was shown thatthis integral transformation obeys the key property making it very similar to theFourier transformation. Namely, its inverse is obtained essentially by the re
e
tiont! t�1.An expli
it example of the pair of fun
tions g(w; t) and f(z; t) in (1.4) 
anbe easily found from the ellipti
 beta integral. Indeed, let us denote t5 = tw andt6 = tw�1 (so that t2Q4j=1 tj = pq). Then,f(z; t) = Q4j=1 �(tjz�1; p; q)�(z�2; p; q) ;(1.6) g(w; t) = �(t2; p; q) Y1�i<j�4�(titj ; p; q) 4Yj=1�(ttjw�1; p; q);(1.7)where jtw�1j; jtj j < 1.Be
ause of the permutational symmetry, any of the original variables tj 
an beasso
iated with the distinguished parameter t. After �xing t1 = sy; t2 = sy�1 andt3 = rx; t4 = rx�1, one 
an rewrite the ellipti
 beta integral in the formZT'(z)�(r;x; z)�(s; y; z)�(t;w; z)dziz= �(r; s; t)�(rs;x; y)�(rt;x;w)�(st; y; w);(1.8)



4 V. P. SPIRIDONOVwhere rst = �ppq and'(z) = (p; p)1(q; q)14��(z�2; p; q) = 14� (p; p)1(q; q)1�(z2; p)�(z�2; q);�(r; s; t) = �(r2; s2; t2; p; q):(1.9)A key appli
ation of de�nition (1.4) 
onsists in the 
onstru
tion of a tree ofidentities for multiple ellipti
 hypergeometri
 integrals with many parameters [S4℄.Using one of the 
orresponding symmetry transformations, the following relationhas been derived in [S8℄(1.10) �(x; 
; dj�; s) = � ZTR(
; d; a; b;x;wjs)�(w; a; bj�; s)dwiw ;where the \basis ve
tor" � has the form(1.11) �(w; a; bj�; s) = �(sa��1; sb��1;rpqabw�1��1; p; q);and the \rotation" integral operator kernel isR(
; d; a; b;x;wjs) = 1�(pqab ; abpq ; w�2; p; q)� V  s
; sd;rpq
dx;rpq
dx�1; pqas ; pqbs ;sabpqw;sabpqw�1; p; q! :The fun
tion � is a generalization of the kernel �(t;x; z), sin
e for ab = pq=s2 onehas the redu
tion �(w; a; pqas2 j�; s) = �(s;w; �):Using the �-kernel, relation (1.10) was rewritten also in [S8℄ in a more 
ompa
tform �(�;x; �)�(�; y; �) = � ZTr(�; �; 
; Æ;x; y; t; w)�(
; t; �)�(Æ;w; �)dwiw ;r(�; �; 
; Æ;x; y; t; w) = 1�(Æ�2; w�2; p; q)V ��x�1; �y�1; pq
 t�1; w�1Æ � ;where �� = 
Æ andV ��x�1; �y�1; pq
 t�1; w�1Æ � = � ZT�(�;x; z)�(�; y; z)�(pq
 ; t; z)�( 1Æ ;w; z)�(z�2; p; q) dziz :Here we use the 
ondensed notation for parameters of the V -fun
tion: V (: : : �x�1: : :) = V (: : : �x; �x�1 : : :).The fun
tion � emerges also in the 
ontext of the Sklyanin algebra [Sk℄ (thealgebra of the Yang-Baxter equation solutions),S�S� � S�S� = i(S0S
 + S
S0);S0S� � S�S0 = iJ� � J�J
 (S�S
 + S
S�);(1.12)where J� are the stru
ture 
onstants and (�; �; 
) is any 
y
li
 permutation of(1; 2; 3). Namely, one has to 
onsider the generalized eigenvalue problems A� =�B�, where A and B are linear 
ombinations of four generators Sa; a = 0; 1; 2; 3;



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS 5and � is a spe
tral parameter. The fun
tion � is de�ned uniquely up to multipli-
ation by a 
onstant with the help of two su
h equations using a pair of Sklyaninalgebras forming an ellipti
 modular double [S8℄. This algebra represents an ellipti
extension of the Faddeev modular double [F℄, but there are a
tually two di�erentmodular doubles at the ellipti
 level whi
h obey di�erent sets of involutions.Relevan
e of the Sklyanin algebra in this setting was noti
ed �rst by Rains[R1℄. For spe
ial quantized values of the parameters, the �-fun
tion redu
es tothe intertwining ve
tors of Takebe [T℄, whi
h were used by Rosengren in [Ros℄for the derivation of a dis
rete spin version of relation (1.10). In our 
ase bothCasimir operators of the algebra (1.12), K0 =P3a=0 S2a andK2 =P3�=1 J�S2�, take
ontinuous values, i.e. we deal with the 
ontinuous spin representations related tothe integral operator form of the Yang-Baxter equation.The following s
alar produ
t has been introdu
ed in [S8℄(1.13) h�;  i = � ZT �(z) (z)�(z�2; p; q) dziz :It has been shown that both the V -fun
tion itself and the �-ve
tors form biorthog-onal systems of fun
tions with respe
t to this measure. In parti
ular, one has therelation � ZT �(ei'0 ; pq
 ; pqd j�; s�1)�(ei'; 
; dj�; s)�(��2; p; q) d�i�= 2�(p; p)1(q; q)1��pq
d ; 
dpq ; e�2i'; p; q�p1� v2 Æ(v � v0);(1.14)where v = 
os', v0 = 
os'0, and Æ(v) is the Dira
 delta-fun
tion. (There is amissprint in formula (3.2) of [S8℄ whi
h misses the �rst fa
tor standing on theright-hand side of (1.14).) Positivity of the biorthogonality measure and of the�-fun
tion 
orresponds to the unitarity of representations of the ellipti
 modulardouble. Setting 
d = pq=s2, we obtain(2�)2 Z 1�1 �(s�1; ei'0 ; ei�)�(s; ei'; ei�)�(e�2i�; p; q) dXp1�X2= � �s2; s�2; e�2i'; p; q�p1� v2 Æ(v � v0);(1.15)where X = 
os�.The tetrahedral symmetry transformation for V -fun
tion, dis
overed in [S3℄,
an be rewritten in the following form:V (�x�1; �y�1; 
w�1; Æz�1) = �(�2; �2; 
2; Æ2; p; q)�(��;x; y)�(
Æ;w; z)� V (ppq��1x�1;ppq��1y�1;ppqÆ�1w�1;ppq
�1z�1)(1.16) = �(�
;x;w)�(�Æ;x; z)�(�
; y; w)�(�Æ; y; z)� V (�x�1; �y�1; Æw�1; 
z�1)(1.17) = �(�2; �2; 
2; Æ2; p; q)�(��;x; y)�(�
;x;w)�(�Æ;x; z)�(�
; y; w)(1.18)��(�Æ; y; z)�(
Æ;w; z)V (ppq��1x�1;ppq��1y�1;ppq
�1w�1;ppqÆ�1z�1);where ��
Æ = �pq. The latter two transformations are obtained by repeated ap-pli
ation of the �rst relation in 
ombination with permutation of the parameters.The full symmetry group of the V -fun
tion is the Weyl group W (E7) for the ex-
eptional root system E7 [R3℄. Therefore, there are 72 = dimW (E7)=S8 relations



6 V. P. SPIRIDONOVsimilar to (1.16), (1.17), (1.18), we just pi
ked up three of them by breaking theS8 permutational symmetry and gathering the ellipti
 gamma fun
tions into the�-blo
ks.The outstanding physi
al appli
ation of the ellipti
 beta integral has been dis-
overed by Dolan and Osborn [DO℄. They have shown that the simplest super
on-formal (topologi
al) indi
es of N = 1 supersymmetri
 �eld theories 
oin
ide withknown ellipti
 hypergeometri
 integrals. Exa
t 
omputability or the Weyl groupsymmetry transformations of su
h integrals des
ribe the Seiberg duality of N = 1theories [Sb℄, sin
e they prove 
oin
iden
e of the 
orresponding super
onformalindi
es.In this pi
ture, the left-hand side of the univariate ellipti
 beta integral eval-uation formula (1.1) des
ribes the super
onformal index of the supersymmetri
quantum 
hromodynami
s with SU(2) gauge group and SU(6) 
avor group. Thistheory has one ve
tor super�eld (gauge �elds) in the adjoint representation of SU(2)and a set of 
hiral super�elds (matter �elds) in the fundamental representation ofSU(2) � SU(6). The elementary parti
les representing these �elds des
ribe thespe
trum of the theory in the high energy limit, where the 
oupling 
onstant isvanishing due to the asymptoti
 freedom. In the deep infrared region the theory isstrongly 
oupled, all 
olored parti
les 
on�ne, and one has the Wess-Zumino typemodel for mesoni
 �elds lying in the 15-dimensional totally antisymmetri
 tensorrepresentation of SU(6). The super
onformal index of the latter theory is de-s
ribed by the right-hand side expression of formula (1.1). This 
onstru
tion givesa group-theoreti
al interpretation of the ellipti
 beta integral. After renormalizingthe parameters tk = (pq)1=6yk, the balan
ing 
ondition takes the formQ6k=1 yk = 1,whi
h is nothing else than the unitarity 
ondition for the maximal torus variablesof the group SU(6). This is the simplest example of the Seiberg duality dis
overedin [Sb℄. Further detailed investigation of su
h interrelations and their 
onsequen
es
an be found in [SV1℄, where many new ellipti
 beta integrals on root systems havebeen 
onje
tured and many new supersymmetri
 dualities have been found.The ellipti
 hypergeometri
 integrals emerge also in the 
ontext of the relativis-ti
 Calogero-Sutherland type models [S7℄. However, the �rst non-trivial exampleof the ellipti
 hypergeometri
 fun
tions was found from the exa
tly solvable mod-els of statisti
al me
hani
s. Namely, in [FT℄ Frenkel and Turaev have shown thatthe Boltzmann weights (ellipti
 6j-symbols) of the RSOS models of Date et al[DJKMO℄, generalizing Baxter's eight-vertex model [Bax1℄, are determined byparti
ular values of the terminating 12V11 ellipti
 hypergeometri
 series (in mod-ern notations of [S9℄). The same series has been found by Zhedanov and theauthor [SZ℄ in a 
ompletely di�erent setting, as a parti
ular solution of the Laxpair equations for a 
lassi
al dis
rete integrable system. In [S2, S3℄, a familyof meromorphi
 fun
tions obeying a novel two-index biorthogonality relation hasbeen dis
overed. It was expli
itly 
onje
tured in [S2℄ that these fun
tions deter-mine a new family of solutions of the Yang-Baxter equation for dis
rete spin models.Sin
e the V (t1; : : : ; t8; p; q) fun
tion is an integral generalization of the latter fun
-tions, in [S6℄ it was 
onje
tured that the V -fun
tion determines a solution of theYang-Baxter equation. A simple 
onne
tion of the terminating 12V11-series and V -fun
tion with the Yang-Baxter equation for RSOS models was dis
ussed in [KS℄.Re
ently, Bazhanov and Sergeev [BS℄ have shown that the ellipti
 beta integral 
anbe rewritten as a star-triangle relation (STR) whi
h yields a new two-dimensional



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS 7solvable model of statisti
al me
hani
s. This is a new important appli
ation ofintegral (1.1) whi
h is des
ribed in the next se
tion. In this paper we show thatthe symmetry transformations for the V -fun
tion have similar interpretation as thestar-star relations. Moreover, we 
onje
ture that all known exa
t formulas for el-lipti
 hypergeometri
 integrals des
ribing the Seiberg duality transformations (atthe level of super
onformal indi
es) [SV1℄, in turn, represent STR and Kramers-Wannier type duality transformations [KW, W℄ for elementary partition fun
tionsin solvable models of statisti
al me
hani
s [Bax2℄.2. The ellipti
 beta integral STR solution and star-star relationIn [BS℄, Bazhanov and Sergeev have interpreted the ellipti
 beta integral eval-uation formula as a star-triangle relation whi
h gave a new solution of this relation.In order to des
ribe it, let us introdu
e the parameter � related to the bases p andq as e�2� = pqand pass to the additive notationz = eiu; x! eix; y ! eiy; w ! eiw:Introdu
e also the exponential form of the parametersr = e��; s = e�+
��; t = e�
 ;so that the balan
ing 
ondition r2s2t2 = 1 is satis�ed automati
ally. Finally, denote(2.1) W (�;x; u) := �(e���; eix; eiu):Then relation (1.8) 
an be rewritten asZ 2�0 S(u; p; q)W (� � �;x; u)W (� + 
; y; u)W (� � 
;w; u)du= �(�; 
; p; q)W (�; y; w)W (� � �� 
;x;w)W (
;x; y);(2.2)where S(u; p; q) = (p; p)1(q; q)14� �(e2iu; p)�(e�2iu; q);(2.3) �(�; 
; p; q) = �(r2; s2; t2; p; q):(2.4)As observed in [BS℄, equality (2.2) is nothing else than the star-triangle relationplaying an important role for solvable models of statisti
al me
hani
s. It is sym-bolized by �gure 1 given below, where the bla
k vertex of the star-shaped �gure onthe left-hand side means the integration over u-variable with the weight S(u), andW -weights are asso
iated with the edges 
onne
ting the bla
k vertex with whiteones. On the right-hand side one has the produ
t of three W -weights 
onne
tingonly white verti
es.Suppose we have a two dimensional square latti
e with spin variables a; b; 
; : : :sitting at verti
es. One asso
iates the self-intera
tion energy S(a) with ea
h spin(vertex). For ea
h horizontal bond 
onne
ting spins a and b the energy 
ontributionis given by the Boltzmann weightWfg(a; b), and the energy 
ontribution from ea
hverti
al bond 
onne
ting spins b and d is given by the weight W fg(b; d). Thevariables f and g are 
alled rapidities. Then, as des
ribed in detail by Baxter in



8 V. P. SPIRIDONOV
Figure 1. The star-triangle relation.[Bax3, Bax4℄, the general STR for these quantities have the following fun
tionalequations form:Xd S(d)W fg(d; b)Wfh(
; d)W gh(a; d) = RfghWfg(
; a)W fh(a; b)Wgh(
; b);Xd S(d)W fg(b; d)Wfh(d; 
)W gh(d; a) = RfghWfg(a; 
)W fh(b; a)Wgh(b; 
):(2.5)The se
ond equation is satis�ed automati
ally if the Boltzmann weights are sym-metri
 in spin variablesWfg(a; b) =Wfg(b; a); W fg(a; b) =W fg(b; a):Usually the normalization 
onstants fa
torize, Rfgh = rghrfg=rfh. Then the weightssatisfy the unitarity relation of the formXd S(d)W fg(a; d)W gf (d; b) = rfgrgfS(a) Æaband the re
e
tion equation Wfg(a; b)Wgf (a; b) = 1.A sub
lass of solutions of (2.5) emerges from the weights depending only ondi�eren
es of the rapidities,(2.6) Wfg(a; b) =W (f � g; a; b); W fg(a; b) =W (� � f + g; a; b);where the parameter � is 
alled the 
rossing parameter. Then the pre
ise identi�
a-tion of equality (2.2) with (2.5) is rea
hed after setting � = f�g; 
 = g�h (so thatf � h = �+ 
), equating S(d) to S(u; p; q) and Rfgh to �(�; 
; p; q) fun
tions, and�xing appropriately the range of summation (integration) over the variable d = u.We 
all (2.1), (2.3), (2.4) the ellipti
 beta integral STR solution. As shown in [BS℄,it generalizes many known solvable models of statisti
al me
hani
s [Bax2℄: the Isingmodel, Ashkin-Teller, 
hiral Potts, Fateev-Zamolod
hikov ZN -model, Kashiwara-Miwa and Faddeev-Volkov models. Moreover, as will be shown below, it 
omprisesalso a new Faddeev-Volkov type integrable system with 
ontinuous spins.There is dire
t relation between spin systems on latti
es of three types | thehoney
omb, triangular, and re
tangular latti
es. Indeed, one 
an start from thehoney
omb latti
e, as depi
ted on the left-hand side of �gure 2. Applying the star-triangle transformation to ea
h bla
k vertex one transforms the whole honey
omblatti
e to the triangular one [W℄. In a similar way, one 
an apply STR to ea
h whitevertex and obtain another triangular latti
e having only bla
k verti
es. This is quiteevident and does not require further explanations. However, further transformationof the triangular latti
e to the square one is more tri
ky.Consider the left-hand side of �gure 3. Take the horizontal line in the middleof the drawn pie
e of the latti
e. Pi
k up the triangles above and below it whi
h
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Figure 2. A honey
omb-triangluar latti
e transformation in-du
ed by the star-triangle relation.interse
t only at one point lying on this line (they are shown in bold lines). Apply tothem the triangle-star relation repla
ing them by stars and 
ontinue this pro
edureup and down line-by-line of the resulting latti
e. As a result, one obtains eventuallythe square latti
e. Taking into a

ount the nontrivial �-multiplier in STR, one
an thus 
onne
t partition fun
tions of the square latti
e model to the partitionfun
tions of two other types of models.

Figure 3. A triangluar-re
tangular latti
e transformation in-du
ed by the star-triangle relation.In [BS℄, the parameters x and u in (2.1) were 
onsidered as true spin variables.However, be
ause of the x! �x and u! �u symmetries, the Boltzmann weightsW and S depend on their trigonometri
 
ombinations. Therefore one 
an 
ount asthe true spin variables U = 
osu; X = 
osx; et
, with their values ranging from -1to 1. The 
hange of the variables in the measure is elementaryZTf�12(z + z�1)�dziz = Z 2�0 f(
osu)du = 2 Z 1�1 f(U) dUp1� U2 :The Boltzmann weight W (�;x; u) satis�es the re
e
tion symmetryW (�;x; u)W (��;x; u) = 1;



10 V. P. SPIRIDONOVfollowing from the re
e
tion equation for the ellipti
 gamma fun
tion. In terms ofthe spin variables X = 
osx and Y = 
os y the unitarity relation takes the formZ 1�1 S(u; p; q)W (� � �;x; u)W (� + �; y; u) dUp1� U2= �(e2�; e�2�; p; q)S(x; p; q) p1�X2 Æ(X � Y ):(2.7)This equality has been established by the author in [S8℄. Note that positivity ofthe Boltzmann weights S(u; p; q) andW (�;x; u) 
orresponds to the unitarity of theellipti
 modular double representations [S8℄. In parti
ular, they are positive forx; u 2 [0; 2�℄, real � su
h that jppqe�j < 1, and1) p� = p; q� = q; or 2) p� = q:At the level of super
onformal indi
es, relations similar to (2.7) des
ribe the Seibergdualities for gauge �eld theories with equal number of 
olors and 
avors and the
hiral symmetry breaking [SV2℄.Relation (2.2) is not 
hanged if one repla
es W and � byfW (�;x; u) = W (�;x; u)m(�) ;~�(�; 
; p; q) = m(�)m(
)m(� � �� 
)m(� � �)m(� � 
)m(�+ 
)�(�; 
; p; q)(2.8)for arbitrary normalizing fa
tor m(�).The star-triangle relation is one of the three known forms of the Yang-Baxterequation. The se
ond, probably the most popular form, is the vertex type relationsymboli
ally written in terms of the R-matri
es as(2.9) R(12)(�)R(13)(�+ �)R(23)(�) = R(23)(�)R(13)(�+ �)R(12)(�);where � and � are spe
tral parameters. The third type is referred to as the IRF(intera
tion around the fa
e) Yang-Baxter equation. The star-star relation, whi
hwas dis
ussed in detail in [Bax3℄, belongs to the latter type of equations and hasthe form Xg S(g)W1(a; g)W2(b; g)W3(
; g)W4(d; g)= Rm(b; 
)p(a; b)m(a; d)p(
; d)Xg S(g)W 01(a; g)W 02(b; g)W 03(
; g)W 04(d; g);(2.10)where Wj(a; b);W 0j(a; b);m(b; 
); p(a; b) are two-spin Boltzmann weights and S(g)is the spin self-intera
tion weight (it was omitted in formula (1.1) of [Bax3℄). Theleft-hand side 
an be interpreted as an elementary partition fun
tion for a systemof four spins a; b; 
; d sitting in four square verti
es 
onne
ted by edges to the sping sitting in the square 
enter, and the summation is going over the values of the
entral spin, see �gure 4 below. The right hand side has a similar interpretation ofa statisti
al sum multiplied by the additional Boltzmann weights asso
iated withopposite edges of the square (a; b; 
; d). Formula (2.10) 
an be thought of as ageneralized Kramers-Wannier duality transformation [KW, W℄.Relation (2.10) should be 
ompared with the V -fun
tion symmetry transfor-mations written in the form (1.16), (1.17), and (1.18). Some of them 
oin
ide with
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mFigure 4. A star-star relation for the square latti
e. AdditionalBoltzmann weights p and m are indi
ated by edges 
onne
ting
orresponding verti
es on the right-hand side.(2.10) after appropriate identi�
ations of the Boltzmann weights. For instan
e,equation (1.16) 
orresponds to the 
hoi
eW1(a; g) = �(�;x; g); W 01(a; g) = �(ppq��1;x; g);W2(b; g) = �(�; y; g); W 02(b; g) = �(ppq��1; y; g);W3(
; g) = �(ppq
;w; g); W 03(
; g) = �(Æ�1;w; g);W4(d; g) = �(ppqÆ; z; g); W 04(d; g) = �(
�1; z; g);where ��
Æ = 1, g is the integration variable for the V -fun
tion, and S(g) =�=�(g�2; p; q). Other fa
tors have the formR = �(�2; �2; p; q)�(
�2; Æ�2; p; q) ; m(b; 
) = m(a; d) = 1;p(a; b) = �(��;x; y); p(
; d) = �(��;w; z):(2.11)A similar interpretation is valid for relation (1.17). It 
orresponds to the 
hoi
eW1(a; g) = �(�;x; g); W 01(a; g) = �(�;x; g);W2(b; g) = �(ppq
;w; g); W 02(b; g) = �(ppqÆ;w; g);W3(
; g) = �(�; y; g); W 03(
; g) = �(�; y; g);W4(d; g) = �(ppqÆ; z; g); W 04(d; g) = �(ppq
; z; g);where, again, ��
Æ = 1 and S(g) = �=�(g�2; p; q). As to other fa
tors, R = 1 andm(b; 
) = �(ppq�
; y; w); m(a; d) = �(ppq�
;x; z);p(a; b) = �(ppq�
;x;w); p(
; d) = �(ppq�
; y; z):(2.12)There are three star-star relations for the Ising type models listed in [Bax3℄ asequations (2.16), (5.1), and (5.2). Our �rst option (2.11) 
orresponds to relation(5.2) in [Bax3℄. Relations (2.16) and (5.2) in [Bax3℄ are obtained from ea
h otherby a re
e
tion with respe
t to the latti
e square diagonal (b; d). Our se
ond option(2.12) 
orresponds to relation (5.1) in [Bax3℄ with non
onstant p- and m-weights.However, we have the third nontrivial form of the symmetry transformation forthe V -fun
tion (1.18). It 
orresponds to a more 
ompli
ated type of the star-star



12 V. P. SPIRIDONOVrelationXg S(g)W1(a; g)W2(b; g)W3(
; g)W4(d; g)(2.13) = Rm(b; 
)p(a; b)t(a; 
)m(a; d)p(
; d)t(b; d)Xg S(g)W 01(a; g)W 02(b; g)W 03(
; g)W 04(d; g);where t(a; 
) is a new diagonal Boltzmann weight. Expli
itly, we haveW1(a; g) = �(�;x; g); W 01(a; g) = �(ppq��1;x; g);W2(b; g) = �(�; y; g); W 02(b; g) = �(ppq��1; y; g);W3(
; g) = �(ppq
;w; g); W 03(
; g) = �(
�1;w; g);W4(d; g) = �(ppqÆ; z; g); W 04(d; g) = �(Æ�1; z; g);where ��
Æ = 1. Other fa
tors in (2.13) are R = �(�2; �2; p; q)=�(
�2; Æ�2; p; q)and m(b; 
) = �(ppq�
; y; w); m(a; d) = �(ppq�
;x; z);p(a; b) = �(��;x; y); p(
; d) = �(��;w; z);t(a; 
) = �(ppq�
;x;w); t(b; d) = �(ppq�
; y; z):Perhaps, this type of the star-star relation was not 
onsidered in the literaturebefore. Note that all su
h relations represent symmetry groups of the partitionfun
tions. In the 
ase of V -fun
tion this is W (E7), i.e. one has mu
h biggersymmetry than that seen expli
itly in the 
hosen spin system interpretation. Wehave des
ribed thus a new (ellipti
 hypergeometri
) 
lass of solutions of the star-starrelation whi
h should lead to new solvable models of statisti
al me
hani
s similarto the 
he
kerboard Ising model. Known systems of su
h type were investigatedin detail in [BSt℄. A natural general 
on
lusion from our 
onsideration is that thesymmetry of STR 
an be ri
her than a dire
t sum of symmetries of the Boltzmannweights and the latti
e.3. A hyperboli
 beta integral STR solutionWe des
ribe now another solution of the star-triangle relation asso
iated withthe modi�ed form of the ellipti
 beta integral when one of the bases p or q 
an lieon the unit 
ir
le [DS2℄. It simpli�es also 
onsideration of the degeneration limitsto q-beta integrals of the Mellin-Barnes type (hyperboli
 beta integrals).First we des
ribe the modi�ed ellipti
 gamma fun
tion introdu
ed in [S3℄. It is
onvenient to use additive notation and introdu
e three pairwise in
ommensuratequasiperiods !1, !2, !3 together with the de�nitionsq = e2�i!1!2 ; p = e2�i!3!2 ; r = e2�i!3!1 ;~q = e�2�i!2!1 ; ~p = e�2�i!2!3 ; ~r = e�2�i!1!3 :(3.1)Here ~q; ~p; and ~r are parti
ular (� ! �1=�) modular transformations of q; p; andr. Assume that Im(!1=!2); Im(!3=!1); Im(!3=!2) > 0, or jqj; jpj; jrj < 1. Then themodi�ed ellipti
 gamma fun
tion is 
onstru
ted as a produ
t of two ellipti
 gammafun
tions G(u;!1; !2; !3) = �(e2�i u!2 ; p; q)�(re�2�i u!1 ; r; ~q)= e��i3 B3;3(u;!)�(e�2�i u!3 ; ~r; ~p);(3.2)



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS13where B3;3(u;!) is the third diagonal Bernoulli polynomial (for the general de�ni-tion of su
h polynomials, see Appendix A),B3;3 u+ 3Xn=1 !n2 ;!! = u(u2 � 14P3k=1 !2k)!1!2!3 :The G(u;!)-fun
tion satis�es the following system of three linear di�eren
e equa-tions of the �rst order G(u+ !1;!) = �(e2�i u!2 ; p)G(u;!);G(u+ !2;!) = �(e2�i u!1 ; r)G(u;!);G(u+ !3;!) = e��iB2;2(u;!)G(u;!);where B2;2(u;!) is the se
ond diagonal Bernoulli polynomial,B2;2(u;!) = u2!1!2 � u!1 � u!2 + !16!2 + !26!1 + 12 :The se
ond equality in (3.2) follows from the fa
t that both expressions for G(u;!)satisfy the above set of equations and the normalization G( 12P3k=1 !k;!) = 1.It is easy to see that G(u;!) is well de�ned for jpj; jrj < 1 and jqj � 1, thejqj = 1 
ase being permitted in di�eren
e from the �(z; p; q)-fun
tion. Evidently,we have the symmetry relationG(u;!1; !2; !3) = G(u;!2; !1; !3)and the re
e
tion equationG(a;!)G(b;!) = 1; a+ b = 3Xk=1!k:For Im(!1=!2) > 0, we 
an take the limit !3 !1 in su
h a way thatIm(!3=!1); Im(!3=!2)! +1and p; r ! 0. Then,(3.3) limp;r!0G(u;!) = 
(u;!1; !2) = (e2�iu=!1 ~q; ~q)1(e2�iu=!2 ; q)1 :For Re(!1);Re(!2) > 0 and 0 < Re(u) < Re(!1 + !2) this 
-fun
tion has thefollowing integral representation(3.4) 
(u;!1; !2) = exp�� ZR+i0 eux(1� e!1x)(1� e!2x) dxx � ;whi
h shows that 
(u;!1; !2) is a meromorphi
 fun
tion of u even for !1=!2 > 0,when jqj = 1 and the in�nite produ
t representation (3.3) is not valid any more.The inversion relation for this fun
tion has the form
(u;!1; !2)
(!1 + !2 � u;!1; !2) = e�iB2;2(u;!):For more details on this fun
tion see Appendix A.Let Im(!1=!2) � 0 and Im(!3=!1); Im(!3=!2) > 0, and let six 
omplex para-meters gk, k = 1; : : : ; 6, satisfy the 
onstraints Im(gk=!3) < 0 and(3.5) 6Xk=1 gk = !1 + !2 + !3:



14 V. P. SPIRIDONOVThen [DS2℄,(3.6) Z !3=2�!3=2 Q6k=1G(gk � u;!)G(�2u;!) du = ~� Y1�k<l�6G(gk + gl;!);where the integration goes along the straight line segment 
onne
ting points �!3=2and !3=2, and(3.7) ~� = �2!2(~q; ~q)1(q; q)1(p; p)1(r; r)1 :Here and below we use the shorthand notationG(a� b;!) := G(a+ b; a� b;!) := G(a+ b;!)G(a� b;!):The proof of equality (3.6) is rather simple. It is ne
essary to substitute in itthe se
ond form of G(u;!)-fun
tion (3.2), 
he
k that all exponential fa
tors 
an
eland, after a 
hange of notation, the formula redu
es to the standard ellipti
 betaintegral.Let us introdu
e the 
rossing parameter� = �12 3Xk=1!kand denote(3.8) g1;2 = ��� x; g3;4 = �+ 
 � � � y; g5;6 = �
 � w;so that the balan
ing 
ondition (3.5) is satis�ed automati
ally. Introdu
e also themodi�ed Boltzmann weight, or the kernel for the modi�ed form of the integraltransformation (1.4), W 0(�;x; u) = G(�� � � x� u;!):Then relation (3.6) 
an be rewritten asZ !3=2�!3=2 �(u;!)W 0(� � �;x; u)W 0(�+ 
; y; u)W 0(� � 
;w; u)du= �(�; 
;!)W 0(�; y; w)W 0(� � �� 
;x;w)W 0(
;x; y);(3.9)where �(u;!) = 1~�G(�2u;!) = 1~�e��iB2;2(2u;!1;!2)�(e�4�iu=!2 ; p)�(e�4�iu=!1 ; r);�(�; 
;!) = G(�2�;�2
; 2�+ 2
 � 2�;!):(3.10)Substituting the se
ond form of the modi�ed ellipti
 gamma fun
tion, we �ndW 0(�;x; u) = exp��4�i3 �B3;3(� � �;!) + 3�(x2 + u2)!1!2!3 �����e2�i(���); x!3 ; u!3 ; ~p; ~r� :(3.11)We see that this Boltzmann weight is obtained from (2.1) after a reparametrizationof variables and multipli
ation by an exponential of a quadrati
 polynomial of thespin variables. This means that there exists a nontrivial symmetry transformationof the star-triangle relation modifying its solutions in the des
ribed way.



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS15The distinguished property of the modi�ed ellipti
 beta integral is that it iswell de�ned for jqj = 1. Therefore the limit !3 ! 1 leads to q-beta integrals wellde�ned in this regime as well. Let Re(!1); Re(!2) > 0. Then, for !3 ! +i1,one has p; r ! 0 and G(u;!) goes to 
(u;!1; !2)-fun
tion. Let us substituteg6 =P3k=1 !k � A in formula (3.6), where A =P5k=1 gk, and apply the inversionformula to the 
orresponding modi�ed ellipti
 gamma fun
tion. Then the formallimit !3 ! +i1 redu
es this integration formula toZ +i1�i1 Q5j=1 
(gk � u;!)
(�2u;A� u;!) du = �2!2 (~q; ~q)1(q; q)1 Q1�j<k�5 
(gj + gk;!)Q5k=1 
(A� gk;!) ;(3.12)where the integration 
ontour is the straight line for Re(gk) > 0 or the Mellin-Barnestype 
ontour, if these restri
tions for parameters are violated. Let us remind alsothat (~q; ~q)1(q; q)1 =r�i!1!2 e �i12�!1!2+!2!1 �;where p�i = e��i=4 sin
e for !1=!2 = ia; a > 0, the square root should be positive.Let us introdu
e parameter g6 anew (it should not be 
onfused with the previousvariable g6 whi
h we have eliminated) using the 
ondition(3.13) 6Xk=1 gk = !1 + !2(note the di�eren
e with (3.5)). Now we 
an apply the inversion formula to 
-fun
tions to move some of them from the denominator of the integral kernel to itsnumerator. It is 
onvenient here to de�ne the hyperboli
 gamma fun
tion 
(2)(u):(3.14) 
(2)(u;!) = e��i2 B2;2(u;!)
(u;!):Then, after the 
hange of the integration variable u = iz, the integral (3.12) takesthe 
ompa
t formZ 1�1 Q6j=1 
(2)(gk � iz;!)
(2)(�2iz;!) dz = 2p!1!2 Y1�j<k�6 
(2)(gj + gk;!):(3.15)Validity of the des
ribed limit !3 ! 1 at the level of integrals was rigorouslyjusti�ed in [R2℄ using a slightly di�erent notation. Integral (3.15) was proven �rst(using a di�erent approa
h) by Stokman [St℄ who 
alled it the hyperboli
 betaintegral. We followed the formal limiting pro
edure suggested in [DS2℄.Similar to (3.8), let us �x the parameters as(3.16) g1;2 = ��� ix; g3;4 = �+ 
 � � � iy; g5;6 = �
 � iwwith the 
rossing parameter � = �(!1+!2)=2. Then formula (3.15) 
an be rewrittenas a star-triangle relationZ 1�1 S(z)W (� � �;x; z)W (�+ 
; y; z)W (� � 
;w; z)dz= �(�; 
)W (�; y; w)W (� � �� 
;x;w)W (
;x; y);(3.17)



16 V. P. SPIRIDONOVwhere W (�;x; z) = 
(2)(�� � � ix� iz;!);S(z) = 12p!1!2
(2)(�2iz;!) = 2 sinh 2�z!1 sinh 2�z!2p!1!2 ;�(�; 
) = 
(2)(�2�;�2
; 2�+ 2
 � 2�;!):(3.18)These Boltzmann weights are positive for real x; z; �, � < � < ��, � < 0, andeither real !1;2 or !�1 = !2.Consider a parti
ular redu
tion of integration formula (3.15). For this we re-pla
e parameters gj ! gj + i�, j = 1; 2; 3; and gj ! gj � i�, j = 4; 5; 6: Sin
e theintegrand is symmetri
 in z we 
an rewrite the left-hand side as2 Z 10 Q3j=1 
(2)(gj + i�� iz; gj+3 � i�� iz;!)
(2)(�2iz;!) dz= 2 Z 1�� 3Yj=1 
(2)(gj � iz; gj+3 + iz;!)�1(z)�2(z)dz;where �1(z) = e�2�(z+�)(!�11 +!�12 )
(2)(�2i(z + �);!) !�!+1 1and �2(z) = e2�(z+�)(!�11 +!�12 ) 3Yj=1 
(2)(gj + 2i�+ iz; gj+3 � 2i�� iz;!)!�!+1 e �!1!2��2�(!1+!2)+ i2 P3j=1 �g2j+3�g2j+(gj�gj+3)(!1+!2)��(1 + o(1)):On the right-hand side we �nd2p!1!2 3Yj=1 6Yk=4 
(2)(gj + gk;!)�3(g);where �3(g) = Y1�j<k�3 
(2)(gj + gk + 2i�; gj+3 + gk+3 � 2i�;!)!�!+1 e�i2 P1�j<k�3 �B2;2(gj+3+gk+3�2i�)�B2;2(gj+gk+2i�)�(1 + o(1)):One 
an 
he
k that the leading asymptoti
s of �3(g) 
oin
ides with that of the�2(z)-fun
tion. Taking the limit � ! +1, whi
h is uniform, one 
omes to thefollowing exa
t integration formula [B℄(3.19) Z 1�1 3Yj=1 
(2)(gj � iz; gj+3 + iz;!)dz = p!1!2 3Yj=1 6Yk=4 
(2)(gj + gk;!);where P6k=1 gk = !1 + !2.



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS17Let us 
hange notation for the integral parametersg1 = ��+ ix; g2 = �+ 
 � � + iy; g3 = �
 + iw;g4 = ��� ix; g5 = �+ 
 � � � iy; g6 = �
 � iw;where � = �(!1+!2)=2 is a 
rossing parameter; the balan
ing 
onditionP6k=1 gk =�2� is satis�ed then automati
ally. Now we 
an rewrite equality (3.19) as the star-triangle relationZ 1�1W (� � �;x; z)W (�+ 
; y; z)W (� � 
;w; z) dzp!1!2= �W (�; y; w)W (� � �� 
;x;w)W (
;x; y);(3.20)where the Boltzmann weight is de�ned asW (�;x; z) = 
(2)(�� � � i(x� z);!)and the normalization 
onstant is(3.21) � = 
(2)(�2�;�2
; 2�+ 2
 � 2�;!):Note that W (�;x; y) = W (�; y; x) and W (�;x; y) > 0 in the same domain ofparameters as before. Denoting ! = b, !2 = b�1, and � = �(b + b�1)�=(2�) one
an see thatW (�;x; z) 
oin
ides with the Boltzmann weight of the Faddeev-Volkovmodel [FV, VF℄ denoted as W�(x � z) in [BMS℄ (our � di�ers by sign from thede�nition 
hosen in [BMS℄) up to some normalization fa
tor F�.We thus see that the Faddeev-Volkov model solution of the star-triangle relation[VF℄ is a parti
ular 
ase of our hyperboli
 beta integral STR solution (3.18). Thefa
t that the left-hand side of STR for the Faddeev-Volkov model represents aparti
ular limiting 
ase of the ellipti
 beta integral was known to the author alreadyin 2008. After seeing [BMS℄ and understanding this fa
t, the author was interestedwhether a similar interpretation exists for the ellipti
 beta integral itself. However,this idea was not developed further, partially be
ause the origin of the normalizingfa
tor F� given in [BMS℄ was not understood at that time. Fortunately, Bazhanovand Sergeev have independently answered this question in [BS℄.4. Partition fun
tionsThe partition fun
tion of a homogeneous two dimensional dis
rete spin systemon the square latti
e with the Boltzmann weightsW (�;ui; uj) (2.1) and S(uj) (2.3)has the formZ = Z Y(ij)W (�;ui; uj)Y(kl)W (� � �;uk; ul)Ym S(um)dum;where the �rst produ
t is taken over the horizontal edges (ij), the se
ond produ
tgoes over all verti
al edges (k; l), and the third produ
t (in m) is taken over allinternal verti
es of the latti
e. Let us take the ellipti
 beta integral STR solutionof [BS℄ and 
onsider the 
ontribution to Z 
oming from a parti
ular vertex usurrounded by the verti
es u1; u2; u3; u4:Z 2�0 S(u)W (�;u1; u)W (�;u; u3)W (� � �;u2; u)W (� � �;u; u4)du:



18 V. P. SPIRIDONOVSubstituting expli
it expressions for the weights, one 
an easily see that this integralis equal to the ellipti
 hypergeometri
 fun
tion V (t1; : : : ; t8; p; q) des
ribed above(1.3) with the following restri
ted set of parametersft1; t2; t3; t4g = fe���e2�iu1 ; e���e�2�iu1 ; e���e2�iu3 ; e���e�2�iu3g;ft5; t6; t7; t8g = fe��e2�iu2 ; e��e�2�iu2 ; e��e2�iu4 ; e��e�2�iu4g:In total, there are 5 independent parameters, instead of 7 for generi
 V -fun
tion(in addition to the bases p and q). Therefore we 
on
lude that the full partitionfun
tion Z is given by an ellipti
 hypergeometri
 integral 
onstru
ted as a towerof intertwined (restri
ted) ellipti
 analogues of the Gauss hypergeometri
 fun
tionsimilar to the Bailey tree for integrals [S4℄.A

ording to the general re
e
tion method used in [BS℄, the leading asymptot-i
s of the partition fun
tion for two-dimensional N �M latti
e when its size goesto in�nity, N;M !1, has the formZ =N;M!1 m(�)NM ;where m(�) is the normalizing fa
tor for Boltzmann weights whi
h guarantees thaton the right-hand side of STR the ~�-multiplier (2.8) is equal to unity, ~� = 1. This
ondition is satis�ed if(4.1) m(�)m(� � �)�(e�2�; p; q) = 1; or m(�+ �) = �(e2�; p; q)m(��):Let us introdu
e the fun
tion(4.2)M(x; p; q; t) = exp� Xn2Z=f0g (ppqtx)nn(1� pn)(1� qn)(1 + tn)� = �(xtppqt; p; q; t2)�(xppqt; p; q; t2) ;where�(z; p; q; t) = 1Yj;k;l=0(1� ztjpkql)(1� z�1tj+1pk+1ql+1); jpj; jqj; jtj < 1;is the se
ond order ellipti
 gamma fun
tion satisfying the t-di�eren
e equation�(tz; p; q; t) = �(z; p; q)�(z; p; q; t):The re
e
tion equation �(z�1; p; q; t) = �(pqtz; p; q; t) leads to the equalityM(x�1; p; q; t)M(x; p; q; t) = 1:It is easy also to 
he
k validity of the fun
tional equationM(x; p; q; t)M(t�1x; p; q; t) = ��xrpqt ; p; q�;whi
h is equivalent to (4.1) after �xing t = pq and x = e2�. Therefore we �nd theneeded normalizing fun
tion(4.3) m(�) =M(e2�; p; q; pq); m(�)m(��) = 1:The fun
tion � logm(�) de�nes thus the free energy per edge of the integrablelatti
e model under 
onsideration.



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS19Now we dis
uss the partition fun
tion for the general hyperboli
 beta integralsolution of the star-triangle relation (3.18). The needed normalization 
onstantm(�) is found from the equation(4.4) m(�)m(� � �)
(2)(�2�;!) = 1; or m(�=2 + �) = 
(2)(�;!)m(��=2);where � = �(!1 + !2)=2.Let us de�ne the fun
tion�(u;!1; !2; !3) = 
(3)(u+ 12P3k=1 !k + !3;!1; !2; 2!3)
(3)(u+ 12P3k=1 !k;!1; !2; 2!3) ;where 
(3)-fun
tion is the hyperboli
 gamma fun
tion of the third order de�ned inAppendix B. Using the integral representation for it, we 
an write(4.5) �(u;!) = exp�� �ia6 � ZR+i0 evx(e!1x � 1)(e!2x � 1)(e!3x + 1) dxx �;where v = u+P3k=1 !k=2 anda = B3;3(v + !3;!1; !2; 2!3)�B3;3(v;!1; !2; 2!3)= 32!1!2 �u2 � !21 + !22 + 3!2312 �For a spe
ial 
hoi
e of the third quasiperiod variable !3 = !1 + !2, this fun
tionappeared for the �rst time in [LZ℄.Using the re
e
tion equation
(3)( 3Xk=1!k � u;!1; !2; !3) = 
(3)(u;!1; !2; !3)and the di�eren
e equation
(3)(u+ !3;!1; !2; !3) = 
(2)(u;!1; !2)
(3)(u;!1; !2; !3);one 
an easily 
he
k that �(u;!)�(�u;!) = 1 and�(u;!)�(u� !3;!) = 
(2)(u+ 12(!1 + !2 � !3);!1; !2):The latter relation 
oin
ides with equation (4.4) for u = 2� and !3 = !1 + !2.Therefore we �nd the free energy per edge as � logm(�), where(4.6) m(�) = �(2�;!1; !2; !1 + !2):By 
onstru
tion this fun
tion satis�es also the re
e
tion equation m(�)m(��) = 1.Denoting !1 = b; !2 = b�1 and substituting the in�nite produ
t representation ofthe 
(3)-fun
tion given in Appendix B, we �nd the expressionm(�) = exp���i�2 � �i24(1� 2(b+ b�1)2)�� (~qe2�iu=b; ~q2)1(qe2�iub; q2)1 1Yj;k=0 1 + e�iu=(b+b�1)~pj+1~q2k1� e�iu=(b+b�1)~pj+1~q2k ;(4.7)where it is assumed that jqj < 1, q = e2�ib2 , ~q = e�2�i=b2 , and ~p = e��i=(1+b2).We turn now to the Faddeev-Volkov model solution of STR (3.20). In this 
asewe have no self-intera
tion of the spins sitting in latti
e verti
es, and the Boltzmann



20 V. P. SPIRIDONOVweights atta
hed to edges are simpli�ed. But the partition fun
tion asymptoti
sis the same as in the previous 
ase, sin
e evidently the normalizing 
onstant m(�)is found from the same equation (4.4). The free energy per edge for this modelwas 
omputed already by Bazhanov, Mangazeev, and Sergeev in [BMS℄, where theBoltzmann weights normalizing fa
tor was denoted as F�. Comparing this 
onstantwith our m(�), we see that they 
oin
ide for � = �(b+ b�1)�=(2�), as ne
essary.However, our in�nite produ
t representation ofm(�) in (4.7) di�ers drasti
ally fromthat given in [BMS℄ (whi
h was the sour
e of author's old time 
onfusion).5. Con
lusionAfter the dis
overy of ellipti
 hypergeometri
 integrals, for a long time the au-thor was drawing attention of experts (in
luding the se
ond author of [BS℄) in two-dimensional 
onformal �eld theory and solvable models of statisti
al me
hani
s fora potential emergen
e of su
h fun
tions in these �elds. The 
onne
tion between theellipti
 beta integral and the star-triangle relation found in [BS℄ and the star-starrelation des
ribed above 
on�rms this expe
tation. However, the nature appearedto be mu
h ri
her than it was imagined in [S2, S6, S9℄. As mentioned already, theDolan-Osborn dis
overy of a stunningly unexpe
ted 
oin
iden
e of ellipti
 hyper-geometri
 integrals with super
onformal (topologi
al) indi
es in four dimensionalsupersymmetri
 gauge theories strongly pushed forward the development of thetheory and raised many interesting open questions [DO, SV1℄. The interpretationof exa
t 
omputability of the ellipti
 beta integrals as the 
on�nement phenome-non in quantum �eld theory is a new type of 
on
eptual per
eption of the exa
tmathemati
al formulas.As to the models 
onsidered in this paper, we have des
ribed a generalizationof the Faddeev-Volkov solution of STR [VF℄ with the 
ontinuous spin variablestaking values on the real line, whi
h was not 
onsidered in [BS℄. It has somenontrivial self-intera
tion energy for ea
h vertex and a more 
ompli
ated form ofthe Boltzmann weights for edges, though the free energy per edge appears to bethe same as in the Faddeev-Volkov model. In [VF℄ the Yang-Baxter equation wasproved using the quantum pentagonal relation [FKV℄. It would be interesting tointerpret in a similar way the model we have des
ribed here. Some time ago theauthor has tried to �nd an ellipti
 analogue of the pentagon relation in analogywith the 
onstru
tions des
ribed in [V℄, but 
ould not do it yet. Clearly the ellipti
beta integral gives already an analyti
 form of that wanted operator relation, butit is hard to formulate it in terms of the 
ommutation relations of some expli
itoperators.In [FV℄, Faddeev and Volkov have 
onsidered a latti
e Virasoro algebra anddes
ribed an integrable model in the dis
rete 2d spa
e-time (it was dis
ussed alsoin detail in [FKV℄). The ellipti
 beta integral yields more general solutions ofSTR than that of [VF℄, and it is natural to ask for expli
it realization of the
orresponding models similar to [FV℄. During the work on [SV1℄, G. Vartanovand the author have suggested that there should exist some ellipti
 deformation ofthe primary �elds V�(z) built from free 2d bosoni
 �elds (in the spirit similar to thesituation dis
ussed in [SWy℄) su
h that the three point 
orrelation fun
tion wouldbe given by the ellipti
 beta integral and the four point fun
tion would be des
ribedby the V -fun
tion satisfying the ellipti
 hypergeometri
 equation [S9℄ (so that the
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tion would des
ribe the s-t 
hannels duality).Unfortunately, su
h hypotheti
al results are not 
on
eivable at the present moment.From the point of view of super
onformal indi
es the partition fun
tion as-so
iated with the ellipti
 beta integral solution of STR looks as a super
onfor-mal index for a parti
ular SU(2)-quiver gauge theory on a two dimensional lat-ti
e. Re
ently there was a great deal of a
tivity on interrelations between four-dimensional super-Yang-Mills theories and two-dimensional �eld theories, see, e.g.,[AGT, CNV, GPRR, NS, SWy℄. In this framework, the ellipti
 hypergeomet-ri
 integrals des
ribing super
onformal indi
es of N = 2 quiver gauge theories havebeen interpreted by Gadde et al in [GPRR℄ as 
orrelation fun
tions of some 2dtopologi
al quantum �eld theories.Therefore it is natural to expe
t that super
onformal indi
es of all four di-mensionanl CFTs are related to dis
retizations of 2d CFT models and other inte-grable systems. A 
onne
tion of the Yang-Baxter moves with the Seiberg dualityhas been brie
y dis
ussed in [HV℄. In this 
ontext, super
onformal indi
es of allquiver gauge theories should 
orrespond to full partition fun
tions of some spin sys-tems. In view of the abundan
e of supersymmetri
 dualities and ri
h stru
ture ofthe 
orresponding super
onformal indi
es (twisted partition fun
tions) [SV1℄, theauthor 
onsiders the present moment only as a beginning of un
overing new two-dimensional and higher-dimensional integrable models hidden behind the ellipti
hypergeometri
 fun
tions.For instan
e, the ellipti
 Selberg integral de�ned on the BCn root system reads[DS1, S9℄:�n ZTn Y1�j<k�n �(tz�1j z�1k ; p; q)�(z�1j z�1k ; p; q) nYj=1 Q6m=1 �(tmz�1j ; p; q)�(z�2j ; p; q) dzjizj= nYj=10��(tj ; p; q)�(t; p; q) Y1�m<s�6�(tj�1tmts; p; q)1A ;(5.1)where jtj; jtmj < 1, t2n�2Q6m=1 tm = pq, and�n = (p; p)n1(q; q)n1(4�)nn! :After some work, this formula 
an be given the STR type shapeZ[0;2�℄n S(u; t; p; q)W (� � �;x;u)W (� + 
; y;u)W (� � 
;w;u)[du℄;=Wt(�; y; w)Wt(� � �� 
;w; x)Wt(
;x; y);(5.2)where we denoted [du℄ = �n nYj=1 �(t; p; q)duj�(tj ; p; q) ;and the 
rossing parameter � is de�ned ase�2� = pqtn�1:The Boltzmann weights have the formS(u; t; p; q) = Y1�j<k�n �(te�iuj�iuk ; p; q)�(e�iuj�iuk ; p; q) nYj=1 1�(e�2iuj ; p; q)(5.3)



22 V. P. SPIRIDONOVand W (�;x;u) := 1m(�) nYj=1�(ppqe�e�ixe�iuj ; p; q);(5.4) Wt(�;x; y) := 1m(�) nYj=1�(ppqe�tj�n+12 e�ixe�iy; p; q);(5.5)and satisfy the re
e
tion relationsW (�;x;u)W (��;x;u) = 1; Wt(�;x; y)Wt(��;x; y) = 1:The normalization 
onstant m(�) for n > 1 has a substantially more 
ompli
atedform than that for n = 1. To des
ribe it we introdu
e the fun
tionM(x; p; q; t; s) = �(xts2; xt1�ns; p; q; t; s2)�(xts; xt1�ns2; p; q; t; s2) ;a parti
ular ratio of four ellipti
 gamma fun
tions of the third order. More pre
isely,one has �(z; p; q; t; s) := 1Yi;j;k;l=0 1� z�1pi+1qj+1tk+1sl+11� zpiqjtkslfor z 2 C � ; jpj; jqj; jtj; jsj < 1, with the re
e
tion equation �(z; pqtsz�1; p; q; t; s) = 1and the di�eren
e equation �(sz; p; q; t; s) = �(z; p; q; t)�(z; p; q; t; s). Then,(5.6) m(�) =M(e2�; p; q; t; pqtn�1);with the standard re
e
tion relation m(�)m(��) = 1.Let us dis
uss a physi
al meaning of the obtained model. Consider a honey
omblatti
e on the plane with two types of verti
es { bla
k and white with two adja
entverti
es always being of di�erent 
olor, see the left-hand side of �gure 2. Intoea
h white vertex we put an independent single 
omponent 
ontinuous spin x.Into ea
h bla
k vertex we put n independent spins uj ; j = 1; : : : ; n, or one n-dimensional spin with n 
ontinuous 
omponents. These \spins" are quite di�erentfrom those of the Ising model where they take only the values +1 and �1 (i.e., theyrepresent the �elds and not the 
ompa
t spins). In di�erent words, one asso
iatesto ea
h bla
k vertex the SP (2n)-group spa
e related to the root system BCn. Weasso
iate with ea
h bla
k vertex the self-intera
tion Boltzmann weight (5.3) withan additional intera
tion between \spin" 
omponents in the internal spa
e. To ea
hbond 
onne
ting \bla
k-and-white" verti
es we atta
h the Boltzmann weight (5.4).Then, on the left-hand side of (5.2) we have the partition fun
tion of an elementary
ell with the bla
k vertex in the 
enter and the integral taken over the uj-spinvalues. If we apply this star-triangle relation to ea
h bla
k vertex we 
ome to adi�erent spin system asso
iated with the plain triangular latti
e having only thewhite verti
es with the bond Boltzmann weights des
ribed by the fun
tion (5.5),see the right-hand side of �gure 2. Su
h a transformation of latti
es looks quitesimilar to a transformation of the honey
omb-triangular Ising systems 
onsidered in[W℄. Perhaps there exists also another STR type duality transformation involvingonly the white verti
es (with some self-intera
tion) allowing for a transition to yetanother triangular latti
e system. In addition to this un
ertainty, it remains alsoun
lear the free energy per edge of whi
h model is des
ribed by the fun
tion (5.6).Positivity of the Boltzmann weights of this model 
an be analyzed along thelines of ellipti
 modular double involutions dis
ussed in [S8℄. In parti
ular, these
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learly positive for x; uj 2 [0; 2�℄, real t; � and � := jppqe�j < 1,� < jtjn�12 < ��1, with either p� = p; q� = q or p� = q: For n > 1 the 
rossingparameter � looks like an arbitrary free variable, not related to other parametersof the system, but, in fa
t, it is essentially equivalent to the 
oupling 
onstant t foruj-spins. If t = 1, relation (5.2) redu
es to n-th power of the standard STR.De�ne the BCn-root system generalization of the V -fun
tion:I(t1; : : : ; t8; t; p; q) = Y1�j<k�8 �(tjtk; p; q; t)(5.7) � �n ZTn Y1�j<k�n�(tz�1j z�1k ; p; q)�(z�1j z�1k ; p; q) nYj=1 Q8k=1 �(tkz�1j ; p; q)�(z�2j ; p; q) dzjizj ;where parameters t; t1; : : : ; t8 2 C , satisfy jtj; jtj j < 1, and t2n�2Q8j=1 tj = p2q2
onstraints. As shown by Rains [R3℄, this fun
tion obeys the same W (E7) Weylgroup of symmetries as in the n = 1 
ase. The key transformation has the form(5.8) I(t1; : : : ; t8; t; p; q) = I(s1; : : : ; s8; t; p; q);where� sj = ��1tj ; j = 1; 2; 3; 4sj = �tj ; j = 5; 6; 7; 8 ; � =r t1t2t3t4pqt1�n =s pqt1�nt5t6t7t8 ; jtj; jtj j; jsj j < 1:Introdu
e variables xj by relation t(n�1)=4tj = (pq)1=4e2�ixj , so that the balan
ing
ondition be
omesP8j=1 xj = 0. Then (5.8) des
ribes the invarian
e of the integralI with respe
t to the Weyl re
e
tionx! Sv(x) = x� 2hx; vihv; vi v; x; v 2 R8 ;where hx; vi = P8k=1 xkvk is the s
alar produ
t and the ve
tor v has 
omponentsvk = 1=2; k = 1; 2; 3; 4; and vk = �1=2; k = 5; 6; 7; 8: Together with the groupS8 permuting the parameters xj , this transformation generates full ex
eptionalre
e
tion group W (E7).Equality (5.8) 
an be rewritten in the star-star relation formZ[0;2�℄n S(u; t; p; q)W (� � �;x;u)W (� � �; y;u)W (
;w;u)W (Æ; z;u)[du℄= RPt(�+ �;x; y)Pt(�+ �;w; z) Z[0;2�℄n S(u; t; p; q)(5.9) �W (�;x;u)W (�; y;u)W (� � Æ;w;u)W (� � 
; z;u)[du℄;where �+ � = 
 + Æ andR = n�1Yl=0 �(t�le�2�; t�le�2� ; p; q)�(t�le�2
 ; t�le�2Æ; p; q) ; Pt(�;x; y) = n�1Yl=0 �(t�le��e�ix�iy; p; q):In 
omplete analogy with n = 1 
ase (1.16), (1.17), (1.18), one 
an obtain two otherdi�erently looking star-star relations for n > 1 by an iterative appli
ation of thisformula after permutations of parameters.Using the matrix integral representations for ellipti
 hypergeometri
 integrals,in [SV1℄ relation (5.8) was shown to des
ribe a new ele
tri
-magneti
 dualitybetween two four-dimensional N = 1 supersymmetri
 Yang-Mills theories with



24 V. P. SPIRIDONOVthe gauge group G = SP (2n). Namely, the ele
tri
 theory has the 
avor groupSU(8)� U(1); it 
ontains the ve
tor super�eld in the adjoint representation of G,one 
hiral s
alar multiplet in the fundamental representations of G and SU(8), andthe �eld des
ribed by the antisymmetri
 tensor of the se
ond rank of G. The mag-neti
 theory has the 
avor group SU(4)l � SU(4)r � U(1)B � U(1) and a similarset of quantum �elds, as well as 2n additional gauge invariant mesoni
 �elds |the antisymmetri
 tensors of SU(4)-
avor subgroups. The ellipti
 Selberg integral(5.1) des
ribes the 
on�nement phenomenon in the SP (2n) super-Yang-Mills gaugetheory with 6 
hiral super�elds in the fundamental and 1 
hiral super�eld in theantisymmetri
 representations of SP (2n), respe
tively, | its dual magneti
 phase
ontains only a pe
uliar set of mesoni
 �elds without lo
al gauge symmetry.From the present paper point of view relations (5.2) and (5.9) should have anappropriate physi
al interpretation in the 
ontext of dis
rete integrable models forn > 1 similar to the n = 1 
ase. We des
ribed already one possible honey
omblatti
e model that 
an be asso
iated with the ellipti
 Selberg integral. The systemlying behind relation (5.9) resembles the 
he
kerboard Ising model with the 
ontin-uous spins. As an elementary 
ell one has a square with four white verti
es (withthe single 
omponent spins x; y; : : : sitting in them) and one bla
k vertex in the
enter (with the n-
omponent spin u sitting in it and the integral taken over itsvalues), see �gure 4. There are again three di�erently looking star-star relations forn > 1 obtained by repeated appli
ation of the same formula (5.9) in 
onjugationwith permutation of parameters, quite similar to the n = 1 
ase. Equality (5.2)
an be 
onsidered then as their redu
tion to STR.We did not dis
uss in this paper an important physi
al question of the existen
eof phase transitions in the des
ribed models and the spe
trum of s
aling exponents.For 
larifying this point it is ne
essary to single out the temperature like variableasso
iated with one of the parameters p or q [BS℄ and investigate the behavior of thepartition fun
tions per edge (de�ned by m(�)'s) when the temperature varies fromlarge to small values. Sin
e many known systems with nontrivial phase transitionsare represented by the limiting 
ases of the ellipti
 beta integral STR solutions, thereare nontrivial 
riti
al phenomena. However, their 
lassi�
ation requires separateanalysis and lies beyond the s
ope of the present work.In [SV1℄ a large number of proven and 
onje
tural evaluation formulas forellipti
 beta integrals on root systems and their nontrivial symmetry transformationanalogues for higher order integrals has been listed. A
tually, it was 
onje
turedthat there exist in�nitely many su
h integrals, and for ea
h of them one 
an expe
tsuitable appli
ation in the 
ontext of solvable models of statisti
al me
hani
s andother types of integrable systems.A
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tionThe fun
tion 
(u;!1; !2) (3.3) or its various transformed versions are referredto in di�erent papers as the double sine fun
tion [KLS, PT℄, the non-
ompa
t



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS25quantum dilogarithm [F, FKV, PT, V, BS℄, the hyperboli
 gamma fun
tion[Ru, B℄, or the modi�ed q-gamma fun
tion [S9℄.The fun
tional equations satis�ed by 
(u;!) have the form(A.1) 
(u+ !1;!)
(u;!) = 1� e2�i u!2 ; 
(u+ !2;!)
(u;!) = 1� e2�i u!1 :Using a modular transformation for theta fun
tions one 
an derive another repre-sentation for 
(u;!1; !2) 
omplementary to (3.3):(A.2) 
(u;!1; !2) = e�iB2;2(u;!) (e�2�iu=!2q; q)1(e�2�iu=!1 ; ~q)1 :The non-
ompa
t quantum dilogarithm [F℄ in the notation of [BMS℄ (in [FKV℄it was denoted as eb(z)) has the form'(z) = exp�14 ZR+i0 e�2izwsinh(wb) sinh(w=b)� dww= exp�ZR+i0 ewu(ewb � 1)(ew=b � 1)� dww ;where u = 12(b+ b�1)� iz:For q = e2�ib2 , ~q = e�2�i=b2 and Im(b2) > 0, one 
an write'(z) = (e2�ibu; q)1(e2�iu=b~q; ~q)1 = (�q1=2e2�bz ; q)1(�~q1=2e2�z=b; ~q)1 :Therefore, '(z) = 
�12(b+ b�1)� iz; b; b�1��1:The Sb(u) fun
tion used in [PT℄ 
oin
ides with
(2)(u;!1; !2) = e��i2 B2;2(u;!1;!2)
(u;!1; !2)for !1 = b and !2 = b�1, and another similar fun
tion of [PT℄ isGb(u) = e� �i12 (3+b2+b�2)
(u; b; b�1):The 
(z)-fun
tion used in [V℄ 
oin
ides with the in�nite produ
ts ratio on theright-hand side of (A.2) for z = !2u and � = !1=!2.For Re(!1);Re(!2) > 0 and 0 < Re(u) < Re(!1+!2) the fun
tion 
(2)(u;!1; !2)has the following integral representation(A.3) 
(2)(u;!1; !2) = exp��PV ZR eux(1� e!1x)(1� e!2x) dxx � ;where the prin
ipal value of the integral means PV RR = 2�1(RR+i0+ RR�i0). Usingthe fa
t that PV RR dx=xk = 0 for k > 1, one 
an write
(2)(u;!1; !2) = exp�� Z 10 � sinh(2u� !1 � !2)x2 sinh(!1x) sinh(!2x) � 2u� !1 � !22!1!2x �� dxx :Comparing this expression with the hyperboli
 gamma fun
tion Gh(z;!) de�nedin [Ru℄, one 
an see thatGh(z;!) = 
(2)�12(!1 + !2)� iz;!�; Re(!1);Re(!2) > 0:



26 V. P. SPIRIDONOVChanging in (A.3) the sign of the integration variable x! �x and simultaneously!k ! �!k; u! �u, we �nd that(A.4) 
(2)(u;!1; !2) = exp�+PV ZR eux(1� e!1x)(1� e!2x) dxx � ;where Re(!1);Re(!2) < 0 and Re(!1 + !2) < Re(u) < 0.The double sine fun
tion is de�ned as S2(u;!) = 1=
(2)(u;!) and its propertieswere des
ribed in detail in the Appendix of [KLS℄. For the 
(2)-fun
tion we have
(2)(u;!1; !2)� = 
(2)(u�;!�1 ; !�2); 
(2)(!1 + !22 � u;!1; !2) = 1;and 
(2)(au; a!1; a!2) = 
(2)(u;!1; !2) for arbitrary 
omplex a 6= 0. After su
h ares
aling in (A.4) with a = 2�i one gets the de�nition of the hyperboli
 gammafun
tion given in [R2℄.The asymptoti
s we are interested in for Im(!1=!2) > 0 have the formlimu!1 e�i2 B2;2(u;!)
(2)(u;!) = 1; for arg!1 < argu < arg!2 + �;limu!1 e��i2 B2;2(u;!)
(2)(u;!) = 1; for arg!1 � � < argu < arg!2:Appendix B. General multiple gamma fun
tionsBarnes introdu
ed a multiple zeta fun
tion as the following m-fold series [Bar℄�m(s; u;!) = 1Xn1;:::;nm=0 1(u+
)s ; 
 = n1!1 + : : :+ nm!m;where s; u 2 C . This series 
onverges for Re(s) > m under the 
ondition that all !jlie in one half-plane de�ned by a line passing through zero. Be
ause of the latterrequirement, the sequen
es n1!1+ : : :+nm!m do not have a

umulation points onthe �nite plane for any nj ! +1. It is 
onvenient to assume for de�niteness thatRe(!j) > 0.The fun
tion �m(s; u;!) satis�es equations(B.1) �m(s; u+ !j ;!)� �m(s; u;!) = ��m�1(s; u;!(j)); j = 1; : : : ;m;where !(j) = (!1; : : : ; !j�1; !j+1; : : : ; !m) and �0(s; u;!) = u�s. The Barnes mul-tiple gamma fun
tion is de�ned by the equality�m(u;!) = exp(��m(s; u;!)=�s)��s=0:It satis�es �nite di�eren
e equations(B.2) �m(u+ !j ;!) = 1�m�1(u;!(j)) �m(u;!); j = 1; : : : ;m;where �0(u;!) := u�1.The multiple sine-fun
tion is de�ned asSm(u;!) = �m(Pmk=1 !k � u;!)(�1)m�m(u;!) :It is more 
onvenient to work with the hyperboli
 gamma fun
tion
(m)(u;!) = Sm(u;!)(�1)m�1
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(m)(u+ !j ;!) = 
(m�1)(u;!(j)) 
(m)(u;!); j = 1; : : : ;m:Note that the ellipti
 gamma fun
tion 
an be written as a spe
ial 
ombination offour Barnes gamma fun
tions of the third order [S9℄, and similar relations are validfor higher order ellipti
 gamma fun
tions used in the present paper.One 
an derive the integral representation [N℄
(m)(u;!) = exp��PV ZR euxQmk=1(e!kx � 1) dxx �= exp�� �im!Bm;m(u;!)� ZR+i0 euxQmk=1(e!kx � 1) dxx �= exp� �im!Bm;m(u;!)� ZR�i0 euxQmk=1(e!kx � 1) dxx � ;where Re(!k) > 0 and 0 < Re(u) < Re(Pmk=1 !k) and Bm;m are multiple Bernoullipolynomials de�ned by the generating fun
tion(B.3) xmexuQmk=1(e!kx � 1) = 1Xn=0Bm;n(u;!1; : : : ; !m)xnn! :In�nite produ
t representations for these fun
tions have been derived in [N℄.In parti
ular, for jpj; jqj < 1 and jrj > 1 we have
(3)(u;!) = e��i6 B3;3(u;!) 1Yj;k=0 (1� e2�iu=!1 ~qj+1r�(k+1))(1� e2�iu=!2pjqk)1� e2�iu=!3 ~pj+1r�k ;whi
h is used in the main text after the redu
tion !3 = 2(!1 + !2) (or p = q2;r = ~q�2, ~p = e��i!2=(!1+!2)).The fun
tions m(�) (4.3), (4.6), and (5.6) de�ning the free energy per edge asdes
ribed in the main part of the paper are related to parti
ular 
ases of the Ler
htype generalization of the Barnes zeta-fun
tion:�m(s; u;�;!) = 1Xn1;:::;nm=0 Qmk=1 �nkk(u+
)s ; 
 = n1!1 + : : :+ nm!m;
onverging for all j�kj < 1, or Re(s) > m and j�kj = 1 (provided the same 
on-straints on !j are valid as in the plain Barnes 
ase). The univariate 
ase, i.e. theproper Ler
h zeta-fun
tion, is des
ribed, e.g., in [WW℄.The fun
tion �m(s; u;�;!) satis�es the following set of �nite di�eren
e equa-tions(B.4)�j�m(s; u+ !j ;�;!)� �m(s; u;�;!) = ��m�1(s; u;�(j);!(j)); j = 1; : : : ;m;where !(j) = (!1; : : : ; !j�1; !j+1; : : : ; !m), �(j) = (�1; : : : ; �j�1; �j+1; : : : ; �m),and �0(s; u;�;!) = u�s.Similar to the Barnes 
ase, one 
an easily derive the integral representations�m(s; u;�;!) = 1�(s) Z 10 ts�1e�utQmk=1(1� �ke�!kt) dt= i�(1� s)2� ZCH (�t)s�1e�utQmk=1(1� �ke�!kt)dt;



28 V. P. SPIRIDONOVwhere CH is the Hankel 
ontour en
ir
ling the half-line [0;1) 
ounter
lo
kwise,and using them analyti
ally 
ontinue �m-fun
tion in s and �k to di�erent regionsof parameters. The �k-deformation of the Barnes multiple gamma fun
tion de�nedas �m(u;�;!) = exp(��m(s; u;�;!)=�s)��s=0 satis�es the �nite di�eren
e equations(B.5) �m(u+ !j ;�;!)�j = 1�m�1(u;�(j);!(j)) �m(u;�;!); j = 1; : : : ;m;where �0(u;�;!) := u�1.When �k are primitive roots of unity, �nkk = 1, nk = 2; 3; : : : ; it is possible torewrite �m(s; u;�;!) as linear 
ombinations of the standard Barnes zeta fun
tions.It follows from the simple identity11� �kz = Ql=0;2;:::;nk�1(1� �lkz)1� znk :This allows expressing the fun
tions like (4.5) as linear 
ombinations of the standardBarnes gamma fun
tions, whi
h was used in the 
onstru
tion of in�nite produ
trepresentations of the fun
tions m(�) (4.3), (4.6), and (5.6). In parti
ular, fun
tion(4.5) is emerging from the m = 3 
ase with the 
hoi
e �1 = �2 = 1; �3 = �1.Referen
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