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RENEWAL PROCESSES ON TOPOLOGICAL SPACES
WITH UNIFORM ACTION GROUPS

Dao Trong Thi

Introduction

Renewal processes on topological groups were studied in depth in mzl?papers (see, for
example, [1], [2]). This article is devoted to the renewal theory on topological spaces
with transformation groups. An essential obstacle in establishing and proving basic results,
‘concerning the finiteness of the renewal function, is the possible appearance of noncompact
stationary subgroups at points of the space. Generally, the study of random processes on
topological spaces with transformation groups (in particular, on homogeneous spaces) is
much more complicated than on topological groups and some open problems still exist in
this area. For instance, the Loynes dichotomy theorem is not true for induced random
walks on homogeneous spaces in general, although it holds under certain assumptions ( [3],

[5], [8]). Some reasons of this observation were discussed in {8], [9].

In this pap.er we consider uniform actions of locally compact groups on topological

spaces and investigate some basic questions of renewal processes induced by these actions

on the corresponding topological spaces.

The paper was written when the author was staying at the Max—Planck—Institut fiir
Mathematik in Bonn.



§ 1. Uniform actions of groups

Let M be a topological space, G a topological group with the unit element e . We
say that G acts (continuously) on M if given a continuous map {: GxM — M

satisfying the following conditions:

(i) Forany g € G themap g: M — M, sending each point x € M
PR to the point f(g,x) is a homeomorphism. In this case we write

gx = 1(g,x) -
(i1) (gh(x) = g(Hx) for any g,h € G and any x € M.
(iii) ex =x forany x€M.

For each point x € M the set

H ={g€G|gx=x}
d\sd;grouP
is a close of G , called the stationary subgroup at the point x . It is easy to check that if
— — -1 _ -1
Y = gx then Hy =gH g ={ghg "|hE€H }.
The set
G, ={gx€M | g€G}

is called the orbit of the point x under the action G . Gx is a closed subset of M , homeo-

morphic to the homogeneous spave G/H_ .

Definition 1.1. An action of a topological group G on a topological space M is



—3_

called uniform at a point x € M if for any neighborhood U of x there exists a neighbor-
hood U’ of x such that h(U’) CU forall h € H_. Anaction G on M is called

uniform if it is uniform at each point of M.

Proposition 1.2. If an action of a topological group G § !
a topological space M is uniform at a point x € M, then it is uniform at each point of the

orbit Gx )

Proof. Assume that x € M is uniform point of the action G, that is for any neigh-
borhood U of x there exists a neighborhood U’ of x such that h(U’) C U for every
he H . Letting y =gx € Gx , we have Hy = ngg'"l . Suppose now that V isan
arbitrary neighborhood of y . Set U = g_l(V) . According to the assumption one can
choose a neighborhood U’ of x such that Hx(U’) CU.Put V' =g(U’). We have
Hy(V’) = ngg_l(V’) = gH (U’) Cg(U) = V. This completed the proof.

Corollary 1.3. Suppose the action G on M is transitive. Then it is uniform if and

only if it is uniform at a point of M .

For any two points x,y € M consider the set

Hx,y)={g€G | gx=1y} .

Clearly, H(x,y) # ¢ if and only if x and y belong to the same orbit, i.e. G, = Gy .
Assume that H(x,y) ¥ ¢ and y = gx. Then h € H(x,y) if and only if hx = gx or
g 'hx = x . This means that g 'h € H_ or h € gH_. Thus, H(x,y) = gH__. Similarly,

H(x,y) = Hyg . From the definition it follows that
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(1.1) . H(x,y)_1 = H(y,x) forany x,y€M .
Nov&, let U and. V be subsets of M and put

V= U x,y) .
U= U )

We note that if U is a neighborhood of x or V is a neighborhood of y , then H(U,V)
is a neighborhood of H(x,y) in G. From (1.) it follows that

(1.2) H(U,V)™ = H(V,U) forany UVCM .

Theorem 1.4. Let a topological group G act uniformly on a topological space M.

Then for any x € M and any open subsets V, V’ such that VCV’ and V is compact,
there exists a neighborhood U of x such that H(U,V) C H(x,V’).

From Theorem 1.4 and the equality (1.2) it follows immediately the following

Corollary 1.5. Given an uniform action of a topological group G on a topological

space M . Then for any y € M and any open subsets U, U’ such that UCU’ is
compact, there exists a neighborhood V of y such that H(U,V) CH(U",y).

To prove Theorem 1.4 we need the following lemmas

Lemma 1.6. Let the action G on M be uniform. Suppose x,y € M are arbitrary

-points. Then for any neighborhood V of y there exists a neighborhood U of x such
that h(U) CV forall h € H(x,y) .




Proof. If H(x,y) = ¢, then the statement of the lemma is obvious. Assume that
H(x,y) ¥ ¢ and let y = gx . As noted above we have H(x,y) = gH_ . Suppose now that
V is a neighborhood of y . We put U = g_l(V) . By definition there exists a neighbor-
hood U’ of x such that H_(U’) CU. Hence H(x,y)(U')=gH (U’) Cg(U)=V,

completing the proof.

Lemma 1.7. Given an uniform action G on M. Let x € M be an arbitrary point,

—_—

V and V’ open subsetsin M such that VCV’ and V is compact. Then there exists
a neighborhood U of x such that h(U) C V’ forany h € H(x,V).

Proof. If VNG _=¢,ie H(x,V) = ¢, then the statement of the lemma is ob-

vious. Assume that VN G, # ¢ . Suppose z € vn G, . Each element h € H(x,V) can be
expressed in the form h = gh’ , where h’ € H(x,z), g € H(z,V) . From the continuity of
the action G on M it follows that there exists a neighborhood V. of zin M anda
heighborhood K_ of theunit e in G such that g(V ) C VvV’ forany g€ K, . Choose a
neighborhood W, of z in M such that W, CV_and G, N'W,_C{gz | g€K,}.By
Lemma 1.6 there exists a neighborhood U of x in M such that h(Uz) cw, for any

h € H(x,z) . Since V N G, is compact (because V is compact), one can select a finite

— k
covering {W_ },¢;¢ of VNG, .Set U= 'nl U, . We prove that U is a needed
1 -~ 1= 1

neighborhood of x . Really, suppose h € H(x,V) (= H(x, VN G )) and let

h € H(x,W, ). As noted above, h has the form h = gh’ , where h’ € H(x,z;), g €K .
: i i

Then h(U) = gh’(U) C gh’(U, ) C g(W,
1 1

) Cg(V,) CV’ . The proof is complete.
1

Proof of Theorem 1.4. A neighborhood U C M is said to be symmetric at a point
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x € U if gx € U implies g *x € U forany g € G . Clearly, for any neighborhood U of
x in M one can find a neighborhood U’ C U, symmetric at x (such neighborhoods can

be obtained from symmetric neighborhoods of the unit e in the group G ).

Now, suppose V, V’ are open subsets in M such that V C v CV’ and V is
compact. According to Lemma 1.7 one can choose a neighborhood U of x such that
h(U) CV’ forany h € H(x,V) . Moreover, by virtue of the above remark U can be
supposed to be symmetric ét the point x.Let y€ U,y =gx. Then g_lx € U . For any
g € H(y,V) we have § = hg_1 , where h € H(x,V) . Hence, gx = hg_lx €h(U)CVv’,

ie. g € H(x,V’) . Consequently, H(U,V) C H(x,V’) . The proof is completed.

§ 2. The renewal functions of the action

Suppose now M is a locally compact normal topological space and G is a locally
compact normal topological group, acting uniformly on M . Consider the o—fields on M
and G , consisting of Borel subsets (that is the o—fields generated by compact subsets on

M and G respectively).
Let p be a Radon measureon M and q a Radon measure on G . The convolution

of p and q is defined to be a Radon measure p * g on M given by the formula

1) p*a(X) = | Pe7X)a(de)
G

for any Borel subset X on M . In particular,if M = G then we have the convolution of

two Radon measures on G . It is easy to verify that

(2.2) (P*ay) *ay=p*(ay *qy)



for any Radon measure p on M and any Radon measure qq and 4y On G . In parti-
cular, the equality (2.2) makes it possible to define the convolution powers

qQ =q*q*..*q (n times) of a Radon measure q on G.

Now, suppose that q is a normalized posmve measure (i.e. probablhty distribu-

tions). Then so are its convolution powers q . The sums

n
*: *;
Q=) q', Q=) a',

T~ 8
o

.
where q 0_ 1 denotes the normalized measure concentrated at e, are called the renewal

functions of the action G, associated to q.

Definition 2.1. Suppose z € M . A point x € M is said to be finite with respect to

(z,q) (orsimply, (z,q)~finite) if there exists a neighborhood W, of z in M such that
QH(W,x)) <

Remark 2.2. If z ¢ Gx then there exists a neighborhood Wz of z such that
W, NG =¢,ie H(W,x)=¢.This means that x is (z,q)—finite.

Theorem 2.3. If x € M is a (z,q)—finite point, then there exists a neighborhood U

of x in M, consisting of (z,q)—finite points.

Proof. Assume that x is (z,q)—finite. By definition there exists a neighborhood W

of z such that Q(H(W,x)) < o . Choose a neighborhood W’ of z, W/ CW and W’
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is cpmpa.ct. According to Corollary 1'25’0ne can find a neighborhood U of x, satisfying’
the condition H(W’,U) C H(W,x) . For any y € U we have - '
H(W’,y).C H(W/,U) C H(W,x) . Consequently, Q(H(W’,y) < Q(H(W,x) < @ . This

means that y is a (z,q)—{inite point. Thus, the theorem has been proved.

Definition 2.4. Suppose z € M . A point x € M is called infinite with respect to

(2,q) (orsimply (z,q)—infinite) if it is not (z,q)—finite.

Definition 2.5. A (z,q)—finite point x € M is called (z,q)—positive if
Q(H(W,x)) > 0 for any neighborhood W of the point z . In the converse case x is called
(z,q)—trivial.

Clearly, M splits into the (z,q)—positive, (z,q)—trivial and (z,q)—infinite points.

Theorem 2.6. Suppose z € M . A point x € M is (z,q)—trivial if and only if
x § {x =gz | g €Supp(Q)} .

m *:
Proof. First of all we note that Supp(Q) is the closure of U Supp(q ') . Setting
i=0

S, = {x =gz | g € Supp(a”)}
S={x=gz | g€ Supp(Q)}

(1] *:
we have S=( U Si) . Suppose x €S, ,ie. x =gz, where g € Supp(q ') . Then for any
i=0

neighborhood W of z the set H(W,x) contains a neighborhood of g in G and there-
-
fore q 1(H(W,x)) > 0 . Consequently, Q(H(W,x)) > 0. Suppose x € S andlet W bea
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neighborhood of z : By force of Corollary 1.5 II(W,x) D H(W’,U) for a neighborhood

W’ of z and a neighborhood U of x . On the other hand, U .contains a point

® o
x" € U S, ,say,x" € S; . Obviously, H(W',U) J H(W’ x") . By using the fact proved

i=0
above we have Q(H(W,x) 2 Q(H(W’,x”)) > 0. Thus, all the points of S are not
(z,q)—trivial. Suppose now x £ S . There exists a neighborhood U of x such that

to Theorem

UNS = ¢. This means that I(z,U) n Supp(Q) = ¢, i.e. Q(H(z,U)) = 0. Accordingll.4
H(W,x) C H(z,U) for a neighborhood W of z . Hence, Q{H(W,x)) = 0. Consequently, x

is (z,q)—trivial. The proof is complete.

Remark 2.7. It is easy to see that Supp(Q) coincides with the closed semigroup in

G, generated by Supp(q) .

Theorem 2.8. Suppose that a point z € M is (z,q)—finite. Then every point of Gz is
(z,q)—finite.

Proof. The assumption of the theorem means that Q(H(W,z)) < @ for a neighbor-
hood W of z.Replacing W by a smaller neighborhood if necessary one can assume, by

virtue of Corollary 1.5, that Q(H{W,W)) < o . Consider a symmetric neighborhood U of

z , satisfying the conditions: U C U C W, U is compact. According to the Urysohn’s

Lemma, there exists a continuous function ¢(x) on M such that 0 < p(x) <1, ¢(x)=1

on U and ¢(x) =0 on M\W . Consider the functions:

op(x) = J se(g_lx)Qn(dg) , n=0,12,..
G

We have
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= [ w00+ [ ey
H(W x) G\H(W x)

(g x)Q_(dg) < Q (H(W,x)) .
H(W ,x)

Hencé, if x€ W then
(2.3) p,(x) € Q(H(W,W)) < Q(H(W,W)) < o .

On the other hand,

= [ sO(g_1X)Qn(dg) =
G

N J o(g1x)a (dg) + J ‘P(g_lx)Qn-l*Q(dg)
G G

= o)+ | w(g7 (| @y (7 dga(an) -
G G

-1 1

Putting s = h_lg ,wehave g=hs, g = sIh~ ; and the expression above has the

form

o) = +M (s~ (0 x))Q J(ds)a(d)

= ¢(x) + | 3 (" x)a(h)
G



= ¢(x) + [ @y y(67 x)a(ds) -
G o

In particular, if x £ W then ¢(x) =0, and we have

(2.4) 0nx) = | 946 x)a(de) -
G

Now we prove by induction that
(2.5) p,(x) < © = max{Q(H(W,W)),1} .

Really, for n =0 we have goo(x) = ¢(x) €' 1. Assume that (2.5) is true for n—1 .If
x.€ W then v (x) £ Q(H(W,W)) < ¢ by force of (2.3). If x £ W then from (2.4) and the
assumption of the induction it follows that (pn(x) < ¢ . By that way (2.5) is true for n.

Furthermore, for any x € Gz we have

(26) 9,00 = elg0)Q, () i o(g1x)Q, (dg)
G H(U,x)

= tE Q(dg 1) -
H(U,x)

From (2.5) and (2.6) it follows that Q(H(U,x)) € ¢ < o . Consequently, x is a (z,q)—finite

point. The proof is completed.

Theorem 2.9. Suppose that a point z € M is (z,q)—infinite. Then every point of

S={x=gz | g € Supp(Q)} is (z,q)—infinite.
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?_ R . . -"l
. ’i

Proof. The assumptlon of the theorem means that Q(H(W W)) = for any nelgh-

borhood W of z. Choose a neighborhood U of z such that. U C U CW and U is
compact. Consider an Urysohn’s function ¢ defined as in the proof of Theorem 2.6. We

have

@7 e =[eg,ue = [ elgTxQ,de)
G H(W,x)

> T[ o(871x)Q (dg) = Q(H(U,x)) .
H(U,x)

Now we construct a symmetric neighborhood V of z such that H(z,V) C H(U,x) for any
x € V.. Choose a symmetric neighborhood U, of z such that H (U;)CU.U; NG, can
be expressed in the form {gz | g € A} , where A is a symmetric neighborhood of e in

G . Further, take V sothat VNG, = {gz | g € B} for B being a symmetric neighbor-
hood of e such that B2 C A . We verify that V satisfies our requirement. Really,
suppose that x € VN G, and g€ H(z,V) . We have x = b,z (b; € B) and

gz=Dbyz €V (b, € B). Therefore, g =byh (h€H ) and g_lx = h_lbglblé €U
because bglblz € U, . Consequently, g € H(U,x) . By using Theorem 1.4 one can find a
neighborhood V’ of z suchthat H(V’,V’) C H(z,V) . Thus, from (2.7) it follows that

(2.8) 0 (x) 2 Q(H(V/ V') — o for x€V .
We use the {ollowing formula

(2.9) on(x) = @(x) + J o, 1(8" x)a(dg) ,
G



derived in the proof of Theorem 2.6. For each x € §; = {x =gz | g € Supp(q)} we have
q(H(V,x)) > 0. Then

002 | oEXad) —s @—w) .
H(V x)

From (2.9) one can obtain the following formula

(2.10) 0y(x) = () + [ w(g ™ x)a(dB) + [ 0,67 X0 7(dg) -
G G

* *
For each x € S, = {x =gz | g € Supp(q 2)} we have q 2(H(V,x)) > 0. Therefore,

o, (x) 2 ‘[’ p (6 X)a 2dg) —® (n—— o) .
H(V,x)

.
Similarly, one can prove that cpn(x) — o forany x € Si = {x=gz | g € Supp(q 1,

©
i =0,1,2,... Consequently, ¢ (x) — o forany x € U S; -
1=0

On the other hand we have

o= [ weToe e+ ] g0,
H(W x) G\H(W,x)

= J o6 x)Q, (dg) < QW) -
H(W ,x)

T (0]
Thus, for each x € U S, wehave Q (H(W,x)) — o for any neighborhood W of z.
=0
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[00]
Consequently, x is a (z,q)—infinite point. 1f x €S = U S, , then any ncighborhood U_
' ' i=1

o :
of x intersects igl S, atapoint x” . Therefore, Q (H(W,U_)) 2 Qn(H(W,x’)) —

for any neighborhood W of z. Choosing a suitable neighborhood W’ C W we have
Q (H(Wx)) 2 Q (H(W',U )) — o forany W . By that x is a (z,q)~infinite point.
Now let us sum up the results of this section. It turns out that from Theorems

2.6 — 2.9 it follows a complete description of trivial, positive and infinite points.

Theorem 2.10. a) If a point z € M is (z,q)—finite (i.e. Q(H(W,W)) < o fora

neighborhood W of z ), then every point x € M is (z,q)—finite. Moreover, the points of

S={x=gz | g € Supp(Q)} are (z,q)—positive and the points of M\S are (z,q)—trivial.
.b) If a point z € M is (z,q)—infinite (i.e. Q(H(W,W)) = o for any neighborhood W

of z), then every point of S = {x =gz | g € Supp(Q)} is (z,q)—infinite and every point

of M\S is (z,q)~trivial.

§ 3. The renewal functions of the space

Let p bea positive measureon M and q a normalized positive measure on G .

-
Then the measures p*q ' (i= 0,1,2,...) are positive. The sums

are called the renewal functions of the space M , associated to p and q.

Definition 3.1. A point x € M is said to be finite with respect to (p,q) (orsimply
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(p,q)—finite) if it is (z,q)—finite for aﬁf' z € Supp(p) . In the converse case x is called

infinite with respect to (p,q) (or simply (p,q)—infinite).

Remark 3.2. 1f z ¢ G_ then there exists a neighborhood W of z such that
W NG, =¢,ie H(W, x)=¢. Consequently, x is (z,9)—finite. This means, in particu-
lar, that for a point x € M to be (p,q)—finite it suffices that x is (z,q)—finite for each

z € Gx N Supp(p) .

Theorem 3.3. Suppose all the points of Gx N Supp(p) are (p,q)—finite. Then every

point of G, is (p,q)—finite.

Proof. Let y € G)c and z € Gx N Supp(p) . Since z is (p,q)—finite it is, in particu-
lar, (z,9)—finite. Then by force of Theorem 2.10 y is (z,q)—finite too. Taking Remark 3.2

into account we can conclude that y is a (p,q)-finite point. The proof is complete.

Theorem 3.4. Suppose that Gx N Supp(p) contains (p,q)—infinite points. Then
every point of the set

R=U{y=gz| g€ Supp(Q)} ,

where the sum runs through the set {z € G, N Supp(p) | z is (z,q)—infinite} , is

(p,q)—infinite. The points of GX\R are {p,q)—finite.

" Proof. According to Theorem 2.10 for each (z,q)—infinite point z € Gx N Supp(p)
the points of {x =gz | g € Supp(Q)} are (z,q)—infinite. Therefore, all the points of R

are (p,q)—infinite. Suppose x £ R . Applying Theorem 2.10 again we see that x is
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TR SRS b £
L (2,q)—trivial {or any (z,q)—infinite point z € Supp(p) . Consequently, x is a (p,q)—finite -

.. point and that _éompleted ﬁhe proof. = _ L L
Note that from the proof of Theorem 3.3 it follows the following useful fact

Corollary 3.5. All the points of G N Supp(p) are (p,q)—finite if and only if each

" point z ¥ Gx N Supp(p) is (z,q)—finite.

" Theorem 3.6. Assume that Suﬁp(p) is compact and let x be a (p,q)—finite point.
Then there exists a neighborhood W of Supp(p) and a neighborhood U of x in M
such that Q(H(W,U)) < o.

Proof. Assume that x is (p,q)—finite. For each z € Supp(p) one can find a neigh-
borhood W, of z such that Q(H(W x)) < w.Choosea neighborhodd W; of z,

W, CW, and W is compact. By force of Corollary 1.5 there exists a neighborhood U,

of x such that H(W;,UZ) C H(W_,x) . Since Supp(p) is compact one can select a finite

k k
covering {W/ },¢i¢y of Supp(p) . Setting W= U W, and U= n U, , wehave
i1 i=1 % i=1 %
k k k
H(W,U)= U H(W,,U)C U B(W/,U )C U H(W,_x). Hence,
i=1 i i=1 2 =1 i
Q(H(W,0)) € ) Q(H(W, ,x)) < o . The proof is completed.
i=1 !

From Theorem 3.6 it follows immediately the following result.

Corollary 3.7. Assume that Supp(p) is_compact and let x be a (p,q)—finite point.

Then there exists a neighborhood U of x, consisting of (p,q)—finite points.




—-17 —

Theorem 3.8. Assume that Supp(p) is.compact and let A be a compact subset of
M , consisting of (p,q)—finite points. Then

a) There exists a neighborhood W of Supp(p) and a neighborhood U of A such
that Q(H(W,U)) < o. |

b) p*Q(A)<p*Q(U) < m.

Proof. By force of Theorem 3.6 each point x € A hasa neighborhbod U, such that

Q(H(W_,U )) <w, where W_ is a neighborhood of Supp(p) . Since A is compact one

k
can cover it by a finite number of subsets U, (i=1,2,.,k). Setting U= U U, and
i i=1 i

k k
W= n W_ wehave HW,U)C U H(W_,U_). Hence
i=1 5 i=1 5K
k
QH(W,U) < ) Q(H(Wxi,Uxi)) <o,
i=1

proving the statement a). Further, we have

praW)= [pevaug = [ pETu)ece)
G H(Supp(p),U)

<] o) = qqusue)L)
H(Supp(p),U)

CQEWU) <w.
Thus, the proof is completed.

Remark 3.9. If G is a compact group then Q(H(z,G,)) = Q(G) = » for any
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. .‘u- 'l., .

N : !
‘z € M From Theorem 3 8 it follows 1mmed1ately that there is no orblt 1ntersect1ng

Supp(p) and con51stmg of (p, q) —finite points.

Theorem 3.10. If x is a (p,q)-infinite point of M , then p * Q(U) = o for any

neighborhood U of x.

Proof. Assume x is (p,q)—infinite and let z € Supp(p) such that x is (z,q)—infi-

nite. Suppose U is a neighborhood of x . Choose a neighborhood U’ of x such that

U’ CU. Acéording to Lemma 1.7 one can find a neighborhood V of z sothat g(V)CU
for any g € H(z,U’) . Since z € Supp(p) we have p(V) > 0. Further we have

Q)= [svawe 2 | pETU)QE)
G H(z,U’)

where p(g U) p(V) because V(g U for any g € H(z,U’) . Therefore,
*Q(U) 2 p(V)Q(H(z,U")) 2 p(V)QH(Wx)) = o ,

where W is a neighborhood of z . By that the proof is completed.

§ 4. The renewal equations

Let f be a continuous function on M . We define Radon measures Fn on M by

setting
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(@) =j[§[( (¢ S0l ™40)) @, (08)

G

for any Borel subset X C M. Since Q =1+ Q__; * q one can transform the formula

(4.1) as follows

FX) = [ [ [ 67 p(e7 0| 1(de)
G X

+ J’ [if(g_IX)p(g_ldX)] Q,_; * a(dg)
G

i

[ tp(an) + j[J(f(g‘lx)p(g‘ldx)}[jqnﬂl(h‘ldg)q(dh)]
X G

5[( f)p(ax) + | | i f(g ™ x)p(s ™ dx) | Qq_y (n~dg) | a(ah) -
G

Substituting h'—lg = s and therefore g =hs, g_l = s p!

F_(X) =j£f(x)p(dx) + J U [J;f(s_lh_lx)p(s_ldh_lx)] Qn_l(ds)] a(dh)
eJle!

we have

- 5[ f(x9p(dx) + J F__ (h " x)a(dh) .
G

Hence, we have the iterative formula

(42) () = ir(x)p(dx) + [ Py Xa(dg)
G
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We call the following equation

(43) FOX) = [ fp(dx) + [ Fg™X)a(dg) |
X G

where F is a Radon measure on M and X is any Borel subset of M, the renewal
equation with respect to the function f.
From Corollary 3.7 it follows that if Supp(p) is compact, then the union of all

*
orbits, consisting of (p,q)—finite points, is an open subset in M . We denote it by M .

Theorem 4.1. Assume that Supp(p) is compact and continuous function, vanishing

*
on M\M . Then the measure F, given by setting

(44) Hm=j[i«fkm@4uﬂm¢)
G

for any Borel subset X C M, satisfies the equation (4.3).

Proof. First of all we note the F(X) = F(X n M*) for any Borel subset X C M,
because f =0 on M\M* . Therefore, without lost of generality we may suppose that
XC M* . Let X be a compact subset of M* . By force of Theorem 3.8 Q(H(W,U)) < ©
for a neighborhood W of Supp(p) and a neighborhood U of X . The sequence
{Qn(H(W,U))} is non—decreasing and bounded by Q(H(W,U)) . Hence,

Q,(H(W,U)) — Q(H(W,U)) when n — « . On the other hand we have

wm%%an=HMJum=j[i%*mu4hﬂm@)
G
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- [J’f(g—lx)p(g—ldx)] Q,(dg) = i{ [ [ 167 0p(e™ 1) (Q(eg)-Q, (d))
G X HW,U) X

< [QUH(W,V))-Q, (B(W,0)] —0 ,

where ¢c=  max f(x). Consequently, F (X) — F(X) for any compact subset X .
x€Supp(p)
This means that ¥ — F . Now, letting n — o in the formula (4.2) we obtain

F(X) = l f(p(dx) + | Fg™'X)a(dp)
G

completing the proof.
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