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PSEUDO-AUTOMORPHISMS OF POSITIVE ENTROPY ON THE
BLOWUPS OF PRODUCTS OF PROJECTIVE SPACES

FABIO PERRONI AND DE-QI ZHANG

Abstract. We use a concise method to construct pseudo-automorphisms fn of the first

dynamical degree d1(fn) > 1 on the blowups of the projective n-space for all n ≥ 2 and

more generally on the blowups of products of projective spaces. These fn, for n = 3 have

positive entropy, and for n ≥ 4 seem to be the first examples of pseudo-automorphisms

with d1(fn) > 1 on rational varieties of higher dimensions.

1. Introduction

We work over the field C of complex numbers.

A birational map f : X 99K X ′ of varieties is a pseudo-isomorphism if it is an isomor-

phism outside codimension-two closed subsets of X and X ′. If we assume further X = X ′,

then f is called a pseudo-automorphism. By the minimal model program (which we will

not use at all), a variety of dimension ≥ 3 may have more than two minimal models,

but all of them are pseudo-isomorphic to each other. In dimension two, every pseudo-

automorphism of a normal projective surface is an automorphism, and all the minimal

models of a given surface are isomorphic to each other.

The main result of the paper is the following:

Theorem 1.1. Let w = wp,q,r be the Coxeter element (unique up to conjugation) of the

Weyl group W (Tp,q,r) (cf. 2.1). Suppose that r ≥ 3 and 1
p

+ 1
q

+ 1
r
< 1. Then there exist a

blowup X = Xp,q,r of (Pr−1)p−1 = Pr−1× · · · × Pr−1 at q+ r points Pi lying on a cuspidal

curve C ⊂ (Pr−1)p−1 of multi-degree r and a pseudo-automorphism fw : X 99K X such

that (fw)∗|H2(X,Z) equals w. In particular, the first dynamical degree d1(fw) of fw is

equal to the spectral radius ρ(w) of w and larger than 1 (cf. [4]).

Here C is the cuspidal curve of arithmetic genus one embedded in (Pr−1)p−1 by the

product map Φ|D1| × · · · × Φ|Dp−1| for some Cartier divisors Di of degree r on C. For

instance, when p = 2, we can take C = {(1, z, z2, ..., zr−2, zr)} in affine coordinates.

When p = 2 and n = q + r, we can take w = (12 · · ·n)rI,1, where the permutation

is on the part ej of the standard basis of the hyperbolic lattice Λn = h1Z +
∑n
j=1 ejZ
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(naturally identified with H2(X,Z)) and rI,1 is the reflection corresponding to the root

αI,1 = h1 −
∑r
j=1 ej (cf. 2.1).

As a consequence of Theorem 1.1 and Corollary 4.10 late on, we have:

Corollary 1.2. (1) When {p, q, r} = {2, 3, 7} (as unordered sets) and r ≥ 3, fw is

a pseudo-automorphism of the blowup of (Pr−1)p−1 at q + r points and d1(fw) =

1.17628 . . . is the Lehmer number of the Lehmer polynomial x10 + x9− (x7 + x6 +

x5 + x4 + x3) + x+ 1.

(2) When {p, q, r} = {2, 4, 5} (as unordered sets) and r ≥ 3, fw is a pseudo-automorphism

of the blowup of (Pr−1)p−1 at q + r points and d1(fw) = 1.28064 . . . is the largest

root of the Salem polynomial x8 − x5 − x4 − x3 + 1.

(3) When {p, q, r} = {3, 3, 4} (as unordered sets), fw is a pseudo-automorphism of

the blowup of (Pr−1)p−1 at q+ r points and d1(fw) = 1.40127 . . . is the largest root

of the Salem polynomial x6 − x4 − x3 − x2 + 1.

(4) If (p, q, r) = (2, q, 4) and q ≥ 5, the topological entropy h(fw) = log d1(fw) > 0.

The three types of Tp,q,r in (1), (2) and (3) above are the only T -shaped minimal

hyperbolic Coxeter diagrams (cf. [9, Table 5]). The three Salem numbers above are the

smallest Salem numbers of degrees 10, 8 and 6, respectively. Hence one also realizes the

Lehmer number as d1(fw) of the pseudo-automorphism of X (a 10-point blowup of P6).

We remark that h(fw) = log 1.28064 . . . is the smallest known topological entropy (> 0)

of a pseudo-automorphism on a rational threefold which is not of product type. In [2],

the authors have constructed a pseudo-automorphism f on the blowup of P3 at 2 points

and 13 curves with h(f) = log 1.28064 . . . . Our construction is different from theirs; for

instance, f is induced by a quadratic birational map on P3, while the fw in Corollary 1.2

(4) all come from cubic maps; see the end of Section 4 for more details.

When (p, q, r) = (2, 7, 3), fw is an automorphism of the blow-up of the projective plane

at 10 points. This automorphism coincides with the one constructed in [1, Appendix]

and [10, Theorem 1.1].

When (p, q, r) = (2, 6, 4), w (or its power) seems to have been geometrically realized

early by Coble and Cossec-Dolgachev (cf. [5, p. 39]).

The structure of the paper is the following. In Section 2 we first recall the definition

of the Weyl group W (p, q, r) and of Coxeter elements. We then introduce marked cubic

curves, we define an action of W (p, q, r) on the markings and we study some properties

of this action. In Section 3 we state Theorem 3.1 which will be used in the proof of

Theorem 1.1. In Section 4 we prove Theorems 3.1 and 1.1 in the case p = 2 and we also

study some aspects of the geometry of X2,q,4 and of the pseudo-automorphism fw. In the

last Section 5 we complete the proof of Theorems 1.1 and 3.1 for all p ≥ 2.
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2. Preliminaries

2.1. Weyl groups and roots (cf. [8])

Let p ≥ 2, q ≥ 2 and r ≥ 3 be integers. Let n := p+ q+ r− 2. We now define the root

system Ln of type Tp,q,r. Let

Λ = Λn = Zh1 + · · ·+ Zhp−1 + Ze1 + · · ·+ Zeq+r

be the lattice of rank n+ 1 with basis

h1, h2, . . . , hp−1, e1, . . . , eq+r.

Late on in Section 4, we treat the case p = 2 and set e0 = h1. The following equations

define an inner product on Λ (cf. [12, §3]):

h2
i = hi · hi = r − 2 (1 ≤ i < p),

hi · hj = r − 1 (i 6= j), hi · ej = 0,

e2
i = ei · ei = −1 (1 ≤ i ≤ q + r), ei · ej = 0 (i 6= j).

Set

κ := r
p−1∑
i=1

hi − ((p− 1)(r − 1)− 1)
q+r∑
j=1

ej.

We will see that κ corresponds to the anti-canonical divisor of some blowup X of (Pr−1)p−1

at q + r points, and Λn is isomorphic to H2(X,Z). The root system (of type Tp,q,r) is

Ln := κ⊥ ∩ Λn = {α ∈ Λn |α · κ = 0} .

The simple roots:

β1 = −h1 + h2, β2 = −h2 + h3, . . . , βp−2 = −hp−2 + hp−1,

α0 = h1 −
r∑
i=1

ei, α1 = e1 − e2, α2 = e2 − e3, . . . , αq+r−1 = eq+r−1 − eq+r

form a basis of Ln. The corresponding Dynkin diagram is shown in Figure 1.
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. . . d dαr
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Figure 1.

Any α ∈ Ln with α2 = −2 determines the reflection rα ∈ O(Ln) given by:

rα(x) = x+ (x · α)α.

For distinct i, j ≥ 1, rei−ej (resp. rhi−hj) is the transposition interchanging the basis

elements ei and ej (resp. hi and hj) while fixing the other ek’s and h`’s. For any 1 ≤ k < p

and subset I ⊆ {1, 2, . . . , n} with | I | = r, we define the ‘root’

αI,k = hk −
∑
i∈I

ei ∈ Ln

and the reflection (called a Cremona involution):

rI,k := rαI,k .

Its action on Λ is given as follows:

rI,k(hk) = hk + (hk · αI,k)αI,k = (r − 1)hk − (r − 2)
∑
i∈I

ei,

rI,k(hi) = hi + (hi · αI,k)αI,k = (r − 1)hk + hi − (r − 1)
∑
j∈I

ej (i 6= k),

rI,k(ei) = ei + αI,k (i ∈ I),

rI,k(ej) = ej (j 6∈ I).

The Weyl group

W := W (p, q, r) = W (Tp,q,r) ⊂ O(Ln) ⊂ O(Λn)

is the subgroup of O(Ln) generated by the reflections

rβi (1 ≤ i ≤ p− 2), rαj (0 ≤ j < q + r) .

Elements in the set below are called (real) roots

∆n := {w(βi), w(αj) |w ∈ W, 1 ≤ i ≤ p− 2, 0 ≤ j < q + r}.
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Definition 2.2. A Coxeter element w of W is the product w =
∏n
i=1 rγi where {γi}ni=1 =

{βi}p−2
i=1 ∪ {αj}

q+r−1
j=0 as sets. When p = 2, choose (γ1, . . . , γn) = (α1, . . . , αq+r−1, α0), we

get w = (12 . . . n)rI,1 with I = {1, 2, . . . , r}, the product of a permutation (on e1, . . . , en)

and a Cremona involution. This Coxeter element will be also denoted by w2,q,r.

Remark 2.3. Coxeter elements are conjugate to each other, since the Dynkin diagram

Tp,q,r is a tree (cf. [8, §3.16, §8.14]).

2.4. Marked cuspidal curves

Let

C = {Y Z2 = X3} ⊂ P2

be the plane cuspidal curve (of arithmetic genus 1). Consider the subset

ΛC ⊂ (Picr(C))p−1 × Cq+r, or equivalently ΛC ⊂ (Picr(C))p−1 × (Pic1(C))q+r , r ≥ 3

consisting of (n+ 1)-tuples

(D; c) := (D1, . . . , Dp−1; c1, . . . , cq+r)

with ci contained in the smooth locus C \ {(0, 1, 0)} of C.

Given (D; c) ∈ ΛC , define a marking on C

ρ = ρ(D;c) : Λ→ Pic(C)

by setting

ρ(hi) = Di, ρ(ej) = [cj].

Here a marking is a group homomorphism ρ : Λ→ Pic(C) such that ρ(hi) ∈ Picr(C) and

ρ(ej) = [pj], with pj ∈ C \ {(0, 1, 0)}.

Remark 2.5. The (n+ 1)-tuple (D; c) ∈ ΛC and the marking ρ = ρ(D;c) on C determine

each other uniquely.

As observed in [10, Proposition 4.1, Theorem 4.3], since Aut(C) acts transitively on

Pic0(C) ∼= C

and for any u ∈ Λ

deg(ρ(u)) =
1

((r − 1)(p− 1)− 1)
(κ · u),

we have:

Lemma 2.6. ρ is determined, up to isomorphism, by its restriction

ρ0 : Ker(deg ◦ρ) = Ln → Pic0(C).
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Here two markings ρ and ρ′ are isomorphic if there is an f ∈ Aut(C) such that f ∗◦ρ = ρ′.

Set

UC := {(D; c) ∈ ΛC | ρ(D;c)(α) 6= 0, ∀α ∈ ∆n}.

As observed in [11, Example 3], applying the defining condition of UC to the roots

α = ei − ej, and αI,k with |I| = r, we have:

Remark 2.7. If (D; c) ∈ UC , then ci 6= cj (i 6= j), and
∑
i∈I ci 6∈ |Dk| (∀I, | I | = r,

∀k = 1, . . . , p−1), i.e., no r points of P (k)i := Φ|Dk|(ci) ∈ Pr−1, for k fixed, are contained

in a hyperplane of Pr−1. Here Φ|Dk| : C → Pr−1 is the embedding determined by Dk (cf.

Lemma 4.1).

Definition 2.8. Using markings, there is an action of W on ΛC . It is defined by the

formula (cf. Remark 2.5):

ρw(D;c) := ρ(D;c) ◦ w .

Thus W acts on UC because w∆n = ∆n. Namely, we have:

Lemma 2.9. If w ∈ W and (D; c) ∈ UC then w(D; c) ∈ UC.

2.10. The correspondence between vectors of Λn ⊗ C and markings on C

Let v =
∑p−1
i=1 ξihi +

∑q+r
j=1 ηjej ∈ Λn ⊗ C. We will define an (n + 1)-tuple (Dv; cv) in

the following way. Let p(t) = (t, t3, 1) ∈ C be a parametrization. Define tj, c
v
j and Dv

i

(1 ≤ i < p), by

r t0 = v · h1 = (r − 2)ξ1 + (r − 1)
p−1∑
i=2

ξi,

tj = v · ej = −ηj (1 ≤ j ≤ q + r),

cvj = p(tj − t0) ∈ C,

Dv
i = [rp(0) + p(ξ1)− p(ξi)] ∈ Picr(C).

(1)

In this way we get the (n+ 1)-tuple:

(Dv; cv) := (Dv
1 , . . . , D

v
p−1; cv1, . . . , c

v
q+r) ∈ (Picr(C))p−1 × Cq+r.

Then (Dv; cv) determines a marking ρv on C by setting ρv(hi) = Dv
i , ρ

v(ej) = [cvj ].

Lemma 2.11. The restriction ρv0 : Ln → Pic0(C) ∼= C of ρv satisfies:

ρv0(u) = (u · v)[p(1)− p(0)].

Hence for a root α ∈ ∆n, we have ρv(α) = 0 if and only if α · v = 0. In particular, the

(n+ 1)-tuple (Dv; cv) ∈ UC if and only if 0 6∈ ∆n · v.



PSEUDO-AUTOMORPHISMS OF POSITIVE ENTROPY 7

Proof. Direct computations show that the formula above is true for the elements βi (1 ≤
i ≤ p−2), αj (0 ≤ j < q+r) as defined in 2.1. This proves the result since these elements

form a basis of Ln. �

Remark 2.12. Conversely, for any (n+ 1)-tuple (D; c), we can use the equations in 2.10

to define a vector v such that (D; c) = (Dv, cv).

Lemma 2.13. For any w ∈ W , we have ρv◦w−1 = ρw(v), and w−1(Dv, cv) = (Dw(v); cw(v)).

Proof. The first part follows from Lemma 2.11 and Remark 2.6, since w ∈ O(Λn). The

second follows from the first and Definition 2.8 (cf. Remark 2.5). �

Lemma 2.14. (cf. [10, Corollary 7.7]) Let u, v ∈ Λn ⊗C with ∆n · u 63 0 6∈ ∆n · v. Then

u = av + bκ ⇐⇒ (Du; cu) ∼= (Dv; cv) .

Proof. The (n+ 1)-tuples are determined by their markings on C or equivalently by their

restrictions on Ln (cf. Remarks 2.5 and 2.6), while the latter is determined by the inner

product on Ln = Λ ∩ κ⊥ (cf. Lemma 2.11). The lemma follows since Aut(C) acts on

Pic0(C) by scalar multiplication. �

2.15. Let w ∈ W with spectral radius ρ(w) > 1. When 1
p

+ 1
q

+ 1
r
< 1, the root system

Ln is hyperbolic (κ2 < 0). Hence ρ(w) is a Salem number and det(xI−w) = S(x) ·C(x),

where S(x) is a Salem polynomial (cf. [9, Proposition 7.1]). We say that λ ∈ C is a

leading eigenvalue if S(λ) = 0. So ρ(w) is a leading eigenvalue. We say that v ∈ Ln ⊗ C
is a leading eigenvector if w(v) = λv with λ a leading eigenvalue.

Proposition 2.16. Let r ≥ 3. Let v ∈ Ln⊗C = (Λ⊗C)∩κ⊥ be an eigenvector of some

w ∈ W with eigenvalue λ. Then 0 6∈ ∆n · v, i.e. (Dv, cv) ∈ UC in the sense of Lemma

2.11, if either one of the following two conditions is satisfied.

(1) w is a Coxeter element and v is a leading eigenvector.

(2) λ is not a root of unity; and w has no periodic roots, i.e., no positive power of w

fixes a root in ∆n.

Proof. The results follow from the calculation in [10, Theorems 2.6 and 2.7], as our

diagram is bipartite; see also [9, Discussions before Theorem 1.3 and after Theorem 3.1].

Indeed, in (1), the root system Ln is hyperbolic of signature (1, n− 1). �

Remark 2.17. (1) happens exactly when 1
p

+ 1
q

+ 1
r
< 1 (cf. [9, Table 5]).
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3. Main Theorem

The following result will be used to prove Theorem 1.1. The proof is contained in the

next sections.

Theorem 3.1. Let w be an element of the Weyl group W = W (p, q, r), with r ≥ 3.

Let v ∈ Ln ⊗ C = (Λ ⊗ C) ∩ κ⊥ be an eigenvector of w with w(v) = λv. Assume that

0 6∈ ∆n · v, i.e., (Dv, cv) ∈ UC in the sense of Lemma 2.11. Then there exist a blowup

X = Xp,q,r → (Pr−1)p−1 = Pr−1× · · ·×Pr−1 at q+ r points Pi lying on the cuspidal curve

Φ|Dv |(C) ⊂ (Pr−1)p−1 of multi-degree r and a pseudo-automorphism fw : X 99K X such

that (fw)∗|H2(X,Z) equals w. When |λ| > 1, λ equals |λ|, the spectral radius ρ(w) of w

and also the first dynamical degree d1(fw) of fw.

4. Proof of Theorems when p = 2

We will frequently use the following result.

Lemma 4.1. Let C be the cuspidal curve of arithmetic genus 1 and let D be a Cartier

divisor on C of degree r.

(1) If r = 1, then there is a unique smooth point P of C such that P ∼ D (linear

equivalence).

(2) If r = deg(D) ≥ 3, then the complete linear system |D| is base point free and

defines an embedding Φ|D| : C → Pr−1.

Proof. By the Riemann-Roch theorem (true for all projective curves as in Hartshorne’s

book, Ch IV, Ex 1.9) and Serre duality for Cohen-Macaulay projective variety, we have

h0(C,OC(D)) = r. The result follows. Indeed, the second part of (1) is worked out in

Hartshorne’s book, Ch II, Example 6.11.4. �

We now prove Theorem 3.1 when p = 2. In the definition of the lattice Λn and Ln, we

set p = 2 and e0 = h1. Let (D; c) ∈ UC and consider the embedding

Φ|D| : C → Pr−1

given by the base-point free complete linear system |D|. Set Pi := Φ|D|(ci). Let

π(D;c) : X = X(D;c) → Pr−1

be the blowup of the n points Pi with Ei = π−1
(D;c)(Pi). For any w ∈ W , set (D′; c′) :=

w(D; c) and define similarly Φ|D′|, P
′
i , π(D′;c′) : X ′ = X(D′;c′) → Pr−1, E ′i.

The result below should be well known but we work it out since we need to extend it

to the case p > 2 in Section 5. Our statement also incorporates the marking on the curve

C embedded in Pr−1.
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Proposition 4.2. Let p = 2. Let w ∈ W and (D; c) ∈ UC. Define (D′; c′) := w(D; c).

Consider the blowups

π : X(D;c) → Pr−1 , π′ : X(D′;c′) → Pr−1

at the points Pi = Φ|D|(ci) (resp. P ′i = Φ|D′|(c
′
i)).

Then there exists a pseudo-isomorphism fw : X(D;c) 99K X(D′;c′) such that

f ∗w : H2(X(D′;c′),Z)→ H2(X(D;c),Z)

coincides with w after the identifications [E ′j] = ej = [Ej], j ≥ 1, π′∗[H] = e0 = π∗[H].

Here H is the hyperplane of Pr−1 and Ei (resp. E ′i) is the exceptional divisor over Pi

(resp. P ′i ).

Proof. Since W is generated by the transpositions rei−ej and the Cremona involution rI,1,

we need to prove the result only when w is one of them.

Our proof is top down: first construct a pseudo-isomorphism X = X(D;c) 99K X ′ and

then show that X ′ equals X(D′;c′), the blowup of Pr−1 at the n points Φ|D′|(c
′
i).

Consider first the case w = rI,1 with I = {1, 2, . . . , r}. Let XP = XP1,...,Pr → Pr−1 be

the blowup of the r points Pi (1 ≤ i ≤ r). Since these r points Pi span the whole space

(cf. Remark 2.7), we can take the standard Cremona involution ΨP = ΨP1,...,Pr : Pr−1 99K

Pr−1. ΨP is given by the linear system |OPr−1(r − 1) − (r − 2)
∑r
i=1 Pi|. A basis of this

linear system is:
∑
j 6=iHj, i ∈ {1, . . . , r}, where Hi is the hyperplane passing through

r − 1 points {P1, . . . , Pi−1, Pi+1, . . . , Pr}. The base locus of the linear system (the place

where ΨP is not defined) is the union of Hi ∩Hj (1 ≤ i < j ≤ r). Using new coordinate

system so that P1 = [1 : 0 : · · · : 0], . . . , Pr = [0 : · · · : 0 : 1], our ΨP is given by

ΨP : [X1 : · · · : Xr] → [
1

X1

: · · · : 1

Xr

].

Let Ei ⊂ XP be the inverse image of Pi and E0 ⊂ XP the total transform of a hyperplane

of Pr−1. Then it is known that ΨP lifts to an involutive pseudo-automorphism Ψ̃P : XP →
XP exchanging Ei with the proper transform H ′i ⊂ XP of Hi (cf. [6]). This means that

Ψ̃P

∗
Ei = H ′i ∼ E0 −

∑
j 6=i

Ej (linear equivalence)

Denote by ei = [Ei] ∈ H2(XP ,Z). Then

Ψ̃P

∗
ei = [Ψ̃P

∗
Ei] = [E0 −

∑
j 6=i

Ej] = e0 −
∑
j 6=i

ej = ei + (e0 −
r∑
i=1

ei) = w(ei).

By the definition of the Cremona involution in terms of the linear system,

Ψ̃P

∗
E0 = (r − 1)E0 − (r − 2)

r∑
i=1

Ei
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and hence Ψ̃P

∗
e0 = w(e0).

The blowup XP → Pr−1 is centered at r smooth points Pi = Φ|D|(ci), and hence gives an

isomorphism between the proper transform CX ⊂ XP of C and C. Since C = Φ|D|(C) ⊂
Pr−1 is a non-degenerate curve, it is not contained in any hyperplane Hi. Hence CX is not

contained inH ′i. Now deg(H ′i|CX) = deg(E0−
∑
j 6=iEj)|CX) = deg(OPr−1(1)|C)−(r−1) =

1 since C = Φ|D|(C) is a curve of degree r in Pr−1. Thus CX meetsH ′i only at one point and

transversally. Since the Cremona involution ΨP : Pr−1 99K Pr−1 blows up r smooth points

Pi on C and collapses H ′i to a point called P ′i in the codomain Pr−1, it maps C ⊂ Pr−1

isomorphically to a curve C ′ in the codomain Pr−1. As sets, we have {P ′i} = {Pi}. This

C ′ is also the isomorphic image of CX ⊂ XP via the map XP
Ψ̃P
99K XP → Pr−1. This

isomorphism of curves factors as CX
Ψ̃P→ C ′X → C ′.

Let us calculate the very ample divisor D′ = OPr−1(1)|C ′ giving rise to the embedding

C ′ ⊂ Pr−1. By the above identification CX = C ′X = C ′ and further the identification

CX = Φ|D|(C) = C, we have

D′ = E0|C ′X = Ψ̃P

∗
E0|CX = ((r−1)E0−(r−2)

r∑
i=1

Ei)|CX = (r−1)D−(r−2)
r∑
i=1

ci = w(D)

(cf. Definition 2.8). Let c′i ∈ C ′ be the preimage of the point P ′i ∈ Pr−1 via the embedding

Φ|D′| : C
′ → Pr−1. Under the same identification C = Φ|D|(C) = CX = C ′X = C ′, we have

(cf. Lemma 4.1):

C = C ′ 3 c′i = P ′i = H ′i |CX ∼ (E0 −
∑
j 6=i

Ej)|CX = D −
∑
j 6=i

cj = w(ci).

For r + 1 ≤ j ≤ n, the point Pj is not contained in the indeterminacy set: the union

of Hi ∩ Hj, otherwise, the r points P1, . . . , Pi−1, Pj, Pi+1, . . . , Pr are contained in the

hyperplane Hi, contradicting Remark 2.7. Let Qj (r + 1 ≤ j ≤ n) be the ΨP -image of

Pj. For 1 ≤ i ≤ r, set Qi = Pi. Let π(D;c) : X = X(D;c) → Pr−1 be the blowup of the n

points Pi, E0 ⊂ X the pullback of the hyperplane of Pr−1, Ei = π−1
(D;c)(Pi) (i ≥ 1), and ei

(i ≥ 0) the cohomology class of Ei in H2(X,Z). Let π′ : X ′ → Pr−1 be the blowup of the n

points Qi, E
′
0 ⊂ X ′ the pullback of the hyperplane of Pr−1, E ′i = (π′)−1(Qi) (i ≥ 1), and e′i

(i ≥ 0) the cohomology class of E ′i in H2(X ′,Z). Then Ψ̃P lifts to a pseudo-isomorphism

fw : X → X ′. Identify H2(XP ,Z) with its embedded image (via pullback) in H2(X,Z).

By the calculation above and the construction, we have f ∗we
′
i = w(ei) for all i ≤ r and

f ∗w(E ′j) = Ej (j > r) (so f ∗w(e′j) = ej = w(ej)), if we identify H2(X ′,Z) = H2(X,Z) by

letting ei = e′i (i ≥ 0); thus f ∗w = w.

By the argument above, if we set (D′; c′) = w(D; c), then the above π′ : X ′ → Pr−1 is

just the blowup of n points P ′i = Φ|D′|(c
′
i) on the curve C ′ = Φ|D′|(C

′) ⊂ Pr−1, i.e., it is

π(D′;c′). This proves Proposition 4.2 when w is a Cremona involution.
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Next, consider the case where w = rea−eb is a transposition of the basis elements ea and

eb and fixing the others. Take an automorphism σ of Pr−1 interchanging two points Pa and

Pb. Let C ′ = σ(C) ⊂ σ(Pr−1) = Pr−1. Set P ′a = Pa, P
′
b = Pb and P ′j = σ(Pj) (j 6= a, b).

Let X ′ → Pr−1 be the blowup of the n points P ′i with E ′i the inverse of P ′i . Then σ lifts to

an isomorphism fw : X → X ′. We see that f ∗w = w if we identify H2(X ′,Z) = H2(X,Z)

by letting [E ′i] = ei = [Ei] as above. Define (D′; c′) so that D′ = D, c′a = ca, c
′
b = cb and

c′j = σ(cj) (j 6= a, b). Using the identification C = CX = C ′X = C ′ as above, we obtain

(D′; c′) = w(D; c). This implies Proposition 4.2 as in the previous case. �

4.3. Proof of Theorem 3.1 when p = 2

Given v as in Theorem 3.1, we define (Dv; cv) as in 2.10 (cf. Lemma 2.11). Set (D; c) =

(Dv; cv). Then we get the pseudo-isomorphism fw : X = X(D;c) → X ′ = X(D′;c′) as in

Proposition 4.2 with (D′; c′) = w(D; c) and f ∗w = w on H2(X ′,Z) identified with H2(X,Z)

by letting [E ′i] = [Ei] and [(π′)∗H ′] = [π∗H]. By Lemmas 2.13 and 2.14,

(D′; c′) = w(Dv; cv) = (Dw−1(v); cw
−1(v)) = (Dλ−1v; cλ

−1v) = (Dv; cv) = (D; c)

(up to the action of Aut(C)). Thus we get an isomorphism between π(D′;c′) : X(D′;c′) →
Pr−1 in Proposition 4.2 and π(D;c) : X = X(D;c) → Pr−1 so that fw is a pseudo-

automorphism. This proves Theorem 3.1. Indeed, for the final part (when |λ| > 1),

the Coxeter system is hyperbolic, so λ is the largest root of a Salem polynomial and also

the spectral radius ρ(w) of w (cf. [9, Proposition 7.1]). Thus d1(fw) = ρ(f ∗w|H2(X,Z)) =

ρ(w) = λ by the definition of d1(fw) (cf. [4]).

4.4. Proof of Theorem 1.1 when p = 2

Theorem 1.1 (1) follows from Proposition 2.16, Theorem 3.1 and its proof, by taking

λ in Proposition 2.16 to be the spectral radius of w; see also 2.15 and Remark 2.17.

4.5. Concrete construction of fw on X2,q,r as in Theorem 1.1

We first construct a pseudo-automorphism f such that f∗ = w where w = (12 · · ·n)rI,1

is a Coxeter element of the root system Ln of type T2,n−r,r (cf. Definition 2.2). Then

fw = f−1 meets the requirement. To do so, take an eigenvector v of w such that w(v) = λv

and λ is the spectral radius of w ∈ O(Ln) (which turns out to be d1(fw), since f ∗w = w).

Define the (n+1)-tuple (D; c) = (Dv; cv) as in 2.10. Let Pi = Φ|D|(ci) ∈ Φ|D|(C) ⊂ Pr−1.

Choose a new coordinate system of Pr−1 such that P1 = [1 : 0 : · · · : 0], . . . , Pr = [0 : · · · :
0 : 1]. Consider the standard Cremona involution:

γ : Pr−1 → Pr−1, [X1 : · · · : Xr] 7→ [
1

X1

: · · · : 1

Xr

].
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Let π = π(D;c) : X = X(D;c) → Pr−1 be the blowup at the n points Pi and let Ei =

π−1(Pi) and E0 ⊂ X the total transform of a hyperplane of Pr−1. Then by the proof

of Proposition 4.2 and Theorem 3.1, there is a projective automorphism g of Pr−1 such

that g ◦ γ lifts to a pseudo-isomorphism f = f(12···n) ◦ frI,1 : X → X ′ where f(12···n) is the

lifting of g and so is an isomorphism. Moreover, f∗ = (f(12···n))∗(frI,1)∗ = w on H2(X,Z)

identified with H2(X ′,Z) by letting [Ei] = ei = [E ′i]. Recall that X ′ = X(D′;c′) is the

blowup at n points P ′i = Φ|D′|(c
′
i) ∈ Pr−1 and since v is an eigenvector we have

X ′ = X(D′;c′) = Xw(Dv ;cv) = X(Dw
−1(v);cw

−1(v)) = X(Dλ−1v ;cλ−1v) = X(Dv ;cv) = X

(up to isomorphism). Now the identification (D′; c′) = w(D; c) with (D; c) and the fact

that w(ci) = ci+1 (mod n) for i > r force (g ◦ γ)(Pi) = Pi+1 (mod n). Conversely, if we

can find g as above then we can forget about the eigenvector v or so, and straightaway

say that (g ◦ γ)−1 lifts to a pseudo-automorphism fw on the blowup X → Pr−1 at the n

points Pi which satisfies the conclusion of Theorem 1.1.

Remark 4.6. When p = 2, our fw in Theorem 1.1 lifts to an isomorphism. Indeed, by

the construction in 4.5, it is enough to lift f = f(12···n)◦frI,1 : X 99K X to an isomorphism.

By [6, VI, Lemma 1], there is a further blowup σ : X1 → X and a blowup X2 → Pr−1

such that frI,1 lifts to an isomorphism f1 : X1 → X2. We can take a corresponding

blowup X3 → X of the images of the centers lying below the exceptional divisors on X2

to lift the isomorphism f(12···n) to an isomorphism f2 : X2 → X3. Now the isomorphism

f3 = f2 ◦ f1 : X1 → X3 (resp. f4 = f−1
3 ) is a lifting of f (resp. f−1 = fw).

4.7. On the geometry of X2,q,4 with q ≥ 5

In this subsection, we prove the following:

Proposition 4.8. Let w = w2,q,4 (q ≥ 5). Let fw be the pseudo-automorphism of X :=

X2,q,4 in Theorem 1.1 and CX ⊂ X the proper transform of CD := Φ|D|(C) ⊂ P3. Then:

(1) fw stabilizes the cuspidal curve CX and permutes members F ′t of the rational pencil

|−KX/2| each of which is a strict transform of an irreducible quadric hypersurface

Ft ⊂ P3 with F ′t ∩F ′t′ = CX (t 6= t′). Moreover, all the quadrics Ft, except two: Fi

(i = 1, 2), are smooth.

(2) fw stabilizes the blowup F ′1 of the quadric cone F1 whose vertex P is the cusp of

CD. When q = 5, every effective divisor E with the class [E] fixed by f ∗w is a

union of members in |−KX/2|.
(3) S := F ′1 (the (q + 4)-point blowup of the quadric F1) is disjoint from the indeter-

minacy of fw. The restriction fS := fw |S is a well defined automorphism of S

with d1(fS) = d1(fw) > 1.
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Proof. By the proof, fw(CX) = CX holds in Theorem 1.1 for any (p, q, r). Since CD has

arithmetic genus 1 and degree 4, it is contained in a linear system |I(2)| of quadrics of

dimension ≥ 1. This follows from the long cohomology sequence associated to

0→ I(2)→ OP3(2)→ OCD(2)→ 0 .

Alternatively, we may assume that CD = {(1, z, z2, z4)} in new coordinates. By a direct

calculation, |I(2)| is a pencil spanned by F1 := {X2
2 = X1X3} and F2 := {X2

3 = X1X4},
every member Ft 6= Fi (i = 1, 2) is smooth, and (Sing(Fi)) ∩ (CD \ Sing(CD)) = ∅.

Let π : X → P3 be the blowup at the q + 4 points Pi as in Theorem 1.1 with Ei =

π−1(Pi) and E0 ⊂ X the total transform of a hyperplane of P3. For F ∈ |I(2)|, the

proper transform F ′ of F satisfies F ′ ∼ 2E0 −
∑q+4
i=1 Ei (linear equivalence), so −KX =

−(π∗KP3 + 2
∑q+4
i=1 Ei) ∼ 2F ′. Since −KX is preserved by fw, we have 2(f ∗wF

′ − F ′) ∼
0, so f ∗wF

′ − F ′ ∼ 0, because the rational manifold X is simply connected and hence

cohomologous divisors are just linear equivalent divisors.

F ′, or equivalent F = π(F ′), is irreducible. Otherwise, F = L1 ∪ L2 with two hyper-

planes Li. Since all (q+ 4) points Pi ∈ CD belong to F , we may assume that L1 contains

5 of Pi. This contradicts Remark 2.7 (cf. Proposition 2.16). For two distinct such F ,

say Ft, Ft′ , the intersection Ft ∩ Ft′ includes CD and hence equals CD by comparing the

degree. This proves (1).

If E is a divisor whose class [E] is fixed by f ∗w (e.g., E = aF ′), then either dim |E| ≤ 0

or |E| is composed of a pencil, otherwise, fw would descend to a surface or threefold

automorphism of the first dynamical degree equal to 1 via a fibration with general fiber

a curve or a point, contradicting the fact that d1(fw) > 1 (cf. [3]). In particular, |aF ′|
(a > 0) is composed of a pencil (necessarily parametrized by a curve B ∼= P1 because the

irregularity q(B) ≤ q(X) = 0) stabilized by fw. The induced action of fw on B ∼= P1 has

at least one fixed point. Namely, at least one F ′0 ∈ |F ′| is fw-stable.

When q = 5, the characteristic polynomial of f ∗w|H2(X,Z) has the form φ8(x)(x+1)(x−
1) (cf. [9, Table 5]), where x−1 corresponds to the fw-invariant class κ = [−KX ] = 2[F ′].

If E is an integral divisor with f ∗w[E] = [E] then bE ∼ aF ′ for some coprime integers

a, b. Since [F ′] · [F ′] = (κ)2/4 = 4− q = −1, we get b = ±1. In particular, every effective

divisor E with [E] fixed by f ∗w is a member of the pencil |aF ′| and hence equal to a union

of F ′t ∈ |F ′| by the Stein factorization.

As in 4.6 or [6], fw : X 99K X (and frI,1) is well-defined outside the proper transforms

H ′ij := H ′i∩H ′j of the lines Hij := Hi∩Hj (1 ≤ i < j ≤ 4) (cf. the notation of Proposition

4.2). Our F ′1 ∈ |F ′| has the characteristic property as being the only singular member in
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|F ′| whose singular point π−1(P ) is the cusp of CX (P being the vertex of F1). Since

H ′i.H
′
j.F
′
t = (E0−

4∑
i 6=`=1

E`).(E0−
4∑

j 6=`=1

E`).(2E0−
q+4∑
`=1

E`) = 2(E3
0)−

4∑
i,j 6=`=1

(E`)
3 = 2−2 = 0

H ′ij is either contained in F ′t or disjoint from F ′t . If H ′ij is contained in F ′1, then the line

Hij is contained in the cone F1 and passes through its vertex P , and Hi intersects the

non-degenerate curve CD at its cusp P and three points Pj (j 6= i, 1 ≤ j ≤ 4), hence

4 = deg(CD) = CD.Hi ≥ 2 + 3, a contradiction. Thus no H ′ij intersects F ′1. Our fw is

well defined at S := F ′1, and fw(F ′1) ∈ |F ′| satisfies the same characteristic property as F ′1

and hence equals F ′1. The isomorphism f4 : X1 → X3 in 4.6 (lifting fw) is just fw around

S and hence fS = fw|S is an automorphism of S. This proves (2).

Using the lifting f4 of fw, we have f ∗S(Lfw |S) = d1(fw)Lfw |S, where Lfw is the eigen-

vector of f ∗w|H2(X,Z) = w corresponding to the eigenvalue d1(fw) = ρ(w). To prove (3),

we only need to show Lfw |F ′t 6= 0. To do so, write Lfw = v =
∑q+4
i=0 viei as in 2.10. Then

(Lfw |F ′t).(Ei|F ′t) = Lfw .Ei.F
′
t = (

q+4∑
j=0

vjEj).Ei.(2E0 −
q+4∑
j=1

Ej) = −vi(Ei)3 = −vi .

Since e0 is not an eigenvector of w2,q,4, it follows that Lfw |F ′t 6= 0. �

Remark 4.9. The Salem number 1.28064 . . . is also realized in [10] as d1(f13) of an

automorphism f13 on the blowup X13 of P2 at 13 points on a cubic curve. The map fS

in Proposition 4.8 (3) with q = 5 is not the descent of f13 because the characteristic

polynomial of f ∗13|H2(X13,Z) is of the form φ8(x)(x4 + 1)(x2 − 1). Since W (2, 5, 4) can

be embedded in W (2, 7, 3), our Proposition 4.8 (3) with q = 5 is compatible with [10].

As a consequence of Theorem 1.1 and Proposition 4.8, we have:

Corollary 4.10. Let fw : X2,q,4 99K X2,q,4 be as in Theorem 1.1 with q ≥ 5 and let S = F ′1

be as in Proposition 4.8. Then the topological entropy h(fw) of fw satisfies:

h(fw) = h(fS) = log d1(fS) = log d1(fw) > 0.

Proof. By the Poincaré duality and noting that d1(fw) is a Salem number, we have

d1(fw) = d2(fw). Thus log d1(fw) ≥ h(fw) ≥ h(fS) = log d1(fS) = log d1(fw) (cf. [4], [7],

[13], and taking an equivariant resolution of S), and we are done. �

5. Proof of Theorems for all p ≥ 2

We now prove Theorem 3.1 for p ≥ 3. Let w ∈ W . Let (D; c) ∈ UC . Denote by

(D′; c′) = w(D; c). Consider the embedding:

Φ(D;c) : C → (Pr−1)p−1, (x 7→ (Φ|D1|(x), . . . ,Φ|Dp−1|(x))).
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Set Pj = (Φ|D1|(cj), . . . ,Φ|Dp−1|(cj)). Let

π(D;c) : X = X(D;c) → (Pr−1)p−1

be the blowup at the q + r points Pj with Ej = π−1
(D;c)(Pj). Similarly, we define Φ(D′;c′),

P ′j , π(D′;c′) : X ′ = X(D′;c′) → (Pr−1)p−1, E ′j.

For the result below, see [12, Theorem 1]. Our statement also incorporates the marking

on the curve C embedded in (Pr−1)p−1.

Proposition 5.1. Suppose that w ∈ W and (D; c) ∈ UC. Then there is a pseudo-

isomorphism fw : X → X ′ = X(D′,c′) such that f ∗w = w if we identify H2(X,Z) =∑p−1
i=1 Zhi+

∑q+r
j=1 Zej = H2(X ′,Z) by letting [Ej] = ej = [E ′j] (j ≥ 1) and [π∗(D;c)OPr−1

i
(1)] =

hi = [π∗(D′;c′)OPr−1
i

(1)] where Pr−1
i is the i-th factor of the product (Pr−1)p−1.

Proof. The proof is similar to Proposition 4.2. Since the Weyl group is generated by the

reflections rhi−hj (resp. rei−ej) corresponding to the exchange of the factors Pr−1
i and Pr−1

j

(resp. Pi and Pj of the blowup), and the Cremona involution rα0 with α0 = h1−
∑r
i=1 ei,

we have only to consider the case w = rα0 . This w is realized by the lifting fw : X → X ′

of the following standard (geometric) Cremona involution (cf. [12, Lemma in §3]):

Ψ : (Pr−1)p−1 → (Pr−1)p−1,

([X1 : · · · : Xr], [Y1 : · · · : Yr], . . . , [Z1 : · · · : Zr]) 7→

([
1

X1

: · · · : 1

Xr

], [
Y1

X1

: · · · : Yr
Xr

], . . . , [
Z1

X1

: · · · : Zr
Xr

]).

Here, with new coordinates, we may assume that P1, . . . , Pr are images of the standard

vertices [1 : 0 : · · · : 0], . . . , [0 : · · · : 0 : 1] in Pr−1 via the diagonal embedding Pr−1 →
(Pr−1)p−1 (P 7→ (P, . . . , P )), and X → (Pr−1)p−1 is the blowup of q + r points Pi and

X ′ → (Pr−1)p−1 is the blowup of Q1 := P1, . . . , Qr := Pr and Qj := Ψ(Pj) (r < j ≤ q+r).

By the form of the map,

f ∗wh1 = (r − 1)h1 − (r − 2)
r∑
i=1

[Ei] = w(h1)

if we identify H2(X,Z) = H2(X ′,Z) (here and below) by letting hi = h′i, [Ej] = ej = [E ′j].

Here and below Ei ⊂ X (resp. E ′i ⊂ X ′) is the inverse of Pi (resp. Qi), hi (resp. h′i) is

the (cohomology class of) total transform of the hyperplane OPr−1
i

(1) of the i-th factor of

the domain (resp. codomain) of Ψ. From the form of Ψ, we have also

f ∗whi = (r − 1)h1 − (r − 2 + 1)
r∑
i=1

[Ei] + hi = w(hi) (1 ≤ i < p)

where the hi’s in the middle of the display and the extra 1 in r− 2 + 1 correspond to the

numerators Y1, . . . , Zr in the defining rational functions of Ψ. As observed in [12, Lemma
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in §3], using the affine coordinates ((x2, . . . , xr), (y2, . . . , yr), . . . , (z2, . . . , zr)) of (Pr−1)p−1

around the point P1 (the diagonal image of the point [1 : 0 : · · · : 0] ∈ Pr−1), the map

X
fw→ X ′ → (Pr−1)p−1 takes the following form around E1:

E1 3 ((x2, . . . , xr), (y2, . . . , yr), . . . , (z2, . . . , zr)

7→ ([0 :
1

x2

: · · · : 1

xr
], [1 :

y2

x2

: · · · : yr
xr

], . . . , [1 :
z2

x2

: · · · : zr
xr

]).

Hence for the hyperplane H1i ⊂ (Pr−1)p−1 defined by Xi = 0, its proper transform

H ′1i ⊂ X ′ satisfies (when i = 1) f ∗wH
′
1i = Ei. Since Ψ is an involution and by a similar

observation, for all 1 ≤ i ≤ r, we have (noting that [H1i] = h1):

[f ∗wE
′
i] = [H ′1i] = h1 −

r∑
i 6=j=1

[Ej] = w(ei)

if we identify H2(X,Z) = H2(X ′,Z) as above. The equality f ∗we
′
j = ej (r < j ≤ q + r) is

by the definition of Qj. Thus we have f ∗w = w on H2(X ′,Z) (identified with H2(X,Z)).

To check that X ′ → (Pr−1)p−1 is just the blowup of points P ′i determined by the

(n + 1)-tuple w(D; c), we can argue as in Proposition 4.2. Indeed, let CX ⊂ X be

the proper transform of C = Φ(D;c)(C) ⊂ (Pr−1)p−1 (which is isomorphic to C since

we blow up only smooth points on C). Then for 1 ≤ i ≤ r, we have deg(H ′1i|CX) =

deg(H1i|Φ(D;c)(C)) − deg(
∑r
i 6=j=1Ej)|CX = r − (r − 1) = 1. Hence CX meets H ′1i at

only one point and transversally. So the map X
fw→ X ′ → (Pr−1)p−1 collapses H ′1i to a

smooth point Qi on the image C ′ of C which is contained in the codomain (Pr−1)p−1 of

the Cremona involution Ψ. With the identification C ′ = CX = Φ(D;c)(C) = C, we have

[OPr−1
i

(1)|C ′] = ((r − 1)h1 − (r − 1)
r∑
i=1

[Ei] + hi)|CX = w(hi)|C = w(D)i = D′i

which is a degree r ≥ 3 (very ample) divisor and embeds C ′ onto C ′i (⊂ Pr−1
i , the i-th

factor of the codomain of Ψ). With the identification C ′ = CX = Φ(D;c)(C) = C = C1 :=

Φ|D1|(C) (⊂ Pr−1
1 , the first factor of the domain of Ψ), the point Qi ∈ C ′ is given by

[H ′1i|CX ] = [H1i|C1]−
r∑

i 6=j=1

Ej|CX = D1 −
r∑

i 6=j=1

cj = w(ci) ∈ C.

Hence Qi is one of P ′i (1 ≤ i ≤ r) defined before Proposition 5.1. By the construction,

Qj = Ψ(Pj) = P ′j for r < j ≤ q+ r. Thus X ′ = X(D′;c′). This proves Proposition 5.1. �

5.2. Proof of Theorems 3.1 and 1.1

The same argument for p = 2 now works for all p ≥ 2, but with Proposition 4.2 replaced

by Proposition 5.1.

5.3. On the geometry of X3,q,3 with q ≥ 4
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Proposition 5.4. Let X3,q,3 (q ≥ 4) and fw be as in Theorem 1.1. Then X3,q,3 is

the blowup of P2 × P2 at q + 3 points, and fw permutes members of the linear system

|−KX/3| of dimension ≥ 2. When q = 4, every divisor E with class [E] fixed by f ∗w

satisfies E ∼ a(−KX/3) (linear equivalence) for some a ∈ Z.

The proof is similar to that of Proposition 4.8 and is left to the reader.
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