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ON THE INTEGRAL COHOMOLOGY OF WREATH PRODUCTS

IAN J. LEARY

Abstract. Under mild conditions on the spacc X, wc dcscribe the additive structure of the

integral cohomology of the space X p Xc p ECp in terms of the cohomology of X. We give weaker

results for other similar spaces, and deduce various corollaries concerning the cohomology of

finite groups.

o. Introduction.

Let S be a group with a fixed action on a finite set n. By the wreath product G 15 of
a group G with 5 we mean a split extension with kernel GO, quotient 5, and with the
5-action on GO given by permuting the copies of G. Our main interest- is the integral

'fo-.... f"C" .. ~coh0mology"'-0f"".fhl.j.te~ups ..of· ,the...for-m....Q ..l·S. - ! \31e-w0r-k-in...g,rf'Jater......genera1ity-~however., ., . ~,

because it is no more difficult to study the cohomology of spaces of the form X n x sE,
where E is an 5-free 5-CW-complex, and X is a CW-complex of finite type. The mod-p
cohomology of certain such spaces plays a crucial role in Steenrod's definition of the reduced
power operations [29]. Building on work of Steenrod, Nakaoka described the cohomology
of such spaces with coefficients in any field [23]. The point about working over a field is
that then the cellular cochain complex for X is homotopy equivalent to the cohomology
of X, viewed as a complex with trivial differential. If the integral cohomology of X is
free, then a similar result holds in this case. Evens used this to study the cohomology
of (the classifying space of) the Lie group U(1n) 1Eu in the course of his work on Chern
classes of induced representations [13]. The study of the integral cohomology in the case
when H* (X) is not free is much harder. The pioneers in this case were Evens and Kahn,
who made a partial study of the important special case of XP x cp ECp • We complete the
study of this case in Section 4 below, which could be viewed as both an extension of and
a simplification of_[15,. se,ction 4]._ ,Many, ..b1Jtnot all, of our results are corollaries of this
work. Our paper has the following structure.

In Section 1 we givc some algebraic background. Most of this material is well
known, although we have not seen Lemma 1.4 stated explicitly before, and we believe
that Lenuna 1.1 is original. This lemma, which compares spectral sequences coming from
double complexes consisting of 'the same groups', but with 'different differentials', is the
key to our extension of Evens-Kahn's results [15]. Theorem 2.1 is a statement of the result
af Nakaoka mentioned above, which for interest's sake we have made more general than
the original. A weak version of this theorem could be stated as: 'if H* (X) is free, then
the Cartan-Leray spectral sequence for H*(XO Xs E) collapses at the E 2-page'. A simi
lady weakened version of Theorem 2.2 would say that aver the integers (01' any PID), this
spectral sequence collapses at the Er-page, 7' = 2 +Inl, without any condition on H*(X).

The Cartan-Leray spectral sequence may be obtained from a double complex. In
Sections 3 and 4 we study the other spectral sequence associated with the same double
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complex. In Section 3 we define the elements er 11 and give upper and lower bounds on
their orders. In Section 4 we describe the additive structure of thc integral cohomology of
XP Xc ECp , extending work of Evens-Kahn [15]. One surprising corollary of this result

p ..

is that for p ~ 5, a cyc1ic summand of H1(X) of order pJ gives rise to (p - 1)/2 cyc1ic
summands of H*(XP x Cp ECp ) of order pi+l, not just the SUlnllland that one would expect
in degree pi. In Section 5 we use the results of Section 4 to determine the differentials and
extension problems in the Cartan-Leray spectral sequence for XP x c p ECp •

Quillen 's detection lemma [25], which states that the mod-p cohomology of XP x cp

ECp is detected by two maps from XP and X x BCp , is a corollary of Nakaoka's results. In
Section 6 we describe the kernel of the analogous map in integral cohomology. In Section 7
we sketch how the methods of Sections 4, 5, and 6 lllay be applied to describe the p-Iocal
cohomology of XP XE p EY:. p • In fact this turns out to be considerably simpler than the
case of of the cyclic group.

In Section 8 we review a conjecture of A. Adeol and H.-W. Henn concerning the
exponent of integral cohomology of finite groups. VVe show that if G does not afford a
counterexample, then neither does GI Cp • For a slightly stronger conjecture we obtain the
more general result that if G and S do not afford counterexamples then neither does G l S .

.... ~ \ ~ .t #l'" ''''''" ~.11 ~·Il "'~~-i- ~ ....11IIII. t "I" """... ~ ---..__ •• ...~ t ~ JIII' ''-1 .,a..:,,~ ~_ - L .. 'IoI~ ~II'I "" 04 "" 11? I "'ii"~ P1'\WI~ U ""'. l. .tI.(".J: ~ ~ ..

We also recall an upper bound on the (eventual) exponent of integral conomology of p-
groups, based on generalized Frattini subgroups, that we gave in [21]. Section 9 describes
an example showing that this bound is not always best possible. The only connection
between this section and wreath products is that evidence gleaned from wreath products
led the author to believe for some time that such exalnples could not exist.

In Section 10, we assume that the p-local cohomology of X is a finitely generated
algebra, so that the variety of all ring homolnorphislns froln H* (X) to an algebraically
elosed field k of characteristic p is affine. In this case the variety for H* (XP X Cp ECp )

is also affine, and may be described in terms of the variety for H* (X). (This is easily
deduced from [23], but is first stated explicitly in [25].) We use the results of Sections
4 and 6 to give a similar description, for each i, of the subvariety corresponding to the
annihilator in H*(XP xC

p
ECp ) of the element pi. First we prove some general properties

of such subvarieties. In Section 11 we apply the results of Section 10 to cohomology offinite
groups. The subvarieties that we study were introduced in this context by Carlson [11].
Let G be a p-group, let~ H1(6)'be the-viriety ö{ring homomorphisms from H*(G) to k, and
let Wi(G) be the subvariety corresponding to Ann(pi). Each Wi(G) is a covariant functor
of G. We show that Wi (G) is contained in the image of W (<I> i(G) ), where <I> i(G) is the
generalized Frattini subgroup introduced in Section 8. Carlson asked in [11] if the image
of W (<I> i(G)) is contained in Wi (G), where <I> i (G) is the i th iterated Frattini subgroup
of G. We give examples where this does not hold. We show however that the image of
W (<I> (G) n Z (G)) is contained in W1 ( G). We elose wi th the relnark that in all known
examples, each Wi( G) has a nice description.

Acknowledgementso The author has been working part-time on this material during a
period in which he held post-doctoral fellowships at the ETH, Zürich, the CRM, Barcelona,
and the MPI, Bonn, funded by the ETH, the DGICYT, and the Leibniz fellowship scheme
respectively. The author gratefully acknowleclges the support anel hospitality of these
institutions. The author thanks Guido Mislin and Urs Stammbach for their advice and
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eneouragement during the early stages of this work, and Jon Carlson and Leonard Evens
for helpful email eorrespondenee.

1. Notation and algebraic preliminaries.

We hope that our notation is either defined where used or is evident. As a rough guide we
mention the following points.

• p is a prime number throughout.
• Cn is a cyclie group of order n.
• n is the set {l, ... , I}, 01' oceasionally {l, ... ,p}.
• ~l = ~(n), is the symmetrie group on n.
• All spaces are taken to be CW-eomplexes, and the topology on a produet is chosen so

that the produet of CW-complexes is a CW-complex in the natural way.
• For G a group, EG is a eontraetible G-free G-CW-complex.
• R is a commutative ring, often the integers Z 01' the p-Ioeal integers Z(p). Usually

- (9 - and Hom(-, -) should be taken over R. In Seetions 10 and 11 however, R is
a more general commutative Z(ptalgebra, and - ® - stands for the tensor product
over Z(p).

'.• 'Usuä1ly"'S "staiiäs~for"" a "s\ibgr6u'P'''6f~~(fl )~''''ä1th-öügh'·jn''''Set:tiöf1''"9·''a''''5pll~te-ca:lled 'S
makes abrief appearanee, and in Seetion 10 S is a commutative Z(ptalgebra.

• All ehain eomplexes and coehain eomplexes are bounded below. Double cochain COffi

plexes will be denoted (E~'*, d, d'), E~'*, or similarly, where the subseript is intended
to suggest that we will take speetral sequences. Double complexes (and pages of the
associated speetral sequenees) will be depicted with the first index running horizon
tally:

E i,i+1 d E i+1 ,j+l
0 --+ 0rd'

d
rd'

Ei,j E i+1 ,j
0 --+ 0

Following Cartan-Eilenberg ~[12],.~we.. call~ the associated spectral sequence in which
da = d' the 'type I spectral sequence', and the spectral sequence in which da = d the
'type 11 spectral sequence'. Note that higher differentials in type 11 spectral sequences
will point upwards and leftwards on our illustrations.
The following lemma seems to be new, alld is vc1'y useful in our calculation (in Sec

tion 4) of H* (XP x c p ECp ).

Lemma 1.1. Let (E~'*, d, d') be a double COChaill complex oE abelian groups, and let
E;'* be tbe corresponding_ type_ I! spectral s~q~Jence.. fo.z: any intege~ n, make a second
double cochain complex (E~'*, d, d'), wbere E~!J = E~,J, d = d, and d' = nd'. Then _any
element x oE E~'* that represents an element oE E;'· also represents an element oE E;'·,
and dr(x) = nrdr(x).

Proof. By assumption, there exist x = Xl, ... , X r E E~'* such that d(Xl) = 0 and
d(Xi+l) + d'(x;} = 0 for 1 ::; i < T, and then by definition dr(x) is represented by d'(x r ).
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Now ifwe let Yi = ni-lxi, we see that x = YI, d(YI) = 0, d(Yi+I)+d'(yd =°for 1 ::; i < r,
and that dr(x) = d'(Yr) = nrd'(xr) = nrdr(x). _

Remark. There is no simple relation between the type I spectral sequences associated
with the complexes E~'* and E~'*.

Proposition 1.2. If C* is a cochain complex of R-ll1odules, tllen C*00 may be given the
structure of a cochain complex of RE(f!)-modules as follows. The action of the transposi-
tion (Ti = (i, i + 1) E E(f!) is defined on a homogeneaus element Cl ® ~ Ci by

ai(Cl 0 ... 0 Ci) = (-1 )deg(c;) deg(c;+d Cl 0 ... 0 Ci+l ® Ci 0 ® Cl.

Proof. First check that the action of each ai commutes with the differential on C*00 .

Now recall that ~(n) has the following presentation as a Coxeter group [9]:

~(n) = (al, ... ,al-l Ia;, (aiaj)2, (O'kak+I)3),

where 1 ~ i, j < l, 1 ~ k < 1- 1, and li - j I > 1. Now check that each of the relators in
this presentation acts triviallyon C*00 . _

Remark. The above proof was suggested to the author by Warren Dicks. It seems to be
easier than proofs in which one works out the sign for the action of every element of E(f2)
(see for example [5,14]). On the other hand, one needs to know the sign of the action of
an arbitrary element in most applications.

If C* is the cellular cochain complex on a finite type CW-complex X, it may be shown
that the cellular action of E(f2) on X O (with the product cell structure) induces the above
action on C*(X 11 ) = C*(X)0 11 •

Let S be a subgroup of ~(f2), and let W* be achain complex of free RS-modules.
Much of our work consists of studying double cochain complexes of the fonn

and their associated spectral sequences. In many cases, W* will be either the cellular
cochain complex of a free S-CW-complex E, or will be a free resolution of the trivial RS
module R. In either 'ofthese cases-there-is~a-homomorphism(of RS-complexes, where S
has the diagonal action on W* 0 W*):

which gives rise to an anticommutative ring structurc on H*Homs(W*, R). In this case,
the isomorphism (C*0 11 ) 0 R rv (C*0 11 ) gives rise to a graded H* Homs(W., R)-module
structure on H*TotE~'*, and a bigraded action on each of the two spectral sequences from
the E 2-page onwards. (In each case, H*Homs(W*, R.) is graded in the i-direction.)

Lemma 1.3, which we shall state but not prove, is due to Steenrod [29]. It is used
in Steenrod's definition of the reduced p-powers, as well as in Nakaoka's work on wreath
products (see [23}, 01' Theorem 3.1 below). For lnost of our purposes the easier Lemma 1.4
will suffice however. Lelnma 1.4 is implicit in a relnark in [13}, but I know of no explicit
statement of it in the literature.
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Lemma 1.3. If W. is (as above) a complex of free RB-modules and /,9 : C'· -+ C· are
homotopic maps between cocbain complexes of R-modules, tben tbe maps Homs(l, J00 )

and Homs(l, g(0 ) from Homs(W., C'·00 ) to Homs(W., C·00 ) are homotopic. •

The proof of Lemma 1.3 is slightly simpler if it is also assumed that W. is acyclic, and
this is the statement given in the recent books [5] and [14]. Even if one is only interested
in the special case of group cohomology however, it is worth having the stronger version of
Lemma 1.3 because this justifies the application of Nakaoka's argument to wreath products
of the fonn G 1S', where S' has S as a quotient and acts on Cf! via the action of S on n.
Lemma 1.4. Let W* be a complex of free RS-modules, and let f : C'* -+ C* be a
homotopy equivalence between cocbain complexes of R-Inodules. Define a double cochain
complex E~'* by

E~,j = HOlns(vVi , (0*00 )i),

and similarly for Eg,i. Then the map

Homs(1, /°°) : E~*'* -+ E~'*

........ }; ~of.ud@uble.~a0cbaJnoooomplexeB..indHGes-aIl....;sOmgr,phism .Qll..~the"'El-r.pages ...of~e, ..associated .....
type I spectral sequences, and hence an isomorphism betweell t]le homologies oE the cor
responding total complexes.

Proof. The map f 00 : C'00 -+ C00 is a homotopy equivalence of R-complexes, and
is an RS-map, so induces an RS-module isonl0rphism between Hi(C'00 ) and Hi(C00 ).

If Wi is free with basis h, then E~,i (resp. E~i,i) is isomorphie to a product of copies of
Hj(C00 ) (resp. Hi(C'00 )) indexed by Ii, and the map is an isomorphism as claimed.•

The conclusion of Lemma 1.4 does not necessarily hold for f : C'* -+ C* that only
induces an isomorphism on cohomology, hut reeall the following lenuna, from for example
[28, p167].

Lemma 1.5. A nlap between R-projective cochain complexes is a homotopy equivalence
if and only if it induces an isomorphism on collomology. •

We end this section with some remarks concerning the case when R is a principal
ideal··domain· (BID)· ·and-C !.··is-an· ~R·free· ·coehain eOlnplex such that each H i (C*) is a
finitely generated R-module. For each i, fix a splitting of Hi(C*) as a direct surn of cyclie
R-modules. Thus for some indexing set A,

H*(C) ~ EB H(a),
aEA

where H(a) is isomorphie to RJ(r(a») and is a summand in degree i(a), for some r(a) E R
and integer i(a).

For r E R and i E Z, define a cochain complex C(r, i)* such that each C(r, i)i = 0,
except that C(r, i)i eE R and if r is non-zero, then C(r, i)i-l ~ R. Define the differential
in C(r,i)* so that Hi(C(r,i)*) ~ RJ(r). Define a cochain complex C'* by

C'* = EB C(a)*,
aEA
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where C(a)* = C(r(a), i(a)). It is easy to construct a map from CI * to C* inducing an
isolDorphism on cohomology, which is therefore a homotopy equivalence by Lemma 1.5.

Now consider the RS-module structure of the complex (C'*00)*. (The motivation for
this is provided by Lemmata 1.3 and 1.4.) As a complex of R-modules, (CI*@f!)* splits as
a direct sum of pieces of the form

Call such a summand a 'cube', and call the C(aj)* that arise the cube's 'sides'. The action
of S permutes the cubes, and the stabilizer S' of the cube C(a1, . .. ,a,)* is equal to the
stabilizer of (ab ... , al) E An. Each R-module sunlmand of C(aI, ... ,ad* of the form
C(ad i(a d -f(l) '9'" '9 C(at}i(ad-f(l), where f(j) = 0 01' 1 and f(j) = 0 if r(aj) = 0, is in
fact an RS'-summand. Define n- by

n- = {j.E n I i(aj) - f(j) is odd },

and n+ = n \ n-. Then S' is a subgroup of ~(S1+) x ~(S1-) ::; E(S1), and the action of S'
C( )i(ad-f(l) tO. ••• tO. C( )i(al)-d l )' • b th' tj' f ,,(n-) t cl 'th.... ,.o<,/,on.. ,.a11 ",,,,,,,." .......... ~,,-IOI .. ........ \01> • ,al, hut,'"'' _ ...n.-ls~g~Y..en",.y,., ,"e.;ngn~a_c;, _QP,Q ..{-J. '~~,.-.J ;.\}~I).E:l9F.e .... "\iwl"

the trivial action of E(n+). (This may be checkecl using Proposition 1.2.)

2. Nakaoka's argument and generalizations.

Recall that S is a subgroup of the symmetrie group on a finite set .0, ancl let E be a
free S-CW-complex of finite type. Note that we do not require E to be contractible. For
any finite type CW-complex X we may define an action of S on a product of copies of X
indexed by n, letting Sperrnute the factors. Now S acts 'diagonally' on XO x E, and we
may form the quotient space (XO x E) / S, Topologists usually insist that S should act
on the right of XO and on the left of E, and write Xf! Xs E for the quotient. Assurne
that E is connected. By considering various covering spaces of XO x sEit is easy to see
that in this case the fundamental group of X n Xs E is the wreath product G l'Tr1(E/S),
where G is the fundamental group of X. By this wreath product we mean a split extension
with kerne! Cf! and quotient 'Tr] (E / S), where 'TrI (E / S) acts via the action of its quotient
S on n. In particular,.iLE is simply connected, then 7f1 (XO x s E) is the wreath product
CIS. From now on we shall assume that E is both connected and simply connected for
clarity-it is easy to make the necessary changes to cover the general case.

For any field k, Nakaoka's argument determines H*(Xn xsEj k) in terms of H*(X; k)
and H* (E / Sj N) for various signed permutation kS-modules N. The argument applies
equally to the cohomology of XO x s E with non-trivial coefficients coming from some
kG I S-modules (in fact, those which are 'tensor-induced' from kG-modules) and gives
some information about H· (Xf! x s Ej R) for any commutative ring R. The following
account includes both of these generalizations.

Let R be a cornrnutative ring, and let !1, 5, E and X be as above, with 'Tr] (X) = G.
All chain complexes will be chain complexes of R-modules unless otherwise stated and all
unmarked tensor products will be over R. Let Hf. be the cellular R-chain complex for E,
so that W. is achain complex of free RS-modules, and is a free resolution for R over RS
in the case when E is acyclic. Let U. be the cellular chain complex of the universal cover

6
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of X, so that U. is a chain complex of finitely generatecl free RG-modules. If M is an RG
module, then RGo acts on M00 by letting GO act conlponent-wise, and S acts on M00

by permuting the factors of each monomial1Hl ® 171.2 ® ... ® 11~1. Together these actions
define an RG I S-module structure on M00 . Similarly, the total complex of U~o becomes
a complex of RG I S-modules, where the action of S is as described in Proposition 1.2.
From this point of view the signs that arise are due to the fact that the action of S on
the n-cube does not necessarily preserve its orientation. The cOlnplex U~o is the cellular
chain complex of the universal cover of XO (with the product CW structure), where the
action of GIS comes from the action of S on XO. Shnilarly, the complex U~n ® W., with
the diagonal action of GI 5, is eaily seen to be the cellular chain complex of the universal
cover of X O Xs E.

Define a double cochain complex E~,j by:

. . 11 0
E~,l = HomRGls((U~ )j ® Wi, MO ).

The associated total complex is the complex of G I S-equivariant cochains on the uni
versal cover of X O x s E with values in M00 , and so the cohomology of this complex is

," J!~ (X? ...>:-',8 ß; }yI.~.~,,): ~T.heJ~. ?J.:e".t~~.~P~"c!~?-L~~,q~~!lSts ...?~.~~.Si~~~ ..i2Jh~ ~1.s~~~ ~oJEp'lex ..,
E~,l. The type I spectral sequence has E 2 -page as follows:

This is a spectral sequence of Cartan-Leray type for the covering of XO x sE by X O x E.
From the E 2-page onwards it is isomorphie to the Serre spectral sequence for the fibration

XO -tXn xsE-+EjS.

Each of the two spectral sequences admits a bigraded H* (E / Sj R)-module structure from
the E 2-page onwards, as was shown in Section 1.

So far we have not used the assumption that X is of finite type. This is required to
establish the second of the following isomorphisms of double cochain complexes:

E;'· =HOmG1S(U~O ® W.,M00
)

-"rvHoms'(W; ;Hömao (U~o , M00 ))

"'Homs(W., HOffia(U., M)00
).

Thus we are reduced to the study of the cohomology of a double complex of the type
discussed in Section 1.

Remark. (The algebraic case.) The case of interest in group cohomology may be recovered
as the case when X and E / S both have trivial higher homotopy groups (note that this
is more general than requiring E to be contractible). Of course, in the algebraic case we
can do without the space X altogether, and just take the complex U. to be a finite type
(R-free) RG-projective resolution for R. Thus the above argument applies to groups G of
type F P( 00) over R, rather than just those groups G having a !((G, 1) of finite type.

The following theorem is due to Nakaoka, although we have deliberately made the
statement more general than the original (which considered only trivial coefficients).

7
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Theorem 2.1 ([23,13,20]). As above, let X be a connected CW-complex of finite type
with fundamental group G, aJld let M be aJl R-free RG-module such that H*(Xj M) is
R-projective. Let E be a (connected) free S-CW-complex. Tben tbere is an isomorphism
of graded R-modules as fo11ows.

H*(X00 xs E; M0fl ) ::: H*(E/Si H*(Xi M)00
)

The spectral sequence with coefIicients in M0fl for the fibration X fl -+ Xfl X s E -+
E / S co11apses at the E 2-page, aJld the additive extensions in the reconstruction of the
cohomology (rom the Eco-page are a11 trivial.

Remarks. Note that the freeness conditions are automatically satisfied if R is a field. In
the case when M = R, the isomorphism of the theorem is moreover an isomorphism of R
algebras, and for general M it may be shown to be an isomorphism of H*(XO Xs Ei R) ~
H*(E / S; H* (X; R)0fl )-modules.

Proof. Under the couditions of the theorem, both C * = Horne (U*, M) and G'* = H* (C*)

-. ,,~~~ ~~p.r:~jectiv~:. ~Y.i~~iI)g .Q~.~ ...~.~,~.9~~~;} .~9,~l?!~~ ?::tt~_,~t~~Yi~__~~~~~I?-~~.~_.i!~,~~.~e~~:r.. t.~ ... ,
construct achain map from C'* to C* inducing the identity map on cohomology (see
[23] or [15]), which is a homotopy equivalence by Lemma 1.5. Now by either Lemma 1.3
01' Lemma 1.4 we see that H*(X 11 Xs Ej M(0 ) may be calculated as the cohomology of
the total complex of Eg,j = Homs(Wi , (C'*011 )j). But this double complex has trivial j
differential, so splits as a direct surn of double complexes concentrated in constant j-degree
(01' 'rows'). •

Remarks. There are other proofs of special cases of Theorem 2.1. There is a topological
proof due to Adem-Milgram in the special case when S is cyclic of order p, E is contractible,
S acts freely transitivelyon n, and the coefficients form a field [3].

There is also a short proof of the trivial coefficient case arising in cohomology of finite
groups, due to Benson and Evens ([5, vol. 11, p.130 and 14, Thrm. 5.3.1]). This proof is as
follows: If G is finite, and R = k is a field, then one may take U* to be a minimal resolution
for k over kG. In this case, if M is a simple kG-module, for example the trivial module k,
then the·differential·in HOffie(U*,-M)-is ·trivial and so the double complex for computing
H* (G1S j M(0 ) has one of its differentials trivial, and the type I spectral sequence collapses
at the E2 -page. It is not true however that if also Hf* is a minimal resolution for k over
kS then U~n ® W* is a minimal resolution for k over kG 15, because in general this will
have a larger growth rate than a minimal resolution.

If the condition on H*(Xj M) is weakened, Nakaoka's argument may still be applied,
but the conclusion is far weaker. For example, consider the following theorem.

Theorem 2.2. Take notation and conditions as in the statement of Theorem 2.1, but re
place the condition that H*(X; M) should be R-projective by the condition that H*(X; M)
should bave projective dimension at most one over R. Then from E 2 onwards, the spectral
sequence for the fibration XO -+ XO x s E -+ E / S witb M00 coeflicients is a direct sum
of spectral sequences E;'* = EBa E;,'~' where each E~;~ has 'height' at most Inl. There is
a corresponding direct sum decomposition oE H*(XO Xs E; M(0).

8



Remark. By the phrase 'E;,'~ has height at most 1.01' we mean that there exist integers
n(a) ::; n'(a) such that E~:~ = 0 if j < n(a) or j > n'(o:), and n'(a) - n(a) ::; 1511. In
particular this implies that dlol+l is the last possibly non-zero differential.

Proof. Let Pi )-lo Qi -* Hi(X; M) be a projective resolution over R for Hi(X; M), and
build a coehain complex Cf. with C,i = Qi ffi Pi+l and differential given by the following
eomposite.

C ,i P Q C,i+l
---* i+1 >---+ i+1 >---+

Then using the projeetivity of Pi and Qi it is easy to eonstruct a chain map from C'· to
HOffia(U., M) inducing an isomorphismon eoholnology, whieh is an equivalenee by Lemma
1.5. Now by either Lemma 1.3 or Lemma 1.4, the double eomplex E~*'· = Homs(W., C'00 )

may be used to compute H* (XO X s E; R). By eonstruetion C'· splits as a direet surn of
eomplexes of length at most one, and so (C'@11). splits as a direet SUffi of eomplexes of
length at most Inl, and henee E~·'* splits as a direet SUfi of double eomplexes of height at
most 1511. The claimed properties of the speetral sequenee now follow from Lemma 1.4.•

Remarks. There is uo easy generalization of the statement given after Theorem 2.1

~...• S9~~~F~~I}g th~__r:ir;lg..~~E~.e~~E~ ?-fJ>1i~(~~.., ~...ß..ß.; 1!:):...~t~.~.s_.~~~;-.:r:'..!? ..:.,:.~~el~,!_ t.~~t,. t~~ r~?-g. ~~
strueture of the integral eohomology of X does not suffiee to determine that of X x-X [24].
This eould be eonsidered as the ease of XO x s E when R is the integers, E is a point, and
S is the trivial subgroup of the symmetrie group on a set 51 of size two.

One may ask about similar results to the above for generalized cohoffiology theories.
We believe that the following statement is iUlplieit in [10, chap. IX]: 'Let h*( -) be a
complex oriented generalized cohomology theory associated with an Hoc-ring speetrum,
and assume that h*(X) is free over h* with basis B eoneentrated in even degrees. Then
h*(X 11 Xs E) is isomorphie to a direet surn of h*(EJ5')'s, shifted in degree, where 5' runs
over the stabilizers of a set of orbit representatives for the action of S on BO.' For specific
choices of S and E stronger results are known-see [19] for some recent results in the ease
when S = Cp and E is contraetible.

3. The order of a 1l.

Throughout this seetion, take R to be either Z or one of its localizations, and let W. be the
cellular ch·ain complex' ofäü-S-free-S~CW-c6iiiplex E with augmentation e : W* -T R, so
that the homology of ker(e) is the redueed R-holnology of E. For any X of finite type and
anya E H 2i (X; R), all E H 2il (XO xsEj R) ll1ay be defined ([29,23,14]). We give bounds
on the order of a II in terms of the order of Cl'. In fact it costs no extra work to replace
C*(Xj R) by an arbitrary R-free cochain complex of finite type, so we do so. Much of the
section generalizes to the case when R is any PID, if the statements concerning orders are
replaced by statements about annihilators.

For C* a finite type R-free cochain eomplex, and c E C* of even degree, define
c 11 E Homs(lV*, C*00 ) by

c ll(w) = f(W).C Q) ... 0 c,

for any w E W•. The same formula may be used for c of ocid degree, but in this case
it defines an element of Homs(W*, C*0 11 0 R), where R is the RS-module of R-rank
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one on which S acts via the sign representation of ~(n). If c is a cocyde, then so is
c 11, and using Lemma 1.3 it may be shown that the cohomology dass of c 11 depends
only on the cohomology dass of c (this is the only place where we require Lenuna 1.3
rather than Lemma 1.4). Thus if a E H*(C*), we nlay define a unique element 0' 11 of
H*TotHoms(W*, C*@n).

If 0' does not generate a direct summand of H* (C*), pick ci and an integer n such
that a' generates a direct summand of H* (C*) and 0' = na'. Then (check on the level
of cochains) 0' 11 = (na') II = n1(a 11). Hence it suffices to consider the case when 0'
generates a summand of H*(C*).

Theorem 3.1. Fix S, W*, R, as above. Let C* be any R-free finite type cochain complex,
and let a E H*(C*). Then the order of 0' 11 E H*TotHoms(W*, C*@n) depends only on
the order 0(0') of 0', and the order of a cyc1ic summand of H*(C*) containing 0'. Jf a has
infinite order, tllen so does all. Jf a generates a finite direct summand of H*(C*), then

O(a) ::; 0(0' 11) ::; l'.O(a),

.. ~...wP~.t.:~ f. i? ..t~.e .t0:;t ~f.t~e.. IeQgpb.~ o(tl:.~ $..:C!!..~!'~~j~~...f2.:-. __."....'4. __ ....... _ ... _ ......-.~. , ••. _..... ~,,~

Proof. The reduction to the case when a generates a direct summand of H*(C*) is
discussed above. If a does generate a direct sumnland of H*(C*), pick a splitting of
H* (C*) into cyclic summands as at the end of Section 1:

H*(C*) = EB H(a).
aEA

Choose the splitting in such a way that a generates one of the summands, say H (ao ).
Construct C'* as in Section 1. Then H *(C(ao )*) maps isomorphically to the summand of
H*(C*) generated by 0', and C(ao)*011 is an RS-SUI11mand of the complex C'*00. Hence
the image of H*TotHoms(W*, C(ao)*@O) in H*TotHoms(W*, C*00 ) is a direct summand.
Moreover, if 0" E H *(C (ao )*) maps to a, then a' 11 maps to 0' 11. Thus we see that if a
generates a summand of Hi(C*) of order n, then 0(0' 11) = O(a' 11), where a' generates

. Hi(C(n,i)*) (see Section l_for. the..definition of C(n,i)*). Let D(n,i)* = C(n,i)*@o. It
may be checked that as complexes of RS-modules, for any i,

D(n,2i)*-21i fV D(n, 0)* ~ D(n,2i + 1)*-2Ii-1 0 R,

where R is the sign representation of S ::; E(O). Hence the order of 0" 11 does not depend
on ~.

Let E' be a set ofpoints permuted freely, transitively by 5, and let Eil be a contractible
free S-CW-complex with oue orbit of zero cells. Then there are S-eqwvariant maps E' -+
E -+ Eil, and hence augmentation preserving R.S-maps W~ -+ W* -+ W~'. Thus it suffices
to verify the lower bound in the case when vV* = vV:, and the upper bound in the case
when W* = W~'. The lower bOlll1d follows from the Kuiineth theorem, because

TotHoms(W~,D(n,O)*)~ D(n,O)* ~ C(n,O)*@o.

10



• • .. -:a .. ..: ...

For the upper bound in the ease when 0: generates a summand R/(n) for n =1= 0, we
eonsider the type II speetral sequenee, E:'·, for

Sinee we assumed that WÖ' is free of rank one, EglO is isomorphie to R, and sorne generator
for EglO is a eoeycle representing 0:' 11. Sinee E~,j is zero for j > 0, E~o is a subgroup of
HO(TotE~'·). Henee the order of cl 11 is equal to the order of E~o. Now as RS-module,
D(n,O)-l is isomorphie to the permutation module with basis n. (See the analysis at the
end of Seetion 1.) The eoboundary

Rn = D(n,O)-l~D(n,O)O = R

satisfies d(w) = n for eaeh wEn ~ Rn. Now sinee W~' is aeyelie, the E 1-page of the
speetral sequenee is isomorphie to the eohonlology of the group S with eoeffieients in
D(n, 0)·. More preeisely,

In partieular, E~,j = (D(n, O)j)S, the S-fixed points in D(n, O)j. Thus E~'o = R, and
E~,-l is the free R-module with basis the S-orbits in fl. It follows that

where [' is the h.e.f. of the lengths of the S-orbits in n. This gives the required upper
bound, sinee E~o is a quotient of EglO

• •

Remark. Ther is an easy argument using the transfer whieh gives the weaker upper
bound 0(0: 11) :S 151.0(0:).

The most interesting ease of the eonstruetion of a 11 is of course the ease in whieh
W. is aeyclie, and we shall eoneentrate on that ease from now Oll. Proposition 3.2 gives
an easy ease in whieh ·the lower-bouild -giveh"a:bove is attained for W. aeyclie, and hence
for all W•.

Proposition 3.2. With notation as in Theorem 3.1, if a generates a summand of order
0(0) = n with neoprime to [I, then 0(0: 11) = 0(0).

Proof. By assumption, each of 0 and 1'0 generates a summand of H· (C·) of order n, so
0(011) = 0(['0:)11 and 0(011) divides nl' by 3.1. But (1'0:)11 = ["(011), andhence
0(0 11) is coprime to L'. •

In view of Proposition 3.2, it is reasonable to consider the problem of the order of
0: 11 one prime at a time. An easy transfer argument shows that in this ease it suffiees to
consider the ease when S is a p-group. In this ease, and for W* aeyclie, I know of no eRse
where the upper bound of Theorem 3.1 (or rather its p-part) is not attained. The only
eases in which I have been able to prove this are stated below.
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Theorem 3.3. Let S be a p-group oEorder pn, and let S permute n Ereely, transitively. Let
W* be acyc1ic and let a generate a summand oE H* (C*) of order pr. Then O(a l 1) = pr+n
if either S is cyclic, or S is elementary abeliaJl.

Proof. By Theorem 3.1, it suffices to show this for SOlne single choice of C* and element a
generating a summand of H*(C*) of even degree. We choose C* to be a cochain complex
for computing the integral cohomology of some p-group H, and then use techniques from
eohomology of finite groups, including the Evens norm map [14] and a theorem of J. F.
Carlson [11] whieh we state below as Theorenl 3.4.

Recall (from for example [14]) that if G is a finite group, with subgroup H, then a
choice of transversal T to H in G gives rise to an injective homomorphism

rPT : G-'rH 1~(GIH),

where ~ (GIH) is the permutation group on the set GIH of eosets of H in G. Furthermore,
if TI is another transversal, then rPT and cPT' differ only by an inner automorphism of
H l ~(GIH). If H is normal in G then the map G -t 'E(GIH) factors through GIH, and
GIH acts freely, transitivelyon the cosets of H. If a is an element of H*(H) of even

...."'"" .' ,..·..degree ~·then'-the''EvenS"TIOnIl*flta~~fl"*'(G')'"is-defined' eilt) .-be·'4Jt{Q·1;~}"for"W*~aoyclic); ....~,.~
and is independent of T. There is a double eoset formula for the image of NZ (er) in H* (H),
which in the case when H is normal in Gis:

Res~N;;(a)= II c;(a),
lET

(1)

where c; is the map of H*(H) induced by conjugation by t. Dur strategy for proving the
theorem is to find a group G expressible as an extension with quotient Sand kernel some
suitable H, and some a E H*(H) generating a sumlnand of order pr such that NZ(a) has
order pn+r.

In the case when S = Cpn is cyclic, we may take G to be cyclic of order pn+r, so that
H is cyclic of order pr. Then

H *(H) = Z [a] I (p r a ), H*(G) = Z[a1/(pn+ra l
),

where Q' and a' have degree two, and '/ E H 2i (G) generates H2i (G) if and only if Res~(,)
generates H 2i (H). But by (1), Res~Nif(a) = a pn

, so Nif(a) has order pn+r as required.
The case when S is non-cyclic of order foul' may be proved similarly, taking G to the the
generalized quaternion group of order 2r+ 2 expressed aB a central extension with quotient
S and cyclic kerne!.

The case S = (Cp ) n for n -=I- 1 and (p, n) -=I- (2, 2) is more complicated, because here it
seems to be impossible to choose G with H a central subgroup. For p = 2, let P be the
dihedral group of order eight, and for odd p, let P be the (unique) non-abelian group of
order p3 and exponent p. In each case the centre of P is cyclic of order p. Now let G be
the central product of n copies of P and a cyclic group of order pr. The group G has the
following presentation:

12



(2)

where o(i,j) is the Dirae o-funetion. Let Z be the subgroup of G generated by C. Then
Z is the eentre of G, Z is eyclie of order pr, and G/ Z is elementary abelian of rank 2n.
Let H be the subgroup of G generated by C, and the A/s. Then H is normal in G, and
H = Z X H', where H' is the elementary abelian group of rank n generated by the Ai 'so
The quotient G/ H is elementary abelian of rank n, so is isomorphie to S as required.

Sinee Z is a direet summand of H, the map Res~ : H*(H) --+ H*(Z) is surjeetive.
Let H*(Z) = Z[,]/(pri ), and let a E H 2 (H) be such that Res~(a) =,. The exponent of
H*(H) is pr (by the Künneth theorem), so any such a generates a summand of H*(H).
Sinee Z is eentral in G, c; aets trivially on H *(Z) for any 9 E G. Applying the double
eoset formula given in (1), it follows that

Res~Nil(a)= II c;(,) = ,pn.
tEGfH

The claim will follow if we ean prove that any element of H* (G) whose image generates

. " ._~ HZ iJZ),. for:~ s9~~~iv ~,,9 .ß~!L2Eg~F~P~~~":,~ .. ~~,~.~ ,l~, ,~op.~ )ll.,~_~~~~",3:§ ~ '_'_,. ~g, ,,~~ <>", ~'o1-~~ -to. ~ ~., ... ,,~.

Theorem 3~4~ ([11]) Let G be a Eni te group, and let Xl, .•. , X m be elements oE H* (G)
such that H* (G) is a finite module for the subalgebra they generate. Then the order IGI
oE G divides the product O(X1) ... O(x m ). •

Lemma 3.5. Let G be the group witb presentation (2) as above, and Z the subgroup
generated by C. Then any element of H*(G) whose image under Res~ generates HZi(Z),
for some i > 0, has order pn+r.

Proof. Let a1 be an element as in the statement. We shall exhibit az, ... , a n+1 E H*(G)
of order p such that H*(G) is finite over the subalgebra generated by a1, . .. ,an+1. Then
by Theorem 3.4, GI must have order at least pn+r. The subgroup H of G has index pn,
and it s (positive degree) eohomology has exponent pr, so a transfer argument gives the
other inequality. Reeall that work of Quillen implies that for any p-group K, H* (K) is
finite over a subring H'* if and only if for every maximal elementary abelian subgroup E
of K, H.*(E).is finite over.its subring.Res~.(H_'*) [26].

The maximal elementary abelian subgroups of G have p-rank n + 1, and all contain
the eentral subgroup of Z order p. (One way to see this is to note that the subgroup of G
generated by the A/s and Bi 's contains all ele1nents of G of order p, and this group is an
extraspecial group of order pzn+1, whose elementary abelian subgroups are diseussed in for
example [7].) The quotient G/Z is elementary abelian of rank 2n, and if E is a maximal
elementary abelian subgroup of C, the image of Ein G/Z is elementary abelian ofrank n.

Reeall that if Eis an elementary abelian group ofrank m, then HZ(E) f"o.J Hom(E, Q./Z)
is elementary abelian of the same rank. Let H'* be the subalgebra of H*(E) generated
by HZ. Elements of H*(E) of positive degree have exponent p, and H'* ® IFp is naturally
isomorphie to the ring IFp [E] of polynomial funetions on E viewed as an IFp-veetor spaee.
Reeall from for exampIe [6, Chap. 8], that the ring of invariants in IFp [E] under the action of
the fuH automorphism group of Eis a polynomial algebra with generators cm,o, ... ,Cm1m-1,
where Cm1i has degree 2(pm - pi). (The cm1 ) 's are known as the Diekson invariants.) Reeall
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also that if E' is a subgroup of E of rank m', then the image of Cm,j in IFp [E'] is zero for
j < m - m' and is apower of Cm',j-m+m l otherwise.

Now let "Yl, ... ,"Yn be the elements of H* (G jZ) corresponding to the Dickson invari
ants C2n,n, ... ,C2n!2n-1 in the subalgebra generated by H 2

( GjZ). Let E be a maximal
elementary abelian subgroup of G, and let Z' be the order p subgroup of Z. Then EjZ'
is a subgroup of GjZ of rank n, and the properties of the Dickson invariants stated above
imply that H*(EjZ') is finite over the subalgebra generated by Res("Yt}, ... , Res("Yn)' Let
O'i+1 be the image of "Yi in H*(G). Now Res~(a2)" .. ' Res~(O'n+t} freely generate a poly
nomial subalgebraof H*(E)0IFp and Res~,(O'd = 0 for i > 1. If 0'1 is an element of H*(G)
with Res~/(a1) "# 0, as in the statement, then it follows that Res~(al)"" ,Res~(an+1)
also freely generate a polynomial subalgebra of H*(E) 0lFp, and so H*(E) is finite over the
subalgebra they generate. Thus H* (G) is finite over the algebra generated by a}, . .. ,O'n+l

by Quillen's theorem, and then 0'1 must have order at least pn+r by Carlson's Theorem 3.4.

•
Remark. The proof of Lemma 3.5 is based on Carlson's method for computing the
exponent of the cohomology of the extraspecial groups [11]. Carlson does not use Dickson

", ~'.. .... ig~t~ts.tg__~0I1~tnls:~.~~~.IT!.~n.1~ __a;fHtlqg9~~.J9...1~..~,.,9:.i ,'.§..f2~ ..,Lc_l,_b2lLg!~~s ...~J:..,~?il~t~H~~
proof for such elements via algebraic geometry.

4. Integral cohomology for the cyclic group of order p.

In this section we concentrate on the study of thc integral cohomology of XP xC
p

E, where
Cp acts by freely permuting the factors of XP and E is contractible. As above, the results
apply more generally to the cohomology of HOlncp (lV*, C*0p) for any finite type cochain
complex C* of free abelian groups. Evens and Kahn obtained partial results for this case
[15] and we give few details for that part of our calculation which is a repeat of theirs. The
main new idea here is the use of Lemma 1.1, which enables us to complete the calculation
of H*(XP xC

p
E) and to give simpler proofs of S0111C of the results in Evens and I(ahn's

paper [15].
As in Section I, let C* be a cochain complex of finitely generated free abelian groups,

for example, the cellular cochain complex of a C\V-complex of finite type. Let E be
a contractible Cp-fre.e Cp-C.W-cqnfl~l~xl.~I].p.Jet W* be the cellular chain complex for E.
Recall from Lemma 1.4 that for finding the cohomology of Homcp (W*, C*0p), the complex
C* may be replaced by any homotopy equivalent cOlnplex. As in Section 1, we replace
C* by a complex C'* consisting of a direct surn of pieces of the form C(n, i)*, in bijective
correspondence with the summands of Hi(C*) (in SOlne fixed splitting) isomorphie to
Zj(n). (Recall that C(n, i)* is a complex which has at lnost two non-zero groups, each of
rank one, and that H *(C (n, i) *) is isomorphie to 7l j (11.) concentrated in degree i.)

As in Section 1, thc complex of abelian groups, C"*0p splits as a direct sum of 'cubes'
of the form C(n}, it}* 0· .. 0 C(n p , ip )*. The action of Cp permutes the cubes freely, except
for those cubes whose sides all correspond to the sa1ne cyclic sum1nand of H*(C*). The
action of Cp on these cubes is by a cyclic permutation of the p distinct axes. Considering
the cube as embedded in IRP, the matrix for the action is a permutation matrix of order p.
More care must be takcn for p = 2 than for p odd, bccause a 2 x 2 permutation matrix of
order two has determinant -1.
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The cubes permuted freely by Cp cause no problelu. Indeed, if n* is any cochain
complex of abelian groups, then the Ecknlann-Shapiro leillilla [8,5] shows that

H*TotHomcp(W*, D* ® ZCp ) ::: H*(D*).

Moreover, each of the two spectral sequences arising frolll viewing Homcp(W*, D* ® ZCp )

as a double cochain complex has E~'o I"V Hi(D*) aad E~,j = 0 for j # O. We cau of
course find the cohomology of C(n1, it} ® ... 0 C(np , ip ) using the Kunneth theorem. If
i = i 1 +... +ip and exact1y r of n1, . .. ,np are nonzero, then Hi-j (C(n1, i 1 ) ® ... C(n p, i p))
is isomorphie to a surn of (Tjl) eopies of Zj(nl, ... ,1lp ).

Similarly, the eubes of the form C(O, i)0p where Cp aets by permuting the faetors are
easy to handle. The cochain complex C(O, i)0P consists of a single ZCp-module of Z-rank
olle in degree pi. This is the trivial ZGp-module except when p = 2 and i is ocid, in which
ease it is Z, the module on which a generator for C2 acts as multiplication by -1. Thus
each such cube contributes a summand to the spectral sequence of the form H*(Cp ; Z)
(resp. H* (C2 ; Z) if p = 2 and i is odd) concentrated in E;,pi.

As in Section 3, let D(n, i)* = C(n, i)0p for n ~ 0 be a complex of ZCp-modules where
• 'I l' ' ..... , ,,-Gp.aGts,-byoopevmuting..t;he~faotops :fwi.th...a ,sign.,j.f.p=.,2..a.nd\i4€'-0dd~~ ;smlie-on.ly...contributions.. ".'" .

to H* (XP x C
p

E) not accounted for hy the above remarks come from summands of the
double cochain complex of the fonn Homc (W*, D(n, i)), for 12 > 1. It is easy to see that

• p •

the module D(n, i)' is the zero module llnless p(i - 1) :::; j :::; pi, and that D(n, i)l is
ZCp-free of rank 1jp(~) if p(i - 1) < j < pi. In the case when p is add, D(n, i)pi and

D(n, i)p(i-l) are the trivial ZCp-module Z. When p = 2, D(n, i)2i is isomorphie to JE (resp.

Z) and D(n, i)2(i-l) is isomorphie to Z (resp. Z) if i is even (resp. acid). To deseribe the
differential in D( 12, i)* completely we wauld have to choose an explieit generating set for
each D(12, i)i, and we shall not da this. All that we shall require in the sequel is that
D(l, i)* is exact (beeause C(l, i)* is exact), and that if we view C(l, i)* aod C(12, i)* as
cansisting of the same groups but with different maps, then the differential in D(n, i)*
is n-times that in D(l, i)*. Note that for p acid, each D(n, i) is isomorphie to D(n,O)
shifted in degree by pi, and for p = 2, D(n,2i) is isoillorphic to D(n, 0) shifted by 4i and
D(n, 2i + 1) is isomorphie to D(12, 1) shifted by 4i.

Theorem 4~1. For p ~'"Qdd prjm~e,'let"-E~,i' = Iiarncp (lVi , D(n, O)i), and let E;'* be the

eorresponding type 11 speetra,l sequenee. Then for i > 0, E~,i is zero exeept that E~i,O and
E~i,-p are eyc1ie of order p. Define a fUlletioll g(j) as follows:

for 0 :::; j :::; p - 1,
otllerwise.

Then Eg,-i is an extension of Z j p by (Z j n )g(j) for j = 0, 2,4, ... ,p - 3, nonsplit iE p

divides 12, and for other j, Eg,-j is isomorphie to (Zjn)g(j). Ifp divides 12 then tbe speetral
sequenee eollapses at E 2 . 1f p does not divide n then thc non-zero higher differentials are
d d d d · th' Eii 0 r . 0 dEO-j I"V (~j )g(j)3, 5 , ... , p, an ln 1S case c::. = lor 2 > an ob = ll..J n .

Remark. The reader rnay find it helpful to consult figures 1 and 2, whieh illustrate eases
of the above statement.
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Proof. For this speetral sequenee E~,i is isomorphie to Hi(Cp ; D(n, O)i). Since D(n, O)-j
is the trivial module Z for j = 0 01' j = p, free of rank l/p(~) for 0 < j < P and zero for

other j, we see that E~,i is trivial for i > 0 except that E;i,O ~ E;i,-p rv 7l/p. Also E~,-i

is free abelian of rank /(j), where f is definecl as follows:

for j = 0 01' j = p,
for 0 < j < p,
otherwise.

Note that the only non-zero groups on the El-page oceur on the three line segments j = 0
and i ~ 0, J' = -p and i ~ 0, i = 0 and -p ::; j ::; 0. The shape of the El-page implies
that E;,i = E;,j for i > 0, and that the only possibly non-zero differentials after d] are the
following:

d . E 2 ,-p --+ EO,3-p
3· 3 3'

d . E 4 ,-p --+ EO,5-])
5· 5 5'

d E P-3 -p E O -2
p-2: p-2' --+ p~2'

and dp : E;-1+2i,-p --+ E~,2i for all i ~ O.

To determine the groups Eg,i and the higher differentials we shall first consider the case
n = 1 and then apply Lemma 1.1.

The eomplex D(l, 0)* is exact, which implies that for n = 1 the total complex of E~'*
is exact, and hence E:J = °for all i and j. We also know the isomorphism type of E~,i
for all i and j except for the eases when i = 0 and -p ::; j ::; O. Since each of the possibly
non-trivial groups on the E 2 -page is involved in at most one possibly non-trivial higher
differential, it follows that in the case n = 1, a11 the possibly non-zero differentials listed
above must be isomorphisms, and that all groups Eg,i except those such that E~,i appears
in the above list must be trivial. This completes the proof in the case n = 1.

• •

•

•

•

•

•

•

• • •
Fig. 1. The E 2-page and higher differentials für the spectral sequence of 4.1,

when p = 7 and n = 1. '.' clenotes a non-zero eutry.
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'll/7n - Z/7 - 7l/7 - 7l/7 ...
- - - - - - - ...

Z/7n (fJ (Z/n)Z - - - - - - ...
(71/n? - - - - - - ...

Z/7n ffi (Z/n)2 - - - - - - ...
- - - - - - - ...

?h/n - - - - - - ...
- - Z/7 - Z/7 - 7l/7 ...

Fig. 2. The E 2-page of the spectral sequence of 4.1 for p = 7.

Let Zi and Bi stand for the cycles and houndaries respectively in E~,-i for the case
n = 1. Then Zi and Bi are free abelian of the SaIne rank, and Zi = Bi except that
Zi / Bi has order p for j = 0,2,4, ... ,p - 3. Let g'(j) stand for the rank of Zi 01' Bi. By
Lemma 1.1., the group of cycles for d1 in E~'-} for general n is equal to Zi, while the
group of houndaries is equal to nBi. It follows that for general n, Eg,-i is the natural

t.J extension"ör- ZitBi"'rhy~:i1nili~~tZlnJg!.{,jJ-;-which~is"TIOnsplit"wheneveT'"ossible :l.."q'hus'·· ~. ~ .
to verify the claimed description of the E2 -page it suffices to show that g'(j) = g(j). For
this, note that the short exact sequence

°-t zj -+ EO,-j -t Bj-l -t 0
1

implies that g'(j) + g'(j - 1) = f(j). Define polynol11ials F(t), G(t) in a formal variable t
by

and note that

F(t) = L f(j)t j
,

}

G(t) = L g'(j)t j
,

j

F(t) = p-l(l +tP) + .!(l +t)P.
P P

The relation given between-r·and~g!...implies-that (1 + t)G(t) = F(t), from which it is easy
to verify that g' = g.

It now remains only to check the given description of the higher differentials in the
spectral sequence for general n. Onee more we invoke Lemma 1.1. For i > 0, let x E E6 i

,-P

be an element representing a generator for Eii,-p, and let y E E6 i
-

1
- P (resp. y E E6 i

-
p+1

,O

if 2i > p) be an element representing the image of x uuder dZi+l (resp. dp ) in the speetral
sequenee for n = 1. If p divides n, then njy will rcpresent zero in E z for j ~ 2, and so
in trus ease the higher differentials are trivial. If on the other hand p does not divide n
then njy will represent an element of order p in E 2 for j ~ 1, ancl so again the higher
differentials are as clainled. -

Theorem 4.1'. For p = 2, let E~'* be the double cochain complex Homc4 (W*,D(n,0)*).

Tben in tbe corresponding type 11 spectral sequence, E;,j = °except that E~i+2,O rv

E~i+l,-2 rv 7l/2 for a1l i 2:: 0, and Eg,o ~ Zj(2n). If n is even tbe spectral sequence
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+ .... It "'41'~

co11apses at E 2. If n is odd, tbe spectral sequcnce collapses at E 3 , and E~,j = 0 except
that E~'O r-v Z/n.

Let E'~!* be the double cochain complex Homc2 (vV*,D(n, 1)*). Tben in tbe corre-
.. 2+12 2+20

spanding type 11 spectral sequence E~!J = 0 except tllat E' 2 I 1 ~ E'2 I l ~ 7l /2 for a11

i ~ 0, and E'~ ,1 r-v Z / n. If n is even the spectral sequence collapses at E 2 . If n is odd tbe
. . 0 I

spectral sequence co11apses at E 3 and E,;,J = 0 except tllat E '3 ' r-v Z/n.

Proof. Similar to the proof of Theorem 4.1, and easier in spite of the extra complication
introduced by the second action of C2 on Z. •

Theorem 4.2. Let p be an odd prime and let W* be an acyc1ic complex of free ZCp
modules. Let C* be a cochain complex of finitely generated (ree abelian groups, and
choose same splitting

H*(C*) r-v E9 H(a),
aEA

where H(a) is a summand of Hd(a)(c*), alld is isoHlorphic to Z/(n(a)), where (for sim
plicity and without lass of genera1ity) each n(a) is either 0, apower of p, or a positive
iiiteger'~coprime tü"ß~~l;e't'·'C;"'aef 'ön "t'h-e° se't""'Ap' 'by·penn'utlng'the {ac to'rs,~ ~sö-tbat- 'elemen ts
of the form (al, ... , ap ) are in free orbits provided that not a11 the ai are equal, and ele
ments of the form (a, .. , , a) are fixed. Then H*TotHomcp(ltV*, C*0p) is a direct sum of
tbe fo11owing summands.

a) For each free Cp-orbit in AP with orbit representative (al" .. , ap ), and for each j, a
direct surn of C':l) copies ofZ/(n(ad, ... ,n(ap )) in degree d(al) + ... + d(a p ) - j.
Here r is the llulnber of ai 's such that n(ai) is non-zero.

b) For each a such that n(a) = 0, Olle copy of Z in degree pd(a), and for each i ~ 0, Olle
copy of Z/(p) in degree pd(a) + 2 + 2i.

c) For eadl a such tbat n(a) is non-zero and coprizne to p 8Jld for each j, a direct surn
of g(j) copies ofZ/(na) in degree pd(a) - j, where g(j) is as defined in the statement
of Lemma 2.2.

d) For eacb a such that n(a) is apower of p, for j = 0,2, ... ,p - 3, a direct surn of
g(j) - 1 copies ofZj(n(a)) and one copy ofZj(pn(a)) in dcgree pd(a) - j; for other j
a surn ofg(j)-copies~o[-Zl(n('a})-jn'degree-pd(a)- j; and for each i 2: °one copy of
Zj(p) in degree pd(a) + 2 + 2i and one cop.y ofZ/(p) in degree p(d(a) -1) + 2 + 2i.

Proof. The fact that we can split the cohomology as a direct sum of contributions of the
types described, and the analyses of cases a) and b), were proved earlier. Cases c) and d)
are descriptions of the cohomology of the total complex of E~'* = Homcp (W*, D(n(a), 0)),
and so follow from Theorem 4.1 except that in case cl) we have to show that the extension
with kernel E~-p+2i and quotient E~I-P representing H2i-p is split for 1 :::; i :::; (p -1)/2.
For i = 1 this is obvious, because g(p - 2) = 0 ancl hence E~2-p = 0. For other i we
use (for the first time) the graded H*(Cp ; Z)-l11odule structure of the spectral sequence,
which is a filtration of the graded H* (Cp)-ulodule structure on H*Homc (W*, D(n, 0)*).

p .

It is easy to see that the product of a generator for E~- P and a generator for H 2
1 ( Cp; 7l)

is a generator for E;:2i ,- p and therefore that there is an element of H*(E~'*) of order p
yielding a generator for E;:2i ,- p , and so the extension is split.
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As an alternative we may solve the extension problem by calculating H*(TotE~!* <9
IFp ), which determines the number of cyclic summands of H*(TotE~'*) by the universal
coefficient theorem. When p divides n, the differential in D(n, 0) 0 IFp is trivial, and so
the type 11 spectral sequence for H* (TotE~!* 0 IFp ) collapses at thc E1-page, which makes
this calculation easy. Vve leave the details to the interested reader. _

Theorem 4.2'. Let p = 2, and let W* be an acyc1ic complex of free ZC2-modules. Let
C* be a cocbain complex of finitely generated free abclian groups and fix a splitting

H*(C*) 8:! E9 H(a),
aEA

as in tbe statement of Theorem 4.2. Then H*Homc2 (lV*, C*02
) is a direct sum of the

following summands.
a) For each a i= a' E A, one summand Zj(n(a), n(a')) in degree d(a) +d(a'), and if botb

n(a) and n(a') are nonzero, ane summand Zj(n(a), n(a')) in degree d(a) +d(a') - l.
b) For each a witb n(a) = 0 and d(a) even, one sUlnlnand Z in degree 2d(a) and one

summand Zj2 in each degree 2d(a) +2 +2i.
. . ~ ~." ' .'~j" Fh;:~~eb~ '';iIt"h';(df""o -~'~{d(~)""Odd; 'dii~~';ü;n~;;~(ri72~1~"~a'Ch~aegree"2d(a)+1'+2i~"

d) For each a with n(a) odd and d(a) even, one copy ofZj(n(a)) in degree 2d(a).
e) For eacb a with n(a) add and d(a) odd, one copy ofZj(n(a)) in degree 2d(a) - l.
f) For each a witll n(a) a (strictly positive) power of 2 and d(a) even, one eopy of

Z/(2n(a)) in degree 2d(a) and one copy ofZ/2 in degree 2d(a) -1, and in eacb degree
of tbe form 2d(a) + 1 + i.

g) For each a with n(a) a (strietly positive) power of2 and d( a) odd, one copy ofZ / (n( a))
in degree 2d(a) - 1 and onee copy ofZ/2 in eac11 degree 2d(a) + i.

Proof. This follows from the preamble together with Theorem 4.1'. Note that this is
simpler than Theoreln 4.2 in that there are no extension problems that need be resolved.

-
5. The spectral sequence for the cyclic group of order p.

In the -previous section -we·computed-the-integral coholuology of X p X C p E Cp for any finite
type CW-complex X, by replacing the double cochain cOlnplex forrning the Eo-page of the
Cartan-Leray spectral sequence with a direct surn of simpler cornplexes. In this section
we solve the associated type I spectral sequences, and hence describe the differentials and
extension problems in the Cartan-Leray spectral seqllence for XP x cp ECp .

For C* a cochain complex of finitely generated free abelian groups, fix a splitting of
H* (C*) as a direct SUIU of cyclic groups,

H*(C*) = E9 H(a)
aEA

as in the statement of Theorem 4.2. As in the preaolble to Section 4, choose a cochain
complex C'* splitting as a direct surn of subcomplexes C'(a )* (indexed by the same set A),
and a homotopy equivalence f from C'* to C*, the cochains on X, such that the image of
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H*(C'(a)*) under f* is H(a) ~ H*(C*). As in Section 4, let W* be the chain camplex for
ECp. By Lemma 1.4, the double complexes

E~'* = Homcp(W*, ((C*)®P)*) and E'~'* = Homcp(W*, ((C'*)0p)*)

give rise to isomorphie type I spectral sequenees, from the E J-page onwards. If C* is the
cellular cochain complex of a finite type CW-eomplex X, then the type I spectral sequence
for E~'· is the Cartan-Leray spectral sequence for XP x c p ECp.

We have already seen that E'~'* splits as a clirect SUln of subcomplexes indexed by the
Cp-orbits in AP. In the preamble to Section 4 we showed that the type I spectral sequences

corresponding to free Cp-orbits in AP have E2-page concentrated in the column E'~'*, so
collapse at E 2 and give rise to no extension problems. 'vVe also showed that the trivial Cp

orbits of the form (a, ... ,a) such that H(a) is infinite cyclic give rise to double complexes
with a single nonzero row, and hence the type I spectral sequences for such orbits collapse
at E2 and give rise to no extension problems. Thus thc Cartan-Leray spectral sequence
for XP x C

p
ECp splits froln E2 onwards as a direct SUln of the following:

a) Various pieces concentrated in E~'*.
" ~,.. ---b) ""'"For'each<ta' E-A"'SUch'1;hat-H'(a}-§'-fr~('K+is 1nfinite·cydic,-ßTiece-ooncent~ated~,in .the. ,

row E:,pi.
c) For each Q' such that H(a) ~ Hi(X) is eyclic of order n , a copy of the type I spectral

sequence for the double complex Homcp (ltV*, D(n, i)*) defined in the introduction to
Section 4.
Thus to solve the Cartan-Leray spectral sequence, it sullices to solve the type I speetral

sequences for the double complexes of Theorems 4.1 and 4.1'.

Theorenl 5.1. Let p be an add prime, and let E~'* be the double eochain complex of
Theorem 4.1, and let E:'· be the corresponding type I spectral sequence. If p does not
divide n, then E~,j is as follows, where the function 9 is as defined in Theorem 4.1:

E~,j = {(z/n)fBg(-j) for i = 0,
o for i > O.

In tbis·ease·the"spectral~sequence,c1early-collapsesand gives rise to no extension problems.
If p divides n, the E 2 -page is aB follows:

{

(Z/n)ffig(-~) EB Z/p
Ei'; _ (Z/n)(J)g(-;)

2 - Z/p
o

for i = 0, j odd, 0 > j > 1 - p,
for i = 0, j not as above,
for i > 0, 0 2:: j 2:: 1 - p,
otherwise.

In this ease the spectral sequence collapses at E 3 , and the E3 -page is as follows:

E i'; 
3 -

(Z/n)ffig(-j)

7l/p

o

if i = 0,
if eUher j = 0, i > 0 and i even,

01' j = 1 - P alld i odd,
01' i = 1 and j = -1, -3, ... ,2 - p,

otherwise.
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The only non trivial extensions in reassembling H*TotE~'* [rom E~* are that tbe extension
witb kernel E~,-i and quotient E~,l-i is non-split far j = 1,3, ... ,p - 2.

Remark. Figure 3 illustrates the case of the above statement when p = 7 and n is a
multiple of p. In the figure, circles indicate entries isonl0rphic to Z/7, and squares indicate
other non-zero entries. Entries in black remain non-zero in E 3 = E(Xj' Arrows represent
non-zero d2 's, and double lines represent non-split extensions.

Fig. 3. The E2-page of the spectral sequence of 5.1, for p = 7 and pln.

Proof. Recall that E~,i = HO~<?p(Wi, D(n, O)i), and so E~,i = Homcp(Wi' Hi(D(n, 0)*))

because Wi is free, and then E~,) = Hi(Cp;Hi(D(n,O)*)). The complex D(l,O)* is exact,
and if we let Zi stand for the cycles in D(l, O)-i, then for any n,

Since Zi is free abelian, the cochain complex Horncp (W*, Zi) is also free abelian, and we
have the following isomorphism.

Hence we may compute E~,-i = Hi(Cp; Zi /nZ i ) by first computing H*(Cp; Zi) and then
applying a universal coefficient theorem.

Now ZO = D(l,O)O = Z, Zi =°unless °~ j ~ p-1, and for °< j ~ p-l there is a
short exact sequence of Cp-modules

o--+ zj --+ p. --+ Zi- 1 --+ 0
)

where Pi is a free module of rank ~ (~). Taking cohomology we obtain for 0 < j < P the
following exact sequences.

o--+ HO(C . Zi) --+ HO(C . p.) --+ HO(C . Zi- 1 ) -t H 1 (C . Zi) -t 0PI Pl ) Pl p,
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Using the second of these and the periodicity of the cohomology of Cp with arbitrary
coefficients, it follows easily that for i > 0 and 0 ~ j ~ p - 1,

Hi(C . Zi) = {Z/p for i + j even,
p 1 0 for i + j odd.

For each j, HO(Cp , Zi) is a free abelian group, so we need only find its rank. From
the first of the two exact sequences we obtain for 0 < j < P that

Note also that HO (Cp; ZO) has rank 1, and so the rank of HO (Cp; Zi) satisfies the same
recurrence relation as g(j) defined in Lemma 2.2, so is equal to g(j). Now the universal
coefficient theorem teils us that

~~ ~.. ' J".~~ .".~~""1'''I''''~'''· ~ " -#0 -., ~ .. ".... ~;' 'III~-.r ~.. ~.l r ~..",~ '1. ~ I ~_ 1'II.,..~t ~~.-.. ~ ...,., 'w.....

and we see that E;'· is as claimed.
It will turn out that the E 2-page, together with the cohomology of E~'· (which was

calculated in the last section), suffices to detennine the pattern of higher differentials. We
claim that the only non-zero higher differential is

d . Ei,i --+ E i+2 ,i-1
2· 2 2 ,

where i ~ 0, 0 ~ j > 1 - P and i + j is odd. Moreover, when i = 0, the kernel of d2 is a
direct summand of E~,i. These claims imply those made in the statement concerning the
E a-page. Let

A - ffi Ei,i
m- '\I7 2'

i+i=m

so that d2 and the higher differentials give rise to rnaps from subquotients of Am to
subquotients of A m +1 . Then for m >,0, the order of Am is pP 1 while for °~ m ~ 1 - P
the order of Am is n g( -m)p2[(p-m)/2] (here the square brackets indicate the greatest integer
less than 01' equal to their contents). The order of HmTot(E~'*) is, by Theorem 4.1, equal
to ng(-m)p for m ;:: 2 - p, and ng(-m) for 1n ::; 1 - p. For m = 1 - p, the orders of
Am and Hm (E~'·) are equal, and so there are no non-zero higher differentials leaving
A 1- p . (This is also easy to see directly, because A1- p is concentrated in the bottom left
corner of the E 2 -page.) Now assurne that 111 is even, and that we have shown that Am
consists of cycles for an the higher differentials. In this case, the universal cycles in A m +1

form a filtration of Hm+l (E~'*), and in particular these two groups have the same order.
The universal cycles in Am +2 modulo the image of Am +1 uuder an differentials forms a
filtration of Hm+2 = Hm+2(E~'*). Taking the orders of various groups we obtain the
following inequality,
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with equality if and only if Am +2 consists entirely of universal cycles. It is easy using the
numbers given above to check that equ81ity docs hold, and so by induction A m +2 consists
of universal cycles.

Now pick any strictly positive m. By the above inductive argument, 811 elements of
A2m+2 are universal cycles, alld it is clear that E~m+2,O cannot be hit by any differential.
However, H 2m+2 has order p, so the other p - 1 summands of A2m+2 of order p must all
be hit by some differential. The only way for this to happen is if

is an isomorphism for 0 ::; i < p - 1. The H*(Cp ; Z)-tllodule structure of the spectral
sequence allows us to deduee the claimed deseription of d2 on E;,j for all i > o. To see
that d2 on Eg j is non-zero for j odel and 0 > j > 1 - p, note that no higher differential
ean hit a generator for E~,j-l, but this generator fiUSt be hit to ensure that the produet
over i of the orders of E;,;-i,j-i-l equals the oreler of H 2+j-I (E~'*). To see that the kernel
of d2 on Eg,j is isomorphie to (Zln)g(-j) for j odd, note that sinee d2 : E~,j -+ Ei,j-l is

an isomorphism, the kernel of d2 : E~,j --+ E;,j-I is equal to the kernel of the map from
... BO(t;;Zj'/nZi ) "~~E~:J'T~"}j2'(C;;ZjlnZ]r-~ ""Ei;j" iiidu'cea-b~/ the-·c{ip ~prö(hicr with a - ..

generator of H 2 (Cp ; Z). This kernel eontains thc image of HO(Cp ; zj), whieh is isomorphie
to (Zln)g(-j), because H 2 (Cp ; Zi) = 0 for odd j. Given the deseription of E 3 claimed in
the statement, it is easy to see that there are uo further non-zero differentials, and that
the non-trivial extension problems must be as claimed. •

Theorenl 5.1'. Let p = 2, let E~'* and E'~'* be as in tbe statement of Theorem 4.1', and
let E;'*, E/:'* be the corresponding type 1 spectral sequences. Then if n is odd,

E;,j = { Zo In if i = j = 0,
otherwise

E,~,j = {Zo In if i = 0, j = 1,
otherwise

and both spectral sequences of course collapse at E 2 .

If n is even, then

{
z/n ifi=j=O,

E~,j = ZO/2 ifj = -1 and i 2:: 0,01' ifj = 0 and i > 0,
otberwise

.. {tEin ifi=O,j=l,
E';') = Z/2 if j = 2 and i 2: 0, 01' if j = 1 and i > 0,° otherwise.

Both spectral sequences collapse at E 3 , and

{

Zln ifi=j=O,
E~,j = Zo /2 if(i,j) = (0, -1) or (1, -1),01' ifi > 0 and even and j =°01' -1,

otherwise,
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.. {z/n iE i = 0 and j = 1,
E';!) = Z/2 if i is odd and j = 1 or 2,

o otberwise.

The only non-trivial extension in reassembling H*TotE~'* and H*TotE~*!* from the E oo 

pages is that the extension with kernel E~,-l and quotient E~'o is non-split.

Proof. Similar to, hut far easier than, that of Theorem 5.1.

6. A detection lenuna.

Let X he a finite type CW-complex and let a and ß be the maps:

•

Here a is the covering map, and ß is induced by the map ~ : (x, e) t-+ (x, ... , x, e)
from X x ECp to XP x ECp , which is Cp-equivariant for the trivial action on X and
the permutation action on Xp. One easy corollary of Nakaoka's description of the mod-p
cohomology of XP xCp ECp is Quillen's detection lenlma [25], which states that the map

'w -t .. "" .' -~(~'* , (J*) ': H*(XP"'x C;: Jiftp; F;T~ ~j{*~( XP 'x' F.rC~;· IF;r'x lI*i(JC·x13C;;Vil;r'T··~"

is injective. The result of this section is an integral analogue.

Corollary 6.1. Let p be a prime, and as usua1let X be a finite-type CW-cornplex, and
let Q, ß be as above. Then the kernel oE the Inap

has exponent p, and does not contain any cyc1ic summand of H*(XP xCp ECp ). JE H*(X)
is expressed as a direct surn oE cyclic groups, then the kernel may be described as follows:

For p an odd prime, each cyclic summand of Hi(X) offinite order divisible by p gives
rise to one cyc1ic summand of ker(a*, ß*) in each degree pi, pi - 2, ... ,p(i - 1) + 3, and
these summands form tlle whole of ker( 0'* ,ß*).

For p = 2, each cyc1ic summand oE H2i(X) oE finite even order gives rise tn" one cyclic
summand of ker(a* ,ß*) in degree 4i, --aild "these sumlnands form the whole kernei. JE x
generates a summand of H 2i (X) of even order 11, thCll n(x 11) generates the corresponding
sUlnmand of the kernel.

Proof. Fix a splitting of H* (X) as a direct SUffi of cyclic groups. Note that a* is the edge
map in the spectral sequence whose Eoo-page was described in Theorems 5.1 and 5.1'. It
follows that ker(O'*) consists of a direct SUlll of cyclic subgroups of order p as described
in the statement, which are not direct summands of H* (XP x C

p
ECp ), and various cyclic

direct summands of H*(XP xCp ECp ) of order p. Consider the map of Cartan-Leray
spectral sequences induced by the following map of p-fold covcring spaces:

X xECp

lLl
XP x ECp
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The spectral sequence for X x BCp collapses at the E2-page, and for i > 0, E;,j consists of
cyclic direct sUffiluands of H* (X x BCp ) of order p. The map on Eoo-pages is a filtration of
ß*, so it follows that the image ß*(ker(a*)) is a sum of cyclic summands of H*(X x BCp ) of
order p. Thus any element ofker(a) not generating a cyclic sumnland of H*(XP xC

p
ECp )

is also in ker(ß *), and ker(a *,ß*) is at least as large as claimcd. To see that uo cyclic
summand of H*(XP xCp ECp ) of order p may be eontail1ed in ker(a*,ß*), eonsider the
following diagrarn.

The lower horizontal map is known to be injective, and the kernel of the left-hand map is
p.H*(XP xCp ECp ). Thus the lower eomposite is injective on any summand of H*(XP xCp

ECp ) of exponent p, and hence so is the top horizontallnap. •

..R~!Da!" k.. Qn~. c~~~g .tp~~_~..J!12t:~ ..g~~~!.~1~~.~t~!E~..n~,.f?~...~~!:~.~:: (~.o!~:J?l~~~~q':i.~,9~~~~d,-, _.
with a map from C* to C* ® C* having properties similar to a diagonal approximation for
the eellular eochain eomplex of a CW-eomplex. This map is used in the definition of the
map ß* above.

7. p-local eohomology for the symmetrie group l:p.

The methods used in Sections 4, 5, and 6 may be used to compute the cohomology
with coefficients Z(p), the integers 10calized at p, of XP x s ES for any subgroup S of the
symmetrie group on a set of size p. If S does not act transitively (01' equivalent1y has order
coprime to p), then the Cartan-Leray type spectral sequence for XP x s ES has E2 -page
concentrated in the 1ine Eg,*. If S does act transitively, then either the results of seetions 4,
5, and 6, together with some transfer argulnent could be used, 01' the methods used above
could be app1ied directly. The case when S is the full sYlllmetric group works particularly
easily. As examples we give the following, which are ana10gues of 4.1 and 6.l.

Throughout this sectiöii, we let W* ·be· the- chain comp1ex with Z(p) coefficients for a
contractib1e, free Ep-CvV-eomplex. Let D'(n, i) be the cOlnp1ex

D'(n, i)* = D(n, i)* ® Z(p) = C(n, i)*0p ® Z(p)

of Z(p)Ep-modu1es, where D(n, i) is as defined in Sections 3 and 4, and ~ithout 10ss of
generality, n may be taken to be apower ofp. The complexes D(n,2i)*-2 p

1 and D(n,O)*
are isomorphie, as are the cornplexes D(n,2i + 1)*-2pi and D(n, 1)*.

Theorem 7.1. Let p be an odd prime, and let n be a (strictly positive) power ofp. Define
double cochain complexes E~'* and E~*'* by

E'i,j = HOln~ (W' D'(n l)i)o LJp I, , ,
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wbere W* and D'(n, i)* are as above. Tbe corresponding type 11 spectral sequences collapse
at E 2 , and give rise to no extension problems. The E2 -pages are as follows.

{

Z(p)/(pn) for i = j = 0,
E;,j = Zo(p)/(p) for i = 0, j = (2j' +2)(p - 1),

or i = - p, j = (2j' + 1)(p - 1),
otherwisc.

{

Z(p)/(n) for i = 0, j = 1,
E~i,j = Z(p)/(p) for i = 0, j = (2j' +2)(p - 1),

or i = p, j = (2j' + 1)(p - 1),
o otherwise.

Proof. Similar to the proof of Theorem 4.1. Ta calculate the E1-pages of the spectral
sequences, note that as a Z(p)Ep-module,

where Ej is the sign representation far Ej tensored with the trivial representation of Ep_j.
q ..;.:.;.Using't'he'.Eckmann!'Sfiapiro.lemma-it.föllows:.that.....lo: ..... ,.--: ~,_·.h <. • •• •...'~4···"" 1""~s·... r ..... ~;.·, ._., ( ,\ '" _

E O,o ~ EO,- 1 ~ EtO,o ~ EtO,l ~ '7l
1 - 1 - 1 - 1 - lLJ(p),

and that with these exceptions E;,j = E~,j and E~i,j = E~i,j as described in the statement.
As in Theorem 4.1, the collapse at E2 follows by cOlllparing with the case n = 1 and
applying Lemma 1.1. •

Corollary 7.2. Let X be a CW-complex oE finite type, and let 0', ß be the maps

XP x EEp~XP XE
p

EEp,

X x BEp..!!....tXP XE p EEp,

analogous to the maps occurring in tbe statemen t of Corollary 6.1. If0'* , ß* are the induced
maps on cohomology with Z(p) coefficients, tllen ker( 0'*, ß*) is concentrated in degrees
divisible by 2p, and may b.e described as fojlo1)'s. Every cyc1ic summand oE H 2i (X; Z(p») oE
order pr gives rise to a summand of ker(0'* l ß*) oE order p in degree 2pi. IE x generates a
summand oE H 2i (X; Z(p») of order pr, then pr(x 11) generates the corresponding sUlnlnand
oE the kernei.

Proof. Similar to that of Corollary 6.1. •
Remark. Another generalization of the material in Scction 4 is to consider other pos
sibilities for W*. We have made calculations sinular to those in Sections 4 and 5 for the
case when S is cyclic of order P, and W. is the chain camplex af a sphere with a free
S-action. In this case the non-zero entries on the E 2-pagc of the type II spectral sequence
are concentrated at the edges of a rectangle (of height p and width the dimension of the
sphere), and the left-hand edge of the rectangle is idelltical to the start of the 'infinite
rectangle' considered in Section 4. This gives enough information to reconstruct the whole
&-page and the higher differentials may be calculated using Lellllna 1.1.
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8. The exponent of group cohomology.

In this section we apply the results of previous sections to the question of deterrnining
the exponent of the integral cohomology of finite groups. It is simpler to concentrate on
p-groups, and we shall do this, although we shall also Inake some remarks about the case
of arbitrary finite groups.

Before starting, we recall the Evens-Venkov theorem ([14,5]), which states that if G
is a finite group and H is a subgroup of G, then H* (G) is a finitely generated ring, and
H*(H) is a finitely generated module for H*(G).

Definition A. For G a nnite group, say tbat G enjoys propcrty A when for a11 i, if tbere
exists j such that Hj (G) contains an element of order pi, then there exist innnitely many
such j.

Property A was introduced by A. Adern in (1], and by H.-W. Renn in [17], but see also
[22, q. uo. 754]. No p-group is known which does not have property A, and Adern made
conjecture Aj the conjecture that all p-groups have property A. Henn also asked whether
all p-groups have property A. If G is a finite group with Sylow subgroup Gp , then Hj(G)
contains elements of order pi for infinitely 111any j if and only if Hi(Gp ) does. Thus C

.. ~ .;enjoys -<'pr'öp"erY'Ä. {lf itsSyl'öw':ji sUögroup··aoe~~'~ I..J " .. ".ü. ,.~.~,:. '''' .-, ........ ·.' ..'l~ 1'0';,,'. - '-"'-t~~' • ~:'l.

One may reformulate property A in tenns of the cohomological exponent e(G) and
eventual cohomological exponent ee(G) of a finite group C, which we define as follows,
where exp(-) stands for the exponent of an abelian group:

e(G) = exp (EB H i
(G)) ,

i>O

ee(G) = ,lim exp(EB H i
(G)).

)-too
i>j

Note that for any G, ee(G) divides e(G) aJld e(G) clivides [GI. The group G enjoys
property A if and only if e(G) = ee(G). Adenl did not lnake the above definition, but he
pointed out that the Evens-Venkov theorem iInplies that if H ::; G, then ee(H) divides
ee(G) [1]. It seems to be unknown whether a similar property holds for e(G), so we make

Conjecture A-. For G any p-group and H any subgroup of G, e(H) divides e(G).

We call this conjecture A-: because .it-is .weaker than conjecture A.

Proposiion 8.1. Let G be a p-group. Then

ee(G 1Cp ) = p' ee(G) and e(G l Cp ) = p' e(G),

except that possibly e(GI C2) = e(G) iE p = 2 a.n cl H *(G) con tains only nnitely many cyc1ic
summands of order e(G), a11 oE which occur in odd degree.

Proof. First consider the case when p is odeL Express H* (G) as a direct sum of cyclic
subgroups. All of these have order dividing IGI, except that HO(G) = Z. By Theorem 4.2,
each p-tuple of cyclic summands of H* (G), not all equal, of orders nl, ... ,np gives rise
to fini tely rnal1Y cyclic summands of H * (G l Cp) of order h. c.f.{n 1 , ••• , n p }. Each cyclic
summand of H*(G) of order pi also contributes (p - 1}/2 cyclic summands of H*(G l Cp )

of order pi+l, infinitely many summands of order p, and finitely many other summands
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of order dividing pi. The only other contribution is from HO( C), which gives rise to
HO(G 1Cp ), and other summands of order p. The claim follows.

The case when p = 2 is similar, relying on Theorem 4.2'. The extra difficulty arises
hecause summands of H* (C) of order 2i in odd degree do not contribute any surnmands
of H* (G 1C2) of order 2i+1. It remains to rule out the possibili ty that H *(G) contains
infinitely many cyclic summands of order 2i = ec(G), all hut finitely many of which occur
in odd degrees. However, H * (G) is a fini tely generated ring, and since the square of any
generator has even degree, H* (G) is a finitely generated module for the suhring of elements
of even degree. Let the supremum of the degrees of a (finite) set of module generators for
H*(G) over the even degree subring be m. Now suppose that all elements of H 2i(G) have
exponent strictly less than 2i whenever j > jo. In this case, Hi (G) may contain elements
of exponent 2i only for j ::; 2jo + m, and so H*(G) can have only finitely many cyclic
summands of order 2i . •

Corollary 8.2. Let G be a p-group. If p is odd, then G enjoys property A if and only if
G 1Cp does. If p = 2 and G enjoys property A, then so does G l C2 • •

The following slightly stronger property than property A fits weH with wreath product
- .. argurifeiits,"aS"ca·ri''he''seen''"froITl'·Th'ebfem'.8':3:''·· ... I ••'0;.", "'",,-.'...., t"...·~ ,.:"':",,,,,," ~"di""t 4~.,',r ..lo':r,l . .' ..

Definition A'. For p an odd prime, say that a p-group G enjoys property A' if for each
i > 0, whenever there exists j such that Hi (G) contains a cyc1ic summand of order pi,
tbere exist infinitely many such j.

Say tbat a 2-group G enjoys property A' iffor eac1l i > 0 and € = 0,1, wbenever there
exists a j such that H 2 i+f. (G) contains a cyc1ic summand of order pi, there exist infinitely
many such j.

I know of no p-groups not enjoying property A', and it seems reasonable to make
conjecture A', i.e., to eonjeeture that all p-groups enjoy property A'.

Theorenl 8.3. Let G and 5' be p-groups, and let 5' act on the finite set n, witb image
5 ::; E(n). IE both G alld 5' enjoy property A', then so does G l 5'.

Proof. As at the end of Section 1, we fix a splitting of H*(G) as a direet SUffi of cyclic
groups -indexed by a set A j ' and let

C'* = EB C(a)*
aEA

be a direet sum of eomplexes ofthe form C(n, i)* having cohomology isomorphie to H*(G).
Let astand for the 5'-orbit (or equivalently S -orbit) in An eontaining (al, ... , al),

and let D(a)* be the ZS-subeomplex of C,*®n generated by C(ad ® ... C9 C(ad. Then as
complexes of ZS-modules,

C,.®n = EB D(a)*,
aEAOjS

where the surn is over the S-orbits in An. For p odd, the isomorphism type of D(a)*
(modulo a shift in degree) depends only on the orders of the summands H (al), ... , H (ad
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of H*(C), because no subgroup of S' has a non-trivial sign representation. For p = 2, the
isomorphism type of D (a) * (luodulo an even shift in degree) depends on the parity of the
degrees of the H(ad as weH as on their orders. In either case, property A' for G implies
that each isomorphism type of D(a)* that oceurs in (3) oecurs infinitely often, except for
D(ao), ao = (ao, ... ,ao), where H(ao) = HO(G) ~ Z. The complex D(ao) is isomorphie
to the trivial S-module Z concentrated in degrec zero.

Let K be the kernel of the homomorphism from S' onto S, and let W* be the eeHular
chain complex for ES' / !(, viewed as a complex of free ZS-modules. By Lemma 1.4,
H* (G 1S') is isomorphie to the cohomology of the total complex of

E~'* = Homs(W*, E9 D(a)*)
aEAOjS

= E9 Homs(W*,D(a)*)
aEAOjS

E9 E(a);'*.
aEAOjS

~~ ' .. ~~ ;".,:,~.L~J. ••.-:'.. ~ i ...... \..~'.c:t~~.~.J: ... ~4 ..~ :-J·.f .. ,..,. ...:A1-..~, ~::J--.....4.~~~~.:...::l.~:::;;f, , ..~/:':J~~,;~:t .~. ~

From the analysis of the D(a)* 's given above, it follows that each isomorphism type
of E(a)~'* that occurs, oeeurs infinitely often, exeept for E(ao)~'*. But

and so H*TotE(ao)~'* is isomorphie to H*(S'). Thus if a # aa, then any cyclic summand
of H*TotE(a);'* is also a summand of H*TotE(a');'* for infinitely many a ' by property A'
for C, while any eyclie summand of H*TotE(ao)~'* occurs infinitely often by property A'
for S'. •

For Gap-graup, define q. n (G) to be the intersection of the snbgroups of G of index
at most pn. Thus q.l (G) is the Frattini subgroup of G, anel each q. n (G) is a charaeter
istie subgroup of G. In [21] we pointed out that these subgroups give a group-theoretic
description of a gooel upper bound for ee(G), as follows.

Proposition 8.4. Let G be a p-groiip such that cI>n(G) = {I}. Then ee(G) divides pn.

Proof. If H 1 , . .. ,Hm are a family of subgroups of G with trivial intersection, then the
natural map

G -t E(G/Ht} x ... x E(G/Hm )

sending an element g to the permutation g' H i r-+ gg'Hi is injeetive. If G is a p-group such
that q. n (G) is trivial, then G is therefore isomorphie to a subgroup of a product of copies
of the Sylow p-subgroup Pn of Epn. Using the results of Section 4, it may be shown that
ee(Pn) = e(Pn) = pn, and the claim follows. •

Remarks. It may be shown that ee(Pn ) = e(Pn ) = pn without using the resuIts of
Section 4-the upper bound by a transfer arguluent, and the lower bounel by exhibiting a
suitable subgroup of Pn whose cohomology is known, for example the cyclic group of order
pn.
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If G is a finite group with Sylow p-subgroup Gp, then the p-part of ee(G) is equal to
ee(Cp ), so the bound given by Proposition 8.4 lnay be applied to arbitrary finite groups.

The bound on ee(G) given by Proposition 8.4 is sharp in many cases including: the
extraspecial groups, and the groups presented during the proof of Theorem 3.3; groups of
p-rank onej abelian groupSj the metacyclic groups whose cohomology has been calculated
by Huebschmann in [18]. Moreover, if G has subgroups H 1 , . •. ,Hm of index pi with trivial
intersection then the subgroups of the form G x ... X H i X ... x G of CP intersect trivially
and have index pi+1 in GI Cp . It follows from Proposition 8.1 that whenever the bound on
ee(G) is sharp, so is the bound on ee(G 1Cp). In the next section we shall exhibit a group
for whi~h the bound is not sharp however. This is a 2-group G such that ee(G) = 4 but
<1>2 (G) =f- {I}.

9. A group whose cohomology has small exponent.

As promised at the end of Section 8, we exhibit a counter-example to the converse of
Proposition 8.4. More precisely, we exhibit a 2-group G whose index foul' subgroups do
not intersect trivially, but such that ee(G) = 4. It is known that if H is a p-group such
that ee(H) = p, then H is elementary abelian, and so <1>1 (H) is trivial [1,17,21]. Thus

·our example'fs '~rnmai~ In~~some"<.sense:'t"Tlie-' 'smB.1lesT'·stlal·t;··tliat·:weliäve""Been~ äble" to·
find has order 27

• The necessary calculations are simpler for another example of order 29

however, so we shall concentrate on this example and explain the smaller example in some
final remarks. We also discuss the case of odd p at the end of the section.

To explain the origin of the example, it is helpful to consider a more general problem.
If r is a discrete group of finite virtual cohomological dilnension (ved), then ee(r) may
be defined just as for finite groups. Just as in Proposition 8.4, it may be shown that if
the subgroups of r of index dividing pi have torsion-free intersection, then ee(r) divides
pi. In this case, groups r for whieh this bound is not tight are already known. Let f(n)
(depending on the prime pasweH as the integer n) be the group with presentation:

f(n) = (Al, ... ,An,BI, ... ,Bn,C I CP, [Ai, C], [Ei,C],

[Ai, Aj ]' [Bi, B j ), [Ai, B j ]C-6(i,j)).

Thus r(n) is expressible aS a eenfraI extension with kernel eyclie of order p generated by
C and quotient free abelian of rank 2n. The speetral sequenee with Z-eoefficients for this
eentral extension eollapses. By examining this speetral sequenee Adern and Carlson were
able to determine the ring H*(r(n)) [2]. From their ealeulation it follows that ee(r(p)) =
pp.

On the other hand, it is easy to show that <1>p(r), the interseetion of the subgroups
of r of index dividing pP, eontains the element C, so is not torsion-free. One way to see
this is to note that the eentre Z(r) is generated by C, Af, and Br, while the eommutator
subgroup r' of r is generated by C. The quotient r jZ(f) is an elementary abelian p-group
of rank 2p. The map

r jZ(f) x r jZ(r) --+ r'
given by (g, h) f-t [g, h] lnay be viewed as an altenlating bilinear form on the IFp-veetor
spaee f jZ(r), whose maximal isotropie subspaees have dimension p. Now any subgroup
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of r of index at most pP either contains Z(r), and in particular contains C, 01' has image
in r /Z(r) a subspace of dimension greater than p, which cannot be an isotropic subspace.
Hence C is a commutator in any subgroup of index pP that does not contain Z(r).

The quotient of r by the subgroup generated by thc Af's and Bf's is extraspecial of
order p2 p+l (in the case p > 2, this group has exponent p, and in the case p = 2 it is a
central product of copies of the dihedral group of order eight). For this group it is known
that the bound on the eventual cohomological exponent given by Proposition 8.4 is best
possible (see for example Lemma 3.5). Gur example is a slightly larger quotient of r(2) in
the case when p = 2. Let G be the group with presentation

G = (A 1 ,A2 ,Bt,B2 ,C Ic 2 ,A1, Bt, [Ai,C],

[Bi, Cl, [Al, A2 ], [BI, B2 l, [Ai, Bj]C~(i,i»).

Thus G is the quotient of r(2) by the subgroup generated by At and Bt. The subgroup
Z of G generatecl by the A~ and B? is central, and elementary abelian of rank foul'. The
quotient Q = G/Z is the extraspecial group of order 25 consisting of a central product of
two copies of the dihedral group of order eight.

'~. ö: ötti tarti'aI '·ciiJ~tii~titnJ..'8f~ji*YG)' 'rJetiie§;·.'~1i·'sbiil~"kh6"ti'~,age·-'6f;'tlie~fiifg,I'~tructlfre' ~f .
H*(Q), at least up to degree fouf. The additive structure of H*(Q), and of the integral
cohomology of a11 extraspecial 2-groups, was detennined by Harada and Kono [16,7]. We
find that the description of the ring structure of H* (Q) given in [7] is incorrect, even in
low degrees. All that we shall require conccrning H *(Q) is contained in the fo11owing
statement.

Lemma 9.1. Let Q be the quotient G/Z as above, where G llas the presentation (4).
Tbere is an element X of H 4 (Q) oE order eigbt, and 4X is expressible as a sum oE products
oE elements of H 2 (Q).

Proof. First we show that there is an element of H 4 (Q) of order eight (we could also
quote this fact from [16]). Recall that Q has seventeen irreducible real representations,
sixteen 1-dimensional ones and one 4-dimensional. Let 5 be the unit sphere in the 4
dimensional faithful real representation. Then Q acts triviallyon H*(5), so there is an
Euler dass' e(5) E H 4 (Q)··defined·for· S. - (Topologically, e(S) is the Euler dass of the
orientable S-bundle 5 xQ EQ over BQ = EQ/Q. Algebraically, E(S) is the extension
dass in Extiq (Z, Z) represented by the chain complex of the Q-CW-complex 5.) The
centre Z(Q) of Q is cydic of order two generated by the image of C, and the 4-dimensional
faithful real representation restricts to this subgroup as four copies of its non-trivial real
representation. It follows that the image of e(5) generates H4 (Z(Q)). Now Q is a group
of the type discussed in Lemma 3.5, and this lemma irnplies that e(5) has order eight.

For the rest of the proof, we consider the spectral sequences for the central extension

Z(Q) -t Q -'t Q/Z(Q) (5)

with integer and mod-2 coefficients. The spcctral sequence with mod-2 coefficients was
solved completely by Quillen [27,7]. Recall that the mod-2 cohomology ring of an elemen
tary abelian 2-group of rank r is a polynomial ring on l' generators of clegree one. Let E:*'*
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be the spectral sequence for (5) wi th mod-2 coefficients. Thus E~*,* = IF2 [Yl , ... , Y4 , z],
where Yi E E~l,O and z E E~,l. The extension dass for Q in H 2 ( Q/ Z( Q); IF2 ) is (without
loss of generality) Yl Y2 + Y3 Y4. Thus d2(z) = Yl Y2 + Y3 Y4. We shall not need to consider
any higher differentials in this spectral sequence.

Now let E;'· be the spectral sequence for (5) with Z-coefficients. Then E;,j =
Hi(Q/Z(Q); Hj(Z(Q))) is more complicated, because the integral cohomology of Q/Z(Q)
is more complicated. Except in degree zero, H*(Q/Z(Q)) has exponent two, so the Bock
stein map J and projection lnap 7r

7r: H*(Q/Z(Q)) --+ H*(Q/Z(Q);IF2 )

{

Xl X2 + Z134
_ XI X 2 + z234

X3 X 4 + Z123
X3 X 4 + ZlZ4

are (respectively) surjective in positive degrees, and injective in positive degrees. As a ring,
H*(Q/Z(Q)) is generated by foul' elements Xi of degree two, six elements Wij of degree
three, foul' elements Vijk of degree foul', and one element u = U1234 of degree five. Here
the indices satisfy 1 :::; i < j < k :::; 4, and in tenns of <5 the elements are

Note that E~,3 and E;,l are trivial, and that except for Eg,o, each group on the
Ez-page has exponent two. It follows that if X E H4 (Q) has order eight, then 4X yields
an element of E~o in the spectral sequence. The proof will be complete once we have
shown that E~o is generated by products of elements of E~o. Let t be a generator for
Eg,2. It is logical to denote the generators of E~,2 by [tYl], ... , [tY4]. Although there is
no element Yi in E~'o, such relations as [ty]] 2 = t 2 Xl do hold in E; I *. The group Ei ,0 is
elementary abelian of rank fourteen, with generators the ten lnonomials in the Xi'S, and
the foul' elements Zijk. The only differential that can hit this group is d3 : E~,2 --+ Ei'o.
To compute this differential, we recall that there is a Bockstein map of spectral sequences:

{
E i,j+l r . °J . E,i,j ~+l. lor J > ,

• r --+ E1+1 J r .
r+l ' lor J = 0,. . .

such that the induced map on Eoo-pages is a filtration of the Bockstein J : H* (Q; IF2 ) -t

H*+l(Q). Themapon E;,j isgiven bythelnapJ: Hj(Z(Q);IFz ) --+ Hj+l(Z(Q)) for j > °
and by J: Hi(Q/Z(Q); ffz) --+ H i+1(Q/Z(Q)) for j = O.

Now the differential d2 : E~1,l --+ E~3,O satisfies d2 ( zyd = (Yl Y2 + Y3 Y4 )Yi, and so in
E *,** 1

d3 ([tYi]) = d30(zYd = O((Yl Y2 + Y3Y4)yä)

for i = 1,
for i = 2,
for i = 3,
for i = 4.

It follows that Ed,Q is generated by monomials in the Xi'S, as required.
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Corollary 9.2. The group G with presentation (4) above has <1>2 (G) f:. {I} and ee(G) = 4.

Proof. The proof that <1>2 (G) contains the element C (and is in fact equal to the subgroup
generated by C) is identieal to the proof given above for the group r(n), so shall be omitted.

The commutator subgroup G' of G is cyclic of order two generated by C, and GIG'
is isomorphie to a product of foul' cyclic groups of order foul'. Thus GIG' has foul' 1
dimensional complex representations whose kerneis intersect in the trivial group, and hence
a free action with trivial action on homology on the torus U(I)4. Letting S be the 3-sphere
as in the proof of Lemma 9.1, with G acting via the action of its quotient Q = GIZ, it
follows that G acts freely with trivial action on homology on S X U(I)4. By Venkov's proof
of the Evens-Venkov theorem [5], it follows that H*(G) is finite over the subring generated
by the Euler classes for these five G-spheres. Thus it suffices to show that the orders of
these Euler classes are (at most) four.

H 2 (G) ~ H 2 (GI G') is isomorphie to foul' copies of Z14, and the Euler classes of the
foul' U(l)'s generate H 2 (G). Thus it remains to check that e(S) has order four in H*(G).
From Lemma 9.1 we know that e(S) E H*(GIZ) has order eight, but 4e(S) is a surn
of products of elements of H 2 (GIZ) = (Z/2t. The iluage of H 2 (Q) in H 2 (G) consists

;'" 6Pthe' 'elehierits" '2x\'föt"·X" E·~H2'CGY~ _'!'(Z..../~~4~,~äi.tdf-ä~'prod 00:;6f~y,~lhwo~~sücltJi·elements'·

(2x)(2x') = 4xx' is zero in H4 (G). •

Remarks. With a little luore work it can be shown that, with notation as in the proof
of Lemma 9.1, 4X = XIX2 + X3X4. Let G2 = G/(Bi, B~), so that G2 is a quotient of G of
order 27 , and Q is a quotient of G2 . The argument of Corollary 9.2 cau be used to show
that the image of 4X in H4 (G2 ) is zero, and so ee(G2 ) = 4.

The evidence of Adem-Carlson's infinite groups suggests that there should be similar
exampIes for all primes of groups with ee(G) = pP and <I> p (G) f:. {I} . The smallest
candidates (of the same type as our example for p = 2) have order p3p+I, and I have been
unable to compute ee(G) for any af these groups for p add.

10. Varieties for higher torsion in COhOlTIology.

The descriptioD: of H*(XP .xc
P

, ECp)_giye~ in ~ections 4-6 is complicated. In this seetion
we shall extract some information of a more coneeptual nature. We assume that H*(X)
is a finitely generated ring, and deseribe the ring H* (XP xcp ECp ) from the point of
view of algebraic geometry. We start by defining the varieties that we shall study, and
stating some of their elelnentary properties, before stating our main result as Theorem 10.6.
It is convenient to use cohomology with Z(prcoefficients, so throughout this section the
coefficients for cohomology are Z(p) when omitted.

Fix an algebraically closed field k of characteristic p > O. Let R be a finitely generated
commutative Z(pralgebra, and define V(R) to be the variety of all ring homomorphisms
from R to k, with the Zariski topology. For each j ;::: 0, let Ij = Ij(R) be the annihilator
in R of the element pi, or equivalently the ideal of R generated by the elements of order
dividing pi:

Ij = L Rr = Annn(zJ).
pir=o
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Let l-j(R) be the corresponding subvariety of V(R). Since R is Noetherian, there exists jo
such that the 1j are all equal for j 2: jo, and we define Voo(R) = Vja (R). Thus the Vj(R)'s
are included in each other as follows:

A ring homomorphism f : R -r S induces maps f* : l f j(S) -r Vj(R) for all j.
For any finite type CW-complex X, let H·(X) stand for the subring of H* (X) consist

ing of elements of even degree. If H* (X) is a finitely generated Z(p)-algebra, then H· (X)
is an algebra of the type considered above. The main result of the section, Theorem 10.6,
gives a description of Vi(H·(XP xCp ECp)) for such X in terms of the Vj(H·(X))'s. Note
that the case i = °is not a special case of Quillen's work on equivariant cohomology rings
[26], because we do not assume that X is finite. The case i = 0 does however follow from
Nakaoka's description of H*(XP xCp ECp ; IFp ) together with some of the commutative al
gebra from the appendix to [26]. The idea of studying the Vi for i > 0 came from a paper
of Carlson, who considered a special case which we sha11 discuss in the next section [11].
Proposition 10.1 is Proposition B.B of [26] .

. '~p tbPosit iö-Y{"l'o:r~c4([26lf ''L1;i1~'-:(~R~.Et"'S~-~'l:)e-i/?HonromoijJb'iSin~of~'finltrBj~eJiera ted 'cam _. "T • ,

mutative rFp -algebras, and assume that f 11as the following properties:
i) For r E ker(f) tbere exists n such that r n = 0;
ii) For sES, there exists n such that sp" E Im(f).

Then f induces a homeomorphism from V(S) to V(R). •

Remark. A homomorphism f having properties i) and ii) is known as an F-isomorphism.

Proposition 10.2. Let X be a finite-type CHf-colnplex. Then tlle following are equiva
lento

i) H* (X) is a finitely generated Z(p)-algebra.;
ii) H * (X; IFp) is a !ini tely generated JFp -algebra, and tlle torsion in H *(X) bas bauDded

exponent.

Proof. Let 1j be the ideal of H* (X) of elements annihilated by pi. Under hypothesis i),
H*(X) is Noetherian, so there exists jo such that 1j = ljo for a11 j 2: jo. Now the map from
H*(X) to H*(X; Fp') has image H*(X)j(p), a finitely generated Fp-algebra, and cokernel
isomorphie to the ideal 11, which is a finitely generated module for H* (X), and hence also
for H *(X) j (p) . Thus i) => ii).

Conversely, assume that ii) holds. Let pi annihilate the torsion in H*(X), and let

Rj be the image of the map x ~ xpi+l from H* (X; JFp ) to itself. Then Rj is a finitely
generated ring, and H* (X; Fp ) is a finitely generated Rj-Inodule. Since pi annihilates
torsion in H*(X), the Bockstein spectral sequence with Erpage E; = Hi(X; IFp ) co11apses
at the Ej+l-page, so that any element of H* (X;!Fp) which is a cycle for the Bockstein ßl
and for each higher Backstein ß2, ... ,ßj is in the image of H*(X). But if x E H*(X; IFp )

is a cycle for ßi, then
ßi+l (xP) = pßi+l (x )xp

-
1 = 0,

so by induction, the subring Ri consists of universal cycles in the Backstein spectral
sequence.
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Moreover, each of the non-zero differentials in the Bockstein spectral sequence is an Rj
linear map. Hence the universal cycles in the Bockstein spectral sequence, or equivalently,
the image of H*(X) in H*(X;IFp ), form an Rj-submodule of H*(X;IFp ). It follows that
this image, which is isomorphie to H*(X)j(p), is a finitely generated ring. Now take a
finite set of elements of H*(X) mapping to a set of generators for H*(X)j(p). The Z(p)

subalgebra of H*(X) generated by these elements is the whole of H*(X), since a proper
Z(ptsubmodule of the finitely generated module Hi(X) cannot have image the whole of
HI(X)j(p). •

Remark. The case when X is a Moore space with Hn,(X; Z) isomorphie to the rationals
shows that the assumption that X has finite type is necessary in Proposition 10.2. I do
not know of any finite type X such that H*(X; IFp ) is finitely generated, but H*(X) is not
finitely generated.

Proposition 10.3. Let X and X' be CW-colnplexes oEfinite type whose Z(p)-cohomology
is a finitely generated algebra, and let i 2:: 0 be a positive integer. Then tbe obvious maps
induce homeomorphisms as shown below:

i) Vo(He(X; IFp ») ~ Vo(He(X));
. .'"\ii)" iE p ~~ "2 ~ ~ tHe1t'Vo'CH*{X; '}F'~~)'t~':VoTHe e,v;"lFz:yy,. ,. ..; .? '1-. -; 'tj' • 11- T;' ,')~.) 1" ,:. ,: '\ </'.

iii) Vi(He(X x X')) ~ Vi(He(X) 0 He(x')).

Praof. Firstly, note that for auy R, the natural map R --+ Rj(p) induces a homeomorphism
Vo(Rj(p») --+ Vo(R). Thus by Proposition 10.1, for i) it suffices to show that the map from
He (X) j (p) to He (X; IFp) is an F-isomorphisIll . The kernel of this map is trivial, and it
was shown during the proof ofProposition 10.2 that if pi annihilatcs the torsion in H*(X),
then for any x E He (X; IFp), xpi +1 is in the image of He (X) / (p). Part ii) also follows easily
from Proposi tion 10.1, because the kernel of the ine!usion of He (X; IF2) in H* (X; IF2) is of
course trivial, and the square of any element is in the image.

For iii), we first consider the case i = O. Let f stand for thc map from H*(X)&JH*(X')
to H*(X x X'). Since X and X' are finite type CW-complexes, there is a Künneth exact
sequence

O~H*(X) &J H*(X')~H*(X x X')~Tor*-l(H*(X),H*(X')~O (6)
.. .

which splits, and the Tor-term consists of torsion elements of bounded exponent.
Consider the comluutative diagrarn given below. Each of the maps is injective (for

f /(p) this follows froin the fact that the !(ünneth sequence (6) is split). The maps 1r

and 1r (9 1r are F-isomorphislUS by the proof of i), and the map labelled 'inc.' is an F
isomorphism because it is injective and the pth power of any element is in its image. Now
f j(p) is injective, and every other map in the diagrarn is an F-isomorphism. It follows
that f / (p) is also an F-isolllorphism.

Since Vi(R) is a subvariety of Vo(R), it follows that for general i the map

is a homeomorphism onto its image. To show that this map is surjective, it suffices to
show that if y E He(x x X') satisfies pi y = 0, then there exists x E He(x) &J He(X')
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(He (X) ® He(X'))/(p)

1f j(p)

He(X X X')/(p)

lrr
He(X X X';IFp )

with pix = °and such that f(x) = yN for some N. (This is because 4> E Vo(R) \ Vi(R)
if and only if there exists r wi th pi r = °aad 4>( r) i- 0.) From the fact that f / (p) is
an F-isomorphism, we obtain x' E He(x) C9 He(X') and y' E He(X X X') such that
f(x') = ypn + py'. Now pick r sufficiently large that pr annihilates the torsion in H*(X)
and H *(X'). Then pr annihilates the Tor- tenn in (6), so f (x'P r ) - yP n +r is in the image of

f. Thus there exists x" E H*(X)Q?JH*(X') such that f(x") = ypn+r. Express x" = xe+xo ,

where Xe E He C9 He and X o E H odd Q?J H odd
• Now pi Xe = pi xo = 0, and either p is odd in

which case x~ = 0, and

01' P = 2, in which case x~ E He(X) ® He(X'), 2x~ = 0, and

In either case, x = x Pi is an element of He(X)C9He(~){')such that f(x) = ypN for some N,
as required. •

Proposition 10.4. Let R be a finitely generated conlmutative Z(p)-algebra, witb an action
oE a finite group G, and write R G for the G-fixed points in R. Then for each i, the natural
map gives rise to a homeomorphism Vi(R)/G --+ Vi (R,o).

Proof. For i = 0, this is a standard result, see for exalnple chapter 5 of [4]. It is also a
special case of Lemma 8.11 of [26] (view the group G as a category with one object and the
G-action on Ras a functor{romG-to-Z(p)-algebras). Given the case i = 0, the general case
follows provided that Vi(R) maps surjectively to '~(RG). Let 4> be any element of V(R)
whose restriction to RG lies in Vi(RG ), and let r be an element of R such that pi r = 0.
Then Qr(r) = 0, where Qr(X) is the monic polynolnial

Qr(X) = TI (X - g.r).
gEG

The coefficients in this polynomial He in RG , and (apart from 1, the leading coefficient)
are annihilated by pi. Thus

.' ,.... ~ ...

and so 4> E Vi(R).
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Proposition 10.5. Let R be a finitely generated commutative Z(ptalgebra, let Cp act on
5 = R0p by permu ting the factors, and let {l : 5 --+ R be the multiplication homomorphism.
Define U ~ V(5) by

u = {4> E V(5) IVx E 5,4>( L g.:c) = O}.
gECp

Then U = j.l*(V(R)), and U maps injectively to V(5)jCp = V(5Cp ).

Proof. First note that J.L : 5 --+ R is Cp-equivariant for the given action on 5 and the
trivial action on R. Now if<p E j1*(V(R)), or equivalently, 4> = 'IjJ 0 J.L for some 'if; : R --+ k,
then for any x E 5,

<p( L g.x) = 1f( L g.j1(x)) = 'IjJ(p.p(x)) = O.
gECp gECp

Thus {l*(V(R)) ~ U .
•~,.~ ""f", .rl,ror, .,the:t.CQgy~r~~,~j.gi:v.~.,s-:..,6...!?:, .J~~ j;:P'I;; =::J>, ?~.;\~:"t ..®...i~"-: ;..~J, ~9..f'.!~E.l'q;~.'~· .•::.·,;~P:j ·e~. t~~

images of Xl under the Cp-action. It suffices to show that if 4> EU, then for any r,
1(XI) = 4>(X2) = ... = 4>(xp ). Let Ui = Ui(Xl, ... , xp) be the ith elementary symmetric
function in Xl, .... ,Xp ' For 1 ::; i ::; p - 1, the stabilizer in ~p of a subset of size i has order
coprime to p, and hence there exists Yi such that

Ui = L g·Yi·
gECp

Now if 4> EU, then cjJ(ud = 0 for 1 ::; i ::; p - 1, and henee each <p( X j) is a root of the
equation X p - 4>(U p) = 0, whieh has all of its roots equal.

The last claim follows since f-l *(V (R)) consists of points of 'I (S) fixed by the Cp-action.

•
Theorem 10.6. IE X is a finite type CW-complex such that H* (X) is finitely generated
as a Z(p)-algebra, then so is XP xCp ECp, and 1~(He(xp XCp ECp )) may be described as

follows:
Let ,*, J*, be the ring bomomorphisms

induced by the projection X x ECp --+ X x BCp and the diagonal map X x ECp --+
XP x ECp. Then

Vo(He(Xp Xc ECp)) rv lim(Vo(He(X x BCp))?'/o(He(X))~Vo(He(x)0P)jCp),
p ~

and for i > 0,
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Remark. Roughly one could write

Vo(He(X p
xC

p
BCp)) = Vo(He(.,Y x BCp)) U Vo(H e(X)0p)jCp,

Vi(He(X p
xC

p
ECp )) = Vi_l(H e(X)) U ll;(He(X)®P)jCp.

Proof. Let a* and ß* be the homomorphislllS defined in Seetion 6, so that there is a
commutative diagrarn:

Use the same notation for the corresponding homolllorphisms of mod-p cohomology.
Obviously, X is of fhlite type if and only if XP x c p ECp is of finite type. In this ease,

Nakaoka's theorem given above as Theorem 2.1 (together with the remaxks that follow it),
implies that H* (XP x cp ECp ; lFp ) is isomorphie to the graded tensor produet

, ....
... ~ ....-

modulo the ideal generated by elements of the form

L: g*(x) ® y,
gECp

Let 7]* stand for the projection map

Note that there is no analogue of 1]* for Z(ptcohomology. Note also that there is a eOID
mutative diagram:

It follows that H*(XP xCp ECp;lFp ) is finitely generated if H*(X; lFp ) iso If pi anni
hilates torsion in H*(X), then either by the results of Section 4 01' a transfer argument,
pi+l annihilates the torsion in H* (XP x Cp ECp ). Hence by Proposition 10.2, if H* (X) is
finitely generated, then so is H*(XP xCp ECp ).

For the case i = 0, it is convenient to work with lllod-p cohomology, and deduce the
result for Z(pteohomology from Proposition 10.3. Let 4> be an element of Vo(H* (XP x cp

ECp ; lFp )), and let y be the image in H 2 (XP xCp ECp;lFp ) of a generator for H 2 (BCp ; IFp ).

If y' is any element of H*(XP xCp ECp ; IFp ) such that a*(y') = 0, then yl2 is in the ideal
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generated by y. (To see this, recall that a* is the edge homomorphism in the Cartan
Leray spectral sequence for XP x c p ECp, and that the ideal generated by y maps on to

E~,j for i ~ 2.) Thus if </>(y) = 0, then </> factors through H· (XP j IFp)Cp , or in other words
4> E a (V (H· (XP; IFp ) Cp ) ), and this fac torisation is of course unique.

On the other hand, if </>(y) i- 0, then for all x E H· (XP; IFp ),

</>( L g*(x)) = O.
gECp

In particular, Proposition 10.5 in the case R = H·(~~; f p) shows that there exists <jJ' E
V(H·(X; IFp ) <9 H·(BCp ; f p)) such that </> 0 7]* = <jJ' 0 (0* @ 1). Since 7]* is surjective, it
follows that </> = 4>' 0 ß*.

Thus if </>(y) i- °then 4> factors through the image ofß*. If R is the image of H· (X; IFp )

under the map x t-+ x P , then the image of ß* contains R <9 H· (B Cp; f p ), as this is the
subring generated by the image of H·(BCp ; f p ) and elements of the form x ll. However,
any homomorphismfrom R0H·(BCp ;fp ) to k extends uniquely to H·(X x BCp;IFp) by

:.:. ~ t~·~rop~~tion.10)'1..apd..:so..4>iactors.uniquely_thro.ughH.~( X .x..~.Cp,;.IF.p,)., '~,""., "." .... ' ."
- .- F'inally;'l(Jf~ct~~~ ·thr~tlgh'·B~-tfl~1l··(x'p·{iF]:)cp a;;Ci '1Ji·"(X~x;'BC~rF;Y,~tlien "</>"CiJY ~~·o;

and so <jJ factors uniquely through H·(Xj IFp). This cOInpletes the claim in the case i = O.
For the case when i > 0, we consider the infonnation given by the Cartan-Leray

spectral sequence with Z(ptcoefficients. The results of Scction 5 imply that any element
x of H* (XP x c

p
ECp ) yielding an element of E~,n for m > 0, has order p. Hence if 4> is

an element of VI(H·(XP xCp ECp )), 4> factors through H·(XP)CP • Thus for each i > 0,

For simplicity we shall restrict attention to H 2p*, the subring of H· consisting of elements
in degrees divisible by 2p. (The inclusion of H 2 p* in H· induces a homeomorphism from
Vi(H·) to Vi (H 2p*) for each i.)

As in previous sections we fix a decomposition of H* (X) as a direct SUffi of cyclic
groups, and use this to split the Eoo-page of the Cartan-Leray spectral sequence as a
direct SUffi of pieces a.s described in Section -5. Refine the resulting decomposition of
H*(XP Xc ECp ) to a splitting into cyclic summands. If x generates a cyclic summand of

p .

H2p*(Xp xC
p

ECp) of order p\ there are only two possibilities: Either x is contained in

a summand of the spectral sequence concentrated in E~l*, and its image in H 2p*(XP)Cp

generates a cyclic summand of order pi, or x is contained in a summand of the spectral
sequence of the type discussed in Theorems 5.1 and 5.1', and its image in H 2 p *(X p ) cp

generates a cyclic summand of order pi-I. In the first case, there exists x' E H 2p*(XP)
such that

x = L g.x',
gECp

and so (as in the proof of Proposition 10.5) 0* (x) = O. It follows that

Vi(H2P*(XP xCp ECp)) 2 a(Vi(H2p*(XP)cp
)) U a 0 0(Vi_l(H2p*(X)),
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and it remains only to prove the opposite inequality.
If 4> E V(H2P*(X)) \ Vi-I, then there exists X E H 2P*(X) such that pi-lx = 0 and

4>(x) =I=- O. In this case, y = x 11 is an element of H 2P*(X 1l xCp ECp ) such that piy = 0 and
4> 0 0* 0 a*(y) =I=- O. Thus

a 00(4)) = ~ 0 0* 0 a* ~ Vi(H 2p*(XP xCp ECp)).

If
4> E V(H 2p*(XP)) \ (0(V(H 2p*(X))) U Vi(H 2P*(XP))),

then there exists x, Xl E H 2p*(X)®P such that pi.x = 0 but ~(x) =J 0, and (by Proposi
tion 10.5) 4>(~9ECp g.x') =J 0. It sullices to find y E H 2p* (X)0p such that pi. y = 0 and

4>(~9EC g.y) =J O. By choosing Yj to be a cOlnbination of various products of elements of
the forn: g.X, we lnay ensure that for 1 ::; j ::; ]J - 1,

L g·Yj = aj (gl.X, . .. ,9p·X),
gECp

where gl.X, . .. ,gp'x are the images of x under the Cp-action, and aj stands for the jth

-. o;~~e~ent~y-.:~y~et!-'Jsf~~~? ..D;.·-.J?~sP.~Y j;..s_aE~~~r,·pi/_Yj;.:=_ 9.'_' ~9)}f. !!J.r~.~J; ~t~~~-~./~ ~pc~ ~!~a~

4> ( L g.Yj) = 4> (aj(gl'x, . .. ,gp.x)) =J 0,
gECp

then Y = Yj will do. Otherwise, it follows (as in the proof of Proposition 10.5) that for
each 9 E Cp, 4> (g. x) = 4>(x). In this case, y = xx' has the required properties. •

11. Carlson's Wi(G).
As in the last section we take Z(p)-coefficients for cohomology unless otherwise stated,
and fix an algebraically closed field k of characteristic p, upon which the definition of
V( -) depends. For G a finite group, note that EG may be taken to be of finite type.
For G a finite group and Y a finite G-CW-complex, Quillen showed that the equivariant
cohomology ring H*(Y xaEG) is finitely generated [26]. For such G and Y, define varieties
Wi(G, Y), Wi(G) by

, .. Wi(G, Y) .~ J(;(H·.(Y-:xaEG)), H!i(G) = Wi(G, {*}),

where ~ (-) is as defined in Section 10. Note that VFi (G, Y) is a covariant functor of the
pair (G, Y), and that if H is a subgroup of C, then the finiteness of H*(H) as an H*(G)
lnodule implies that the fibres of the map Wi(H) -t Hli (G) are finite. In [26], Quillen gave
a complete description of W(G, Y) = Wo(G, Y). The subvarieties Wi(G) for i > 0 were
introduced by Carlson in [11]. Very little is known about Wi(G) and Wi(G, Y) in general.
The results of Section 10 of course have Corollaries concerning Wi(G, Y). For example, if
y' is a finite H-CW-complex, then by Proposition 10.3 iii),

Wi(G x H, Y x Y') ~ Wi(G, y~) x Wi(H, Y').

For most of this section we use examples constructed as wreath products to shed some light
on questions raised by Carlson concerning Wi(G). The lower bound we give for the size
of W1(G) in Theorem 11.9 is independent of the rest of the paper however. The following
three statements are corollaries of Theorem 10.6.
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Corollary 11.1. Let G be a finite group anel Y a finite C-CW-complex, and let C 1Cp

act on yP, where CP acts component-wise aJld Cp by pennuting the factors. Let / be tbe
inc1usion oE tbe C-space Y as the diagonal in yP, wllic11 is equivariant for tbe diagonal
map from G to GP, let Cp act triviallyon Y, alld let 0 be the identity map on Y viewed
as an equivariant map from the G-space Y to tbe G x Cp-space Y. Then

Wo(G l Cp, YP) = lirn(Wo(GP, YP)jCpt2-Wo(G, Y)~Wo(G x Cp, Y)),
-+

and for i > 0,

Wi(G l Cp, YP) = lirn(Wi(GP, yP)jCp?vVi(G, Y)~VVi-l(G,Y)).
-+

Proof. This is just Theorern 10.6 in the case X = Y X G EG. •

Corollary 11.2. With notation as in Corollary 11.1, and i > 0,

dirn Wo(G 1Cp, YP) = rnax{p. dirn Wo(G, Y), I},

dirn Wi(G 1Cp, YP) = max{p. dirn Wi(G, Y), dirn lVi-l (G, Y)}.

•
Prqpositi.on 11 ~3. I:~t. 7!!. _.~.,Lj~'!}jpi, where .9 ~ ~j ~ .P.'., T~el~ ., _.< ~ '1.. _ \~. • •••

~- t ~ I ... " -of\ "'" ".l" '''!("~ ........ .,..+-IIj~ ... , ....,.'... ~": ~~,.... ~"'1'" ~.,.. iI:'-'" ..... : ,~ ... ~~+~•• ..,..., ~~ ""L,~,~ ~I ....... " j~ .~.~._ 1- ~ "! ~~~_~r~ ...·t ... ,.~ .... ...,. ......J"" ........... ~~ ~ ""'" ' rnr -~ ,

dirn Wi(r: m ) = L m'jpi-i-l.
j>i+l

In particular,

..............
~.' .

(7),

{
0 ifi ~ n,

dirn Wi(r:pn
) = pu-i-l otherwise.

Proof. If G is a finite group with Sylow p-subgroup P, then the map Wi(P) -t Wi(G)
has finite fibres (by the Evens-Venkov theorenl) and is surjective since the kernel of the
transfer is an ideal forming a cornplement to the image of H*(G) in H*(P). The Sylow
p-subgroup of r: m is isomorphie to

(Pd m1 x (P2)m 2 X •.• ,

where Pn is the Sylow p-subgroup of r:p n • Thus it suffices to prove the assertion for Pn •

This follows from Corollary 11.2 by induction, since Pn "'-I Pn - 1 1Cp • •

Carlson also introduced the cohomological exponential invariant, che(G) of a finite
group G, defined by

che( G) = min{ O(Xl) ... O(x r ) I H*( G; Z) is a finitely generated

module for the subring generated by the Xi}.

The theorem that we quote as Theorem 3.4 is equivalent to the statement that IGI divides
che(G). Let vp(che(G)) stand for the number of times that p divides che(G). Carlson
showed that

lJp(che(C)) = L dirn Wi(G)
i~O

and gave an example of a group G of order p5 with che(G) = pG. Using Corollary 11.2
and the description of (the p-part of) che(G) given by (7), it is easy to find groups for
which IGI < che(G). One such example is contained in Proposition 11.4. We give another
different example in Proposition 11.10.
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Proposition 11.4. Let G = (C;) 1Cp, so tllat G is a split extension with kernel (Cp)pn,
quotient Cp, and tbe quotient acts freely on a.n JFp -basis for the kernei. Then

che(G) = ppn+n, whereas IGI = ppn+l.

•
The generalized Frattini subgroups q. n(G), defincd in Section 8 (just before Propo

sition 8.4) may be used to give an upper bound for vVn ( G). Before stating our result in
Theorem 11.6, we recall a theorem of Carlson from [11, section 4].

Theorem 11.5. Let G be a finite group and H anormal subgroup of G. The inverse
image of 0 under t}le map W(G) --+ W(GjH) is equal to the image ofW(H). •

Renlark. The element 0 E W(G) is the hOlllomorphislll H*(G) --+ k which sends a1l
elements in positive degree to zero.

Theorem 11.6. Let G be a p-group. Then vVn ( G) is contained in tlle image of W( q.n (G)).

_Prpof. .The group' {I~(GI ~.n (G)) has exponent dividing pn for all hut finitely many i by
~ -' -. ,.. ~ ~~P';()poSi ti~n "S:ti 'Tntfs'iP$ ~E ;·W~t@);rth~eiY'4>,,:ma:J1rio·OSn"W(G'l'(pn(GJJ:;~he~daim~follows .

from TheorelD 11.5. •
Carlson asked if, for G a p-group, Wn(G) always contains the image of w(q.n(G)),

where q.n(G) = q. (q.n- J ( G)) is the 11.th iterated Frat tini snbgronp of G. Proposition 11.7
shows that this is eonsistent with the upper bound of Theorem 11.6. However, in Propo
si tion 11.8 we eonstruct wreath products G such that vVn (G) does not eontain the image
of w(q.n(G)), answering Carlson's question negative1y.

Proposition 11.7. Let G be a p-group. Tben q.n(G) ~ q.n(G).

Proof. Given H, a ·subgroup of G of index pr :::; pn , let

H = Hr < Hr - 1 < ... < H1 < Ho = G

be achain of subgroups of G such that lHi : Hi+l1 = p. Then for each i, Hi+l ~ q.(Hd,
and so by induction Hr 2:: q.r(G) ~ q.n(G). •

Proposition 11.8. Let 5 be an elementary abeliB.Jl p-group of rank r, acting freely tran
sitively on n, and let G be the wreath product Cpn I S for some n > O. Then

In particular, Wn(G) CaJ1l10t contain tbe image ofvv(q.n(G)) ulllcss p = 2 and r = 1.

Proof. Recall that for H a snbgroup of G, the map W(H) to W( G) is finite, and so
preserves dimensions. Recall also that for G a p-group, q.(G) can be defined to be the
minimal normal subgroup H of G such that Gj H is elelnentary abelian. Now G as in the
statement can be generated by r + 1 elements, r of which map to a generating set for 5,
and one element of the fonn
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A homomorphism from G onto (Cpt+1 may be constructed, which shows that G cannot
be generated by fewer than r + 1 elements. It follows that <1>( G) has index pr+l, and is an
index p subgroup of (Cpn )11. Thus

tI>(G) rov (Cpn)pr_ 1 X Cpn-l, <1>n(G) rov (Cp)pr_ 1 •

This proves the first claim. For the second clailu, note that G is a subgroup of the wreath
product Cpn 1L;pr ~ L;pn+r, and so dirn Wn(G) is bounded by dirn Wn(~pn+r), which equals
pr-l by Proposition 11.3. _

The only generallower bound that I have been able to find is the following bound for
W1(G), which is related to Proposition 1 of [21].

Theorem 11.9. Let G be a p-group, and let H = Z (G) n <1>( G), the intersection oE the
centre and tlle Frattini subgroup ofG. Then lIV1 (G) contains the image ofW(H).

Proof. H is central, so is abelian. Let ]( be the eleluents of H of order dividing p. Then
]( is a subgroup of Hand W(]{) maps homeornorphically onto W(H). It will therefore
suffice to show that any element of H* (G) of order p has trivial image in H* (K).

, For this, we claim that the image of H * (G j IFp) in H *(]( j IFp) is eontained in the image
..( "of'~H* tK1':~'·A.gsuming·this~or -now?let:"x' E-H~~{G7~'have'~(')rder':rp;~ana"'rec"aJ.I~,the~Böcksteiri

long exact sequence

... H*(G)~H*(G)---+H*(GjIFp )~H*+l (G)~H*+l (G) ....

Sincepx = 0, there exists y such that J(y) = x. Now J(Res~(y)) = Res~(x). By the claim,
the image of H*(G; IFp ) in H*(]{; IFp ) is eontained in the kernel of J, and so Res~(x) = 0
as required.

It reluains to prove the claim made in the last paragraph. For this we eonsider the
speetral sequenee with IFp -eoefficients for the eentral extension

]{ ---+G---+Gj ]{.

The E 2 -page is isomorphie to H*(]{jJFp ) 0 H*(Gj]\jIFp ). For clarity, suppose that p is
odd (the ease p = 2 is similar but not identieal). In this ease,

H* (](; IFp ) ~ A[1(#] 0 JFp [](],

the tensor produet of the exterior algebra on ](# = Hom(]{, IFp ), generated in degree 1,
with the algebra of polynomial functions on K (where the luonomials have degree 2). The
Bockstein H*(](; JFp ) --t H*+l (Kj JFp ) maps H 1 isolnorphieally to the degree 2 piece of
JFp []{].

Sinee K is eontained in <p( G), every element of H 1 (Gj IFp ) rov Hom( G, Fp ) restriets
trivially to ]{. It follows that

dz : E~,l ~ ]{# ---+E~,0 rov H2 (G/ ](; Jlp )

must be injeetive. Note also that the generators for IFp [1(] are cycles for d2 by the SeITe
transgression theorem. It follows that E~!*, the cycles for d2 in E~'*, is isomorphie to
IFp [K]. This subring of H*(Kj IFp ) is eontained in the image of H*(]{). The image of
H* (G; IFp) in H* (K; IFp) is isomorphie to E~*, so is a subring of the image of H* (K) as
required. -
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Remark . Note that Theorems 11.6 and 11.9 together describe W I (G) completely for any
p-group G such that ~(G) is central. This includes the two examples discussed by Carlson
in [11]. As a further example we make the following statement, whose proof we leave as
an exerClse.

Proposition 11.10. Let G be the group with presentation

G = (al, .. . , an Iaf = 1, [ai, aj] is central).

Then G is a finite p-group, with

•• • _. - • ~ ~ J. . ~... T .~,.... ~ I t.. .'. '~4 ... I I'

If ~ • ~ - .... --: "1 ... "'t ~ ..... ",:,,.r ". r~-~'" ~j 'II-'t.~ tl." ..... +4.J .... ~ ~-I .... 4.1"""1 ~ ....... , - ... ~~:""I'-o - ........ ~, ~.·TIII ~ ........ "7·-"1'·~·.'1fi.~ ~.• """",~ ~.}1 ~~". oIrl~·,.. .... , ............ p.o;fll ..... 1..o • ......-t ~ .....'\.t ... ~ .. ,ot' _, ..... ~

Remark. The author knows of no example in which Vlfi(G) is not equal to the image of
W(H) for some subgroup H of G. One might conjccture that this is always the case, or
more weakly oue might conjecture that for any G, vVi(G) is equal to a union of images
of W(E) for some collection of elementary abelian subgroups E of G. By section 12 of
[26], this weaker conjecture is equivalent to the following: Let Ji be the ideal of H* (G; IFp )

generated by the image of Ii, the ideal in H*(G) used to define vVi(G). Then the radical
of Ji is closed under the action of Steenrod's recluced powers pi.
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