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Abstract. This paper has two parts. In the first part, we study shift
coordinates on a sphere S equipped with three distinguished points

These coordinates parametrize a space eT(S) that we call an unfolded

Teichmüller space. It contains Teichmüller spaces of the sphere with b

boundary components and p cusps, for all possible values of b and p

satisfying b + p = 3 and, in fact, in general it contains several copies of

such a Teichmüller space. The parametrization of eT(S) by shift coordi-
nates equips this space with a natural polyhedral structure, which we
describe more precisely as a cone over an octahedron in R

3. Each cone
over a simplex of the octahedron is interpreted as a Teichmüller spaces
of the sphere with b boundary components and p cusps for fixed b and
p, which is furthermore equipped with an orientation on each boundary
component. There is a natural linear action of a finite group on the
unfolded Teichmüller space, and the quotient space is an augmented Te-
ichmüller space. We decribe sereval aspects of the geometry of the space
eT(S). Stretch lines and earthquakes can be defined on this space. Pairs
of pants and their geometric structures are building blocks for study-
ing general surfaces. In the second part of the paper, we use the shift
coordinates to obtain some estimates on the behaviour of some stretch
lines in the Teichmüller space of a surface obtained by gluing hyperbolic
pairs of pants. We use the shift coordinates to express stretch lines in
terms of Fenchel-Nielsen coordinates. We compute the Fenchel-Nielsen
twist parameter associated to a stretch along a lamination whose leaves
spiral along a particular pair of pants decomposition. We deduce the
disjointness of some stretch lines in Teichm/”uller space. We study in
particular the case of a closed surface of genus 2.
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1. Introduction

Let g, b and p be nonnegative integers, and let Sg,b,p be an oriented con-
nected surface of genus g, with b boundary components and p punctures.
We shall always assume that Sg,b,p has negative Euler characteristic. A
hyperbolic structure (or hyperbolic metric) on Sg,b,p is a complete Riemann-
ian metric of constant curvature −1 which has finite area and such that
each boundary component of Sg,b,p is a closed geodesic. The Teichmüller
space Tg,b,p = T(Sg,b,p) of Sg,b,p is the space of isotopy classes of hyperbolic

Date: December 1, 2006.

1



2 ATHANASE PAPADOPOULOS AND GUILLAUME THÉRET

metrics on Sg,b,p. It is equipped with a natural topology which makes it

homeomorphic to R6g−6+2b+2p, see e.g. [9] and [10].
We shall usually denote the closed surface of genus g by Sg instead of

Sg,0,0.
Let Sg be a closed surface of genus g and let P = {p1, . . . , pn} ⊂ Sg be a

finite collection of points, which we call the distinguished points. We assume
that the Euler characteristic of the punctured surface Sg \P is negative. By
a hyperbolic structure on the pair (Sg, P ), we mean a complete finite area
hyperbolic structure on a surface Sg,b,p obtained from Sg by deleting p points
among the distinguished points (1 ≤ p ≤ n) and making them punctures for
the hyperbolic structure, deleting an open disk around each of the remaining
b = n−p distinguished points, and making the surface around each of these
b points a surface with boundary.

Finally, a signed hyperbolic structure on the pair (Sg, P ) is a hyperbolic
structure together with an orientation on each boundary component of the
resulting hyperbolic surface. The collection of isotopy classes of signed hy-
perbolic structures on (Sg, P ) form a space which we call the unfolded Te-

ichmüller space of (Sg, P ), and which we denote by T̃(Sg, P ) (and sometimes

T̃(Sg), if the set of distinguished points is understood). The unfolded Te-

ichmüller space T̃(Sg, P ) is the union of a finite collection of Teichmüller
spaces T(Sg,b,p) of surfaces Sg,b,p obtained from Sg by making each of the
distinguished points either a puncture or a boundary component. We shall
see that there is a parametrization of the unfolded Teichmüller space of
(Sg, P ) which is obtained by using shift coordinates on the edges of an ideal
triangulation µ of the pair (Sg, P ), that is, a triangulation of S whose vertex
set is P .

The parameterization of hyperbolic structures on sufaces using shift co-
ordinates on edges of ideal triangulations was introduced by Thurston, who
used these parameters in relation to stretch maps between hyperbolic sur-
faces and in his study of the asymmetric metric he defined on Teichmüller
space, see [9]. Shift coordinates can also be used in the description of earth-
quakes, see [9]. They were used in [7], together with the analogously defined
shift parameters for measured foliations, in the study of the extension of
the earthquake flow to Thurston’s boundary of Teichmüller space. They
were also used in [8] as coordinates for homeomorphisms of the circle. The
shift parameters have also been used by several authors in the quantization
theory of Teichmüller space (see [2], [1], [3], [4]).

The parametrization of T̃(Sg, P ) by shift coordinates on the edges of µ
can be regarded as a coherent way of parametrizing the various copies of the
Teichmüller spaces of the surfaces Sg,b,p with b+p = n. We shall see that this
parametrization endows this union with a natural structure of a polyhedron.
In particular, there is a natural topology on the unfolded Teichmüller space,
which makes it a connected space, in fact a space homeomorphic to R6g−6+2n.
In general, each Teichmüller spaces T(Sg,b,p) will be represented by several

copies inside the space T̃(Sg, P ). (Elements of these individual Teichmüller

spaces are obtained from elements of T̃(Sg, P ) by forgetting the signs.)



ON THURSTON’S SHIFT COORDINATES AND STRETCH LINES 3

We shall study in detail the case where Sg is a sphere S = S2, with
Card(P ) = 3. In this case, we shall describe in detail the polyhedral struc-

ture for T̃(Sg, P ) (which at the same time defines the topology on that

space). The polyhedron parametrizing T̃(Sg, P ) is the space R3 seen as the
cone from the origin of R3 over an octahedron that contains the origin in
its interior. In this description, the various Teichmüller spaces T(Sg,b,p)
(with g = 0 and b + p = 3) referred to above are the cones over the open
faces of this polyhedron. We shall discuss the dependence of this polyhedral
structure on the ideal triangulation µ.

It is a recurrent theme in low-dimensional topology that geometric struc-
tures on (generalized) pairs of pants are building blocks for geometric struc-
tures on general surfaces. This theme appears in the second part of this
paper.

We recall that if µ is a complete geodesic lamination on a surface S, if h is
a hyperbolic structure on S and if t is a real number, then an et-stretch map
directed by µ is a map from S to itself which is isotopic to the identity on
S and which transforms h into another hyperbolic metric ht whose distance
from h (with respect to Thurston’s asymmetric metric) is equal to t, if t is
positive. (If t is negative, the distance in general is not equal to −t.) In the
shift coordinates associated to µ, the transformation consists in multiplying
each coordinate by the factor et. The map t 7→ ht is called the stretch line
starting at h = h0 and directed by µ. It is therefore a geodesic for Thurston’s
asymmetric metric.

Stretch lines and earthquakes lines have a nice description in this polyhe-

dral structure of the unfolded Teichmüller space T̃(Sg, P ). These lines lines
follow linear segments with respect to this structure.

We shall study the particular case where the lamination µ is an ideal
triangulation on a surface obtained by gluing pairs of pants. We establish
explicit formulae that give relations between the Fenchel-Nielsen coordinates
of the Teichmüller spaces of Sg,b,p and the shift coordinates. In particular,
we can express stretch lines in terms of Fenchel-Nielsen coordinates. We use
these formulae for the study of the behaviour of stretch lines. We can see
for instance the disjointness of certain stretch lines in Teichmüller space.

2. Preliminaries on ideal triangulations and shift coordinates

2.1. Triangulation. Consider a closed surface with distinguished points
(Sg, P ). A triangulation of this pair is a decomposition into triangles whose
set of vertices is the set of distinguished points. Note that we do not require
that the triangulation be a realization of a simplicial complex (that is, the
endpoints of an edge may be equal, and so on.)

Given a triangulation µ of (Sg, P ) and a vertex of this triangulation, we
shall sometimes talk about a half-edge of µ (instead of an edge of µ) abutting
on that vertex, in order to record the fact that one (or may be two) of the
ends of a given edge abut on that vertex.

2.2. Ideal triangulation. We recall that a hyperbolic ideal triangle is a
surface isometric to the convex hull in the hyperbolic plane H2 of three
distinct points in the boundary of that space. The center of an ideal triangle
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is the intersection point of the three perpendiculars drawn from each ideal
vertex to the edge opposite to it.

Consider a surface Sg,b,p equipped with a hyperbolic metric. An ideal tri-
angulation µ of Sg,b,p is a decomposition of Sg,b,p by disjoint geodesic lines
(the edges of µ) such that each end of such a line either converges to a cusp
or spirals around a closed geodesic which could be either an interior geo-
desic or a boundary geodesic, with the property that (the completion of)
each component of the surface Sg,b,p cut along the edges of µ is isometric
to a hyperbolic ideal triangle. It will often be useful to consider the surface
Sg,b,p equipped with its hyperbolic metric as a surface obtained by assem-
bling a collection of hyperbolic ideal triangles using isometries between their
boundary edges. In this case, the decomposition of Sg,b,p by the ideal trian-
gulation is a record of the edges of the ideal triangles that we started with,
together with the gluing maps between them.

Let (Sg, P ) be a aclosed surface with distinguished points and let h denote
a signed hyperbolic structure on the pair (Sg, P ) and let µ be a triangulation
of the pair (Sg, P ). Let Sg,b,p be the type of the corresponding surface. Then,
there is a canonical ideal triangulation of Sg,b,p associated to µ, which we
shall also denote by µ, and which is characterized by the following properties:

• if a distinguished point in P is a cusp for the hyperbolic structure h,
then the half-edges of µ that have this distinguished point as vertex
converge to the corresponding cusp;

• if a distinguished point in P is a boundary component, then the half-
edges of µ that have this distinguished point as vertex spiral around
the boundary geodesic, in the direction indicated by the orientation
of the boundary geodesic.

2.3. Flip. Consider again a closed surface with distinguished points (Sg, P )
equipped with a triangulation µ. Let e be an edge of µ that is on the
boundary of two distinct triangles. A flip on (Sg, µ) associated to the edge
e is a move that transforms the triangulation µ into another triangulation
as follows. Let T1 and T2 be the two distinct quadrilaterals of µ that have
the edge e in common, and let Q be the quadrilateral defined by the union
T1∪T2 glued along the edge e. Note that theinterior of Q s embedded in Sg.
The flip operation consists in deleting the edge e from the set of edges of µ
and replacing it by an arc which represents the other diagonal of Q. Thus,
the flip operation replaces the triangulation µ by a new triangulation. Note
that if the two sides of some edge of a triangulation of Sg are equal, then no
flip can be performed on that edge.

When the surface is equipped with a hyperbolic structure, a flip opera-
tion on µ gives rise naturally to a flip operation on the corresponding ideal
triangulation. Such a flip operation on an ideal triangulation consists in
replacing an ideal quadrilateral equipped with a diagonal by the same ideal
quadrilateral equipped with its other diagonal.

2.4. Shift coordinates for hyperbolic structures. Consider a hyper-
bolic surface Sg,b,p equipped with an ideal triangulation µ. Each edge of µ
has two distinguished points, which are the orthogonal projections on that
edge of the centers of the ideal triangles that are adjacent to that edge.
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(These two traingles may be equal.) We define a signed distance between
these two points in the following way. The absolute value of this quantity
is the distance on the edge measured using the hyperbolic metric, and the
sign is determined by the sense of the shearing along that edge that can be
performed to carry one of these points to the other one. The sign is taken to
be positive (respectively negative) if the shearingis to the left (respectively
to the right) (see Figure 1). Note that the orientation on the surface S
suffices to give a well-defined notion of left and right shear along every edge
of µ. The signed distance between the two points is the shift parameter on
that edge, with respect to the hyperbolic structure considered.

PSfrag replacements

(a)
(b)

Figure 1. Shift coordinates for hyperbolic structures. Case (a)
corresponds to a negative shift and case (b) corresponds to a posi-
tive shift.

The collection of shift parameters on the edges of µ completely determines
the gluing between the ideal triangles, and therefore, it completely deter-
mines the isometry type of the hyperbolic surface S. Isotopic hyperbolic
structures have the same signed shift parameters, and therefore these shift
coordinates can also be used as parameters for isotopy classes of hyperbolic
structures on the surface, that is, elements of the Teichmüller space of S.

One of the features of the shift parameters, which makes them sometimes
mors advantageous than the Fenchel-Nielsen parameters) is that shift pa-
rameters can be used as parameters for signed hyperbolic structures on the
surface with distinguished points (Sg, P ). Indeed, we shall see that the shift
parameters can be defined by assigning real numbers to the edges of the
original triangulation µ on Sg, in such a way that each collection of shift
parameters on the edges of µ determines a hyperbolic structure on the pair
(Sg, P ) together with, for each edge of µ, an information on whether the
endpoint of each edge of µ is a puncture or a boundary component of the
hyperbolic structure considered and, finally, for each end of a bi-infinite ge-
odesic representing an edge of µ that spirals around a closed geodesic, the
shift parameters on µ determine the sense of spiraling. The sense of spiraling
determines an orientation on each boundary component of the hyperbolic
surface.
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2.5. Shift coordinates for measured foliations transverse to µ. Let
F be a measured foliation (in the sense of Thurston, see e. g. [5]) on Sg,b,p

which is transverse to µ. Since each component of Sg,b,p \ µ is a triangle, it
follows from an Euler characteristic argument that all the singularities of F
are three-pronged and that each component of Sg,b,p\µ contains exactly one
singularity. In this way, the measured foliation F induces on each edge of µ
two distinguished points, which are the feet of the singular leaves of F that
abut on that edge from its two sides. A signed transverse measure between
these two points is then defined in the following way. The absolute value of
this quantity is the transverse measure of the segment of µ bounded by these
two distinguished points, and the sign is determined by the sense of shearing
defined by the two singular leaves hitting these points. The convention for
the sign is analogous to the one for the sign defining the shift parameters for
hyperbolic structures that we discussed above (see Figure 2). This signed
transverse measure is the shift parameter of the measured foliation on the
edge of µ. As in the case of hyperbolic structures, the set of shift parameters
on the edges of µ completely determines the gluing between the foliations
restricted to the components of S\µ, and therefore, it completely determines
the isotopy type of the foliation F .

PSfrag replacements

(a)
(b)

Figure 2. Shift coordinates for measured foliations. Case (a)
corresponds to a negative shift and case (b) corresponds to a posi-
tive shift.

2.6. Generalized pair of pants and their canonical involutions. A
generalized hyperbolic pair of pants is a hyperbolic surface homeomorphic
to a sphere with b boundary components and p cusps, with b + p = 3.

We now recall the decomposition of a generalized pair of pants into two
isometric generalized right-angled hexagons.

Consider a right-angled hexagon in hyperbolic space H2. We can make the
length of one of its edges tend to zero while keeping fixed the two edges that
form with the degenerating edge an alternating triple of edges, and keeping
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all the angles to be right angles. Then, the vertices of the degenerating edge
converge to a single point on the boundary of hyperbolic space, and the limit
of the right-angled hexagon is called a degenerate right-angled hexagon with
one edge at infinity (see Figure 3 for a picture of such a hexagon). Likewise,
we can make (successively) the lengths of two or of three alternating edges of
a right-angled hexagon tend to zero, keeping at each time the lengths that are
not adjacent to the degenerating edge, and the right angled fixed. We obtain
in this manner degenerate right-angled hexagons with one, two or three edges
at infinity. Note that a degenerate right-angled hexagon with three edges at
infinity is a hyperbolic ideal triangle. The definition of a generalized right-
angled hexagon as a limit of a sequence of (genuine) right-angled hexagons
is useful for studying degenerations of hyperbolic surfaces. With such a
definition, the the trigonometric formulae associated to generalized right-
angled hexagons are obtained as limits of corresponding formulae for right-
angled hexagons. ¿From the formulae for distances in right-angled hexagons
in [5], it is easy to see that a degenerate right-angled hexagon with one, two
or three edges at infinity is completely determined up to isometry by the
lengths of the edges that make with the edges at infinity (whose lengths are,
by definition, equal to zero) a triple of alternating edges. The decomposition
of a generalized hyperbolic pair of pants into two isometric generalized right-
angled hexagons is obtained by taking the union of the three geodesics that
join perpendicularly pairs of boundary closed geodesics or a boundary closed
geodesics and cusps, or that join a cusp to a cusp. We call such a geodesic a
seam of the pair of pants. ¿From this decomposition of a generalized pair of
pants into two generalized right-angled hexagons, it is easy to see that any
hyperbolic structure on a degenerate pair of pants is completely determined
by the lengths of its boundary geodesic curves, a cusp being considered as
a boundary curve of length zero. In this sense, the hyperbolic structure
is rigid at a cusp. For instance, a degenerate right-angled hexagon with
three alternating edges at infinity is a hyperbolic ideal triangle which, as is
well-known, is unique up to isometry. In the same way, any two degenerate
hyperbolic pairs of pants that are spheres with three cusps are isometric.

Each generalized hyperbolic pair of pants P has a canonical involution ι,
which is the unique isometry that fixes the seams and that interchanges the
two generalized right-angled hexagons that compose it.

3. Horocyclic foliations and completeness

3.1. Horocyclic foliations. A hyperbolic ideal triangle is equipped with
a natural foliation, called its horocyclic foliation. This is a partial foliation
(that is, a foliation of a subsurface of the ideal triangle) whose leaves are
pieces of horocyles of H2 that are centered at the three ideal vertices, the
nonfoliated region being a small triangle bounded by three pieces of horo-
cycles that meet tangentially at their boundary points, as represented in
Figure 4.

Let g be a hyperbolic structure on a surface Sg,b,p and let µ be an ideal
triangulation on that surface. There is a natural measured foliation Fµ(g)
which is associated to the pair (g, µ), and which is called the horocyclic
measured foliation. It is obtained by assembling the horocyclic foliations of
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the components of Sg,b,p \ µ, and it has a natural transverse measure which
is determined by the fact that on the edges of µ, the measure coincides with
hyperbolic length.

3.2. Holonomy type. Let Sg,b,p be a surface equipped with a hyperbolic
structure. There is a developing map from the metric universal covering

space S̃g,b,p of Sg,b,p into the hyperbolic plane H2. Recall that this map
is a local isometry that arises as one tries to extend a coordinate chart of
the hyperbolic structure to a “global chart”, by gluing the charts that one
encounters by following paths along the surface Sg,b,p. The developing map
is well-defined up to composition by an isometry of H2 which conjugates the

action of the fundamental group π1(Sg,b,p) on S̃g,b,p to an action of that group
on H2 by isometries. There is an associated representation of π1(Sg,b,p) into
the group Isom+(H2) of orientation-preserving isometries of H2, called the
holonomy representation, such that the developing map is equivariant with

respect to the action of π1(Sg,b,p) on S̃g,b,p and the action on H2 of the image

Figure 3. These four generalized polygons represent respectively
a right-angled hexagon and three degenerate right-angled hexagons
in the upper half-plane model of the hyperbolic plane.

PSfrag replacements
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Figure 4. The horocyclic foliation of an ideal triangle.
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of the holonomy representation (see Thurston [10] §3.4). With respect to
this representation, the holonomy of a loop representing an element of the
fundamental group of the surface is the isometry of H2 that is associated
by the holonomy representation. Although the holonomy of a closed curve
in Sg,b,p, as an element of Isom+(H2) is not well-defined (it depends on the
choice of an orientation for that closed curve, choices of basepoints and so
on), the type of the holonomy (that is, whether it is parabolic or hyperbolic)
is independent of any choice. Thus, we can talk about the holonomy type of
a closed curve on Sg,b,p.

Let Sg be a closed surface with a set P of distinguished points equipped
with a hyperbolic structure. For each distinguished point, we can take a
simple closed curve that is homotopic to that point, and consider its holo-
nomy type. We shall say that the distinguished point is of parabolic type
(respectively hyperbolic type) if the holonomy of such a closed curve is par-
abolic (respectively hyperbolic). If the distinguished point is of parabolic
type, then we shall say that the length of this distinguished point is zero.
If the distinguished point is of hyperbolic type, then we shall say that the
length of this distinguished point is the length of the boundary geodesic to
which it is homotopic. It is easy to see that in the case of hyperbolic holo-
nomy, the length of a distinguished point is equal to the translation distance
of any element of Isom+(H2) representing the holonomy of a closed curve
that is homotopic to that distinguished point.

3.3. Completeness. Let us consider a hyperbolic structure on a surface
Sg,b,p equipped with an ideal triangulation µ obtained by gluing a collection
of hyperbolic ideal triangles by isometries between their boundary edges.
The completeness of this hyperbolic metric depends on the geometric type
of the neighborhoods of the punctures (that is, the vertices of the triangles).
There is a detailed discussion of completeness for such metrics in Thurston
[10] §3.4. To understand the geometric type of the surface Sg,b,p near a punc-
ture, it is useful to study the behaviour at that puncture of the horocyclic
foliation associated to the ideal triangulation µ. In the next proposition, we
summarize a few facts that will be useful to us.

Proposition 3.1. Let (Sg, P ) be a surface with distinguished points, equipped
with an ideal triangulation µ, and consider a finite area hyperbolic structure
h on the punctured surface Sg \P . Then, any puncture a of Sg \P is of one
of the following two types:

(1) a has an annular neighborhood on which F induces a foliation by
closed leaves that are parallel to the puncture;

(2) a has an annular neighborhood equipped with a foliation induced by
F which has no closed leaves.

In Case 1, the puncture is a cusp, and we can choose a neighborhood N ,
equipped with the foliation induced by F , in such a way that it is isometric
to the quotient of a subset N ′ = {y | y > a} of H2 (for some a > 0) by
the action of the map z 7→ z + 1. The foliation on N is the quotient of
the foliation of N ′ by horocycles centered at the point ∞. Furthermore, the
closure in Sg \ P of such an annular neighborhood N , equipped with the
metric induced from h, is complete as a metric space.
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In Case 2, no neighborhood of the puncture, equipped with the metric in-
duced by h, is complete as a metric space. To obtain complete neighborhoods
of the puncture, one adds to the surface Sg \P a closed curve in such a way
that the surface at the puncture becomes a surface with boundary. The closed
curve that is added is then a closed geodesic for the completed surface. The
leaves of F abut perpendicularly on that closed geodesic.

The hyperbolic metric on the surface Sg \ P is complete if and only if all
the punctures of Sg \ P are of the type described in Case 1.
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Figure 5. The surface S is obtained by gluing the two triangles
T1 and T2 according to the pattern indicated by the arrows in the
figure to the left. The type of the holonomy along the closed curves
A that surrounds the vertex is determined by the behaviour of a
leaf of the horocyclic foliation starting at any point x, shown in the
right hand side figure. This holonomy type is determined by the
shifts δβ and δγ . More precisely, if |δβ +δγ | = 0, then the holonomy
is parabolic and the corresponding vertex in the resulting surface
is a cusp. Otherwise, the holonomy is hyperbolic and |δβ + δγ | is
equal to the distance between two successive points of intersection
of a leaf of the foliation with an edge of the triangulation.

4. Shift parameters for a triangulation of the sphere with

three distinguished points

In this section, we consider the sphere S = S2 with three distinguished
points, equipped with a triangulation µ. Up to homeomorphisms of the
sphere that fix pointwise the three distinguished points, there are exactly
four such triangulations, and they are represented in Figure 6. Any such
triangulation has exactly three edges and two triangles, and there are three
possibilities for the combinatorial type of a vertex a in such a triangulation:

(1) exactly one half-edge abuts on a;
(2) exactly two half-edges abut on a (and in that case, the two half-edges

are necessarily half-edges of distinct edges of µ);
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Figure 6. The four isotopy types of triangulations with 3 ver-
tices of the sphere S2, together with the flips between them.
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Figure 7. The combinatorics of the flip operation between the
central triangulation in Figure 6 and the one to the upper right in
that same figure.

(3) four half-edges abut on a (and in this case, two of these half-edges
are half-edges of distinct edges of µ, and the other two are half-edges
of the third edge of µ).

Furthermore, there are exactly three flip operations that can be performed
between these four triangulations; they are represented by the double arrows
in Figure 6.

We shall consider hyperbolic structures on the sphere with its three dis-
tinguished points. For each such hyperbolic structure, we can realize the
triangulation µ as an ideal triangulation. To analyze such an ideally trian-
gulated hyperbolic metric, we can start with two ideal triangles and glue
them together along their edges in such a way as to obtain (topologically) a
three-punctured sphere. There are two combinatorially distinct gluing pat-
terns between the edges of two ideal triangles that give a three-punctured
sphere. One of them is represented by the central triangulation of Figure 6
and the other one is represented by the three other triangulations of that
figure. We shall call these types of triangulations a symmetric and a non-
symmetric triangulation respectively.
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Let a, b, c be the three distinguished points of the sphere S, let h be a
hyperbolic structure on (S, {a, b, c}) and let µ be a triangulation of this
pair. We equip each boundary component of S with the positive orientation
induced from the orientation of the surface. We recall that this boundary
orientation is defined in such a way that for any point x on the boundary,
the ordered pair consisting of a vector at x which is tangent to the boundary
and which points in the positive direction, followed by a tangent vector at
x pointing in the direction of the interior of the surface, constitutes a direct
basis of the surface S.

Let α, β and γ denote the three edges of µ and let δα, δβ and δγ denote
the shift coordinates induced by the hyperbolic structure h on these edges.

With these notations, we have the following:

Proposition 4.1. The holonomy type of a vertex and the length of that
vertex depend only on the shift coordinates on the edges of µ that abut on
that vertex. To be more precise, let us consider a vertex a. Then, there are
three cases:

Case 1. Exactly two edges β and γ of µ have one of their ends on the vertex
a. In that case, we have

lg(a) = |δβ + δγ |.
Furthermore, the holonomy at the vertex a is hyperbolic if |δβ + δγ | 6= 0 and
parabolic if |δβ + δγ | = 0. In the case where the holonomy is hyperbolic,
the spiraling of the geodesics associated to β and γ around the simple closed
geodesic that corresponds to the vertex a is in the positive direction if δβ +
δγ > 0 and in the negative direction if δβ + δγ > 0.

Case 2. Exactly four half-edges of µ abut on the vertex a, and two of these
half-edges are half-edges of a single edge of µ. Let α denote that single edge
of µ and let β and γ denote the two other edges that abut on a. In that case,
we have

lg(a) = |δβ + δγ + 2δα|.
Furthermore, the holonomy at the vertex a is hyperbolic if |δβ +δγ +2δα| 6= 0
and parabolic if |δβ + δγ + 2δα| = 0. In the case where the holonomy is
hyperbolic, the spiraling of the edges of µ around the closed geodesic that
corresponds to the vertex a is in the positive direction if δβ + δγ + 2δα < 0,
and in the negative direction if δβ + δγ + 2δα > 0.

Case 3. There is a unique edge β of µ that abuts on the vertex a. In that
case,

lg(a) = |δβ |.
Furthermore, the holonomy at the vertex a is hyperbolic if |δβ | 6= 0 and
parabolic if |δβ | = 0. In the case where the holonomy is hyperbolic, the
spiraling around the simple closed geodesic homotopic to the vertex a is in
the positive direction if δβ < 0, and in the negative direction if δβ > 0.

Proof. In each case, we obtain the information about the holonomy at a
vertex a and about the length of that vertex by taking a fundamental do-
main of the surface in the upper half-plane model of H2 and examining the
isometries of H2 that perform the gluing of the sides of that fundamental
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domain, and which give the hyperbolic structure on S as a quotient. We
study in particular the isometry that gives the holonomy type at a.
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Figure 8. This figure refers to Case 1 of Proposition 4.1 where
there are two edges of µ abutting on the vertex a and where the
holonomy around that vertex is hyperbolic. The upper picture
represents a quadrilateral Q which is a fundamental domain of the
action. The lower picture represents, in dotted lines, the successive
images of Q by the action of the cyclic group generated by g. These
images accumulate on the geodesic in H2 that is invariant by the
hyperbolic isometry g. The whole orbit of a point p by the group
generated by g is situated on a hypercycle. The two endpoints
of the hypercycle are the two endpoints of the geodesic invariant
by g. Note that the point p together with its image g(p) allow
us to determine geometrically the position of the geodesic that is
invariant by the isometry g.

We first consider the pattern corresponding to Case 1 in the statement of
the proposition. This is represented in Figure 8. In that figure, the upper
picture is a fundamental domain Q of the three-punctured sphere. Q is a
quadrilateral that is the union of two ideal triangles T1 and T2 glued along
a common edge. One of their common vertices, a, is the point ∞. The
horizontal segment with an arrow represents a simple closed curve around
the vertex a in the quotient surface, and we study the holonomy of that
curve. In the case drawn in the figure, the shift δγ on the edge that is
common to the two ideal triangles is negative (i. e. we have a right shear).
The bottom picture in Figure 8 represents two copies of Q that are glued
along a common edge β with a positive shift δβ . The holonomy at the vertex
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a is represented by the isometry g of H2 that sends the quadrilateral Q to the
adjacent quadrilateral situated to its left. In the case considered, we have
δβ + δγ < 0 and the isometry g is hyperbolic. We have represented a point
p on the boundary of the quadrilateral Q and its image g(p). If we choose
coordinates in H2 so that the origin 0 of the real axis is the intersection
point of the Euclidean line (which is a hypercycle in the sense of hyperbolic
geometry) joining the points p and g(p) with the x-axis, then the isometry
g is of the form z 7→ e−hz, where h = |δβ + δγ | is the translation distance
of that isometry. The case where the isometry g is parabolic corresponds
to δβ + δγ = 0. In that case, p and its images are situated on a horocycle
centered at ∞.

Note that if a vertex a of S is in the situation of Case 1, then the trian-
gulation µ is symmetric (in the sense defined above), which implies that we
have the following formulae for the lengths of the three vertices a, b and c
of S:

∀g ∈ T(S), lg(a) = |δβ + δγ |, lg(b) = |δα + δγ |, lg(c) = |δα + δβ|,
where lg(a) = 0 if and only if the holonomy of a is parabolic.

We now study the sense of the spiraling. This is best seen by looking at
Figure 8. Recall our conventions on the sign of the shifts and on the orien-
tation of the boundary components of S. They imply that when the three
shifts are positive, the leaves of µ spiral around the boundary components
in the sense opposite to that of the orientation on that boundary compo-
nent induced from that of the surface. This can be seen in Figure 8, where
the orientation of the geodesic line (0,∞) induced from the orientation of
the surface is from up to bottom. The sequence of vertical geodesics that
accumulate on the geodesic line (0,∞) are lifts of the leaves of µ that spiral
around a boundary closed geodesic, which is the image of the line (0,∞)
in the quotient surface. All these vertical geodesics have the vertex ∞ in
common with the geodesic line (0,∞), and the accumulation is the result
of applying a covering translation of the form z 7→ λz with 0 < λ < 1. The
spiraling along the image closed geodesic in the quotient hyperbolic surface
is in the direction induced from the orientation from 0 to ∞ on the line
(0,∞), which corresponds indeed to the negative orientation on the image
closed geodesic.

Now we consider Case 2. A fundamental domain for the surface is rep-
resented in Figure 9. A simple closed curve around the vertex a has four
intersection points with the edges of the ideal triangulation. The upper pic-
ture represents, in the universal cover H2, the ideal triangles that this curve
passes through (it passes twice in each triangle), with the point a being at
∞. The simple closed curve homotopic to the vertex a is represented as
a horizontal line with an arrow, as in the figure drawn for the preceding
case. The shifts that are associated to the four edges that the curve crosses
are (from left to right) δβ , δα, δγ , δα, δβ . To see this, note that in this ideal
triangulation of the sphere with three punctures or boundary components,
the edge α separates the surface, and δα represents the shift that identifies
the two components of the surface S cut along α. Thus, when we follow the
simple closed curve homotopic to α, we cross two times the edge α, and at
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each time the shift is δα. In the lower picture, we have represented the image
of the upper picture under the action of the group generated by the isome-
try g that represents the holonomy at the puncture. In the case drawn, this
holonomy is hyperbolic, and it is represented by the map z 7→ e−hz where
h = |δβ + 2δα + δγ |. The rest of the analysis is similar to the one of the
previous cases.

The situation in Case 3 is represented in Figure 10. It can be treated
in the same way as the two other cases. (As a matter of fact, this is the
simplest case.)

�
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Figure 9. The holonomy at a vertex in the case where there are
four half-edges abutting on that vertex (Case 2 of Proposition 4.1).

Definition 4.2 (Signed length). It is useful to introduce the notion of signed

length l̃g(a) of a distinguished point a of the sphere with three distinguished
points equipped with an ideal triangulation µ and a hyperbolic structure
g. (The distinguished point is, as usual, either a boundary component or
a cusp of the hyperbolic structure g.) This length is nonzero if and only if
the vertex is a boundary component, and its sign depends on the direction
of the spiraling of the edges of µ around the boundary component a. More
precisely, following the notations of Proposition 4.1, we set, for a given vertex
a,

l̃g(a) =





lg(a) if the spiraling is in the negative direction

−lg(a) if the spiraling is in the positive direction

0 if a is a cusp.

Using the notion of signed length, the formulae given in Proposition 4.1
become
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Figure 10. The holonomy in the case where there is one edge
abutting on a vertex (Case 3 of Proposition 4.1).





l̃g(a) = δβ + δγ ,

l̃g(a) = δβ + δγ + 2δα

l̃g(a) = δβ .

5. The unfolded Teichmüller space associated to a

triangulation with three vertices of the sphere

Let µ be a triangulation of the sphere S = S2 with three distinguished
points. In this section, we show that the shift coordinates on the edges of µ

give a parametrization of the unfolded Teichmüller space T̃(S) = T̃(S, P ) by

R3. We recall that the elements of T̃(S) are isotopy classes of signed hyper-
bolic structures. In this parametrization, the orientation on the boundary
components is induced referring to the direction of spiraling of the leaves
of µ realized as an ideal triangulation, around these boundary components,
realized as geodesics of the corresponding hyperbolic surface.

We shall analyze several features of the parametrization of T̃(S) by shift

coordinates and we shall give a description of T̃(S) as a cone over an octa-
hedron in R3. Each open simplex of the octahedron corresponds to a special
kind of behaviour at the vertices of µ.

We shall call the Teichmüller space of a given surface with orientations
specified on its boundary components, a special Teichmüller space. We state
the results as follow:

Theorem 1. The shift coordinates on the edges of µ parametrize the un-

folded Teichmüller space T̃(S) by R3. This parametrization gives a natural
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description of T̃(S) as the cone over an octahedron. Each open simplex of

the octahedron corresponds to a special Teichmüller space embedded in T̃(S),.
The origin O of R3 parametrizes the special Teichmüller space of the sphere
with three punctures (which is indeed reduced to one point). Furthermore,
the unfolded Teichmüller space has a canonical projection into an augmented
Teichmüller space of the pair of pants, that is, the union of the Teichmüller
space of the pair of pants with the various Teichmüller spaces of the torus
with cusps on its boundary.

In the rest of this section, we prove this theorem. In fact, we shall give a

more complete description of T̃(S) and of its subspaces than the one in the
statement of the theorem.

We note that although the definition of the unfolded Teichmüller space
that we gave does not make use of the triangulation µ, the parametrization
of that space by R3 depends on µ, and the structure of that space as a
combinatorial object and, a priori, its topology, could depend on µ. There-
fore, we shall sometimes denote by Tµ(S) the unfolded Teichmüller space
equipped with its parametrization by shift coordinates on the edges of µ.
We shall study below the dependence of this combinatorial structure on the
choice of µ.

We treat in detail the case where µ is a symmetric triangulation. (Recall
that this is the case of the triangulation represented at the center of Figure
6.) In this case, the picture of the combinatorial structure of the unfolded
Teichmüller space Tµ(S) is given in this case in Figure 11.

We use the notations that we introduced before in which α, β, γ are the
three edges of µ, and δα, δβ , δγ are the corresponding shifts (see Figure 6).

The Euclidean space R3, with coordinates δα, δβ , δγ , is subdivided into
eight conical regions by the three hyperplanes defined by the equations
δα = 0, δβ = 0 and δγ = 0. In Figure 11, we have represented two oc-
tahedra in R3, which we call O and O′. The largest one, O′, is the octahe-
dron whose two-simplices are the intersections of these eight regions with
the hyperplanes of equations e1δα + e2δβ + e3δγ = 1 where e1, e2, e3 take
all the values 0 and 1. The vertices of the octahedron O are the barycen-
ters of the two-dimensional faces of the octahedron O′, that is, the points
U = (1/3,−1/3, 1/3), V = (−1/3, 1/3, 1/3), W = (1/3, 1/3,−1/3). The
points U ′, V ′,W ′ that are symmetric to U, V,W respectively with respect
to O. Note that geometrically, the octahedron O is obtained from a cube
by chopping off two pieces bounded by the two triangular faces UV W and
U ′V ′W ′ of this octahedron.

The octahedron O (and, likewise, the octahedron O′), viewed as a simpli-
cial complex, has 8 + 12 + 6 = 26 distinct simplices. Each of the 26 positive
cones over the interior of such a simplex, together with the origin O of R3

(which make in total 27 spaces), is a Teichmüller space of the sphere with
three distinguished points where each of the distinguished points has been
specified to be either a puncture or a boundary component, that is, a space
whose elements are isotopy classes of hyperbolic structures on a fixed (gen-
eralized) pair of pants. Several of the Teichmüller spaces that occur in this
collection are Teichmüller spaces of the same surface, and there are canonical
identifications between them. Each of these spaces is specified by a certain
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Figure 11. The 2-dimensional faces of the large octahedron O′

(whose edges are drawn in light lines) are the intersection of that
octahedron with the eight quadrants of R3. The smallest oc-
tahedron O (drawn in bold lines) is the octahedron dual to O′.
Each of the eight cones over the open two-dimensional simplices
of O parametrizes the Teichmüller space T(S0,3,0) of the sphere
with three boundary component. Each of these Teichmüller space
T(S0,3,0) is distinguished by a given way of spiraling of the edges
of µ around the boundary components. Likewise, the cones over
the lower-dimensional simplices parametrize Teichmüller spaces of
the sphere in which one or more distinguished points is a puncture,
with the rest of the distinguished points being boundary compo-

nents.

way of spiraling of the leaves of µ around the boundary components of the
surface or, equivalently, by an orientation on each boundary geodesic.

Thus, the topology induced on the unfolded Teichmüller space T̃(S) by
the shift coordinates on the edges of µ permits to pass continuously between
any two special Teichmüller spaces of generalized pairs of pants. Degenerate
structures where the length of a simple closed curve is equal to 0 appear here
as elements in the unfolded Teichmüller space Tµ(S). These structures also
appear as boundary structure of the various special Teichmüller spaces of
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pairs of pants. Recall that these structures also appear in complex analy-
sis, where spaces of surfaces with nodes appear as boundary structures of
Teichmüller space.

More precisely, the space R3 parametrizes an unfolded Teichmüller space
which is the union of 26 + 1 = 27 subspaces, each of which can be identified
with a Teichmüller space in the usual sense. These subspaces can be decribed
as follows:

• Each positive cone over an open two-dimensional face of the octahedron
O is a special Teichmüller space of a pair of pants with three boundary
geodesics. Any such a Teichmüller space is distinguished by the fact that
the three distinguished points are chosen to be boundary components, and it
is distinguished from other congruent spaces by a specific sense of spiraling
for the edges of the ideal triangulation µ around the boundary geodesics.
Four of these spiraling behaviours are represented in Figure 11.

• Each positive cone over an open one-dimensional face of the octahedron
O is a special Teichmüller space of a (generalized) pair of pants with one cusp
and two boundary geodesics. There are 12 such special Teichmüller spaces,
and each of them is specified by the three different choices of the cusp for
a sphere with three distinguished points, and, for each such choice, by a
specific sense of spiraling of the edges of the ideal triangulation µ around
the two boundary geodesics of the surface.

• Each positive cone over a vertex of the octahedron O is the Teichmüller
space of a generalized pair of pants with two cusps and one boundary ge-
odesic. There are six such special Teichmüller spaces, each of them corre-
sponding to a special placement of the boundary component for the sphere
among the three distinguished points, and, for each such placement, by
the sense of spiraling of the edges of the ideal triangulation µ around that
boundary geodesic.

• Finally, the origin O corresponds to the Teichmüller space of the sphere
with three punctures.

Note that in each of the 8 cones over the two-dimensional faces of O, the
various spiraling behaviours around the geodesic boundary components are
determined by linear inequations in the shift parameters on the edges of the
ideal triangulation µ. For instance, the case labelled 1 in Figure 11 (that is,
the cone over the triangle UV W ) corresponds to the system of inequations





δβ + δγ > 0
δα + δγ > 0
δα + δβ > 0

Case 2 (the cone over the triangle U ′V W ) corresponds to





δβ + δγ > 0
δα + δγ < 0
δα + δβ > 0

Case 3 (the cone over the triangle UV ′W ) corresponds to





δβ + δγ > 0
δα + δγ > 0
δα + δβ < 0
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Case 4 (the cone over the triangle UV W ′) corresponds to





δβ + δγ < 0
δα + δγ > 0
δα + δβ > 0
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Figure 12. This figure represents the patterns of the singular
graphs of the horocyclic foliations for the various hyperbolic struc-
tures representing points in the cone over the face UV W of the
octahedron O. The star indicates a cusp.

5.1. The type of the horocyclic foliation. In Figure 12, the triangular
face UV W is subdivided into four smaller triangles. The fact that an ele-
ment x of Tµ(S) which is in the cone over the face UV W belongs to one
of the various smaller cones represented in this figure depends on the type
of the horocyclic foliation of a hyperbolic structure g representing x. More
precisely, this fact depends on the behaviour of the singular graph of the
foliation Fµ(g), that is, the union of the leaves that start at singular points.
The various topological types of singular graphs are represented in Figure
12. Note that for any hyperbolic structure g representing a point in the
interior of the cone over UV W , the horocyclic foliation Fµ(g) is transverse
to the boundary of the pair of pants.

If g is any hyperbolic structure on the pair of pants S equipped with the
ideal triangulation µ, the associated horocyclic measured foliation Fµ(g) is
transverse to the lamination µ. We already saw that any measured foliation
transverse to µ induces a set of shift coordinates on the edges of µ. We
note here that the shift parameter on an edge of µ induced by a hyperbolic
structure g is the same as the shift parameter on that edge induced by the
horocyclic measured foliation Fµ(g).

Figure 12 represents the different patterns of the singular graphs for the
horocyclic measured foliations of the various hyperbolic structures repre-
senting points in the cone over the open face UV W of the octahedron O.
The triangular face UV W is divided into four smaller triangles. The three
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segments in the interior of the face that define this division correspond to
hyperbolic metrics g on the sphere with three distinguished points, a, b, c
that are defined in terms of lengths of the closed geodesics representing
these points by the equalities lg(a) = lg(b) + lg(c), lg(b) = lg(a) + lg(c) and
lg(c) = lg(a) + lg(b) respectively. (Remember that, by convention, a cusp is
considered as a geodesic of length 0.) Note that one can write equivalent
equations in terms of transverse measures of the boundary components, with
respect to the horocyclic foliations.

5.2. Identifications between special Teichmüller spaces. There are
natural identifications between several of the special Teichmüller spaces
contained in the unfolded Teichmüller space. Namely, let T1 and T2 be
two Teichmüller spaces of S that correspond to hyperbolic structures of the
same type (meaning that any distinguished point of the surface S is a cusp
for both structures or a boundary component for both structures). Then,
it is natural to identify any two points in T1 and T2 whenever they are
represented by the same hyperbolic structure. Note that this amounts to
forgetting the sign of the hyperbolic structure. This gives a homeomorphism
T1 → T2. Such a homeomorphism is described in a simple manner using the
shift parameters. It is easy to see that if the two spaces T1 and T2 are of
maximal dimension and are represented in R3 by two 3-dimensional cones
that share a common 2-dimensional face, then the identification is a (non-
orthogonal) symmetry that fixes that face. For instance, consider the two
Teichmüller spaces that are parametrized by the three-dimensional cones
over the open faces UV W and UV W ′ of O. Then, the natural identification
between these two subspaces is the linear symmetry that preserves the two-
dimensional face OUV and that sends W to W ′. The other identifications
between the 3-dimensional spaces are compositions of such symmetries.

Each of the eight three-dimensional special Teichmüller spaces is para-
metrized by a cone that is defined by three inequations. Each two such
Teichmüller spaces T1 and T2 that share a common 2-dimensional face are
defined by three inequations, two of which are identical for the two spaces
and the third one being different. For instance, the cones over the faces
UV W and UV W ′ are defined respectively by the systems of equations





δα + δβ > 0
δα + δγ > 0
δβ + δγ > 0

and 



δα + δβ < 0
δα + δγ > 0
δβ + δγ > 0

Therefore, a point in T1 whose coordinates are (δα, δβ , δγ) is identified
with the point in T2 whose coordinates (δ′α, δ′β , δ′γ) satisfying





δ′α + δ′β = −δα − δβ

δ′α + δ′γ = δα + δγ

δ′β + δ′γ = δβ + δγ

or equivalently
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δ′α = −δβ

δ′β = −δα

δ′γ = δα + δβ + δγ

With this, we can easily check that the symmetry s that exchanges the
two spaces is the linear map ofR3 whose matrix in the canonical basis is




0 −1 0
−1 0 0
1 1 1




This matrix has




1
−1
0


 and




0
0
1


 as eigenvectors with eigenvalue 1 and




1
1
−1


 as eigenvector with eigenvalue −1.

In other words, s is the linear map that fixes the plane δα + δβ = 0 (that
is, the common face to the two cones) and that acts as a symmetry along
the line (WW ′).

We denote by G the group of linear homeomorphisms of R3 that is gen-
erated by all the natural identifications between the various special Te-
ichmüller spaces. This group is a finite group of linear transformations.

The quotient of T̃(S) by this group is an augmented Teichmüller space of
the pair of pants, that is, the union of the Teichmüller space of the pair of
pants with the various Teichmüller spaces of the pair of pants with cusps on
its boundary.

5.3. The central symmetry. Let P be a generalized hyperbolic pair of
pants. The canonical involution ι on P preserves each boundary component
of this surface, and if P is equipped with an ideal triangulation µ, then
ι sends µ to an ideal traingulation µ which spirals around each boundary
component in the sense opposite to that of µ. The set of all such maps ι on
generalized hyperbolic pairs of pants is induced by a map which is defined on

the unfolded Teichmüller space T̃(S) of the sphere with three distinguished
points. In the space R3 of shift coordinates on the edges of µ, this map is
the symmetry with respect to the origin O. Note that the fixed point set of
this involution of R3 is the origin, which is consistent with the fact that the
sphere with three cusps together with its image by its order-two symmetry

are the same point in the unfolded Teichmüller space T̃(S).

6. Changing the ideal triangulation

In this section, S is again a sphere and P is a set of three distinguished
points on S. We recall that when we consider a hyperbolic structure on this
pair, then each boundary component of the resulting surface is equipped
with the orientation induced from that of the surface S.

The shift coordinates associated to an ideal triangulation µ on a sphere
with three distinguished points define a homeomorphism η between the un-

folded Teichmüller space T̃(S) and R3, and therefore they provide the space
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T̃(S) with a linear structure. Changing the ideal triangulation µ on (S, P )
to another triangulation µ′ on that space induces a global coordinate change
map η′ ◦ η−1 from R3 to itself. We show that this map is linear.

Proposition 6.1. The map η′ ◦ η−1 is linear.

Proof. We start with a symmetric triangulation µ and we let (δα, δβ , δγ) be
the shift coordinates on the edges µ.

Let (δ′α, δ′β , δ′γ) be the shift coordinates on the edges of a non-symmetric

triangulation µ′ obtained from µ by a flip.

Let g = (l̃g(a), l̃g(b), l̃g(c)) ∈ R3 represent a hyperbolic structure, the tilde
represent the signed lengths (positive or negative spiraling, etc.), as defined
above.

In the case of the triangulation µ, we have





l̃g(a) = δβ + δγ

l̃g(b) = δβ + δγ

l̃g(c) = δβ + δγ

In the case of the triangulation µ′, the formulae are





l̃g(a) = δ′β + δ′γ + 2δ′α
l̃g(b) = δ′β
l̃g(c) = δ′β

The natural identification between the two parameter spaces of the un-
folded Teichmüller spaces given by the shifts on the edges of µ and µ′ is
induced by the canonical identification between the signed hyperbolic struc-
tures that are parametrized by these spaces.

At the level of the shift coordinates, the change in coordinates are linear
and they are given by the following formulae:





δ′α = −δα

δ′β = δα + δβ

δ′γ = δα + δγ

�

Corollary 6.2. The shift coordinates provide the unfolded Teichmüller space
of the sphere with three distinguished points with a linear structure which is
independent of the choice of the triangulation µ.

7. Stretch lines and earthquakes in shift parameters

Consider a surface Sg,b,p equipped with a maximal geodesic lamination µ.
(We are only interested here in the case where µ is an ideal triangulation.)
Recall that a stretch line directed by µ in the Teichmüller space T(Sg,b,p)
starting at a (point representing a) hyperbolic g is the map t 7→ g t from R

into T(Sg,b,p), where gt is the (equivalence class of the) hyperbolic structures
whose horocyclic foliation Fµ(gt) with respect to µ is obtained from Fµ(g) by
keeping the same foliation and multiplying the transverse measure of Fµ(g)
by the factor et.
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We shall say that the hyperbolic metric gt is obtained from g by a t-
stretch.
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Figure 13. Varying a hyperbolic structure along a stretch line
multiplies the shift parameters on the edges of the ideal triangula-
tion by a constant factor.

Proposition 7.1. The effect of a t-stretch multiplies the lengths of all the
boundary geodesics by the factor et.

Proof. This follows from the fact that the leaves of the horocyclic foliation
abut perpendicularly on the boundary geodesics, and that the transverse
measure of this horocyclic foliation coincides with hyperbolic length on ge-
odesic arcs that are perpendicular to the leaves of this foliation. �

Now consider the special case where the surface is a pair of pants. Since
a hyperbolic structure on a pair of pants is completely characterized by the
lengths of its three boundary components, any stretch line starting at a
given point in the Teichmüller space of the pair of pants can be described
as the line in that space obtained by changing the lengths of the boundary
components of the surface by a common multiplicative factor. In particular,
to obtain any stretch line in the Teichmüller space, one can take an arbitrary
ideal triangulation that completes this pair of pants, and perform a stretch
along that ideal triangulation. Any such completion gives the same stretch
line.

This is not true if we take an arbitrary surface Sg,b,p equipped with a
pair of pants decomposition. That is, stretch lines starting at that surface
which are defined after completing a given pair of pants decomposition into
an ideal triangulation depend on the choice of the completion. We shall
study precisely this phenomenon in §9 below. We shall see in some precise
examples that if we start at some hyperbolic structure on a surface S =
Sg,b,p and perform stretches along ideal triangulations µ and µ′ which have
different spiraling behaviour around a given pair of pants decomposition,
then these lines are distinct in the Teichmüller space of the surface.

Now we consider again the case of a sphere S equipped with three dis-
tinguished points. Stretch lines can be defined on the unfolded Teichmüller

space T̃(S). We can send one of these lines in one cone over a simplex into a
cone over another simplex of the same dimension using elements of the group

G of symmetries of T̃(Sg,b,p) that we described in §5.2 above. In particular,
if we consider the images of a hyperbolic structure g by the group G and the
stretch lines passing through these points, then these lines are invariant by
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G. In other words, if we bring the various stretch lines in the same cone by
an element of the group G, then the stretch lines coincide.

In the shift parameters for T̃(S) associated to µ, the stretch lines have a
nice description, summarized in the following

Proposition 7.2. Stretch lines can be defined on the unfolded Teichmüller

space T̃(S). In the shift coordinates associated to an ideal triangulation
µ, a stretch line directed µ corresponds to a Euclidean ray starting at the
origin. More precisely, a stretch line starting at a signed hyperbolic structure

g ∈ T̃(S) is described, using the shift parameters, by

t 7→ (etδα(g), etδβ(g), etδγ(g)), t ∈ R.

With this definition, the flow induced on each special Teichmüller space in

T̃(S) is a usual stretch flow along µ.

Proof. The transverse measure of the horocyclic foliation coincides with hy-
perbolic length on geodesic arcs that are perpendicular to the leaves of this
foliation, and this transverse measure, under a stretch line, is multiplied
by the factor et. Therefore, the shift parameters under a stretch line are
multiplied by the same factor. �

This means that this line is an open Euclidean ray starting at the origin
O and passing through g. It can be extended by continuity to a closed
ray containing the origin. In particular, all the stretch rays in the shift
coordinates associated to µ converge in the negative direction to the point
in Tµ(S) representing the sphere with three cusps.

It is a natural question to see how the stretch lines on a surface Sg,b,p

are expressed in terms of Fenchel-Nielsen coordinates. In the next section,
we shall see in particular that the Fenchel-Nielsen torsion between adjacent
pairs of pants is not constant.

Besides the stretch flow, there is a natural flow defined on the unfolded
Teichmüller space Tµ(S) whose effect is to translate any two adjacent ideal
triangles in the same direction by the same constant vector. In terms of the
shift coordinates, the effect is to add a constant, and it is given by

t 7→ (δα, δβ , δγ) + t(δα, δβ , δγ), t ∈ R.

In analogy with Thurston’s earthquake flows defined along compactly
supported measured laminations, we call this flow an earthquake flow along
the ideal triangulation µ. The normalization that we use in this definition is
one that makes the origin O of Tµ(S) (that is, the sphere with three cusps)
fixed, and it makes the flow commute with the stretch flow on Tµ(S), and
the flowlines are parallel Euclidean lines.

In general, performing an earthquake along µ changes the lengths of the
boundary components of the surface. In fact, some of these lengths which
are nonzero can become 0 as we perform an earthquake. In other words, an
earthquake line passes through points in Tµ(S) where the boundary compo-
nents become cusps, and the sense of spiraling of edges of µ around boundary
components changes as the line passes through such a point.
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8. The position of the singular arcs of the horocyclic

foliation

In this section, S is a hyperbolic pair of pants equipped with a measured
foliation F transverse to the boundary. A singular arc joining two boundary
components of S is an injective arc contained in the leaves of F which
joins these boundary components and which passes through a singular point
of F . In what follows, F will be the horocyclic foliation associated to a
hyperbolic structure (with three geodesic boundary components) and to an
ideal traingulation µ. Note that since the horocyclic foliation has only three-
prong singularities, then for any two boundary components of S, there are
exactly two singular arcs joining them. (This follows from the classification
of measured foliations on pairs of pants, cf. [5]).
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Figure 14. The singular arcs k and k′ (in bold lines) and the
geodesic arc h joining the two boundary components A and B

Let h be a hyperbolic structure on the pair of pants S. Let A and B
be two boundary components of S, let k and k ′ be the two singular arcs
of F = Fµ(h) joining them and let l be the geodesic seam joining these
components (see Figure 14). In this section, we shall give a formula for
the relative position of one of the singular arcs, say k, with respect to l.
This formula will be useful in studying the relative behaviour of various
stretch lines in the Teichmüller space of a surface obtained by gluing pairs
of pants along their boundary. It is also used to study the relation of these
lines to earthquakes. Recall that stretch lines are naturally expressed using
shift coordinates, whereas earthquakes along the curves of the pairs of pants
decompositions (that is, Fenchel-Nielsen flows) are naturally expressed using
Fenchel-Nielsen coordinates.

In the next section, we shall consider a surface obtained by gluing two
pairs of pants along their boundary components. There are two useful coo-
ordinates on the Teichmüller space of that surface, the Fenchel-Nielsen co-
ordinates and the shift coordinates. Fenchel-Nielsen coordinates involve
distances between endpoints of seams coming from adjacent pairs of pants,
whereas shift coordinates involve distances between endpoints of singular
arcs coming from adjacent pairs of pants. Making the relations between the
shift and Fenchel-Nielsen coordinates involves computing distances between
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endpoints of singular arcs and endpoints of geodesic seams connecting curves
in the pairs of pants, and we shall do this below.

w

PSfrag replacements

δα

δβ

δγ

δγ

T1

T1

T2

a b c ed

u

v

w

0

1

Figure 15. In bold lines, we have represented a fundamental
region of the action of the dexk transformation group on the uni-
versal cover of the pair of pants S. This region is the union of lifts
of two right-angled hexagons in the surface obtained by connect-
ing pairwise the three boundary components by geodesic arcs that
are perpendicular to these components. The normalization is such

that the singular arc k̃ connecting the geodesic lines Ã = (0,∞)

and (c, d) intersects the geodesic line Ã at height 1. We are inter-

ested in the ordinate u of the arc h̃ connecting Ã and B̃ perpen-

dicularly.

The computations are done in the universal covering of the surface. In
Figure 15, the universal covering of the hyperbolic pair of pants is rep-
resented as a subset of the upper-half plane model of H2. The universal

covering is normalized so that the vertical geodesic line Ã that joins the

points 0 to ∞ is a lift of the closed geodesic A. The line Ã divides H2 into
two regions, one of them containing the universal covering of the pair of

pants S. In Figure 15, this region is the one to the right of Ã. We choose a

lift B̃ of the boundary component B of S such that the geodesic segment l
joining perpendicularly A and B lifts to a segment joining perpendicularly

Ã and B̃. Let F̃ be the preimage of the foliation F to this universal cov-

ering. There are two singular arcs of the horocyclic foliation F̃ which join

the lifts Ã and B̃ of A and B, which are the two lifts of k and k ′. We let

k̃ and k̃′ be respectively these arcs. We suppose without loss of generality

that the ordinate of the intersection point k̃∩ Ã is greater than the ordinate

of the intersection point k̃′ ∩ Ã. We compute the signed distance U between

the points Ã ∩ h̃ and Ã ∩ k̃, with the convention that the sign is given the

orientation on the line Ã from 0 to ∞, that is inverse to the one induced
from the orientation of the surface. To do these computations, we can fix
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the ordinate of Ã ∩ k̃ to be equal to 1 (see Figure 15 in which u > 1, that
is, U = log(u) > 0).

We treat in detail the case where the shift coordinates δα, δβ, δγ , of the
pair of pants are all positive. (This is Case 1 represented in Figure 12.) The
other cases can be treated by adapting the computations of this special case.
We follow the notations of Figure 15.

The aim is to compute the value of u. Since the three shifts are positive,
the spiraling in S around the three boundary geodesics of S is in the inverse
sense with respect to the orientation induced by that of the surface.

Figure 15 shows part of the preimage of µ in the upper half-plane con-
taining the universal covering of the pair of pants. The triangles labeled T1

and T2 (which have vertical sides) are lifts of the two ideal triangles that are
determined by µ in the surface S, and which (for simplicity) have the same
name. As already said, the normalization in the universal covering is such

that the lift Ã of the boundary component A of S is the vertical geodesic line
starting at the origin of the boundary R of the upper half-plane. We have
also drawn lifts of the boundary components C and B; these are respectively
the geodesics with endpoints (a, b) and (c, d). We start by computing the
abscissas c and d in terms of the shifts δα, δβ , δγ .
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Figure 16. The abscissa of the center N of the Euclidean circle
that passes through the points of abscissas x and y equals (x +
y)/2, and the radius of this circle is (y − x)/2. By applying the
Pythagorean theorem to the Euclidean triangle OMN , we obtain
u2 = (x+y

2
)2 − (y−x

2
)2 = 1

4
(2y)(2x), which gives u = OM =

√
xy.

Using the Euclidean theorem of Pythagoras (see Figure 16), we can see
that the geodesic segment that minimizes the distance between the vertical

line Ã and a hyperbolic geodesic which intersects the real line at points whose

abscissas are x and y (0 < x < y) intersects Ã at a point u whose ordinate
is

√
xy (see Figure 16). Therefore, in our situation (using the notation of

Figure 15), we have u =
√

cd.
Using again the notations of Figure 15, we now compute the values of e,

c, a and d, and we then deduce the value of u.
The hyperbolic isometry z 7→ f(z) = e−l(A)z is a covering transformation

that preserves the geodesic Ã. Under the action of this isometry, the orbits of
the vertical sides of the triangles labelled T1 and T2 in Figure 15 accumulate
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on the vertical line Ã. Since the segment on the x-axis with endpoints e and
a is a fundamental domain for the action induced by this isometry on the
x-axis, we have

e = (e − a) + (e − a)e−l(A) + (e − a)e−2l(A) + . . .

or, equivalently, using the fact that l(A) = δβ + δγ ,

e = (e − a)

∞∑

n=0

e−n(δβ+δγ) =
e − a

1 − e−(δβ+δγ)
.

Using the fact that the length of the largest segment of the horocyclic
foliation in the triangle T1 whose vertices are c, e and ∞ is equal to 1, we
obtain e − c = 1. Likewise, by examining the triangle T2 whose vertices are
a, c and ∞, we see that c − a = e−δγ .

Now we write e − a = e − c + c − a = 1 + c − a = 1 + e−δγ . This gives us

e =
1 + e−δγ

1 − e−(δβ+δγ)
,

c = e − 1 =
e−(δβ+δγ) + e−δγ

1 − e−(δβ+δγ)

and

a = e−(δβ+δγ)e.

To compute the value of d, we apply the isometry

z 7→ g(z) =
−1

z − c
+

1

d − c
.

that sends the geodesic (cd) to the geodesic Ã = (0,∞), and then we use
the computations done for the preceding case. Thus, we have

g(e) = − 1

e − c
+

1

d − c
,

g(∞) =
1

d − c
and

g(c + i) = −1

i
+

1

d − c
=

1

d − c
+ i.

In particular, the point g(c+i) has ordinate 1. Therefore, we can compute
g(∞) in the same way we computed e in the preceding situation. We obtain,
using now the notations of Figure 17,

g(∞) = (g(∞)−x)+ (g(∞)−x)e−l(B) + . . . =
(g(∞) − x)

1 − e−l(B)
=

1 + e−δα

1 − e−(δα+δγ)

Therefore,

d = c +
1 − e−(δα+δγ)

1 + e−δα
.

We obtain, after a simplification,
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u2 =
e−δγ (1 + e−δβ )(1 + e−δγ )(1 + e−(δα+δβ+δγ))

(1 + e−δα)(1 − e−(δβ+δγ))2
.

¿From this, we can deduce the value of U = log u.
Note that if U ′ is the signed distance between l and the other singular arc

joining a and b (i. e. the arc k′), we have

U ′ = U + δγ .

Remarks 8.1. It is interesting to compare the behaviour of the distance
U with the that of the length l(A) of the boundary geodesic A when the
metric varies on the stretch line gt directed by µ, with t → ∞. We already
know that under a stretch of factor et, the length of A is multiplied by et.
Denoting by rt the ratio U/l(A), we have

lim
t→+∞

rt = − δγ

2(δγ + δβ)
≥ −1

2
.

Furthermore, it is easy to see that the fonction rt is strictly decreasing for
t large enough. Thus, along a stretch line, and for t greater than a certain
t0, the positions of k and k′ stabilize in the sense that these paths do not
wind indefinitely around boundary components.

The situation is totally different along an anti-stretch line. Whereas the
length of the boundary component A tends to zero, the distance U goes to
infinity. More precisely, one can show that if l(A) denotes the length of the
boundary component A at the origin of the anti-stretch line, we have

rt ∼t→−∞ − t e−t

l(A)
,

which tends to infinity as t → −∞.
This behaviour suggests that the horocyclic foliation is not a sufficiently

stable tool to study the asymptotic behaviour of an anti-stretch line.
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9. Fenchel-Nielsen coordinates and shift coordinates

In this section, S = S0,4 is the sphere with four boundary components
equipped with a hyperbolic structure obtained by gluing two hyperbolic pairs
of pants P1 and P2, whose boundary geodesics are denoted respectively by
A1, B1, C1 and A2, B2, C2. We equip each pair of pants with a symmetric
ideal triangulation, and the surface S with the union ideal triangulation.
We suppose that the geodesics A1 and A2 have the same lengths, and are
identified: A1 = A2 = A. We denote the shift coordinates in P1 by δ1

α, δ1
β , δ1

γ ,

and those in P2 by δ2
α, δ2

β , δ2
γ . The gluing condition is |δ1

β + δ1
γ | = |δ2

β + δ2
γ |.

The lamination on S is such that all the spirals of P1 and P2 are positive
and all the spirals around A1 = A2 that come from the two adjacent pairs
of pants are in the same direction.

There are at least two ways of specifying the gluing between P1 and P2,
that is, to describe the twist along A between these two pairs of pants.
First, there is the Fenchel-Nielsen twist τA, which measures the distance on
A between the feet of the geodesic seams coming P1 and P2 (after the choice
of a pair of boundary components in each pair of pant) and then, there is
the shift twist δA, which measures the distance on A between the feet of the
singular arcs of the horocyclic foliations (again, after making choices).

In this section, we shall give a formula that relates these two twists. Recall
that the shift twist δA along A is natural for describing stretches.

First, one has to choose a geodesic arc in each pair of pants: we shall
choose the seam joining A and B1 on one side of A and the seam joining
A and B2 on the other side. Likewise, we choose one singular arc on each
side of A, joining the same boundary components of the pair of pants as the
geodesic arcs that we choose.

Moreover, we choose an orientation on the closed geodesic A.
We note that these choices do not suffice to determine the Fenchel-Nielsen

and the shift parameters. One also needs to choose an origin for each of these
shifts. The choices become natural if we lift the situation to the universal
covering of the surface. First consider a lift Ã of A. This lift sparates the

universal covering into two half-planes bounded by Ã. In each of these half-

planes, there is a whole family of lifts of seams with one endpoint on Ã,
all of these lifts being congruent under the action of the cyclic subgroup

of the deck transformations group that preserves Ã. The choices that we
have to make for the definition of the Fenchel-Nielsen coordinates amount
to choosing an orientation on Ã and two representatives, one in each half-
plane, of the two families of these lifts of the seams.The choices made for
one lift propagate under the action of the deck-transformations group.

Of course, the determination of the shift twist parameters is based on the
exactly the same battery of choices.

In fact, we want to compare the two twist parameters, and there is a
convenient way to do so. Once we have made choices to define one type of
parameters, there is a convenient way for making the choices defining the
other type of parameters. Indeed, each type of segment (seam or singular
arc) used in the definition of the corresponding type of parameters joins two
boundary components of the pair of pants containing this segment. Each lift
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of such a segment joins lifts of those boundary components. If one chooses
two particular lifts of the boundary components to define the parameters,
then it is natural to choose a segment of the other type joining the same lifts.
Thus, in what follows, we will apply the following procedure: we first make
choices for the definition of the Fenchel-Nielsen twist parameters, and then
make choices for the definition of the shift twist parameters accordingly.
This will allow us to use the computations made in the previous section.

We now consider the lift of this situation to the universal cover S̃ of S.
We choose an identification between S̃ and a subset of the upper half-plane

H2 in such a way that a lift Ã of A is the geodesic whose endpoints are at

0,∞. We choose a lift h̃i, i = 1, 2, of a seam in each pair of pants in order
to compute the Fenchel-Nielsen twist. The orientation of A corresponds to

the orientation of Ã pointing from 0 to ∞. In Figure 18, the subset of the

universal cover of P1 containing Ã is situated to the right of Ã, and that of
P2 to the left. The picture on the right is put in the same position as in

Figure 15, that is, the leaves spiraling around Ã have ∞ as an endpoint. We
refer to the position pictured in Figure 15 as the “standard position”. The
picture on the left is not in the standard position, but it can be made so by
using the map z 7→ −1/z.

We make the choices of the singular segments according to the discussion
above and to Figure 18, namely, we choose among the possible singular
segments joining the chosen lifts of boundary components of pairs of pants.
In P1, we take the singular segment with the lowest point of intersection with

Ã, and we make the same choice in P2 after having put it in the standard

position. We call k̃i, i = 1, 2, the singular segments chosen in this way. and

we let ui, vi denote the ordinates of the points of intersection of h̃i and

respectively k̃i with Ã. Then, we have (see Figure 19)

• τA = log(
u1

u2
),

• δA = log(
v1

v2
),

• U1 = log(
u1

v1
),

• U2 = log(
1/u2

1/v2
) = − log(

u2

v2
),

where Ui denotes the signed distance from the foot of the seam h̃i on Ã to

the foot of the singular segment k̃i on Ã. Therefore, we have

τA = U1 + δA − U2δA + log u1 − log u2.

which gives

(1) τA = δA +
1

2
log

u2
1

u2
2

.

10. An example on the surface of genus 2

Let P be a pair of pants with boundary components A,B,C equipped
with a complete geodesic lamination µ of symmetric type (that is, no leaf
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Figure 19. Gluing two copies of the the universal coverings of

the two pairs of pants along Ã. The dotted lines represent lifts of
the singular arcs and the perpendicular arcs represent lifts of the
seams. The directions of the arrow represent positive values of the
various quantities.

joins a puncture to itself). As before, δα, δβ , δγ denote the shift parame-
ters associated to µ. Consider a hyperbolic structure on P satisfying the
following conditions:

(1) the shifts are all positive, i.e., δα > 0, δβ > 0, δγ > 0;
(2) the lengths of all the boundary components are equal to some L > 0,

i.e., δα + δβ = δα + δγ = δβ + δγ = L.

Note that we then have δα = δβ = δγ = L/2.
We take two copies P1 and P2 of P , and we call respectively µ1 and µ2

the laminations in these two pairs of pants corresponding to µ. We glue
pairwise the boundary components of P1 with the boundary components of
P2, respecting the labels of these components. We denote by S = S2 the
resulting surface. It is a closed surface of genus 2. We can naturally talk
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about the geodesics A,B,C in S. Note that there is one degree of freedom
for each identification between boundary components of P1 ∪ P2 and that
for any choice of identifications between these components, the union of
the complete laminations µ1 and µ2 is a complete geodesic lamination on
S, which we also denote by µ, and which we shall suppose to be chain-
recurrent (i.e. all leaves of µ that spiral along the same closed geodesic
A, B or C spiral in the same direction). The stump of µ is the union of
the three disjoint closed geodesics A,B,C. We choose the identifications
between the boundary components of P1 and P2 in such a way that the
seams have the same endpoints, thus forming three disjoint simple closed
geodesics A′, B′, C ′, each of which have at most one intersection point with
the closed geodesics A,B,C (A′ ∩ A = ∅, B′ ∩ B = ∅, C ′ ∩ C = ∅). Finally,
let us denote by h the resulting hyperbolic structure on S. (Remember that
h is only defined up to isometry).

The hyperbolic surface h has two order-two symmetries. The first one,
σ, fixes the geodesics A,B,C and exchanges the (images in S of the) pairs
of pants P1 et P2. The second one, σ′, fixes A′, B′, C ′ and its restriction to
each pair of pants P1, P2 is the canonical involution fixing the seams.

Let µ̄ be the image of µ by the symmetry σ ′ of S. The geodesic lamination
µ̄ is also obtained from µ by reversing the sense of spiraling around the three
closed geodesics A,B,C. Note that if δ̄α, δ̄β , δ̄γ denote the shift parameters
associated to µ̄, then we can easily see that we have

δ̄α = −δα, δ̄β = −δβ, δ̄γ = −δγ .

We now consider the two stretch lines ` : t 7→ ht and ¯̀ : t 7→ h̄t starting
at h = h0 = h̄0 and directed by µ and µ̄ respectively. We shall study
explicitely the Fenchel-Nielsen coordinates of the points ht and h̄t on these
lines, associated to the pair of pants decomposition A,B,C. Note that since
li(ht) = li(h̄t), for i = A,B,C, we can always pass from ht to h̄t by a
composition of Fenchel-Nielsen twists along the curves A, B and C, but it
is a priori conceivable that ht = h̄t for some (or even for all) t, in addition
to t = 0;.For instance, it is conceivable that a stretch map does not change
the Fenchel-Nielsen parameters between adjacent pairs of pants. In fact, we
shall show that this is not the case. We shall see that the twist parameters
along A, B and C are always different for points on ` and on ¯̀ except at the
origin, thus proving the following

Proposition 10.1. The geodesic lines ` et ¯̀ have a unique point of inter-
section, which is the point h.

Proof. Consider the Fenchel-Nielsen coordinates < lA, τA, · · · , lC , τC > as-
sociated to the three closed curves A,B,C, such that τA(h) = τB(h) =
τC(h) = 0.

By Proposition 7.1, we have, for each t ≥ 0,

li(ht) = li(h̄t) = etL, with i = A,B,C.

We shall show that the Fenchel-Nielsen torsions τi(ht) and τi(h̄t), for any
i = A,B,C, are different for all t > 0. For this, we use the formulae that
give these torsions in terms of the shift coordinates. The situation being the
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same for the three geodesics A, B and C, it suffices to consider one of them,
say, τA.

To compute the shift torsions δA(ht) and δA(h̄t) along A, we must choose
a singular arc in each pair of pants P1 and P2 joining A to another bound-
ary component of this pair of pants with respect to to the two horocyclic
foliations Fµ(h) and Fµ̄(h). We shall make such a choice for the structure h,
and we shall then keep the same choice as t varies. There is a natural choice
for the singular arcs with respect to Fµ̄(h) once singular arcs with respect
to Fµ(h) have been chosen:

To a singular arc in one pair of pants with respect to Fµ(h), we associate
the singular arc with respect to Fµ̄(h) of the same pair of pants that joins
the same curves in the collection {A,B,C} and whose ends on each curve
are exchanged by the involution σ′ of h.

Note that this involution sends Fh(µ) to Fh(µ̄).

PSfrag replacements

Ã
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ū1 = ū2
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of intersection with Ã. By symmetry, one has U1 = U2 = −2U
and, similarly, Ū1 = Ū2 = 2U , where the quantity U is the signed

distance from the foot of a geodesic seam on Ã to the foot on Ã of
a singular arc.

By symmetry, we have

(1) δA(h) = −2U =
L

2
− log

(
1 +

1

4 sinh2(L/4)

)
(see Figure 20);

(2) for every t ≥ 0, τA(ht) = −τA(h̄t) (see Figure 21).

Using the fact that the shift twists have always opposite signs, it suffices,
in oder to prove the proposition, to see that for each t > 0, we have τA(ht) 6=
0. ¿From Formula (1), and using the notation of Figure 21, we have δA(ht) =
τA(ht) − 2U(t), where U(t) denotes the distance between the foot of the
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Figure 21. The left-hand side picture represents a neighborhood
of a lift of A in the metric universal cover of ht and the left-hand
side picture represents a neighborhood of a lift of A in the metric
universal cover of h̄t. The notations of Figure 20 carry out readily
to these pictures. One observes that there is a symmetry between

the two pictures, namely, a reflection through Ã.

chosen seam and the foot of the chosen singular arc. From the definition of
a stretch line, we have δA(ht) = etδA(h). Therefore,

τA(ht) = etδA(h) + 2U(t),

where 2U(t) = −etL

2
+ log

(
1 +

1

4 sinh2(etL/4)

)
and U(0) = U =

−δA(h)

2
.

In particular, for all i = A,B,C and for all t ≥ 0, we have

(2) τi(ht) = log

(
1 + 1

4 sinh(etL/4)

(1 + 1
4 sinh(L/4) )

et

)
.

We can check that this function is strictly decreasing, positive for t < 0
and negative for t > 0 (see the graph in Figure 22).

Indeed, we have

∀t < 0, 1 +
1

4 sinh(etL/4)
> 1 +

1

4 sinh(L/4)
> (1 +

1

4 sinh(L/4)
)e

t

∀t > 0, 1 +
1

4 sinh(etL/4)
< 1 +

1

4 sinh(L/4)
< (1 +

1

4 sinh(L/4)
)e

t

,

which determines the sign of the function.
For the strict decreaseness, d

dtτi(ht) has the same sign as

d

dt

(
1 + 1

4 sinh(etL/4)

(1 + 1
4 sinh(L/4) )

et

)

which has the sign of

(
d

dt
(1+

1

4 sinh(etL/4)
))(1+

1

4 sinh(L/4)
)e

t

)−(1+
1

4 sinh(etL/4)
)(

d

dt
(1+

1

4 sinh(L/4)
)e

t

)).
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We have
d

dt
(1 +

1

4 sinh(etL/4)
) = −Let cosh(etL/4)

16 sinh2(etL/4)
< 0

and
d

dt
(1 +

1

4 sinh(L/4)
)e

t

) > 0.

This concludes the proof of the proposition. �

PSfrag replacements

0
t

t

−∞

∞

Figure 22. The graph of the function used in the proof of Propo-
sition 10.1 (see Formula (2).

Remarks :

(1) The Fenchel-Nielsen torsion parameters are not linear in terms of
the shift parameters. More precisely, we have

lA = δβ + δγ , lB = δγ + δα and lC = δα + δβ

τA = δA − (δβ + δγ) + 2 log
(
1 +

1

4 sinh2((δβ + δγ)/4)

)
.

(2) Formula (2) indicates the following:
• limt→+∞ τi(ht) = −∞ and
• τi(ht)/li(ht) is bounded (and is convergent at infinity).
• limt→−∞ τi(ht) = +∞ and
• τi(ht)/li(ht) ∼ −te−t explodes to ∞ as t tends to −∞.
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