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Ellipti beta integrals and solvablemodels of statistial mehanisV. P. SpiridonovAbstrat. The univariate ellipti beta integral was disovered by the authorin 2000. Reently Bazhanov and Sergeev have interpreted it as a star-trianglerelation (STR). This important observation is disussed in more detail in on-netion to author's previous work on the ellipti modular double and supersym-metri dualities. We desribe also a new Faddeev-Volkov type solution of STR,onnetions with the star-star relation, and higher-dimensional analogues ofsuh relations. In this piture, Seiberg dualities are desribed by symmetriesof the ellipti hypergeometri integrals (interpreted as superonformal indies)whih, in turn, represent STR and Kramers-Wannier type duality transfor-mations for elementary partition funtions in solvable models of statistialmehanis. Contents1. The simplest ellipti hypergeometri integrals 12. The ellipti beta integral STR solution and star-star relation 73. A hyperboli beta integral STR solution 124. Partition funtions 175. Conlusion 20Appendix A. The modi�ed q-gamma funtion 24Appendix B. General multiple gamma funtions 26Referenes 281. The simplest ellipti hypergeometri integralsIn the present paper we disuss relations between a new lass of speial fun-tions, alled ellipti hypergeometri funtions, and solvable models of statistialmehanis. We desribe the most ompliated known integrable systems de�nedon 2d (two-dimensional) latties representing ontinuous spin generalizations of thewell known Ising model and its various extensions. Atually, these novel integrablemodels orrespond to some disretized 2d quantum �eld theories. Also we indiate2000 Mathematis Subjet Classi�ation. Primary 82B23, Seondary 33E99.Key words and phrases. Ellipti beta integrals, integrable systems, statistial mehanis.Work was supported in part by Russian foundation for basi researh (RFBR grant no.09-01-00271). 1



2 V. P. SPIRIDONOVonnetions with the 4d supersymmetri �eld theories, where ellipti hypergeomet-ri integrals have found reently the major appliation. We start from a brieftehnial introdution to the needed results on speial funtions and disuss thephysial systems they apply to in the following hapters.General theory of ellipti hypergeometri integrals was formulated in [S1, S3,S5℄. We skip the strutural de�nition of these integrals and refer for the orre-sponding details to a reasonably short survey given in [S9℄.Let us denote (z; q)1 = 1Yk=0(1� zqk); jqj < 1; z 2 C ;the standard in�nite q-produt and�(z; p; q) = 1Yi;j=0 1� z�1pi+1qj+11� zpiqj ; jpj; jqj < 1; z 2 C � ;the standard ellipti gamma funtion. Below we use the onventions�(a; b; p; q) := �(a; p; q)�(b; p; q); �(az�1; p; q) := �(az; p; q)�(az�1; p; q);�(az�1y�1; p; q) := �(azy; p; q)�(az�1y; p; q)�(azy�1; p; q)�(az�1y�1; p; q):One has the symmetry �(z; p; q) = �(z; q; p) and the inversion formula��a; pqa ; p; q� = 1; or �(a; a�1; p; q) = 1�(a; p)�(a�1; q) ;whih follows from the di�erene equations�(qz; p; q) = �(z; p)�(z; p; q); �(pz; p; q) = �(z; q)�(z; p; q);where �(z; p) = (z; p)1(pz�1; p)1is a theta funtion. The standard odd Jaobi theta funtion has the form [WW℄�1(uj�) = ��11(u) = �Xk2Ze�i�(k+1=2)2e2�i(k+1=2)(u+1=2)= ip1=8e��iu(p; p)1�(e2�iu; p);where we denoted p = e2�i� .The univariate ellipti beta integral [S1℄ forms a ornerstone of a new power-ful lass of exatly omputable integrals. It is desribed by the following expliitformula(1.1) � ZTQ6j=1 �(tjz�1; p; q)�(z�2; p; q) dziz = Y1�j<k�6�(tjtk; p; q);where T is the unit irle with positive orientation,� = (p; p)1(q; q)14� ;and six omplex parameters tj ; j = 1; : : : ; 6, satisfy the inequalities jtj j < 1 andthe balaning ondition(1.2) 6Yj=1 tj = pq:



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS 3We use the word \integral" in two meanings. When referred to the exatlyomputable ases, like (1.1) or the standard Euler beta integral lying on its bottom,it means either the funtion de�ned by the left-hand side or, more often, the wholeidentity. In other ases it means an integral representation for a funtion of interestor a lass of funtions with ommon struture.As shown in [S3℄, the left-hand side of relation (1.1) serves as the orthogonalitymeasure for the most general known family of biorthogonal funtions with theproperties harateristi to lassial orthogonal polynomials (Chebyshev, Hermite,Laguerre, Jaobi, : : : , Askey-Wilson polynomials). In the same paper the elliptibeta integral has been generalized to the following funtion(1.3) V (t1; : : : ; t8; p; q) = � ZTQ8j=1 �(tjz�1; p; q)�(z�2; p; q) dziz ;where jtj j < 1 and Q8j=1 tj = (pq)2: This is a natural ellipti analogue of the Gausshypergeometri funtion sine its features generalize most of the speial funtionproperties of the 2F1-series [S5, S9℄. For tjtk = pq, j 6= k, V -funtion reduesto the ellipti beta integral and, for this reason, it an be alled the ellipti betaintegral of a higher order.In [S4℄, the author has introdued the following universal integral transforma-tion for funtions analytial in the viinity of the unit irle T:(1.4) g(w; t) = � ZT�(t;w; z; p; q)f(z; t)dziz ;where the kernel(1.5) �(t;w; z; p; q) := �(t;w; z) = �(tw�1z�1; p; q); jtj < 1;is a partiular produt of four ellipti gamma funtions. In [SW℄, it was shown thatthis integral transformation obeys the key property making it very similar to theFourier transformation. Namely, its inverse is obtained essentially by the reetiont! t�1.An expliit example of the pair of funtions g(w; t) and f(z; t) in (1.4) anbe easily found from the ellipti beta integral. Indeed, let us denote t5 = tw andt6 = tw�1 (so that t2Q4j=1 tj = pq). Then,f(z; t) = Q4j=1 �(tjz�1; p; q)�(z�2; p; q) ;(1.6) g(w; t) = �(t2; p; q) Y1�i<j�4�(titj ; p; q) 4Yj=1�(ttjw�1; p; q);(1.7)where jtw�1j; jtj j < 1.Beause of the permutational symmetry, any of the original variables tj an beassoiated with the distinguished parameter t. After �xing t1 = sy; t2 = sy�1 andt3 = rx; t4 = rx�1, one an rewrite the ellipti beta integral in the formZT'(z)�(r;x; z)�(s; y; z)�(t;w; z)dziz= �(r; s; t)�(rs;x; y)�(rt;x;w)�(st; y; w);(1.8)



4 V. P. SPIRIDONOVwhere rst = �ppq and'(z) = (p; p)1(q; q)14��(z�2; p; q) = 14� (p; p)1(q; q)1�(z2; p)�(z�2; q);�(r; s; t) = �(r2; s2; t2; p; q):(1.9)A key appliation of de�nition (1.4) onsists in the onstrution of a tree ofidentities for multiple ellipti hypergeometri integrals with many parameters [S4℄.Using one of the orresponding symmetry transformations, the following relationhas been derived in [S8℄(1.10) �(x; ; dj�; s) = � ZTR(; d; a; b;x;wjs)�(w; a; bj�; s)dwiw ;where the \basis vetor" � has the form(1.11) �(w; a; bj�; s) = �(sa��1; sb��1;rpqabw�1��1; p; q);and the \rotation" integral operator kernel isR(; d; a; b;x;wjs) = 1�(pqab ; abpq ; w�2; p; q)� V  s; sd;rpqdx;rpqdx�1; pqas ; pqbs ;sabpqw;sabpqw�1; p; q! :The funtion � is a generalization of the kernel �(t;x; z), sine for ab = pq=s2 onehas the redution �(w; a; pqas2 j�; s) = �(s;w; �):Using the �-kernel, relation (1.10) was rewritten also in [S8℄ in a more ompatform �(�;x; �)�(�; y; �) = � ZTr(�; �; ; Æ;x; y; t; w)�(; t; �)�(Æ;w; �)dwiw ;r(�; �; ; Æ;x; y; t; w) = 1�(Æ�2; w�2; p; q)V ��x�1; �y�1; pq t�1; w�1Æ � ;where �� = Æ andV ��x�1; �y�1; pq t�1; w�1Æ � = � ZT�(�;x; z)�(�; y; z)�(pq ; t; z)�( 1Æ ;w; z)�(z�2; p; q) dziz :Here we use the ondensed notation for parameters of the V -funtion: V (: : : �x�1: : :) = V (: : : �x; �x�1 : : :).The funtion � emerges also in the ontext of the Sklyanin algebra [Sk℄ (thealgebra of the Yang-Baxter equation solutions),S�S� � S�S� = i(S0S + SS0);S0S� � S�S0 = iJ� � J�J (S�S + SS�);(1.12)where J� are the struture onstants and (�; �; ) is any yli permutation of(1; 2; 3). Namely, one has to onsider the generalized eigenvalue problems A� =�B�, where A and B are linear ombinations of four generators Sa; a = 0; 1; 2; 3;



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS 5and � is a spetral parameter. The funtion � is de�ned uniquely up to multipli-ation by a onstant with the help of two suh equations using a pair of Sklyaninalgebras forming an ellipti modular double [S8℄. This algebra represents an elliptiextension of the Faddeev modular double [F℄, but there are atually two di�erentmodular doubles at the ellipti level whih obey di�erent sets of involutions.Relevane of the Sklyanin algebra in this setting was notied �rst by Rains[R1℄. For speial quantized values of the parameters, the �-funtion redues tothe intertwining vetors of Takebe [T℄, whih were used by Rosengren in [Ros℄for the derivation of a disrete spin version of relation (1.10). In our ase bothCasimir operators of the algebra (1.12), K0 =P3a=0 S2a andK2 =P3�=1 J�S2�, takeontinuous values, i.e. we deal with the ontinuous spin representations related tothe integral operator form of the Yang-Baxter equation.The following salar produt has been introdued in [S8℄(1.13) h�;  i = � ZT �(z) (z)�(z�2; p; q) dziz :It has been shown that both the V -funtion itself and the �-vetors form biorthog-onal systems of funtions with respet to this measure. In partiular, one has therelation � ZT �(ei'0 ; pq ; pqd j�; s�1)�(ei'; ; dj�; s)�(��2; p; q) d�i�= 2�(p; p)1(q; q)1��pqd ; dpq ; e�2i'; p; q�p1� v2 Æ(v � v0);(1.14)where v = os', v0 = os'0, and Æ(v) is the Dira delta-funtion. (There is amissprint in formula (3.2) of [S8℄ whih misses the �rst fator standing on theright-hand side of (1.14).) Positivity of the biorthogonality measure and of the�-funtion orresponds to the unitarity of representations of the ellipti modulardouble. Setting d = pq=s2, we obtain(2�)2 Z 1�1 �(s�1; ei'0 ; ei�)�(s; ei'; ei�)�(e�2i�; p; q) dXp1�X2= � �s2; s�2; e�2i'; p; q�p1� v2 Æ(v � v0);(1.15)where X = os�.The tetrahedral symmetry transformation for V -funtion, disovered in [S3℄,an be rewritten in the following form:V (�x�1; �y�1; w�1; Æz�1) = �(�2; �2; 2; Æ2; p; q)�(��;x; y)�(Æ;w; z)� V (ppq��1x�1;ppq��1y�1;ppqÆ�1w�1;ppq�1z�1)(1.16) = �(�;x;w)�(�Æ;x; z)�(�; y; w)�(�Æ; y; z)� V (�x�1; �y�1; Æw�1; z�1)(1.17) = �(�2; �2; 2; Æ2; p; q)�(��;x; y)�(�;x;w)�(�Æ;x; z)�(�; y; w)(1.18)��(�Æ; y; z)�(Æ;w; z)V (ppq��1x�1;ppq��1y�1;ppq�1w�1;ppqÆ�1z�1);where ��Æ = �pq. The latter two transformations are obtained by repeated ap-pliation of the �rst relation in ombination with permutation of the parameters.The full symmetry group of the V -funtion is the Weyl group W (E7) for the ex-eptional root system E7 [R3℄. Therefore, there are 72 = dimW (E7)=S8 relations



6 V. P. SPIRIDONOVsimilar to (1.16), (1.17), (1.18), we just piked up three of them by breaking theS8 permutational symmetry and gathering the ellipti gamma funtions into the�-bloks.The outstanding physial appliation of the ellipti beta integral has been dis-overed by Dolan and Osborn [DO℄. They have shown that the simplest superon-formal (topologial) indies of N = 1 supersymmetri �eld theories oinide withknown ellipti hypergeometri integrals. Exat omputability or the Weyl groupsymmetry transformations of suh integrals desribe the Seiberg duality of N = 1theories [Sb℄, sine they prove oinidene of the orresponding superonformalindies.In this piture, the left-hand side of the univariate ellipti beta integral eval-uation formula (1.1) desribes the superonformal index of the supersymmetriquantum hromodynamis with SU(2) gauge group and SU(6) avor group. Thistheory has one vetor super�eld (gauge �elds) in the adjoint representation of SU(2)and a set of hiral super�elds (matter �elds) in the fundamental representation ofSU(2) � SU(6). The elementary partiles representing these �elds desribe thespetrum of the theory in the high energy limit, where the oupling onstant isvanishing due to the asymptoti freedom. In the deep infrared region the theory isstrongly oupled, all olored partiles on�ne, and one has the Wess-Zumino typemodel for mesoni �elds lying in the 15-dimensional totally antisymmetri tensorrepresentation of SU(6). The superonformal index of the latter theory is de-sribed by the right-hand side expression of formula (1.1). This onstrution givesa group-theoretial interpretation of the ellipti beta integral. After renormalizingthe parameters tk = (pq)1=6yk, the balaning ondition takes the formQ6k=1 yk = 1,whih is nothing else than the unitarity ondition for the maximal torus variablesof the group SU(6). This is the simplest example of the Seiberg duality disoveredin [Sb℄. Further detailed investigation of suh interrelations and their onsequenesan be found in [SV1℄, where many new ellipti beta integrals on root systems havebeen onjetured and many new supersymmetri dualities have been found.The ellipti hypergeometri integrals emerge also in the ontext of the relativis-ti Calogero-Sutherland type models [S7℄. However, the �rst non-trivial exampleof the ellipti hypergeometri funtions was found from the exatly solvable mod-els of statistial mehanis. Namely, in [FT℄ Frenkel and Turaev have shown thatthe Boltzmann weights (ellipti 6j-symbols) of the RSOS models of Date et al[DJKMO℄, generalizing Baxter's eight-vertex model [Bax1℄, are determined bypartiular values of the terminating 12V11 ellipti hypergeometri series (in mod-ern notations of [S9℄). The same series has been found by Zhedanov and theauthor [SZ℄ in a ompletely di�erent setting, as a partiular solution of the Laxpair equations for a lassial disrete integrable system. In [S2, S3℄, a familyof meromorphi funtions obeying a novel two-index biorthogonality relation hasbeen disovered. It was expliitly onjetured in [S2℄ that these funtions deter-mine a new family of solutions of the Yang-Baxter equation for disrete spin models.Sine the V (t1; : : : ; t8; p; q) funtion is an integral generalization of the latter fun-tions, in [S6℄ it was onjetured that the V -funtion determines a solution of theYang-Baxter equation. A simple onnetion of the terminating 12V11-series and V -funtion with the Yang-Baxter equation for RSOS models was disussed in [KS℄.Reently, Bazhanov and Sergeev [BS℄ have shown that the ellipti beta integral anbe rewritten as a star-triangle relation (STR) whih yields a new two-dimensional



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS 7solvable model of statistial mehanis. This is a new important appliation ofintegral (1.1) whih is desribed in the next setion. In this paper we show thatthe symmetry transformations for the V -funtion have similar interpretation as thestar-star relations. Moreover, we onjeture that all known exat formulas for el-lipti hypergeometri integrals desribing the Seiberg duality transformations (atthe level of superonformal indies) [SV1℄, in turn, represent STR and Kramers-Wannier type duality transformations [KW, W℄ for elementary partition funtionsin solvable models of statistial mehanis [Bax2℄.2. The ellipti beta integral STR solution and star-star relationIn [BS℄, Bazhanov and Sergeev have interpreted the ellipti beta integral eval-uation formula as a star-triangle relation whih gave a new solution of this relation.In order to desribe it, let us introdue the parameter � related to the bases p andq as e�2� = pqand pass to the additive notationz = eiu; x! eix; y ! eiy; w ! eiw:Introdue also the exponential form of the parametersr = e��; s = e�+��; t = e� ;so that the balaning ondition r2s2t2 = 1 is satis�ed automatially. Finally, denote(2.1) W (�;x; u) := �(e���; eix; eiu):Then relation (1.8) an be rewritten asZ 2�0 S(u; p; q)W (� � �;x; u)W (� + ; y; u)W (� � ;w; u)du= �(�; ; p; q)W (�; y; w)W (� � �� ;x;w)W (;x; y);(2.2)where S(u; p; q) = (p; p)1(q; q)14� �(e2iu; p)�(e�2iu; q);(2.3) �(�; ; p; q) = �(r2; s2; t2; p; q):(2.4)As observed in [BS℄, equality (2.2) is nothing else than the star-triangle relationplaying an important role for solvable models of statistial mehanis. It is sym-bolized by �gure 1 given below, where the blak vertex of the star-shaped �gure onthe left-hand side means the integration over u-variable with the weight S(u), andW -weights are assoiated with the edges onneting the blak vertex with whiteones. On the right-hand side one has the produt of three W -weights onnetingonly white verties.Suppose we have a two dimensional square lattie with spin variables a; b; ; : : :sitting at verties. One assoiates the self-interation energy S(a) with eah spin(vertex). For eah horizontal bond onneting spins a and b the energy ontributionis given by the Boltzmann weightWfg(a; b), and the energy ontribution from eahvertial bond onneting spins b and d is given by the weight W fg(b; d). Thevariables f and g are alled rapidities. Then, as desribed in detail by Baxter in



8 V. P. SPIRIDONOV
Figure 1. The star-triangle relation.[Bax3, Bax4℄, the general STR for these quantities have the following funtionalequations form:Xd S(d)W fg(d; b)Wfh(; d)W gh(a; d) = RfghWfg(; a)W fh(a; b)Wgh(; b);Xd S(d)W fg(b; d)Wfh(d; )W gh(d; a) = RfghWfg(a; )W fh(b; a)Wgh(b; ):(2.5)The seond equation is satis�ed automatially if the Boltzmann weights are sym-metri in spin variablesWfg(a; b) =Wfg(b; a); W fg(a; b) =W fg(b; a):Usually the normalization onstants fatorize, Rfgh = rghrfg=rfh. Then the weightssatisfy the unitarity relation of the formXd S(d)W fg(a; d)W gf (d; b) = rfgrgfS(a) Æaband the reetion equation Wfg(a; b)Wgf (a; b) = 1.A sublass of solutions of (2.5) emerges from the weights depending only ondi�erenes of the rapidities,(2.6) Wfg(a; b) =W (f � g; a; b); W fg(a; b) =W (� � f + g; a; b);where the parameter � is alled the rossing parameter. Then the preise identi�a-tion of equality (2.2) with (2.5) is reahed after setting � = f�g;  = g�h (so thatf � h = �+ ), equating S(d) to S(u; p; q) and Rfgh to �(�; ; p; q) funtions, and�xing appropriately the range of summation (integration) over the variable d = u.We all (2.1), (2.3), (2.4) the ellipti beta integral STR solution. As shown in [BS℄,it generalizes many known solvable models of statistial mehanis [Bax2℄: the Isingmodel, Ashkin-Teller, hiral Potts, Fateev-Zamolodhikov ZN -model, Kashiwara-Miwa and Faddeev-Volkov models. Moreover, as will be shown below, it omprisesalso a new Faddeev-Volkov type integrable system with ontinuous spins.There is diret relation between spin systems on latties of three types | thehoneyomb, triangular, and retangular latties. Indeed, one an start from thehoneyomb lattie, as depited on the left-hand side of �gure 2. Applying the star-triangle transformation to eah blak vertex one transforms the whole honeyomblattie to the triangular one [W℄. In a similar way, one an apply STR to eah whitevertex and obtain another triangular lattie having only blak verties. This is quiteevident and does not require further explanations. However, further transformationof the triangular lattie to the square one is more triky.Consider the left-hand side of �gure 3. Take the horizontal line in the middleof the drawn piee of the lattie. Pik up the triangles above and below it whih



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS 9
Figure 2. A honeyomb-triangluar lattie transformation in-dued by the star-triangle relation.interset only at one point lying on this line (they are shown in bold lines). Apply tothem the triangle-star relation replaing them by stars and ontinue this proedureup and down line-by-line of the resulting lattie. As a result, one obtains eventuallythe square lattie. Taking into aount the nontrivial �-multiplier in STR, onean thus onnet partition funtions of the square lattie model to the partitionfuntions of two other types of models.

Figure 3. A triangluar-retangular lattie transformation in-dued by the star-triangle relation.In [BS℄, the parameters x and u in (2.1) were onsidered as true spin variables.However, beause of the x! �x and u! �u symmetries, the Boltzmann weightsW and S depend on their trigonometri ombinations. Therefore one an ount asthe true spin variables U = osu; X = osx; et, with their values ranging from -1to 1. The hange of the variables in the measure is elementaryZTf�12(z + z�1)�dziz = Z 2�0 f(osu)du = 2 Z 1�1 f(U) dUp1� U2 :The Boltzmann weight W (�;x; u) satis�es the reetion symmetryW (�;x; u)W (��;x; u) = 1;



10 V. P. SPIRIDONOVfollowing from the reetion equation for the ellipti gamma funtion. In terms ofthe spin variables X = osx and Y = os y the unitarity relation takes the formZ 1�1 S(u; p; q)W (� � �;x; u)W (� + �; y; u) dUp1� U2= �(e2�; e�2�; p; q)S(x; p; q) p1�X2 Æ(X � Y ):(2.7)This equality has been established by the author in [S8℄. Note that positivity ofthe Boltzmann weights S(u; p; q) andW (�;x; u) orresponds to the unitarity of theellipti modular double representations [S8℄. In partiular, they are positive forx; u 2 [0; 2�℄, real � suh that jppqe�j < 1, and1) p� = p; q� = q; or 2) p� = q:At the level of superonformal indies, relations similar to (2.7) desribe the Seibergdualities for gauge �eld theories with equal number of olors and avors and thehiral symmetry breaking [SV2℄.Relation (2.2) is not hanged if one replaes W and � byfW (�;x; u) = W (�;x; u)m(�) ;~�(�; ; p; q) = m(�)m()m(� � �� )m(� � �)m(� � )m(�+ )�(�; ; p; q)(2.8)for arbitrary normalizing fator m(�).The star-triangle relation is one of the three known forms of the Yang-Baxterequation. The seond, probably the most popular form, is the vertex type relationsymbolially written in terms of the R-matries as(2.9) R(12)(�)R(13)(�+ �)R(23)(�) = R(23)(�)R(13)(�+ �)R(12)(�);where � and � are spetral parameters. The third type is referred to as the IRF(interation around the fae) Yang-Baxter equation. The star-star relation, whihwas disussed in detail in [Bax3℄, belongs to the latter type of equations and hasthe form Xg S(g)W1(a; g)W2(b; g)W3(; g)W4(d; g)= Rm(b; )p(a; b)m(a; d)p(; d)Xg S(g)W 01(a; g)W 02(b; g)W 03(; g)W 04(d; g);(2.10)where Wj(a; b);W 0j(a; b);m(b; ); p(a; b) are two-spin Boltzmann weights and S(g)is the spin self-interation weight (it was omitted in formula (1.1) of [Bax3℄). Theleft-hand side an be interpreted as an elementary partition funtion for a systemof four spins a; b; ; d sitting in four square verties onneted by edges to the sping sitting in the square enter, and the summation is going over the values of theentral spin, see �gure 4 below. The right hand side has a similar interpretation ofa statistial sum multiplied by the additional Boltzmann weights assoiated withopposite edges of the square (a; b; ; d). Formula (2.10) an be thought of as ageneralized Kramers-Wannier duality transformation [KW, W℄.Relation (2.10) should be ompared with the V -funtion symmetry transfor-mations written in the form (1.16), (1.17), and (1.18). Some of them oinide with
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mFigure 4. A star-star relation for the square lattie. AdditionalBoltzmann weights p and m are indiated by edges onnetingorresponding verties on the right-hand side.(2.10) after appropriate identi�ations of the Boltzmann weights. For instane,equation (1.16) orresponds to the hoieW1(a; g) = �(�;x; g); W 01(a; g) = �(ppq��1;x; g);W2(b; g) = �(�; y; g); W 02(b; g) = �(ppq��1; y; g);W3(; g) = �(ppq;w; g); W 03(; g) = �(Æ�1;w; g);W4(d; g) = �(ppqÆ; z; g); W 04(d; g) = �(�1; z; g);where ��Æ = 1, g is the integration variable for the V -funtion, and S(g) =�=�(g�2; p; q). Other fators have the formR = �(�2; �2; p; q)�(�2; Æ�2; p; q) ; m(b; ) = m(a; d) = 1;p(a; b) = �(��;x; y); p(; d) = �(��;w; z):(2.11)A similar interpretation is valid for relation (1.17). It orresponds to the hoieW1(a; g) = �(�;x; g); W 01(a; g) = �(�;x; g);W2(b; g) = �(ppq;w; g); W 02(b; g) = �(ppqÆ;w; g);W3(; g) = �(�; y; g); W 03(; g) = �(�; y; g);W4(d; g) = �(ppqÆ; z; g); W 04(d; g) = �(ppq; z; g);where, again, ��Æ = 1 and S(g) = �=�(g�2; p; q). As to other fators, R = 1 andm(b; ) = �(ppq�; y; w); m(a; d) = �(ppq�;x; z);p(a; b) = �(ppq�;x;w); p(; d) = �(ppq�; y; z):(2.12)There are three star-star relations for the Ising type models listed in [Bax3℄ asequations (2.16), (5.1), and (5.2). Our �rst option (2.11) orresponds to relation(5.2) in [Bax3℄. Relations (2.16) and (5.2) in [Bax3℄ are obtained from eah otherby a reetion with respet to the lattie square diagonal (b; d). Our seond option(2.12) orresponds to relation (5.1) in [Bax3℄ with nononstant p- and m-weights.However, we have the third nontrivial form of the symmetry transformation forthe V -funtion (1.18). It orresponds to a more ompliated type of the star-star



12 V. P. SPIRIDONOVrelationXg S(g)W1(a; g)W2(b; g)W3(; g)W4(d; g)(2.13) = Rm(b; )p(a; b)t(a; )m(a; d)p(; d)t(b; d)Xg S(g)W 01(a; g)W 02(b; g)W 03(; g)W 04(d; g);where t(a; ) is a new diagonal Boltzmann weight. Expliitly, we haveW1(a; g) = �(�;x; g); W 01(a; g) = �(ppq��1;x; g);W2(b; g) = �(�; y; g); W 02(b; g) = �(ppq��1; y; g);W3(; g) = �(ppq;w; g); W 03(; g) = �(�1;w; g);W4(d; g) = �(ppqÆ; z; g); W 04(d; g) = �(Æ�1; z; g);where ��Æ = 1. Other fators in (2.13) are R = �(�2; �2; p; q)=�(�2; Æ�2; p; q)and m(b; ) = �(ppq�; y; w); m(a; d) = �(ppq�;x; z);p(a; b) = �(��;x; y); p(; d) = �(��;w; z);t(a; ) = �(ppq�;x;w); t(b; d) = �(ppq�; y; z):Perhaps, this type of the star-star relation was not onsidered in the literaturebefore. Note that all suh relations represent symmetry groups of the partitionfuntions. In the ase of V -funtion this is W (E7), i.e. one has muh biggersymmetry than that seen expliitly in the hosen spin system interpretation. Wehave desribed thus a new (ellipti hypergeometri) lass of solutions of the star-starrelation whih should lead to new solvable models of statistial mehanis similarto the hekerboard Ising model. Known systems of suh type were investigatedin detail in [BSt℄. A natural general onlusion from our onsideration is that thesymmetry of STR an be riher than a diret sum of symmetries of the Boltzmannweights and the lattie.3. A hyperboli beta integral STR solutionWe desribe now another solution of the star-triangle relation assoiated withthe modi�ed form of the ellipti beta integral when one of the bases p or q an lieon the unit irle [DS2℄. It simpli�es also onsideration of the degeneration limitsto q-beta integrals of the Mellin-Barnes type (hyperboli beta integrals).First we desribe the modi�ed ellipti gamma funtion introdued in [S3℄. It isonvenient to use additive notation and introdue three pairwise inommensuratequasiperiods !1, !2, !3 together with the de�nitionsq = e2�i!1!2 ; p = e2�i!3!2 ; r = e2�i!3!1 ;~q = e�2�i!2!1 ; ~p = e�2�i!2!3 ; ~r = e�2�i!1!3 :(3.1)Here ~q; ~p; and ~r are partiular (� ! �1=�) modular transformations of q; p; andr. Assume that Im(!1=!2); Im(!3=!1); Im(!3=!2) > 0, or jqj; jpj; jrj < 1. Then themodi�ed ellipti gamma funtion is onstruted as a produt of two ellipti gammafuntions G(u;!1; !2; !3) = �(e2�i u!2 ; p; q)�(re�2�i u!1 ; r; ~q)= e��i3 B3;3(u;!)�(e�2�i u!3 ; ~r; ~p);(3.2)



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS13where B3;3(u;!) is the third diagonal Bernoulli polynomial (for the general de�ni-tion of suh polynomials, see Appendix A),B3;3 u+ 3Xn=1 !n2 ;!! = u(u2 � 14P3k=1 !2k)!1!2!3 :The G(u;!)-funtion satis�es the following system of three linear di�erene equa-tions of the �rst order G(u+ !1;!) = �(e2�i u!2 ; p)G(u;!);G(u+ !2;!) = �(e2�i u!1 ; r)G(u;!);G(u+ !3;!) = e��iB2;2(u;!)G(u;!);where B2;2(u;!) is the seond diagonal Bernoulli polynomial,B2;2(u;!) = u2!1!2 � u!1 � u!2 + !16!2 + !26!1 + 12 :The seond equality in (3.2) follows from the fat that both expressions for G(u;!)satisfy the above set of equations and the normalization G( 12P3k=1 !k;!) = 1.It is easy to see that G(u;!) is well de�ned for jpj; jrj < 1 and jqj � 1, thejqj = 1 ase being permitted in di�erene from the �(z; p; q)-funtion. Evidently,we have the symmetry relationG(u;!1; !2; !3) = G(u;!2; !1; !3)and the reetion equationG(a;!)G(b;!) = 1; a+ b = 3Xk=1!k:For Im(!1=!2) > 0, we an take the limit !3 !1 in suh a way thatIm(!3=!1); Im(!3=!2)! +1and p; r ! 0. Then,(3.3) limp;r!0G(u;!) = (u;!1; !2) = (e2�iu=!1 ~q; ~q)1(e2�iu=!2 ; q)1 :For Re(!1);Re(!2) > 0 and 0 < Re(u) < Re(!1 + !2) this -funtion has thefollowing integral representation(3.4) (u;!1; !2) = exp�� ZR+i0 eux(1� e!1x)(1� e!2x) dxx � ;whih shows that (u;!1; !2) is a meromorphi funtion of u even for !1=!2 > 0,when jqj = 1 and the in�nite produt representation (3.3) is not valid any more.The inversion relation for this funtion has the form(u;!1; !2)(!1 + !2 � u;!1; !2) = e�iB2;2(u;!):For more details on this funtion see Appendix A.Let Im(!1=!2) � 0 and Im(!3=!1); Im(!3=!2) > 0, and let six omplex para-meters gk, k = 1; : : : ; 6, satisfy the onstraints Im(gk=!3) < 0 and(3.5) 6Xk=1 gk = !1 + !2 + !3:



14 V. P. SPIRIDONOVThen [DS2℄,(3.6) Z !3=2�!3=2 Q6k=1G(gk � u;!)G(�2u;!) du = ~� Y1�k<l�6G(gk + gl;!);where the integration goes along the straight line segment onneting points �!3=2and !3=2, and(3.7) ~� = �2!2(~q; ~q)1(q; q)1(p; p)1(r; r)1 :Here and below we use the shorthand notationG(a� b;!) := G(a+ b; a� b;!) := G(a+ b;!)G(a� b;!):The proof of equality (3.6) is rather simple. It is neessary to substitute in itthe seond form of G(u;!)-funtion (3.2), hek that all exponential fators aneland, after a hange of notation, the formula redues to the standard ellipti betaintegral.Let us introdue the rossing parameter� = �12 3Xk=1!kand denote(3.8) g1;2 = ��� x; g3;4 = �+  � � � y; g5;6 = � � w;so that the balaning ondition (3.5) is satis�ed automatially. Introdue also themodi�ed Boltzmann weight, or the kernel for the modi�ed form of the integraltransformation (1.4), W 0(�;x; u) = G(�� � � x� u;!):Then relation (3.6) an be rewritten asZ !3=2�!3=2 �(u;!)W 0(� � �;x; u)W 0(�+ ; y; u)W 0(� � ;w; u)du= �(�; ;!)W 0(�; y; w)W 0(� � �� ;x;w)W 0(;x; y);(3.9)where �(u;!) = 1~�G(�2u;!) = 1~�e��iB2;2(2u;!1;!2)�(e�4�iu=!2 ; p)�(e�4�iu=!1 ; r);�(�; ;!) = G(�2�;�2; 2�+ 2 � 2�;!):(3.10)Substituting the seond form of the modi�ed ellipti gamma funtion, we �ndW 0(�;x; u) = exp��4�i3 �B3;3(� � �;!) + 3�(x2 + u2)!1!2!3 �����e2�i(���); x!3 ; u!3 ; ~p; ~r� :(3.11)We see that this Boltzmann weight is obtained from (2.1) after a reparametrizationof variables and multipliation by an exponential of a quadrati polynomial of thespin variables. This means that there exists a nontrivial symmetry transformationof the star-triangle relation modifying its solutions in the desribed way.



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS15The distinguished property of the modi�ed ellipti beta integral is that it iswell de�ned for jqj = 1. Therefore the limit !3 ! 1 leads to q-beta integrals wellde�ned in this regime as well. Let Re(!1); Re(!2) > 0. Then, for !3 ! +i1,one has p; r ! 0 and G(u;!) goes to (u;!1; !2)-funtion. Let us substituteg6 =P3k=1 !k � A in formula (3.6), where A =P5k=1 gk, and apply the inversionformula to the orresponding modi�ed ellipti gamma funtion. Then the formallimit !3 ! +i1 redues this integration formula toZ +i1�i1 Q5j=1 (gk � u;!)(�2u;A� u;!) du = �2!2 (~q; ~q)1(q; q)1 Q1�j<k�5 (gj + gk;!)Q5k=1 (A� gk;!) ;(3.12)where the integration ontour is the straight line for Re(gk) > 0 or the Mellin-Barnestype ontour, if these restritions for parameters are violated. Let us remind alsothat (~q; ~q)1(q; q)1 =r�i!1!2 e �i12�!1!2+!2!1 �;where p�i = e��i=4 sine for !1=!2 = ia; a > 0, the square root should be positive.Let us introdue parameter g6 anew (it should not be onfused with the previousvariable g6 whih we have eliminated) using the ondition(3.13) 6Xk=1 gk = !1 + !2(note the di�erene with (3.5)). Now we an apply the inversion formula to -funtions to move some of them from the denominator of the integral kernel to itsnumerator. It is onvenient here to de�ne the hyperboli gamma funtion (2)(u):(3.14) (2)(u;!) = e��i2 B2;2(u;!)(u;!):Then, after the hange of the integration variable u = iz, the integral (3.12) takesthe ompat formZ 1�1 Q6j=1 (2)(gk � iz;!)(2)(�2iz;!) dz = 2p!1!2 Y1�j<k�6 (2)(gj + gk;!):(3.15)Validity of the desribed limit !3 ! 1 at the level of integrals was rigorouslyjusti�ed in [R2℄ using a slightly di�erent notation. Integral (3.15) was proven �rst(using a di�erent approah) by Stokman [St℄ who alled it the hyperboli betaintegral. We followed the formal limiting proedure suggested in [DS2℄.Similar to (3.8), let us �x the parameters as(3.16) g1;2 = ��� ix; g3;4 = �+  � � � iy; g5;6 = � � iwwith the rossing parameter � = �(!1+!2)=2. Then formula (3.15) an be rewrittenas a star-triangle relationZ 1�1 S(z)W (� � �;x; z)W (�+ ; y; z)W (� � ;w; z)dz= �(�; )W (�; y; w)W (� � �� ;x;w)W (;x; y);(3.17)



16 V. P. SPIRIDONOVwhere W (�;x; z) = (2)(�� � � ix� iz;!);S(z) = 12p!1!2(2)(�2iz;!) = 2 sinh 2�z!1 sinh 2�z!2p!1!2 ;�(�; ) = (2)(�2�;�2; 2�+ 2 � 2�;!):(3.18)These Boltzmann weights are positive for real x; z; �, � < � < ��, � < 0, andeither real !1;2 or !�1 = !2.Consider a partiular redution of integration formula (3.15). For this we re-plae parameters gj ! gj + i�, j = 1; 2; 3; and gj ! gj � i�, j = 4; 5; 6: Sine theintegrand is symmetri in z we an rewrite the left-hand side as2 Z 10 Q3j=1 (2)(gj + i�� iz; gj+3 � i�� iz;!)(2)(�2iz;!) dz= 2 Z 1�� 3Yj=1 (2)(gj � iz; gj+3 + iz;!)�1(z)�2(z)dz;where �1(z) = e�2�(z+�)(!�11 +!�12 )(2)(�2i(z + �);!) !�!+1 1and �2(z) = e2�(z+�)(!�11 +!�12 ) 3Yj=1 (2)(gj + 2i�+ iz; gj+3 � 2i�� iz;!)!�!+1 e �!1!2��2�(!1+!2)+ i2 P3j=1 �g2j+3�g2j+(gj�gj+3)(!1+!2)��(1 + o(1)):On the right-hand side we �nd2p!1!2 3Yj=1 6Yk=4 (2)(gj + gk;!)�3(g);where �3(g) = Y1�j<k�3 (2)(gj + gk + 2i�; gj+3 + gk+3 � 2i�;!)!�!+1 e�i2 P1�j<k�3 �B2;2(gj+3+gk+3�2i�)�B2;2(gj+gk+2i�)�(1 + o(1)):One an hek that the leading asymptotis of �3(g) oinides with that of the�2(z)-funtion. Taking the limit � ! +1, whih is uniform, one omes to thefollowing exat integration formula [B℄(3.19) Z 1�1 3Yj=1 (2)(gj � iz; gj+3 + iz;!)dz = p!1!2 3Yj=1 6Yk=4 (2)(gj + gk;!);where P6k=1 gk = !1 + !2.



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS17Let us hange notation for the integral parametersg1 = ��+ ix; g2 = �+  � � + iy; g3 = � + iw;g4 = ��� ix; g5 = �+  � � � iy; g6 = � � iw;where � = �(!1+!2)=2 is a rossing parameter; the balaning onditionP6k=1 gk =�2� is satis�ed then automatially. Now we an rewrite equality (3.19) as the star-triangle relationZ 1�1W (� � �;x; z)W (�+ ; y; z)W (� � ;w; z) dzp!1!2= �W (�; y; w)W (� � �� ;x;w)W (;x; y);(3.20)where the Boltzmann weight is de�ned asW (�;x; z) = (2)(�� � � i(x� z);!)and the normalization onstant is(3.21) � = (2)(�2�;�2; 2�+ 2 � 2�;!):Note that W (�;x; y) = W (�; y; x) and W (�;x; y) > 0 in the same domain ofparameters as before. Denoting ! = b, !2 = b�1, and � = �(b + b�1)�=(2�) onean see thatW (�;x; z) oinides with the Boltzmann weight of the Faddeev-Volkovmodel [FV, VF℄ denoted as W�(x � z) in [BMS℄ (our � di�ers by sign from thede�nition hosen in [BMS℄) up to some normalization fator F�.We thus see that the Faddeev-Volkov model solution of the star-triangle relation[VF℄ is a partiular ase of our hyperboli beta integral STR solution (3.18). Thefat that the left-hand side of STR for the Faddeev-Volkov model represents apartiular limiting ase of the ellipti beta integral was known to the author alreadyin 2008. After seeing [BMS℄ and understanding this fat, the author was interestedwhether a similar interpretation exists for the ellipti beta integral itself. However,this idea was not developed further, partially beause the origin of the normalizingfator F� given in [BMS℄ was not understood at that time. Fortunately, Bazhanovand Sergeev have independently answered this question in [BS℄.4. Partition funtionsThe partition funtion of a homogeneous two dimensional disrete spin systemon the square lattie with the Boltzmann weightsW (�;ui; uj) (2.1) and S(uj) (2.3)has the formZ = Z Y(ij)W (�;ui; uj)Y(kl)W (� � �;uk; ul)Ym S(um)dum;where the �rst produt is taken over the horizontal edges (ij), the seond produtgoes over all vertial edges (k; l), and the third produt (in m) is taken over allinternal verties of the lattie. Let us take the ellipti beta integral STR solutionof [BS℄ and onsider the ontribution to Z oming from a partiular vertex usurrounded by the verties u1; u2; u3; u4:Z 2�0 S(u)W (�;u1; u)W (�;u; u3)W (� � �;u2; u)W (� � �;u; u4)du:



18 V. P. SPIRIDONOVSubstituting expliit expressions for the weights, one an easily see that this integralis equal to the ellipti hypergeometri funtion V (t1; : : : ; t8; p; q) desribed above(1.3) with the following restrited set of parametersft1; t2; t3; t4g = fe���e2�iu1 ; e���e�2�iu1 ; e���e2�iu3 ; e���e�2�iu3g;ft5; t6; t7; t8g = fe��e2�iu2 ; e��e�2�iu2 ; e��e2�iu4 ; e��e�2�iu4g:In total, there are 5 independent parameters, instead of 7 for generi V -funtion(in addition to the bases p and q). Therefore we onlude that the full partitionfuntion Z is given by an ellipti hypergeometri integral onstruted as a towerof intertwined (restrited) ellipti analogues of the Gauss hypergeometri funtionsimilar to the Bailey tree for integrals [S4℄.Aording to the general reetion method used in [BS℄, the leading asymptot-is of the partition funtion for two-dimensional N �M lattie when its size goesto in�nity, N;M !1, has the formZ =N;M!1 m(�)NM ;where m(�) is the normalizing fator for Boltzmann weights whih guarantees thaton the right-hand side of STR the ~�-multiplier (2.8) is equal to unity, ~� = 1. Thisondition is satis�ed if(4.1) m(�)m(� � �)�(e�2�; p; q) = 1; or m(�+ �) = �(e2�; p; q)m(��):Let us introdue the funtion(4.2)M(x; p; q; t) = exp� Xn2Z=f0g (ppqtx)nn(1� pn)(1� qn)(1 + tn)� = �(xtppqt; p; q; t2)�(xppqt; p; q; t2) ;where�(z; p; q; t) = 1Yj;k;l=0(1� ztjpkql)(1� z�1tj+1pk+1ql+1); jpj; jqj; jtj < 1;is the seond order ellipti gamma funtion satisfying the t-di�erene equation�(tz; p; q; t) = �(z; p; q)�(z; p; q; t):The reetion equation �(z�1; p; q; t) = �(pqtz; p; q; t) leads to the equalityM(x�1; p; q; t)M(x; p; q; t) = 1:It is easy also to hek validity of the funtional equationM(x; p; q; t)M(t�1x; p; q; t) = ��xrpqt ; p; q�;whih is equivalent to (4.1) after �xing t = pq and x = e2�. Therefore we �nd theneeded normalizing funtion(4.3) m(�) =M(e2�; p; q; pq); m(�)m(��) = 1:The funtion � logm(�) de�nes thus the free energy per edge of the integrablelattie model under onsideration.



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS19Now we disuss the partition funtion for the general hyperboli beta integralsolution of the star-triangle relation (3.18). The needed normalization onstantm(�) is found from the equation(4.4) m(�)m(� � �)(2)(�2�;!) = 1; or m(�=2 + �) = (2)(�;!)m(��=2);where � = �(!1 + !2)=2.Let us de�ne the funtion�(u;!1; !2; !3) = (3)(u+ 12P3k=1 !k + !3;!1; !2; 2!3)(3)(u+ 12P3k=1 !k;!1; !2; 2!3) ;where (3)-funtion is the hyperboli gamma funtion of the third order de�ned inAppendix B. Using the integral representation for it, we an write(4.5) �(u;!) = exp�� �ia6 � ZR+i0 evx(e!1x � 1)(e!2x � 1)(e!3x + 1) dxx �;where v = u+P3k=1 !k=2 anda = B3;3(v + !3;!1; !2; 2!3)�B3;3(v;!1; !2; 2!3)= 32!1!2 �u2 � !21 + !22 + 3!2312 �For a speial hoie of the third quasiperiod variable !3 = !1 + !2, this funtionappeared for the �rst time in [LZ℄.Using the reetion equation(3)( 3Xk=1!k � u;!1; !2; !3) = (3)(u;!1; !2; !3)and the di�erene equation(3)(u+ !3;!1; !2; !3) = (2)(u;!1; !2)(3)(u;!1; !2; !3);one an easily hek that �(u;!)�(�u;!) = 1 and�(u;!)�(u� !3;!) = (2)(u+ 12(!1 + !2 � !3);!1; !2):The latter relation oinides with equation (4.4) for u = 2� and !3 = !1 + !2.Therefore we �nd the free energy per edge as � logm(�), where(4.6) m(�) = �(2�;!1; !2; !1 + !2):By onstrution this funtion satis�es also the reetion equation m(�)m(��) = 1.Denoting !1 = b; !2 = b�1 and substituting the in�nite produt representation ofthe (3)-funtion given in Appendix B, we �nd the expressionm(�) = exp���i�2 � �i24(1� 2(b+ b�1)2)�� (~qe2�iu=b; ~q2)1(qe2�iub; q2)1 1Yj;k=0 1 + e�iu=(b+b�1)~pj+1~q2k1� e�iu=(b+b�1)~pj+1~q2k ;(4.7)where it is assumed that jqj < 1, q = e2�ib2 , ~q = e�2�i=b2 , and ~p = e��i=(1+b2).We turn now to the Faddeev-Volkov model solution of STR (3.20). In this asewe have no self-interation of the spins sitting in lattie verties, and the Boltzmann



20 V. P. SPIRIDONOVweights attahed to edges are simpli�ed. But the partition funtion asymptotisis the same as in the previous ase, sine evidently the normalizing onstant m(�)is found from the same equation (4.4). The free energy per edge for this modelwas omputed already by Bazhanov, Mangazeev, and Sergeev in [BMS℄, where theBoltzmann weights normalizing fator was denoted as F�. Comparing this onstantwith our m(�), we see that they oinide for � = �(b+ b�1)�=(2�), as neessary.However, our in�nite produt representation ofm(�) in (4.7) di�ers drastially fromthat given in [BMS℄ (whih was the soure of author's old time onfusion).5. ConlusionAfter the disovery of ellipti hypergeometri integrals, for a long time the au-thor was drawing attention of experts (inluding the seond author of [BS℄) in two-dimensional onformal �eld theory and solvable models of statistial mehanis fora potential emergene of suh funtions in these �elds. The onnetion between theellipti beta integral and the star-triangle relation found in [BS℄ and the star-starrelation desribed above on�rms this expetation. However, the nature appearedto be muh riher than it was imagined in [S2, S6, S9℄. As mentioned already, theDolan-Osborn disovery of a stunningly unexpeted oinidene of ellipti hyper-geometri integrals with superonformal (topologial) indies in four dimensionalsupersymmetri gauge theories strongly pushed forward the development of thetheory and raised many interesting open questions [DO, SV1℄. The interpretationof exat omputability of the ellipti beta integrals as the on�nement phenome-non in quantum �eld theory is a new type of oneptual pereption of the exatmathematial formulas.As to the models onsidered in this paper, we have desribed a generalizationof the Faddeev-Volkov solution of STR [VF℄ with the ontinuous spin variablestaking values on the real line, whih was not onsidered in [BS℄. It has somenontrivial self-interation energy for eah vertex and a more ompliated form ofthe Boltzmann weights for edges, though the free energy per edge appears to bethe same as in the Faddeev-Volkov model. In [VF℄ the Yang-Baxter equation wasproved using the quantum pentagonal relation [FKV℄. It would be interesting tointerpret in a similar way the model we have desribed here. Some time ago theauthor has tried to �nd an ellipti analogue of the pentagon relation in analogywith the onstrutions desribed in [V℄, but ould not do it yet. Clearly the elliptibeta integral gives already an analyti form of that wanted operator relation, butit is hard to formulate it in terms of the ommutation relations of some expliitoperators.In [FV℄, Faddeev and Volkov have onsidered a lattie Virasoro algebra anddesribed an integrable model in the disrete 2d spae-time (it was disussed alsoin detail in [FKV℄). The ellipti beta integral yields more general solutions ofSTR than that of [VF℄, and it is natural to ask for expliit realization of theorresponding models similar to [FV℄. During the work on [SV1℄, G. Vartanovand the author have suggested that there should exist some ellipti deformation ofthe primary �elds V�(z) built from free 2d bosoni �elds (in the spirit similar to thesituation disussed in [SWy℄) suh that the three point orrelation funtion wouldbe given by the ellipti beta integral and the four point funtion would be desribedby the V -funtion satisfying the ellipti hypergeometri equation [S9℄ (so that the



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS21tetrahedral symmetries of the V -funtion would desribe the s-t hannels duality).Unfortunately, suh hypothetial results are not oneivable at the present moment.From the point of view of superonformal indies the partition funtion as-soiated with the ellipti beta integral solution of STR looks as a superonfor-mal index for a partiular SU(2)-quiver gauge theory on a two dimensional lat-tie. Reently there was a great deal of ativity on interrelations between four-dimensional super-Yang-Mills theories and two-dimensional �eld theories, see, e.g.,[AGT, CNV, GPRR, NS, SWy℄. In this framework, the ellipti hypergeomet-ri integrals desribing superonformal indies of N = 2 quiver gauge theories havebeen interpreted by Gadde et al in [GPRR℄ as orrelation funtions of some 2dtopologial quantum �eld theories.Therefore it is natural to expet that superonformal indies of all four di-mensionanl CFTs are related to disretizations of 2d CFT models and other inte-grable systems. A onnetion of the Yang-Baxter moves with the Seiberg dualityhas been briey disussed in [HV℄. In this ontext, superonformal indies of allquiver gauge theories should orrespond to full partition funtions of some spin sys-tems. In view of the abundane of supersymmetri dualities and rih struture ofthe orresponding superonformal indies (twisted partition funtions) [SV1℄, theauthor onsiders the present moment only as a beginning of unovering new two-dimensional and higher-dimensional integrable models hidden behind the elliptihypergeometri funtions.For instane, the ellipti Selberg integral de�ned on the BCn root system reads[DS1, S9℄:�n ZTn Y1�j<k�n �(tz�1j z�1k ; p; q)�(z�1j z�1k ; p; q) nYj=1 Q6m=1 �(tmz�1j ; p; q)�(z�2j ; p; q) dzjizj= nYj=10��(tj ; p; q)�(t; p; q) Y1�m<s�6�(tj�1tmts; p; q)1A ;(5.1)where jtj; jtmj < 1, t2n�2Q6m=1 tm = pq, and�n = (p; p)n1(q; q)n1(4�)nn! :After some work, this formula an be given the STR type shapeZ[0;2�℄n S(u; t; p; q)W (� � �;x;u)W (� + ; y;u)W (� � ;w;u)[du℄;=Wt(�; y; w)Wt(� � �� ;w; x)Wt(;x; y);(5.2)where we denoted [du℄ = �n nYj=1 �(t; p; q)duj�(tj ; p; q) ;and the rossing parameter � is de�ned ase�2� = pqtn�1:The Boltzmann weights have the formS(u; t; p; q) = Y1�j<k�n �(te�iuj�iuk ; p; q)�(e�iuj�iuk ; p; q) nYj=1 1�(e�2iuj ; p; q)(5.3)



22 V. P. SPIRIDONOVand W (�;x;u) := 1m(�) nYj=1�(ppqe�e�ixe�iuj ; p; q);(5.4) Wt(�;x; y) := 1m(�) nYj=1�(ppqe�tj�n+12 e�ixe�iy; p; q);(5.5)and satisfy the reetion relationsW (�;x;u)W (��;x;u) = 1; Wt(�;x; y)Wt(��;x; y) = 1:The normalization onstant m(�) for n > 1 has a substantially more ompliatedform than that for n = 1. To desribe it we introdue the funtionM(x; p; q; t; s) = �(xts2; xt1�ns; p; q; t; s2)�(xts; xt1�ns2; p; q; t; s2) ;a partiular ratio of four ellipti gamma funtions of the third order. More preisely,one has �(z; p; q; t; s) := 1Yi;j;k;l=0 1� z�1pi+1qj+1tk+1sl+11� zpiqjtkslfor z 2 C � ; jpj; jqj; jtj; jsj < 1, with the reetion equation �(z; pqtsz�1; p; q; t; s) = 1and the di�erene equation �(sz; p; q; t; s) = �(z; p; q; t)�(z; p; q; t; s). Then,(5.6) m(�) =M(e2�; p; q; t; pqtn�1);with the standard reetion relation m(�)m(��) = 1.Let us disuss a physial meaning of the obtained model. Consider a honeyomblattie on the plane with two types of verties { blak and white with two adjaentverties always being of di�erent olor, see the left-hand side of �gure 2. Intoeah white vertex we put an independent single omponent ontinuous spin x.Into eah blak vertex we put n independent spins uj ; j = 1; : : : ; n, or one n-dimensional spin with n ontinuous omponents. These \spins" are quite di�erentfrom those of the Ising model where they take only the values +1 and �1 (i.e., theyrepresent the �elds and not the ompat spins). In di�erent words, one assoiatesto eah blak vertex the SP (2n)-group spae related to the root system BCn. Weassoiate with eah blak vertex the self-interation Boltzmann weight (5.3) withan additional interation between \spin" omponents in the internal spae. To eahbond onneting \blak-and-white" verties we attah the Boltzmann weight (5.4).Then, on the left-hand side of (5.2) we have the partition funtion of an elementaryell with the blak vertex in the enter and the integral taken over the uj-spinvalues. If we apply this star-triangle relation to eah blak vertex we ome to adi�erent spin system assoiated with the plain triangular lattie having only thewhite verties with the bond Boltzmann weights desribed by the funtion (5.5),see the right-hand side of �gure 2. Suh a transformation of latties looks quitesimilar to a transformation of the honeyomb-triangular Ising systems onsidered in[W℄. Perhaps there exists also another STR type duality transformation involvingonly the white verties (with some self-interation) allowing for a transition to yetanother triangular lattie system. In addition to this unertainty, it remains alsounlear the free energy per edge of whih model is desribed by the funtion (5.6).Positivity of the Boltzmann weights of this model an be analyzed along thelines of ellipti modular double involutions disussed in [S8℄. In partiular, these



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS23weights are learly positive for x; uj 2 [0; 2�℄, real t; � and � := jppqe�j < 1,� < jtjn�12 < ��1, with either p� = p; q� = q or p� = q: For n > 1 the rossingparameter � looks like an arbitrary free variable, not related to other parametersof the system, but, in fat, it is essentially equivalent to the oupling onstant t foruj-spins. If t = 1, relation (5.2) redues to n-th power of the standard STR.De�ne the BCn-root system generalization of the V -funtion:I(t1; : : : ; t8; t; p; q) = Y1�j<k�8 �(tjtk; p; q; t)(5.7) � �n ZTn Y1�j<k�n�(tz�1j z�1k ; p; q)�(z�1j z�1k ; p; q) nYj=1 Q8k=1 �(tkz�1j ; p; q)�(z�2j ; p; q) dzjizj ;where parameters t; t1; : : : ; t8 2 C , satisfy jtj; jtj j < 1, and t2n�2Q8j=1 tj = p2q2onstraints. As shown by Rains [R3℄, this funtion obeys the same W (E7) Weylgroup of symmetries as in the n = 1 ase. The key transformation has the form(5.8) I(t1; : : : ; t8; t; p; q) = I(s1; : : : ; s8; t; p; q);where� sj = ��1tj ; j = 1; 2; 3; 4sj = �tj ; j = 5; 6; 7; 8 ; � =r t1t2t3t4pqt1�n =s pqt1�nt5t6t7t8 ; jtj; jtj j; jsj j < 1:Introdue variables xj by relation t(n�1)=4tj = (pq)1=4e2�ixj , so that the balaningondition beomesP8j=1 xj = 0. Then (5.8) desribes the invariane of the integralI with respet to the Weyl reetionx! Sv(x) = x� 2hx; vihv; vi v; x; v 2 R8 ;where hx; vi = P8k=1 xkvk is the salar produt and the vetor v has omponentsvk = 1=2; k = 1; 2; 3; 4; and vk = �1=2; k = 5; 6; 7; 8: Together with the groupS8 permuting the parameters xj , this transformation generates full exeptionalreetion group W (E7).Equality (5.8) an be rewritten in the star-star relation formZ[0;2�℄n S(u; t; p; q)W (� � �;x;u)W (� � �; y;u)W (;w;u)W (Æ; z;u)[du℄= RPt(�+ �;x; y)Pt(�+ �;w; z) Z[0;2�℄n S(u; t; p; q)(5.9) �W (�;x;u)W (�; y;u)W (� � Æ;w;u)W (� � ; z;u)[du℄;where �+ � =  + Æ andR = n�1Yl=0 �(t�le�2�; t�le�2� ; p; q)�(t�le�2 ; t�le�2Æ; p; q) ; Pt(�;x; y) = n�1Yl=0 �(t�le��e�ix�iy; p; q):In omplete analogy with n = 1 ase (1.16), (1.17), (1.18), one an obtain two otherdi�erently looking star-star relations for n > 1 by an iterative appliation of thisformula after permutations of parameters.Using the matrix integral representations for ellipti hypergeometri integrals,in [SV1℄ relation (5.8) was shown to desribe a new eletri-magneti dualitybetween two four-dimensional N = 1 supersymmetri Yang-Mills theories with



24 V. P. SPIRIDONOVthe gauge group G = SP (2n). Namely, the eletri theory has the avor groupSU(8)� U(1); it ontains the vetor super�eld in the adjoint representation of G,one hiral salar multiplet in the fundamental representations of G and SU(8), andthe �eld desribed by the antisymmetri tensor of the seond rank of G. The mag-neti theory has the avor group SU(4)l � SU(4)r � U(1)B � U(1) and a similarset of quantum �elds, as well as 2n additional gauge invariant mesoni �elds |the antisymmetri tensors of SU(4)-avor subgroups. The ellipti Selberg integral(5.1) desribes the on�nement phenomenon in the SP (2n) super-Yang-Mills gaugetheory with 6 hiral super�elds in the fundamental and 1 hiral super�eld in theantisymmetri representations of SP (2n), respetively, | its dual magneti phaseontains only a peuliar set of mesoni �elds without loal gauge symmetry.From the present paper point of view relations (5.2) and (5.9) should have anappropriate physial interpretation in the ontext of disrete integrable models forn > 1 similar to the n = 1 ase. We desribed already one possible honeyomblattie model that an be assoiated with the ellipti Selberg integral. The systemlying behind relation (5.9) resembles the hekerboard Ising model with the ontin-uous spins. As an elementary ell one has a square with four white verties (withthe single omponent spins x; y; : : : sitting in them) and one blak vertex in theenter (with the n-omponent spin u sitting in it and the integral taken over itsvalues), see �gure 4. There are again three di�erently looking star-star relations forn > 1 obtained by repeated appliation of the same formula (5.9) in onjugationwith permutation of parameters, quite similar to the n = 1 ase. Equality (5.2)an be onsidered then as their redution to STR.We did not disuss in this paper an important physial question of the existeneof phase transitions in the desribed models and the spetrum of saling exponents.For larifying this point it is neessary to single out the temperature like variableassoiated with one of the parameters p or q [BS℄ and investigate the behavior of thepartition funtions per edge (de�ned by m(�)'s) when the temperature varies fromlarge to small values. Sine many known systems with nontrivial phase transitionsare represented by the limiting ases of the ellipti beta integral STR solutions, thereare nontrivial ritial phenomena. However, their lassi�ation requires separateanalysis and lies beyond the sope of the present work.In [SV1℄ a large number of proven and onjetural evaluation formulas forellipti beta integrals on root systems and their nontrivial symmetry transformationanalogues for higher order integrals has been listed. Atually, it was onjeturedthat there exist in�nitely many suh integrals, and for eah of them one an expetsuitable appliation in the ontext of solvable models of statistial mehanis andother types of integrable systems.Aknowledgments. The results of this paper were partially reported at theJairo Charris seminar (3-6 August 2010, Santa Marta, Colombia). The hospitalityof P. Aosta-Humanez during this workshop is gratefully appreiated. The authoris deeply indebted to A.N. Kirillov, V.B. Priezzhev, I.P. Rohev, and G.S. Var-tanov for stimulating disussions. A.M. Povolotsky is thanked for teahing me thegraphis drawing. Both referees are thanked for helping in improving the paper.Appendix A. The modi�ed q-gamma funtionThe funtion (u;!1; !2) (3.3) or its various transformed versions are referredto in di�erent papers as the double sine funtion [KLS, PT℄, the non-ompat



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS25quantum dilogarithm [F, FKV, PT, V, BS℄, the hyperboli gamma funtion[Ru, B℄, or the modi�ed q-gamma funtion [S9℄.The funtional equations satis�ed by (u;!) have the form(A.1) (u+ !1;!)(u;!) = 1� e2�i u!2 ; (u+ !2;!)(u;!) = 1� e2�i u!1 :Using a modular transformation for theta funtions one an derive another repre-sentation for (u;!1; !2) omplementary to (3.3):(A.2) (u;!1; !2) = e�iB2;2(u;!) (e�2�iu=!2q; q)1(e�2�iu=!1 ; ~q)1 :The non-ompat quantum dilogarithm [F℄ in the notation of [BMS℄ (in [FKV℄it was denoted as eb(z)) has the form'(z) = exp�14 ZR+i0 e�2izwsinh(wb) sinh(w=b)� dww= exp�ZR+i0 ewu(ewb � 1)(ew=b � 1)� dww ;where u = 12(b+ b�1)� iz:For q = e2�ib2 , ~q = e�2�i=b2 and Im(b2) > 0, one an write'(z) = (e2�ibu; q)1(e2�iu=b~q; ~q)1 = (�q1=2e2�bz ; q)1(�~q1=2e2�z=b; ~q)1 :Therefore, '(z) = �12(b+ b�1)� iz; b; b�1��1:The Sb(u) funtion used in [PT℄ oinides with(2)(u;!1; !2) = e��i2 B2;2(u;!1;!2)(u;!1; !2)for !1 = b and !2 = b�1, and another similar funtion of [PT℄ isGb(u) = e� �i12 (3+b2+b�2)(u; b; b�1):The (z)-funtion used in [V℄ oinides with the in�nite produts ratio on theright-hand side of (A.2) for z = !2u and � = !1=!2.For Re(!1);Re(!2) > 0 and 0 < Re(u) < Re(!1+!2) the funtion (2)(u;!1; !2)has the following integral representation(A.3) (2)(u;!1; !2) = exp��PV ZR eux(1� e!1x)(1� e!2x) dxx � ;where the prinipal value of the integral means PV RR = 2�1(RR+i0+ RR�i0). Usingthe fat that PV RR dx=xk = 0 for k > 1, one an write(2)(u;!1; !2) = exp�� Z 10 � sinh(2u� !1 � !2)x2 sinh(!1x) sinh(!2x) � 2u� !1 � !22!1!2x �� dxx :Comparing this expression with the hyperboli gamma funtion Gh(z;!) de�nedin [Ru℄, one an see thatGh(z;!) = (2)�12(!1 + !2)� iz;!�; Re(!1);Re(!2) > 0:



26 V. P. SPIRIDONOVChanging in (A.3) the sign of the integration variable x! �x and simultaneously!k ! �!k; u! �u, we �nd that(A.4) (2)(u;!1; !2) = exp�+PV ZR eux(1� e!1x)(1� e!2x) dxx � ;where Re(!1);Re(!2) < 0 and Re(!1 + !2) < Re(u) < 0.The double sine funtion is de�ned as S2(u;!) = 1=(2)(u;!) and its propertieswere desribed in detail in the Appendix of [KLS℄. For the (2)-funtion we have(2)(u;!1; !2)� = (2)(u�;!�1 ; !�2); (2)(!1 + !22 � u;!1; !2) = 1;and (2)(au; a!1; a!2) = (2)(u;!1; !2) for arbitrary omplex a 6= 0. After suh aresaling in (A.4) with a = 2�i one gets the de�nition of the hyperboli gammafuntion given in [R2℄.The asymptotis we are interested in for Im(!1=!2) > 0 have the formlimu!1 e�i2 B2;2(u;!)(2)(u;!) = 1; for arg!1 < argu < arg!2 + �;limu!1 e��i2 B2;2(u;!)(2)(u;!) = 1; for arg!1 � � < argu < arg!2:Appendix B. General multiple gamma funtionsBarnes introdued a multiple zeta funtion as the following m-fold series [Bar℄�m(s; u;!) = 1Xn1;:::;nm=0 1(u+
)s ; 
 = n1!1 + : : :+ nm!m;where s; u 2 C . This series onverges for Re(s) > m under the ondition that all !jlie in one half-plane de�ned by a line passing through zero. Beause of the latterrequirement, the sequenes n1!1+ : : :+nm!m do not have aumulation points onthe �nite plane for any nj ! +1. It is onvenient to assume for de�niteness thatRe(!j) > 0.The funtion �m(s; u;!) satis�es equations(B.1) �m(s; u+ !j ;!)� �m(s; u;!) = ��m�1(s; u;!(j)); j = 1; : : : ;m;where !(j) = (!1; : : : ; !j�1; !j+1; : : : ; !m) and �0(s; u;!) = u�s. The Barnes mul-tiple gamma funtion is de�ned by the equality�m(u;!) = exp(��m(s; u;!)=�s)��s=0:It satis�es �nite di�erene equations(B.2) �m(u+ !j ;!) = 1�m�1(u;!(j)) �m(u;!); j = 1; : : : ;m;where �0(u;!) := u�1.The multiple sine-funtion is de�ned asSm(u;!) = �m(Pmk=1 !k � u;!)(�1)m�m(u;!) :It is more onvenient to work with the hyperboli gamma funtion(m)(u;!) = Sm(u;!)(�1)m�1



ELLIPTIC BETA INTEGRALS AND SOLVABLE MODELS OF STATISTICAL MECHANICS27satisfying the equations(m)(u+ !j ;!) = (m�1)(u;!(j)) (m)(u;!); j = 1; : : : ;m:Note that the ellipti gamma funtion an be written as a speial ombination offour Barnes gamma funtions of the third order [S9℄, and similar relations are validfor higher order ellipti gamma funtions used in the present paper.One an derive the integral representation [N℄(m)(u;!) = exp��PV ZR euxQmk=1(e!kx � 1) dxx �= exp�� �im!Bm;m(u;!)� ZR+i0 euxQmk=1(e!kx � 1) dxx �= exp� �im!Bm;m(u;!)� ZR�i0 euxQmk=1(e!kx � 1) dxx � ;where Re(!k) > 0 and 0 < Re(u) < Re(Pmk=1 !k) and Bm;m are multiple Bernoullipolynomials de�ned by the generating funtion(B.3) xmexuQmk=1(e!kx � 1) = 1Xn=0Bm;n(u;!1; : : : ; !m)xnn! :In�nite produt representations for these funtions have been derived in [N℄.In partiular, for jpj; jqj < 1 and jrj > 1 we have(3)(u;!) = e��i6 B3;3(u;!) 1Yj;k=0 (1� e2�iu=!1 ~qj+1r�(k+1))(1� e2�iu=!2pjqk)1� e2�iu=!3 ~pj+1r�k ;whih is used in the main text after the redution !3 = 2(!1 + !2) (or p = q2;r = ~q�2, ~p = e��i!2=(!1+!2)).The funtions m(�) (4.3), (4.6), and (5.6) de�ning the free energy per edge asdesribed in the main part of the paper are related to partiular ases of the Lerhtype generalization of the Barnes zeta-funtion:�m(s; u;�;!) = 1Xn1;:::;nm=0 Qmk=1 �nkk(u+
)s ; 
 = n1!1 + : : :+ nm!m;onverging for all j�kj < 1, or Re(s) > m and j�kj = 1 (provided the same on-straints on !j are valid as in the plain Barnes ase). The univariate ase, i.e. theproper Lerh zeta-funtion, is desribed, e.g., in [WW℄.The funtion �m(s; u;�;!) satis�es the following set of �nite di�erene equa-tions(B.4)�j�m(s; u+ !j ;�;!)� �m(s; u;�;!) = ��m�1(s; u;�(j);!(j)); j = 1; : : : ;m;where !(j) = (!1; : : : ; !j�1; !j+1; : : : ; !m), �(j) = (�1; : : : ; �j�1; �j+1; : : : ; �m),and �0(s; u;�;!) = u�s.Similar to the Barnes ase, one an easily derive the integral representations�m(s; u;�;!) = 1�(s) Z 10 ts�1e�utQmk=1(1� �ke�!kt) dt= i�(1� s)2� ZCH (�t)s�1e�utQmk=1(1� �ke�!kt)dt;
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