BLOCH'S FORMULA FOR SINGULAR SURFACES

MARC LEVINE

83 27

20%

Max-Planck-Institut

für Mathematik

Gottfried-Claren-Straße 26

D-5300 Bonn 3

MPI/SFB 83-27

Let X be a quasi-projective variety with singular locus S. Let S_1, \ldots, S_d be the irreducible components of S. We henceforth assume that $\dim(S_i) \leq 1$ for each i, and we order the S_i so that $\dim(S_i) = 1$ for $i = 1, \ldots, r$, and $\dim(S_i) = 0$ for $i \geq r$. Let S_i denote the generic point of S_i , $i = 1, \ldots, r$. Let R_S be the semi-local ring of $S_1 \cup \ldots \cup S_r$ in X, and let R_S denote Spec (R_S) . If P_S is a point of X, we let $R(P_S)$ be the localization of R_S at the set $\{f \mid f(P_S) \neq 0\}$; if $P_S = X$ is the inclusion, then $P_S = X$. We let $P_S = X$ is the inclusion, then $P_S = X$.

Let (X,S) be the topological space gotten by removing from X all points x of codimension one which specialize to some s_i , and also removing all points of codimension two which specialize to some point of S. We define a subsheaf F_S of $\lim_{x \to C(X,S)} i_{x^*}(k(x)^*)$ by

$$F_{S'p} = \begin{cases} y \in (\coprod_{x \in (X,S)} i_{x^*}(k(x)^*)) \\ x \in (X,S)^{1} x^*(k(x)^*) \end{cases}$$
 for $j \geq 2$, and for each z in X^j which specializes to p , and also specializes to a point of p , there is an element p of p with p and p with p with p and p with p w

Here \widetilde{T} is the composition of $i_*(\chi_2(x_S)) \rightarrow i_*K_2(k(x))$ with the tame symbol map $T:i_*K_2(k(x)) \rightarrow \coprod_{x \in X} i_{x^*}(k(x)^*)$. We note that \widetilde{T} actually has image in F_S . The divisor map div: $\coprod_{x \in X} i_{x^*}(k(x)^*) \rightarrow \coprod_{x \in X} i_{x^*}(k(x)^*) \rightarrow \coprod_{x \in X} i_{x^*}(\mathbb{Z})$ restricts to F_S to give a map div: $F_S \rightarrow \coprod_{x \in X} i_{x^*}(\mathbb{Z})$. This gives us a complex of sheaves on X

G.:
$$0 \rightarrow i_{\star}(\chi_{2}(x_{s})) \xrightarrow{T}_{s} \xrightarrow{\text{div}} \chi_{\epsilon(x,s)}^{i_{\star}(z)} \rightarrow 0$$

Let χ_2 denote the kernel of T.

Let X be a smooth, quasi-projective variety. Bloch's formula

$$\mathbf{H}^{\mathbf{p}}(\mathbf{x}, \mathbf{y}_{\mathbf{p}}) \cong \mathbf{CH}^{\mathbf{p}}(\mathbf{x})$$

We fix at the outset an algebraically closed field k as ground field for all varieties considered herein.

<u>Proposition 1</u>. The complex G. is a resolution of χ_2^* . In addition, the map $\chi_2 \rightarrow i_*(\chi_2(x_S))$ factors through χ_2^* , and $\chi_2 \rightarrow \chi_2^*$ is an isomorphism away from the closed points of S.

We first prove the following lemma.

Lemma: Let y be a smooth point of X. Then the Gersten complex for R(y,S):

$$0 \to K_2R(y,s) \to K_2(k(x)) \xrightarrow{T} \underbrace{\downarrow}_{x \in X(y,s)} \downarrow^{k(x)} \xrightarrow{div} \underbrace{\downarrow}_{x \in X(y,s)} \downarrow^{2\mathbb{Z}} \to 0$$

is exact.

<u>Proof.</u> The proof is essentially the same as in Q and C; we give a sketch here for the reader's convenience. R(y,S) is a regular ring, and the Gersten complex comes from the spectral sequence arising from the collection of long exact sequences

$$\frac{\partial}{\partial k_{d}}(M^{i+1}) \longrightarrow K_{d}(M^{i}) \longrightarrow K_{d}(M^{i}/M^{i+1}) \xrightarrow{\partial} K_{d-1}(M^{i+1}) \longrightarrow ,$$

where $M^{\frac{1}{2}}$ is the category of R(y,S) modules supported in codimension i. To show complex above is exact, we need only show that, for each principal divisor Z on X(y,S), the map

$$K_{a}(M^{i}(Z)) \longrightarrow K_{a}(M^{i})$$

is zero, where $M^{i}(Z)$ is the full subcategory of M^{i+1} consisting of modules supported on Z.

Let $U = \operatorname{Spec}(R)$ be a smooth affine neighborhood of y in X such that Z is represented by a principal divisor Z' on U, defined by an element t of R. Since U is a smooth paint of W, there is a map $f:U \to A^{n-1}$ (n = dim(X)) which is smooth of a neighborhood of y, and such that Z' is finite over A^{n-1} .

We have the diagram

Spec(R') = Y = U x
$$Z'$$
 U $Spec(R/t) = Z'$ $n-1$

After inverting

h in R, $h(y)\neq 0$,

the ideal I of $s(Z_h^i)$ in R_h^i is principal, and R_h^i is smooth, hence flat, over \overline{R}_h^i ($\overline{R} = R/t$). Let $f = hf_1f_2$ be in R, with $f_1(y) \neq 0$, and $f_2(s_1) \neq 0$ for each $i = 1, \ldots, r$. We have an exact sequence of functors from $M^i(Z_f^i)$ to M^i :

$$0 \rightarrow I_{\stackrel{\bullet}{E} \stackrel{\circ}{R}_{\stackrel{\bullet}{f}}}? \rightarrow R_{\stackrel{\bullet}{f} \stackrel{\circ}{R}_{\stackrel{\bullet}{f}}}? \rightarrow ? \rightarrow 0$$

As I_f is principal, the map on K groups $K_d(M^i(Z_f^i)) \longrightarrow K_d(M^i)$ is zero. Since $M^i(Z)$ is the direct limit over f as above of the $M^i(Z_f^i)$, the map $K_d(M^i(Z)) \longrightarrow K_d(M^i)$ is zero. This completes the proof of the lemma.

We now prove proposition 1. Let y be a point of X. We need only check exactness at F_S and at $\coprod i_{x^{\pm}}(Z)$. We consider three cases.

- 1) $y = s_i$ some i. Then $F_{S'Y} = \iint_{x \in (X,S)} i_{x^*}(Z)_{y} = 0$.
- 2) y is a closed point of S. Then $\lim_{x \in (X,S)} 2^{i}x^{*}(Z)_{y} = 0$, and T is surjective at y by the definition of P_{S} .
- 3) y a smooth point of X. By the lemma, we have

$$i_*(X_2(x_s))_y = H^0(x(y,s),X_2)$$

= $K_2R(y,s)$.

If the F_{S'y} has divisor equal to zero in $(\underbrace{1}_{x\{(X,S)^2} i_{x^*}(Z))_y$, then t also has divisor equal to zero in $(\underbrace{1}_{x\{X^2} i_{x^*}Z)_y$, as t is a tame symbol at all x in $x^2 - (X,S)^2$. Thus $t = T_y(x)$ for some x in $K_2(k(X))$, where T_y is the local tame symbol map at y. Also, $t = T_y(x)$ goes to zero in $\underbrace{1}_{x\{X(y,S)^2} k(x)^*$, so by the

lemma, x comes from $K_2R(y,S)$. This proves exactness at F_S .

Let t be in $(\underbrace{1}_{x \in (X,S)} 2^{i_{x^*}(Z)})$. Then $t = \text{div}_{y}(z)$ for some z in $(\underbrace{1}_{x \in X} 1^{i_{x^*}(k(x)^*)}_{x \in X})^{y}$. As t goes to zero in $\underbrace{1}_{x \in X(y,S)} 2^{z}$, the image of z in $\underbrace{1}_{x \in X(y,S)} 1^{k(x)^*}$ is of the form T(a) for some a in $K_2R(y,S)$. Modifying z by T(a), we may assume that z is in $(\underbrace{1}_{x \in (X,S)} 1^{i_{x^*}(k(x)^*)}_{y})$. If u is in $X(y,S)^2$, then $div_{u}(z) = 0$, and as u is smooth on X, this implies that $z = T_{u}(a_{u})$, for some a_{u} in $K_2(k(X))$. Since $T_{u}(a_{u})$ goes to zero in $\underbrace{1}_{x \in X(u,S)} 1^{k(x)^*}$, this implies that a_{u} comes from $K_2R(u,S)$, which is $i_{x}(X_2(x_S))_{u}$ by the lemma, hence z is in $F_{S',y}$, as desired. This proves (a).

For (b), X_2 is mapped to zero by the tame symbol map, hence $X_2 \rightarrow i_*(X_2(x_S))$ factors through X_2^1 . Next, note that $X_2^1, s_1 = i_*(X_2(x_S))_{s_1} = X_2, s_1$, and ,if y is smooth, the following diagram is commutative:

$$i_{\star}(\chi_{2}(x_{s}))_{y} = K_{2}R(y,s) \longrightarrow K_{2}(k(x))$$

$$\downarrow \gamma \qquad \qquad \downarrow \gamma \qquad$$

Thus $\chi_2' = \ker(i_*(\chi_2(x_s)) \to F_{s'y})$ is contained in $\ker(K_2(k(x)) \to i_{x^*}(k(x)^*)_y)$, which is $\chi_{2'y}$. As the reverse inclusion is implied by the lemma, (b) is proved.

q.e.d.

If Z is a quasi-projective variety, we let H_Z denote the category of torsion coherent O_Z modules M such that M has a two step resolution

by locally free sheaves on Z. If E is a closed subset of Z, we let $H_Z(E)$ denote subcategory of H_Z consistions of sheaves supported on E, and we let $H_{(Z,E)}$ denote

the subcategory of $\mathbf{H}_{\mathbf{Z}}$ consisting of sheaves which are zero at each generic point of \mathbf{E} .

Let E be a closed subset of Z, locally defined by a single equation, such that U = Z - E is affine. Grayson [G] has shown there are long exact sequences (F = k(Z); i > 1)

The maps i_* and j^* are induced by the inclusion $i:H_Z(E)\to H_Z$ and the restriction $j:H_Z\to H_U$ respectively. It is easily checked that all squares and triangles in the above commute up to sign. We define a map $\delta:K_i(H_U)\to K_{i-1}(H_Z(E))$ by $\delta=0$ 0. A diagram chase shows that δ gives a boundary map forming a long exact sequence (i > 1)

$$\xrightarrow{K_{1}(H_{Z}(E))} \xrightarrow{K_{1}(H_{Z})} \xrightarrow{K_{1}(H_{U})} \xrightarrow{K_{1-1}(H_{Z}(E))} \xrightarrow{K_{1-1}(H_{Z})}$$

By a standard argument, this gives rise to a Mayer-Vietoris sequence (i > 1)

$$\xrightarrow{} K_{i+1}(H_{U} \cap V) \xrightarrow{} K_{i}(H_{U} \cup V) \xrightarrow{} K_{i}(H_{U}) \bullet K_{i}(H_{V}) \xrightarrow{} K_{i}(H_{U} \cap V)$$

whenever U and V are affine open subsets of Z with locally principal complements in U $_{\mbox{U}}$ V.

Let
$$H_Z^0 = \lim_{\substack{p_1,\dots,p_n \\ \text{in } Z^2}} H_Z - \bigcup_{i=1}^{n}$$
, and similarly define $H_Z^0(E)$ and $H_{(Z,E)}^0$. If

M is a 0_Z module in H_Z , then, after removing a codimension two subset of Z, M breaks up into a direct sum, M = 0 M, with M supported on \bar{p} minus some proper pEZ D_Z is the direct sum,

$$H_{\mathbf{Z}}^{0} = \prod_{\mathbf{p} \in \mathbf{Z}^{1}} H_{\mathbf{Z}}^{0}(\bar{\mathbf{p}})$$

and hence $K_{\underline{i}}(H_{\underline{Z}}^{0}) = \underbrace{\prod_{p \in Z^{1}}}_{p \in Z^{1}} K_{\underline{i}}(H_{\underline{Z}}^{0}(\bar{p}))$. In addition, if p is smooth on Z, then $K_{\underline{i}}(H_{\underline{Z}}^{0}(\bar{p})) = K_{\underline{i}}(k(p))$ by devissage.

For the remainder of the paper, we assume that X is a surface.

Lemma 2. Let X be a quasi-projective surface, and let t be in $H^0(X,F_S)$. Then [div(t)] = 0 in $K_0(X)$.

Proof. Represent t by (D,f), where D is a curve on X, D_nS is a finite set $P_1 \cup \cdots \cup P_n$, and f is in $k(D)^*$. By adding extra components to D, we may assume that D is locally principal, X-D is affine, and each component S_i of S intersects D. Since $K_1(H_X^0) = \bigoplus_{s_i} K_1(H_X^0(\overline{s_i})) \oplus \bigoplus_{s \in (X-S)^1} k(x)^*$, t defines an element t^0 in $K_1(H_X^0)$, which has image 0 in each $K_1(H_X^0(\overline{s_i}))$, and has image f(x) in f(x) for x smooth. We first show that there is an affine neighborhood V of f(x) which maps to f(x) in f(x). We proceed by induction on n, the case f(x) being trivial.

Take an affine neighborhood W of $p_1 \cup \cdots \cup p_{n-1}$, with locally principal complement , and an element t_W of $K_1(H_W)$ representing $\operatorname{res}_W(t^0)$. We may assume that $p = p_n$ is not in W. As t is a section of F_S , there is an element x in $i_*(X_2(X_S))_p$ such that $t = \widetilde{T}(x)$ in an affine neighborhood U of p. We may assume that U has locally principal complement in X. The element x determines a element x' of $K_2(k(X))$. We define t_U to be $\widetilde{O}(x')$, where \widetilde{O} is the boundary

map from $K_2(k(X))$ to $K_1(H_U)$. If S_i is a one-dimensional component of S, then the following diagram commutes

$$K_{2}(\mathcal{X}_{X,S_{1}}) \longrightarrow K_{1}(\mathcal{H}_{(U,S_{1})}) \longrightarrow K_{1}(\mathcal{H}_{(U,S_{1})}) = \coprod_{p \in (U-S_{1})^{1}} K_{1}(\mathcal{H}^{0}(p))$$

$$\downarrow K_{2}(\mathcal{X}_{X}) \downarrow p \qquad \downarrow K_{1}(\mathcal{H}_{U}) \longrightarrow K_{1}(\mathcal{H}_{U}^{0}) = \coprod_{p \in U^{1}} K_{1}(\mathcal{H}^{0}(p))$$

Thus t_U goes to zero in $K_1(H_U^0(S_i))$; similarly, t_U represents $res_U(t^0)$ in $K_1(H_U^0)$.

We now consider the restrictions $\operatorname{res}_{U \cap W}(t_W)$ and $\operatorname{res}_{U \cap W}(t_U)$. Since both of these represent $\operatorname{res}_{U \cap W}(t^0)$, there is a finite set of points a_1, \ldots, a_m of $U \cap W$ such that $\operatorname{res}_{U \cap W}(t_W) - \operatorname{res}_{U \cap W}(t_U)$ goes to zero in $K_1(H_{U \cap W} - \bigcup_i a_i)$. We shrink U by removing a curve C which passes through the $a_i(f)$ but misses p, and chan notation. We may therefore assume that t_W and t_U restrict to the same element of $K_1(H_{U \cap W})$, hence by Mayer-Vietoris, there is an element $t_{U \cap W}$ of $K_1(H_{U \cap W})$ which restricts to t_U on U and t_W on W. Removing some curves from $U \cap W$, we may assume that $U \cap W$ is affine with locally principal complement, and the induction goes through.

Let then V be an affine neighborhood of $\bigcup_i p_i$, and t_V an element of $K_1(H_V)$ representing $\operatorname{res}_V(t^0)$ as above. Let V' = V-D. Then $z = \operatorname{res}_{V^i}(t_V)$ goes to zero in $K_1(H_{V^i}^0)$, so there is a finite set of points b_1, \ldots, b_m such that z goes to zero in $K_1(H_{V^i-U}b_i)$ Let C be a locally principal curve on X containing all the b_i 's, with X-C affine, but not passing through the finite set S-V. Let $U = X^{-1}$. Then $\operatorname{res}_{U_i \cap V^i}(t_V) = 0$ in $K_1(H_{U_i \cap V^i})$, so we can extend t_V to $Y = U_i \cup V$ to get an element t_V of $K_1(H_V)$ which restricts to t_V on V, and to 0 on U. In particular Y is a neighborhood of S in X, and t_V is an element of $K_1(H_V)$ which represents $\operatorname{res}_V(t^0)$.

Let A = X-Y. Write t as $t = res_Y(t) + t'$. Then t' is supported in the smooth locus of X, hence div(t') = 0 in $K_0(X)$. Thus we may assume that $t = res_Y(t)$. As A is contained in the smooth locus of X, we have localization sequences

Let z be the image of t_Y under $K_1(H_Y) \rightarrow K_1(Y)$. It is well known that $\partial \sigma_{Y-S}(z) = [\operatorname{div}(t)]$ as an element of $K_0(A)$. Thus $\partial(z) = [\operatorname{div}(t)]$ goes to zero in $K_0(X)$, as desired.

We recall that, on a quasi-projective surface X with singular locus S, the group $CH^2(X,S)$ is the free abelian group on the smooth points of X, modulo relations of the form div(f), where f is in k(D)* for some curve D on X, satisfying the conditions:

- 1) DoS is a finite set
- 2) D is principal in a neighborhood of each point of D_AS
- 3) f is a unit in $\partial_{D'p}$ for each p in $D \cap S$

It is easily shownthat each zero cycle of the form $\operatorname{div}(f)$ for such an f as above goes to zero in $K_0(X)$, hence there is a homomorphism $\chi: \operatorname{CH}^2(X,S) \to K_0(X)$ defined by sending the equivalence class of a smooth point x to the $K_0(X)$ class of the residue field k(x). We have shown in [L] that χ defines an isomorphism of $\operatorname{CH}^2(X,S)$ with the subgroup $F_0K_0(X)$ of $K_0(X)$ generated by the classes [k(x)] for x a smooth (closed) point of X.

On the other hand, given such a pair (D,f) satisfying (1)-(3) above, consider a point p of D\S. Let G be a local defining equation for D, and let F be a

function in $0^*_{X'p}$ which restricts to f on D in a neighborhood of p. We may choose G and F so that both are units in $0^*_{X'S}$ for each one-dimensional component S_i of S. Then the symbol $\{F,G\}$ defines an element of K_2R_S , hence also an element of $i_*(X_2(X_S))_p$, and $T_p(\{F,G\}) = (D,f)$ at p. Thus (D,f) defines a global section of F_S . There is therefore a surjection

$$CH^{2}(X,S) \longrightarrow H^{2}(\Gamma(G.)) = \underset{x \in (X-S)}{\coprod} 2^{\mathbb{Z}} / \operatorname{div}(H^{0}(X,F_{S}))$$

By lemma 2, the map $\forall : CH^2(X,S) \rightarrow K_0(X)$ factors through $H^2(\Gamma(G.))$, hence we have shown

Corollary 3. $CH^2(X,S)$ is isomorphic to $H^2(\lceil (G.) \rceil)$.

We now analyze the cohomology of the sheaves in the resolution G. .

Lemma 4. Let A be a one-dimensional semi-local ring, and let $\bar{x} = \operatorname{Spec}(A)$.

Then $H^1(\bar{x}, \chi_2) = 0$ for i > 0. (We assume that each residue field of A has at lea three elements).

Proof. Let A have closed points p_1, \ldots, p_n . Let A_1 be the local ring A_{p_1} , and let A_2 be the semi-local ring $A_{p_2} \cup \cdots \cup p_n$. Let U_i be the open subset $\operatorname{Spec}(A_i)$ of \bar{x} , i=1,2. Since U_1 is local, $H^1(U_1, \chi_2) = 0$ for i > 0. By induction, we may assume that $H^1(U_2, \chi_2) = 0$ for i > 0 as well. As $U_1 \cap U_2$ is the single points $\operatorname{Spec}(F)$, F the fraction field of A, $\mathcal{N} = \{U_1, U_2\}$ is a Leray covering of X for X_2 . In particular, $H^1(\bar{x}, \chi_2) = 0$ for i > 2. To show that $H^1(x, \chi_2)$ is zero, we need only show that every element z of $K_2(F)$ can be written as $z = z_1 \cdot z_2$, with z_i in $K_2(A_i)$. We may assume that $z = \{a, b\}$, with a, b in A.

By the Chinese remainder theorem, we may write a and b as

$$a = u_1 \cdot u_2$$
; $u_i, v_i \in A_i^* \cap A$ for $i = 1, 2$
 $b = v_1 \cdot v_2$

Thus

This reduces us to the case in which a is a unit in A_1 and b is a unit in A_2 (and both a and b are in A). Write b as

$$b = b_0(1 + b_1a)$$
; $b_0 \mathcal{E} A^*, b_1 \mathcal{E} A$.

By the Chinese remainder theorem, there is an element c of A such that $c(1+b_1a) + b_1$ is a unit in A_2 , and $t = b_0^{-1} \cdot (1 + ca)$ is a unit in A. Then

- 1) 1 tb is in (a) A
- 2) s = (1 tb)/a is a unit in A_2

We have

$$\left\{a,b\right\} \cdot \left\{a,t\right\} = \left\{a,bt\right\}$$

$$\left\{a,bt\right\} \cdot \left\{s,bt\right\} = \left\{1-tb,tb\right\} = 1 ,$$

so

$$\{a,b\} = \{t,a\} \cdot \{bt,s\} \quad \{k_2A_1 \cdot k_2A_2\}$$

as desired.

Corollary 5. $H^{i}(x,i_{\star}(X_{2}(x_{s})) = 0 \text{ for } i>0.$

<u>Proof.</u> By the above lemma, $H^{i}(X_{S}, X_{2}(X_{S})) = 0$ for i > 0, so we need only show that $R^{q}i_{*}(X_{2}(X_{S}))_{p} = 0$ for q > 0 and for p in X.

- 1) p a smooth point of X. Then $R^q i_* (X_2 X_S)_p = H^q (Spec(k(X)), X_2) = 0$ for q > 0.
- 2) p a point of S. Then $R^q_{i_*}(\chi_2\chi_S)_p = H^q(\chi_{S/p},\chi_2)$, where $\chi_{S/p}$ is the open subset of χ_S gotten by removing all points, which don't specialize to p. By the previous lemma, this cohomology group vanishes for q > 0.

This completes the proof of the corollary.

q.e.d.

Lemma 6. $H^{i}(X,F_{S}) = 0$ for i > 0.

Proof. We have the inclusion $F_S \subseteq \prod_{x \in (x-S)} i_{x^*}(k(x)^*) = F$; let C be the cokerne. Then C is supported at closed points of S, so

$$H^{1}(X,F_{S}) = H^{1}(X,F) = 0 \text{ for } i \ge 2$$

 $H^{1}(X,F_{S}) = H^{0}(X,C) / ImH^{0}(X,F)$

C is a direct sum of skyscraper sheaves $i_{p*}(C_p)$, and C_p is generated by representatives (D,f) in F_p . Take then a curve D passing through p, and a function f in k(D)*. By adding elements of the form $(D^i,1)$, we may assume that D is principle in an affine neighborhood U of $D_{\cap}S$, say defined by H in $\bigcap_{i=1}^{n} (U, \mathcal{O}_{U})^{i}$. We may choose U so that U contains each generic point of S. We may also assume that f is a regular function on $D_{\cap}U$. Take a regular function F on U which restricts to f on $D_{\cap}U$. Take N sufficiently large so that, letting m denote the maximal ideal of $\widehat{U}_{X'p}$, we have

$$F' \mathcal{C}_{X'p}^{\bullet}$$
, $F' \subseteq F \mod m^{N} \Longrightarrow F_{D}^{\bullet} = uf$, with u a unit in $\mathcal{O}_{D'p}$.

We need only take N so large so that m^{N-1} contained in (f) when restricted to D. When the threshold of T. Let L be a line bundle on X, chosen sufficiently ample so that F extends to a global section of L, and m^{N} is generated by global sections. Then there is a section s_0 in $H^0(X,L)$ such that, with respect to some local trivialization of L near p,

- i) $s_{0|_{D}} = uf$, with u a unit in $\partial_{D'p}$
- ii) (s_0) , the divisor of s_0 , does not contain any point of D \wedge S other than p, and contains no curve in S
- iii) (s_0) contains no generic point of D, nor any point of the finite set s-u.

Let s_{∞} be a section of L that is non-zero at each point of s_{∞} , at each generic point of D, at each point of S-U, and at each generic point of S. Let G be the rational function s_{0}/s_{∞} . Then G satisfies

- 1) $G_{|D} = u'f$, with u' a unit in $O_{D'D}$.
- 2) H is a unit at each point of $(G) \cap S \{p\}$.

For (E,t) in $\underbrace{\int_{X}^{L} (X-S)^{1}}_{X} k(x)^{*}$, we denote by $\underbrace{(E,t)}_{(E,t)}$ the class of (E,t) as a section of \underbrace{C}_{q} , and $\underbrace{(E,t)}_{q}$ the class of (E,t) in \underbrace{C}_{q} , $\underbrace{q}_{\ell} X$. As D is Cartier, $\underbrace{(D,f)}_{p} = \underbrace{(D,u'f)}_{p}$, and so

$$\overline{(D,f)}_{p} = \overline{(D,u'f)}_{p}$$

$$= \overline{(D,G_{D})}_{p} + \overline{T_{p}(\{H,G\})}_{p} \text{ as } \{H,G\} \text{ is in } K_{2}R_{S}$$

$$= \overline{((s_{0}), h)}_{p} \qquad \qquad h = H_{(s_{0})}$$

Also, since H is a unit at each point of $(s_0) \cap S$, $\overline{((s_0),h)}_q = 0$ for each $q \neq p$. Thus $\overline{(D,f)}_p$ is in the image of $H^0(X,F)$, and $H^1(X,F_S) = 0$, as desired.

q.e.d.

We can now prove our main result.

Theorem. Let X be a quasi-projective surface, with singular locus S. Then $CH^2(X,S)$ is isomorphic to $H^2(X,X_2)$.

<u>Proof.</u> As X_2 and X_2' are isomorphic off the closed points of S, we have $H^2(X, X_2) = H^2(X, X_2')$. By proposition 1, together with lemma 4, corollary 5, and lemma 6, G. is an acyclic resolution of X_2' . Corollary 3 finishes the proof.

REFERENCES

- [B] S. Bloch, " K_2 and algebraic cycles", Ann. of Math. 99(1974) 349-379 .
- [C] A.Collino, "Quillen's X-theory and algebraic cycles on almost non-singular varieties", Ill. J. Math.25 #4(1981) 654-666.
- [G] D. Grayson, "Higher algebraic K-theory II", Springer LNM No. 551(1976) 217-240
- [L] M. Levine, "A geometric theory of the Chow ring on a singular variety", preprint.
- [Q] D. Quillen, "Higher algebraic K-theory I" Springer LNM No. 341(1973) 85-147.