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Let X be a quasi-projective variety with singular locus S. Let
sl,...,s a be the irreducible components of S. We henceforth assume that

aim(s,) & 1 for each i, and we order the S, so that aim(s,) = 1 for i = 1,....z,

i
and dim(si) = 0 for i)r. Let s, denote the generic point of Si, i=1,...,r.

i
Let RS be the semi-local ring of slu oo J Sr in X, and let xs denote Spec (Rs) .
If p is a point of X, we let R(p,S) be the localization of Rs at the set
{f l f(p)#O} ; if i:xsﬁx is the inclusion, then i-l(Spec( Bx,p))= Spec(R(p,S))
We let X(p,S) denote Spec(R(p,S)).
Let (X,S) be the topological space gotten by removing from X all points
x of codimension one which specialize to some s i’ and also removing all points

of codimension two which specialize to some point of S. We define a subsheaf

Psof .JL

x,(k(X)*) by
X 8 (XIS)
for j %2, and for each z in Xx-
FS'p - v & ( _L\_ 11x*(k(x)*” which specializes to p, and also
x¢t (X,S) P specializes to a point of S, there

is an element t, of i (Xz(x ))
withys'l‘(t) atz

Here T 1s the composition of i,(X,(Xg))}L,K, (k(X)) with the tame symbol map

T:i*x (k(X)) --)_Ll_ i '(k(x)*) . We note that'T actually has image in FS. The

divisor map div: _LL i L (k(x)*)=> .LL 21 Z ) restricts to Ps to give a map
xcx x¢X

div:l?s -3 21 «(Z). This gives us a complex of sheaves on X
x
x £(X,S)

G. : 0->i (X (x))—-,r o I im0
2 'S S xC(XS)zx

~
Let Xi denote the kernel of T.



INTRODUCTION

Let X be a smooth, quasi-projective variety. Bloch's formula

ap(x,)(p) N cEP(x)

relating the K-theory of X with the Chow ring,was proved by Quillen in [Q] .
The case p=l was known to the ancients; Bloch originally proved the case p =
in the case of surfaces. The purpose of this note is to show an analogous
formula in case X is a sinqular surface. Collino EC] has constructed groups
of cycles mod rational equivalence ICBP(X,S)) in case X is a quasi-projective
variety with singular locus S a finite set of points, and has verified that
ap(x')‘p) = cB®(X,S) if S is a single point. Our method is a combination of
the ideas in{cC|, together with the original construction of Bloch in[B] .
Of especial importance is our lemma 2, which says that a collection of curves
and functions i(D,f)] f{k(D)*} on a surface X, with no curve D contained ir
the singular locus S, trivializes the zero cycle Zdiv(f) in Ko(x) if the col
is locally a tame symbol along S (this automatically forces Zdiv(f) to be
supported on the smooth locus of X, so its class in l(o makes sense).

We fix at the outset an algebraically closed field k as ground field

for all varieties considered herein.



Proposition 1. The complex G. is a resolution of Xi In addition, the map

Xz..v, iﬁ‘,(')(2 (xs)) factors through ')(2', and )(2-3)(5 is an isomorphism away

from the closed points of S.
We first prove the following lemma.

Lemma: Let y be a smooth point of X. Then the Gersten complex for R(y,S):

o.,xzn(y.S)_..xz(k(x))_T, ._U. R div, i ,Z =30
x £X(y,S) x £ X(y,S)

is exact.

Proof. The proof is essentially the same as in EQIand{C] ; we give a sketch
here for the reader's convenience. R(y,S) is a regular ring, and the Gersten
complex comes from the spectral sequence arising from the collection of long

exact sequences

i+l i i 1+13 i+l
=K, (M7 T)=DK, (M)—>K, (M"/M .)%Kd_l(u )~ '

where Mj' is the category c;&R( +S) modules supported in codimension i. To show
ConeIeN

the Gersten complex above is exact, we need only show that, for each principal

divisor Z on X(y,S), the map

1 i
K, (M (2))=>K (1)

is zero, where ML(Z) is the full subcategory of Mi+1 consisting of modules

supported on 2.
Let U = Spec(R) be a smooth affine neighborhood of y in X such that Z is

represented by a principal divisor 2' on U, defined by an element t of R. Since

& is » smooth N P B, there is a map f:UeAn-l (n = dim(X)) which is smooth

Of\ ~ a neighborhood of 1y , and such that Z' is finite over An-l.



We have the diagram

Spec(R')=Y=0xn_lz'~9 v

] |

Spec(R/t) = 2° —_— A .

After inverting : ~h in R, h(y)#0,

is principal, and R*

the ideal I of s(z"h) in R' is smooth, hence flat, over

h h
R N (R= R/t). Let £ = hf, £, be in R, with £,(y)#0, and £,(s,)#0 for each

i=1,...,r. We have an exact sequence of functors from Mi(ZE) to ui:
1 ]
O,Iﬁf ? -,anif ? —~u ? -0 .

i, i
As If is principal, the map on KX groups xd(u (zf)).,xd(n ) is zero. Since
'(2) is the direct limit over £ as above of the M'(2}), the map K (4" (2) K,

is zero. This completes the prdof of the lemma.

We now prove proposition 1. Let y be a point of X. We need only check

exactness at F, and at Jlix,(z ). We consider three cases.

1) y=s smei. Thenf_, = || i ,z) = 0.
t Sy xz():.S)"’x y

. ~
2) y is a closed point of S. Then ‘ l 21 «(Z)_ =0, and T is surjective
x Y
x g(X,8)
at y by the definition of Ps.

3) y a smooth point of X. By the lemma, we have

1K xg = 1’ (xty,$), X

= KZR(Y'S) .

If tE F has divisor equal to zero in ( -u-

s’y x{ x,8°% **
has divisor equal to zero in (J.L 2 1x*2)y' as t is a tame symbol at all x in

xXfX
x2 - (x,S)z. Thus t = 'ry(x) for some x in xz(k(x)), where 'ry is the local tame

1,e(Z)), , then t also

symbol map at y. Also, t-'fy(x) goes to zero in J.L k(x)*, so by the

xf Xy, 9!



lemma, x comes from K R(y,s) This proves exactness at I-‘S
Let t be in( _u_ 2x,(2)j Thent-div (z) for some z in (_U. i (k(x)"’)y
x ¢ (X,S) y xf xt

As t goes to zero in ” Z , the image of z in ..LL

2 k(x)* is of
x $ X(y,S) x £X(y.S)

1

the form T(a) for some a in KZR(y,S). Modifying z by T(a), we may assume that

z is in ( .tl,—(L gl 1 (k(x) *) If u is in x(y,S)z, then div,(z) = 0, and as u
x & (X,

is smooth on X, this implies that z = Tu(au), for some a, in lcz(k(x)) . Since

T (a ) goes to zéro in _U_ k(x)*, this implies that a _comes from K2R(u.s) '
uou xsx(u,s)l v

which is :i.,,,(.x2 (xs))u by the lemma, hence z is in Fs'y' as desired. This
proves (a).
For (b), J(z is mapped to zero by the tame symbol map, hence )(2-')‘1*(,)(2()(5))
' = 3 = .
factors throughXé Next, note that Xz'si 1,,()(2(}(5))si Xz'si' and ,if

y is smooth, the following diagrani is commutative:

1,(X2(xs))y = KR(y,S) (s Ky (kX))
|7 L,
- J

Pgry O ...U. el

x€ X
~

Ta Ty
Thus Y 5 = ker(i, (), (%) ),j—% Pgr,) 1s contained in ker (K, (k(X) 1N LR ),

which is 2y As the reverse inclusion is implied by the lemma, (b) is proved.
q.e.d.

If 2 is a quasi-projective variety, we let Bz

denote thekca;eqory of torsion
coherentb’ 2 modules M such that M has a two step resolution ‘

o—):-'l-—) Fy=> M-D0
by locally free sheaves on Z. I f E is a closed subset of 2, we let HZ(E) denote

subcategory of Bz consistiong of sheaves supported on E, and we let H(z E) denote
(4
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the subcategory of Bz consisting of sheaves which are zero at'each generic point
of E.
Let E be a closed subset of 2, locally defined by a single equation, such

that U = 2~-E is affine. Grayson [G] has shown there are long exact sequences

(F = k(2); 17,1)

—> K (H,(E))~> K, (2) DK, (V) —» K, _, (B, (B)~DK, , (2) 3K _, (V)

iy | fl 7& ‘x|, f 7

—> K, (B)) ——> K, (2) —aK (F) —3K (B ) 3K, _ 1‘”‘"‘3 xi 1 (F)
] 1/ g | |
_)Ki(nu) -—-—0—(3 K, (U) ~>K (F) 5K, V(H,) —\K, _ l(!J) "">Ki 1 (F)
The maps i, and j* are induced by the inclusion i:H z(B) -)Hz and the gestriction
j:az —DHU respectively. It is easily checked that all squares and triangles
in the above commute up to sign. We define a map Szxi(an) —)xi_l(az(s)) by
8 =DOd . A diagram chase shows that 8 gives a boundary map forming a long

exact sequence (1%1)

- Ki(Bz(E)) - Ki(Hz) -‘—;xi(ﬂu) - K (B (E)) =K
‘x * 9 ‘%
By a standard argument, this gives rise to a Mayer-Vietoris sequence (i 21)

1-1 (Bz)

- Ki,,l(ﬂunv) =K, (B uv’ =3K, (Hy) © K, (H,) %Ki(ﬂunv)

whenever U and V are affine open subsets of Z with locally principal complements

in UUV.
o_ 0
t H
Le z ™ l_i_n; Up . and similarly define B (E) and B(z,z)' 1f
pl'-oo,p i
in 22

Mis a 8 module in Bz, then, after removing a codimension two subset of 2, M

breaks up into a direct sum, M = @ Hp, with Hp supported on p minus some proper
p£z
closed subset. Thus the category Bg is the direct sum,

0
i = -‘-1-1 B, )

pez



0 0,-
and hence Ki(az) = JJ_ 1 Ki(Hz(p)). In addition, if p is smooth on Z, then
PEZ

Ki(Hg(f:)) = Ki(k(p)) by devissage.

For the remainder of the paper, we assume that X is a surface.

Lemma 2. Let X be a quasi-projective surface, and let t be in HO(X,FS) .

Then[aiv(t} = 0 1a K ().

Proof. Repraesent t by (D,f), where D is a curve on X, Dns is a finite set
Py UPy’ and £ is in k(D)*. By adding extra components to D, we may

assume that D is locally principal, X-D is affine, and each component Si of S

0, - 0
intersects D. Since K (H) = (@)X, (8 )(‘51” o @ K(x)*, t defines an
5t A x £ (X-8)
element t° in Kl(Bg) , which has image O in each KI(H°(§1)), and has image f(x)

in k(x)* for x smooth. We first show that there is an affine neighborhood Vv
of PyU--- Py with locally principal complement, and an element tV of Kl(Hv)
which maps to resv(to).in “1("3’ . We proceed by induction on n, the case n = 0

being trivial.

Take an affine neighborhood W of PyU -V Pyy with locally principal

complement , and an element tw of Kl(uw) representing resw(to) . We may assume

that p = pn is not in W. As t is a section of Fs, there is an element x in

i,,,(.Xz(xs))p such that t = T(x) in an affine neighborhood U of p. We may
assume that U has locally principal complement in X. The element x determines

a element x' of Kz(k(x)). We define t _ to be D (x'), where ais the boundary

U
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map from K2 {(k{X)) to Kl (HU) . If si is a one~dimensional component of S, then

the following diagram commutes

x(&' )—-)x(nws))-sx(ams) = 1 xm(p))
/7 T pz(u-s)

el T

0 0
l(z(k(x)) -— KI(HU) —_— Kl(ﬂu) = ‘LL 11(1(3 (p))

T PEV
Thus t_goes to zero in K (HO(S )); similarly, t_ represents res (to) in K ( 0)
U ) S 1 R ' "u 4] 1 BU :
We now consider the restrictions restJ (t. ) and res (t. ). Since both
nW W unw U

of these represent res (to). there is a finite set of points ayre..0ap of

UAWw
UAWSuch that res, (tw) U w(1:0) goes to zero in K (EU W ‘Ua We
shrink U by removinq a curve C which passes through the a i“) but misses p. and chan
notation. We may therefore assume that tw and tu restrict to the same element

of Kl (Bu r\“) ,» hence by Mayer-Vietoris, there is an element tu oW of Kl(HUuW)
which restricts to tU on U and tw on W. Removing some curves fx:om Uuw,we

may assume that Ugyw is affine with locally principal complement, and the
induction goes through.

Let then V be an affine neighborhood of L;) Py’ and tv an element of KI(HV)
representing resv(to) as above. Let V' = V-D. Then z = res,, (tv) goes to zero
in Kl(Bg,). so there is a finite set of points bl""'bm such that z goes to
zero in Kl(ﬂv._ubi) Let C be a locally principal curve on X containing all
the bi's, with X-C affine, but not passing through the finite set S-V. Let U = X-
Then res,, ,\v(tv) = 0 in Kl(BUnv). so we can extend ty to ¥ = UV to get an

element ty of Kl(&l) which restricts to f‘,on V, and to 0 on U. In particular
Y is a neighborhood of S in X, and t:Y is an element of Kl"’v’ which represents

resY(tO) .



Let A = X~-Y. Write t as t = resY(t) + t'. Then t' is supported in the
smooth locus of X, hence div(t') = 0 in Ko(x) . Thus we may assume that
t = resY(t) . As A is contained in the smooth locus of X, we have localization

sequences

Kl(x) —— Kl(Y) —— K(')(A) —_— xo(x)

| bss |l |

Kl(X-S) —— Kl(Y—S) _-_— Ké(A) R KO(X~S)

o

Let z be the image of tY under Kl(&l) .-)KI(Y) . It is well known that

aoi;_s(z) =I_div(t)]as an element of KE)(A)' Thus a(z) =[div(tﬂ goes to

zero in Ko(x) , as desired.
q.e.d.

We recall that, on a quasi-projective surface X with singular locus S,
the group CHZ (X,S) is the free abelian group on the smooth points of X, modulo
relations of the form div(f), where £ is in k(D)* for some curve D on X,
satisfying the conditions:

1) DnS is a finite set

2) D is principal in a neighborhood of each point of DAS

3) f is a unit in D'p for eachpinDAS

It is easily shownthat each 2zero cycle of the form div(f) for such an f as above
goes to zero in K,(X), hence there is a homomorphism " .ca? (x,5)> K, (X) defined
by sending the equivalence class of a smooth point x to the Ko(x) class of the
residue field k(x). We have shown in ‘:L} that X defines an isomorphism of
032 (X,S) with the subgroup Fol(o(x) of xo(x) generated by the classes [k(x)'] for
x a smooth (closed) point of X.

On the other hand, given such a pair (D,f) satisfying (1)-(3) above, consider

a point p of D/\S. Let G be a local defining equation for D, and let F be a
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function in O which restricts to £ on D in a neighborhbod of p. We

X’'p

may choose G and F so that both are units in ex ‘g for each one-dimensional
i

component Si of S. Then the symbol %F,G} defines an element of Kst, hence also
an element of i*(xz(xs”p' and 'rp( iF.G} ) = (D,f) at p. Thus (D,f) defines

a global section of Fs . There is therefore a surjection

caz(x.S)-—)-) Bz( M.y = /div(a (x Fg))
x:(x-S) !

By lemma 2, the map.‘ :CHZ(X.S)-)KO(X) factors through HZ(P(G.)) » hence we

have shown

Corollary 3. caz (X,S) is isomorphic to Bz(r‘(G.)).

We now analyze the cohomology of the sheaves in the resolution G. .

rulucerL
Lemma 4. Let A be a ocne-dimensionalVsemi-local ring, and let X = Spec(A) .

Then Hi(x,xz) =0 for 1?7 0. (We assume that each residue field of A has at lea
three elements).

Proof. Let A have closed points p.,...,p_. | Let A, be the local ring A .and
_— 1 n

1
P
let Az be the semi-local ring APzU ceup, . Let Ui be the open subset Spec(Ai)
of X, i=1,2. Since u, is local, B wl,)(z) = 0 for 17 0. By induction, F

may assume that gt (Ui: X,) = 0 fm: i20 as well. Aas U, Ny, is the odigieumo,\ ¢
pointySpec(F), F the & field of A, u = {Ul, UZS is a Leray covering

of X fo:)(z. In particular, n‘(i,xz) = 0 for i%2. To show that nl(x,xz)

is zero, we need only show that every element z of Kz(l-") can be written as

z = zl-zz, with z, in KZ(A:L)' We may assume that z = {u,b} . with a,b in A.
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By the Chinese remainder theorem, we may write a and b as

a= -, ; u, . vi‘ £ AI(\A for i = 1,2
b= vl'v2
Thus )
i"bl = i“l"’lg : {“2"’2l ’ Z"z"’& ) i“l'vzi
av M

Kz (Al) x2 (Az)

This reduces us to the case in which a is a unit in Al and b is a unit in A2

(and both a and b are in A). Write b as

b = by(l + bja) b, € A%, bl{:A

By the Chinese remainder theorem, there is an element ¢ of A such that c(l+bla) + bl

is a unit in Az, and t = b-l'(l + ca) is a unit in A. Then

0

1) 1 - tbis in (a)a

2) s= (1 - tb)/a is a unit in A

2
We have
{a,bl'{a,tg = (a,btg
ia,btl'is,bt{= f1 - tb,tbi =1,
so .
ia,b} = it'ai . ibt,si £ KyA; "KyA, ,
as desired.

Corollary 5. B(X,1,(X, (%)) = 0 for 10.

Proof. By the above lemma, Bi(xs,xz(xs)) = 0 for 1 0, so we need only

show that nqi,,(')(z(xs))p- 0 for q¥0.and for p in X.
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1) p a smooth point of X. Then qu*()ﬂzxs)p = Eq(Spoc(k(x)). )<2) = 0 for

q>0.

2) p a point of S. Then qu*(xzxs)p = Hq(xs/p’ ‘XZ) , where X is the open

s/p
subset of xs gotten by removing all pointfs i which don’t specialize to p.

By the previous lemma, this cohomology group vanishes for q 0.

This completes the proof of the corollary. q.e.d

Lemma 6. ni(x,rs) = 0 for i’ 0.

Proof. We have the inclusipaF

c A

i (k(x)*) = F; let be the cokerne.
x & (X-8) 1x* det, C

S

Then C is supported at closed points of S, so

ni(x,ps) = gt (x,F) = 0 for 132

1 0 0
B (X,Fg) = H (x.e)/ma (X,F) .

C is a direct sum of skyscraper sheaves i p*(cp) , and Cp is generated by
representatives (D,f) in E'p. Take then a curve D passing through p, and a
function f in k(D)*. By adding elements of the form (D',l), we may assume that
D is principle in an affine neighborhood U of D S, say defined by H in P(U,QJ).
We may choose U so that U contains each generic point of S. We may also assume
that £ is a reqular function on Dn U. Take ; regular function F on U

which restricts to £ on D,\U. Take N 'sufficiently large so that, letting m

denote the maximal ideal of@'x,p, we have

N
P'CQ,F. F'ZF mod m '.3} F"D = uf, with u a unit in D'p

We need only take N so large so that nN-z': contained in (f) 0 s when restricted

br
to D M. Let L be a line bundle on X,

chosen sufficiently ample so that F extends to a global section of L, and

m“ﬂl. is generated by global sections. Then there is a section s. in HO (x,L)

0
such that, with respect to some local trivialization of L near p,



i) soln = uf, with u a unit inbn,p
©id) (so) » the divisor of s,, does not contain any point of D nS other
than p, and contains no curve in §

iii) (so) contains no generic point of D, nor any point of the finite set

S - 0.

Let SN be a section of L that is non-zero at each point of Df\ S, at each generic
point of D, at each point of S-U, and at each : generic point

of S. Let G be the rational function so/ S Then G satisfies

R -

= ] ]
1) G‘D u'f, with u' a unit ian,p

2) H is a unit at each point of (G)(‘ 5§ - ip}

For (E,t) in l‘. k(x)*, we denote by (E,t) the class of (E,t) as a
x £(X-8)

section of C , and (l:-:,t)q the class of (E,t) in Cq, qfX. As D is Cartier,

(D,f)p = (D,u'f)p, and so

(D,£)

D,u'f
p (D, )p

(D'G‘D)p
(D'G'D)p + Tp( fH,Gg )p as %B,G}is in K2Rs
((so), h)p h = B'(so)

cther

Also, since H is a unit at eachYpoint of (sg)n S, ((s4) .h)q = Q0 for each

q # p. Thus (D,f)p is in the image of Bo(x,t-‘), and Bl(x,Fs) = 0, as desired.

q.e.d.

We can now prove our main result.
Theorem. Let X be a quasi-projective surface, with singular locus S. Then

ca?(x,s) is isomorphic to aztx,](z).

Proof. As Xz and )(.é are isomorphic off the closed points of S, we have
Bz(x. Kz) = HZ(X.Y\,",). By proposition 1, together with lemma 4, corollary S,
and lemma 6, G. is an acyclic resolution of )gé. Corollary 3 finishes the

proof.
q.e.qd.
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