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1. Introduction

In this paper we prove a removable singularities theorem for the coupled

Yang-Mills-Higgs equations over a two dimensional base manifold M .

1.a. Preliminary Definitions

Let M be a domain in R2 and TN be a vector bundle over M with
compact structure group G < 0(n) and Lie algebra & . Let the metric on 6
be induced by the trace inner product on 0{n) and let "N have a metric
compatible with the action of & . Let d be exterior differentiation, & its
adjoint, and let [ , ] denote the Lie bracket in & .

A connection determines a covariant derivative D which within a local
trivialization defines a Lie algebra valued 1-form A by D = d+A . On
p-forms we have locally Dw = dw + [A,w], D*w = §w + *[A,*w] , where D" is
the a&joint of D . We denote the curvature 2-form by F and have
F = dA + %[A,A] in this local trivialization.

Gauge transformations are :sections of Aut n which set on connections and
curvature forms according to the transformations:

a8 = g lag + g lag

F& = g-IFg .

The pair (A,F) is gauge equivalent to (A,F) iff there is a gauge
transformation g such that A = A% and F = FB

We now follow IS62] exactly and define the Higgs field ¢ wusing the determinant
bundle. We denote by L the determinant bundle raised to %—power. Sections of
this bundle are constant in a fixed co-ordinate system but we have weight 1
under scale transformations.

The Higgs field ¢ 1is a section of n. 8 L . Therefore, in a fixed
co-ordinate system ¢ may be regarded as a matrix-valued function. Under scale
charges y = rx , o(y) = 9§§l-(cf.: [p] [sB2]).

The Yang-Mills-Higgs equations are:

(YMEH1) D'F = [Dp,]

(YMH2) DD = %(|@|2 -ndye .

»
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where XA 1is a fixed real constant and where m 1s a section of L and
hence constant in a fixed co-ordinate system but having weight 1 under scale
changes . Thus under the transformation y = rx we have m' = m/y . The equations
(YMH1,2) are thus invariant under the scale transformation. y = rx.

Certain norms are invariant under scale transformations. For example

| ol , 1s invariant and if Y 1is any p-form \ wilz/ is invariant. We
L 1.2/p

also have an important fact used in [U1].

. Fact ‘lui]
Suppose 1y € LZ/p with ||1,U||2/P invariant. Then, given any Y > 0 there
L

is a metric 8, conformally equivalent to the Euclidean metric in which on
bounded sets in R ; f|w|2/p dx < vy .

This fact follows from conformal invariance and the continuity of the

P

L -norms. See [UF] for details.

z - {0} , where Bi is the 2-ball of radius 4

centered at the origin. We also assume that every connection has some gauge in

We now assume that M = B
which it is C1 over the punctured ball.

1.b. Statement of the Main Theorem

We now state our Main Theorem:

Théofem 10.1

Let M = Bi - {0} and let N be as above. Let A be a connection on N
that satisfies condition H(2), defined in section 1.c. Let F be the connection
form of A and let F be ¢ over M . Let (F,p) satisfy (YMH1) and (YMH2)
over M . Let F E L1(Bi) .

I£ A20 let QEHIB) . If A <0 let. o€ L)) and
el
lim f P = 0 . Then, there exists a continuous gauge transformation
B,/B 2 2{1
20 177t |x|71 ik

such that (F,p) 1is gauge equivalent to a Cm-pair over Bz and the bundle extends

continuocusly to a bundle over Bz .
A theorem of this type was first proved by K. Uhlenbeck for the pure Yang-Mills

equations over R4 in [U1]. Later Parker [P] extended the result to the coupled

Yang-Mills-Higgs equations over R4 . Papers of L.M. and R.J. Sibner [sB1], [SB2],

tSB3] proved similar theorems for dimension 3 and for all higher dimensions. This
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paper fills the two—dimensional gap in the literature.
We would like to thank L.M. Sibner for suggesting this problem and C. Taubes

for a useful abelian example suggesting that holonomy would be important.

T.c. Auxiliary Gauges

Condition H
We wish to introduce a condition on the connection A that insures that
the bundle is trivial over the punctured disk M above. This condition is a
"holonomy" condition called condition H.

We use the conventions of [KN1] Vol. 1 pg. 71-72. We first define some
useful paths.

Definition: Let lR : {0,1] - S1 be given by E : ¢t b (R cos 2wt ,
R sin 2mMt) with S1 {x € R? | x| = R} . We say that RR is the standard
loop for S; . Let Le : [0,11 » R be given by LB : t b (Rt,0) . We call L

the standard line.

&

Now, choosing the fiber over (R,0) as standard and choosing a point
"Q" on this fiber we have a unique A-horizontal lift of the standard loop
RR . Parallel transport on this 1ift is carried by the faithful right action
of corresponding elements of the structure group G . We denote the group
element that corresponds to the transport of "Q'" around the full loop RR by
g(R) .

Definition 1.1.: The map C (0,41 » G given by R = g(R) 1is a

R °
path denoted by CR .
Now, we define condition H(K) and condition H .

Definition 1.2.: (condition H(X)): If as R¥0 the elements g(R)

considered as p01nts on the carrier of the path C approach the identity
element in the C. —topology we say the connection satlsfles condition H(K).
Theorem 1.1.: The following is equivalent to condition H(1) : There

exists a trivialization over a small ball Bp = {o} , 3, > 0 <Ry < 4 centered
0 0
at the origin, in which the connection defines a local co-variant derivative

=d+A, A = A (r,0)dd + A,(r,0)d8 with A _(r,8) , A, (r,0) € T(G 8 T*(B - {0}
T VI T 6 R0
and with 1lim Ae(r,ﬂ) = 0 , with the limit taken
=0~



in the sup-norm topology on 6 . _

Proof (1-2) Choose an orthonormal framing {vi(r,e)} of n over the
ray {(r,0)|0 £ r S £} . Extend this to a framing {vi(r,O)} by parallel trans-
lation around the circles £ . Then, Vevi =0, vi(r,B) = vi(r,O)-g(r,G) for

R
some g(r,0) € G . In particular, vi(r,2ﬂ)

vi(r,O)-g(r) for some
g(r) = g(r,2m) € G . Thy hypothesis imply that for small € , the element g(r)
is close to the identity so that g(r) = exp (h(r)) for some h(r) € & . Let
@ : [0,271] - [0,1] be a smooth function which vanishes near 0 and is 1 near
21 . Then wi(r,e) = vi(r,e)'exp(-w(e)h(r)) is a smooth orthonormal framing of
N over B -{0} . In this framing the connection form is: (A »?ec Vewi,w. > =
<[Ve(v exp(qw(e)h(r))] W. >—-w (B)h(r)d . Hence|Ae| < c]h(r)] +40 as r + 0 .
(2-1). This follows from standard 0.D.E. estimates on integrating the parallel
transport equation for each horizontal 1ift of QR .
Q.E.D.
Remark 1.1.: Thus condition H(1) implies that the bundle 17 1is

trivial over B2 - {0}
Ro

Lemma 1.1.:; Under the conditions of theorem 1.1, let the connection

satisfy condition H(2) . Then, there exists a local trivialization in which the

connection induces the local co-variant derivative d+A A A (r, B)dr+A (r,0)d6 ,
and we have: 1lim A (r,0) = , lim A (r,8) = , lim a? (A (r, 8))
-0 -0 -0

Proof: We start with the orthonormal framing v, over the standard ray

L6 used in the beginning of the proof of theorem !.1. We use this framing to give

a local trivialization for the bundle restricted to have the standard ray as a

base space. The connection restricts and we denote the restricted connection by

Vr . This connection defines {K (r,O)}% =< ¥ v.(r,O), v.(r,O) > . Now we define
. . ds(r)
§(r) € G as the solution to: I A (r,0)8(r), s(R ) = » 3 5 0 <Ry < 1

0

Now define Gi(r,O):= vi(r,O) + 8(r) . Note that

-1 ds(r)

(x) dr

{Kr(r,O)}J? 1= < Vr\_ri(r,O), Gj(r,o) > = §”1(r)xr(r,0)§(r> + 3

and thus; lim {A(r,0)}' =0 = lim < V v (x,0), v (r,0) > .
-0 ] -0
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Now carry out the proof of theorem 1, 1 with {v.} replaced by {;j} . Note
that in the gauge constructed for which 1lim A (r,8) = 0 we have

r-0
lim {A (r, 0)} = lim < V_ w.(r,0), w.(r,0) > = lim < V. v (r,0), v (r,0) =0 .
-0 -0 ro2 J -0
Note also that; lim { (A (x, 6))} = lim h'(r)w(e)ﬁ = 0 by condition

=0 =0
H(2) .

Q.E.D.

Definition 1.3.: We call this gauge the auxiliary gauge.

Lemma 1.2.: Let the conditions of theorem 1.1 hold. Let the connection

satisfy condition H(2) . Let the connection be in L (B ) . Then in the auxiliary

gauge we have: IOIA (r,8) |[dr <= , 0 < R <Ry - %o
Proof: In the auxiliary gauge we have:
3A_ A R. |F_ .|
r ) 2m .0 .0
—§*é~‘—!a—£;-+ [Ar’AB] = Fr,e and IO IO ——-E-i_-—-— * rdrdd = “F”L (B )
R
Fix R, 0 <R E R, and integrate:
BA 5
A (R,8) = A (R,0) + Io 5 (R t)dt - j [A (R,t), Ae(R,t)] dt - fOFr’e(R,t)dt S
0 £8 <27
Thus:
9Ag(R,t) 8 5
la_(R,0)] = |A (R,0)] + fo ! \ dt + J'OIFE.’G(R,t)|dt + zjolAr(R,t)||Ae(R,t)|dt

for all R ; O < R S R0 . Let 0 < a < R . Then:

BAe(r,t)

R R RO
jaIAr(r,B)[dr s fa|Ar(r,0|dr + IaIO ’ 5

‘dtdr

- R0 . R0
+ fajolFré(r,t)ldtdr‘+ 2fofola (r,0) | [Ag(r, ) [de .
R 0. R .
Thus we have: fa|Ar(r,9)|dr < C(R) + fo[fa|Ar(r,t)dr]2‘Ae(r,t) ldt ., with C(R) + O
as R+ a.,
Now we apply Gronwall's inequality, pg. 189 [AMR] to get: 0 <r<R

leAr(r,6)|dr < C(R)exp [jglAe(r,t)ldt] < KC(R) ,

since 1lim lAe(r,e)l = 0 . Thus, letting a + 0 we have
0
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fola (r,0)]dr € Tr) <= , with TR0 as RO .
Q.E.D.
Definition 1.4.: Let We = {x € B1| %%—S [x| € 16R < 1} .

Lemma 1.3.: Under the hypothesis of theorem 1.1., let the connection satisfy

.. L K .
condition H(2)-and suppose that || F|| _ < —§-|Ih||L1(WR) (where || h| L

L (|x|=R) R "

is invariant under scale changes) with 0 < 16R < R, (K independent of R ).

i - ] dAr(r,B)
Then in the auxiliary gauge we have: IO 35 i dr < o ,
Proof: In the auxiliary gauge we have:
BAr EAB RO
-5 "5 ¢ [Ar,Ae] = FrB . Thus, letting 0 <a <R S TE - We have:

r

dA
| - rR| “7p
08 Idr s J'a or

R R
S, dr + 132|Ar| |Ae|dr

dr S r S(r) + 2 sup |agifila_dr

JA
R R T
* Ia|Fr9!dr’ Ial 30

a<r<R
R ~, R aAr ~
+ fa|Fre[dr with c¢(r)¥0 as. 0 ; Ia W R dr S rc(r) + D(¥)
s Rl F@ll dt with D(r)40 , S(r)¥0 as r+0 .

L (e=|x])

F
Here we have used F{(x)dxdy = Fredrde = F(x) = —%g .

. . + . .. .
Now, fix a and R and define m € Z to be the first positive 1integer
such that 2 "R S g . Then:

el reoll o, dt =
L (t=|x|)
i=ﬂ1 2_i+1.
v Relro || o de
i=1 =i L (t=]x|)
i=m '_i+1'R
) Csup (| Fey || ) - f t dt
i=1 2—1RST$2-1+1'R L £|x|=T) 271g
< VK 16271+ g M) [ rdodr [ @My? @tw? ]
i1 @7'ey? 7 2 2 2
2 R
16

IA

271er

16

1=m -1+1
E 16K fz 16°R |h(x)| rdbdr
i=1 -



< 16K || hix) ||

1
L (BR)

Thus, finally we have:

R aAr
Ia g (4T S O(R) + 16K l|h(x)||L1(BR)

Now let a+0 .
Q.E.D.

Remark: Such an estimate on |]F||w is indeed proved (in any smooth
== . :

gauge over the punctured ball) independently (1f A,F are weak solutions of

YMH1,2 ) in section 8. Thus, we may assume the conclusion of this lemma

holds in the auxiliary gauge.



2.a. Exponential Gauges

Definition 2.1.: Let N be a vector bundle over BR-{O} C:R2 . If there exists

a local trivialization in which the connection defines a local covariant

derivative D = d+A with A ETG o T*(B_-{0})) ; A :=A (r,8)dr+
exp exp R exp r,exp
Ae.’exp(r,e)de and such that: Ae,'exp(o’e): = T1:};;101;6’exp(r,e) =0 ; as well as:

K :
(a) 1f FEL(B,) with ||F|[| = _ oy S = ||n]| with ||h]]
1R L (x| =R), R2 L1(w )

1
R L (WR)
invariant under conformal scaling then Ae’exp(r,e) = IO FRe(t ‘e)dt .
(b) If F €L, (By) then [|Aexp(X)|| s —-|x|tTfo||F(t ,0) || . (Here

_ 1
F= dAexp+-2 [Aexp’Aexp])’

(then we say that this trivialization is an exponential gauge).

Lemma 2.1: If R is small enough and the connection satisfies condition H(2) ,

then under condition (a) or (b) above there is an exponential gauge for n .

Proof: First we show that lim AG exp(r,@) = 0 . First we do case (a). Choose
r>0 7°

R sufficiently small that we have an auxillary gauge and lemmas 1.2, 1.3 apply.

Then, by the absolute continuity of Lesbesque integration we note that in this
da_(r,6)

R

gauge IO |A (r,8) |dr £ Q(R) and Llim f

+dr $ Q(R), where 1lim Q(R)=0,.
r>0 ’

R0

Starting from the auxillary gauge, apply the proof of lemma 2.1 of [U1]

and note that

-1 -1

* 3 - . -

(%) Ae,exp(r’e) o (r,e)Ae(r,e)o(r,B)-+0 (r,8) deo(r,e) , where o(r,8)
is the transformation to the exponential gauge constructed in lemma 2.1
of [U1]. Now, we wish to use (*) to show that 1lim IA (r,e)| =

r—+0 0,exp
We note that the first term satisfies:
lim |0 '(r, 8)Aq(r,0)0(r, 8)| = 1lim |A (r,0)| =0 .
r>0 r=+0
We also note that |0-1(r,63d6(0(r,0)[ = | gg o(r}s)|.
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Now we note that o(r,0) 1is a solution of the differential equation in
lemma 2.1 {line 12, pg 14 {U1]]. Since the right side is c! in 0 for
r >0, it follows by the standard theorem for continuous dependence on para-
meters for ODE solutions {H ] , using O(ro,e) for L > 0 fixed and

arbitrary as initial condition for the equation starting at r = £, s we have

d 8 . :
that —g((i—té’—) exists for r > 0 |, we give an improved estimate for our case:
Thus we have:
do(r,0) __ _
——(—jr——'— = Ar(r,e)O(r,e) ’ O(O,B) =1
o(r,8) = I+[g=-a (c,8)0(c,8)de
£(r,0+h) - £(r,0)
Let h ef(r g) = o
r
Ah e(o(r 9)) = IO h e(-Ar(t,ﬁ))o(t,e*-h)dt+-jo-Ar(t,e)Ar’ec(t,e)dt
r r
|Ah’ec(r,6)| s J, |Ah’e(—Ar(t,8))|dt-+f0 |Ah,60(t,8)||Ar(t,9)|dt.
dAr(t,e)
Now, since IO T dt < ©» we have, if h is small, (using a standard
r 1dA (t 8) convergence theorem) :
IAh (A (¢, ) |dt < f 2 B ‘dt thus:

da (t 8)
y gote.o0] 5 277 | 2

dt-+jg IAh go(t,8) ||Ar(t,ﬁ)ldt
|Ah,eo(r,9| < K(r)-ﬁjg |Ah’60(r,8) lAr(t,e) | dt where K(r)+0 as r+0 .

Now applying Gronwall's inequality we have:

|8, 40,0 s K(x) exp [j(‘; |a_(£,8) |de] with K(r) ¥ 0 as 40 .

Thus letting h + 0 we have 0 o(r,0) ‘- Q(R) with Q(r)}0 as 40 . Thus
lim A (r,8) =0 .
=0 8,exp

‘(b) The proof is the same noting that :

If F € Lw(BR) the proofs of lemma 1.2. and lemma 1.3. (mutus mutandis)
are greatly simplified. Thus the conclusions of these lemma's hold if we assume
F € L instead in the hypotheses.

Thus in case a and in case b we have 1lim |A | =0 .

>0 8,exp
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Remark 2.1: Note that this does not follow just from the estimate (2-1-a)
of lemma 2.1 because in case (a) we have not assumed a-priori that F is
bounded over the punctured ball, Moreover in our case we need

lim IA
r>0

I = 0 to prove the estimates,as we will show.
0,exp

Now we derive the estimates on A . We do case (a) first. We do the in-
tegration in the proof of lemma 2.1 [U1] and obtain

lim fr z xKFi.(x)dx = TA. (x) - lim rA, X (x) = I-1I . We show that IIL
co0 €% ] j,exp rag JeXP

vanishes iff 1lim A = 0 . This is necessary since |A. (x)| might be
>0 0s© i,exp

unbounded at |x| = 0 , at least a-priori.

We note that in the exponential gauge Aexp = A1’exp(x,y)dx-FAz’exp(x,y)dy =

Ae(r,e)de ,80 writing dx and dy 1in terms of d& and dr we obtain

(x) = A cos 6 . Thus 1lim rA (x)=0
P P p

= : A
(x) Ae sin 6 and r 0, ex Lim ex

rA1,exp ,€XPp 2,ex

and lim r A (x) =0 iff 1lim A (r,0) = 0 . Thus the integral formula of
2,exp 0
r>0 r>0

[U1] pg 14 line-2 holds. In polar co-ordinates this implies our estimate.

Another way to see this is to note that since Ar exp = 0 we have
’

JA 9A
r,exp _ _ B,exp + [A

a0 or r,exp’AB,exp] - Fr,e
3A
. e,exg f =3 ¥
Thus: ar rrO
r
Ae’exp(r,e)-Ae,exp(e,e) = Ie F_odr

This is equivalent to the integration in lemma 2.1 {U1]. Thus to get the

egtimate we need 1lim A (r,08) = 0 which we have proved.
0,exp
r>0
(Case b). Once again, we have shown that 1lim Ae exp(r,e) = 0 which shows
r>0 7°

that the integral estimate of lemma 2.1 of [U1] holds. Then,since in case b we

have bounded curvature, our estimate follows exactly as in lemma 2.1 [U1].

Q.E.D.
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2.b. Transverse Gauges

Definition 2.2: S; = {x||x] =R, x € R2}

Lemma 2.2.: Let 1n be a vector bundle over BR —-{O}CR? as described in the
0

introduction. Let A1 be a connection on n satisfying condition H(2) , with

curvature form F , Let 0 < R < R0 .
1 .

SR ‘of the restricted bundle over S;

variant derivative D = d+ A ., Then, there exists an extension of this

Suppose we are given a trivialization on

in which the restriction induces a co-

trivialization into an inner annular collar neighborhood

|x|Sr

5 = R} , in which AI induces a covariant derivative

(also denoted, with abuse of notation by D = d+A) and moreover:

(a) A =0,

r
]x| k
. R xR X ( X
b A (x) = A, ( ) T, ° F . . d
) A = R AR T S L T RalRT
and over U we have the estimate:
ri,r2=R

(c) |A (x)| = T_T |A J\ T_T}l + Clx| sup__ |F(Tx) |

r1<|xI<T<R
2

- ( ( ) (o %\ ; _
Proof: Since ﬁE\tAj t,T;T / E X ij\t’T;T) we 1lntegrate from ¢t = |x| to

t = R and obtain: (Here for clarity we have slightly changed notation).

|x|/R

A (|x|,x /=] -T—TA(RX/IK‘) +“]—‘-I ERT \——l- kJ(RT “I—‘[')Rd'l'

Letting T = RT we obtain

. k .
Aj(|x|,xl/lx|) = TWT A.(R,x /le) + ~—T I 2 T —wT ij(T,xl/|x|)dT

which is (b). (c) follows by pulling the sup .through the integral.
Q.E.D

Lemma 2.3.: Let n be a bundle over - {0} < R2 with a connection satis-

B
R
fying condition H(2) . Let the curvaturg be in L1(BR ~-{0}) and let F
. 0
satisfy sup |F| S Ei'IB ]hl1 <o with [ |h| invariant under scale changes.
Ixl=r r 2r Bor
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Let 0 < R1 < 2R1 s RO . In the exponential gauge for 1 over BR - {0}
’ 1
let the induced covariant derivative be denoted by D = d+A . Let D' be
- ex :
the restriction of D to n|S1 in the restriction of the exponential gauge.
Ry
| B
We have D' = dGISL -+Aexp]S1 . Denote Aexp|81 = A'(x) . Then,
R R
1 1 1
AT(x) = Aé(R*,G)dB and
t
(a) |Ae(R1,8)|w<B(R1) where B(R)+0 as R +0
1
' £ —
) AT RGO, o1 S 5= B(RY)
R 1
1
Proof: (a) follows from the estimates on Ae exp in the exponential gauge given
’

in the previous section; (b) follows because on SR, we have

1

22T 1
|AT]D 1 = = AT, o
5. Ry <> 5p

[lar]], o1
S
"R, 1 1

Lemma 2.4.: (cf. lemma 2.4. in [U1])

Let 0 < 2R, £R. 584 . Let n be a bundle over U =
1 0 L

x|, s |x] s r, s R1} with a connection with bounded curvature, Let the bundle

1
and its connection be restrictions of a bundle over BR - {0} and a connection
satisfying condition H(2) as well as condition (a) on curvature in Definition

2.1. Suppose gauges are chosen on nj.1 for t = Lt in which the connection

1 X t, ~t,d
restricted to St defines covariant derivatives Dei-A ’
Then, there exists a gauge on 1 over Ur r in which the connection
1°°2
defines a local covariant derivative D = d+ A with A|S1 = Xt’e for
c-rpry and Il sxmac (] ESE (e kelel (IFl],, )
3 - ’ »
LT, t=r,,r, t £ysT,
r

(here K 1is proportional to ;g but this is harmless to us).
1

Proof: Match transverse gauges from the boundaries with exponential gauges ex-—

actly as in lemma 2.4. of [U1], and wuse our lemma 2.2 (c).

Remark 2.2.: We use balls of arbitrary radius to simplify the proof of the

estimates in lemma 5.1. condition (g).
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3. Application of the Implicit Function Theorem

As in [U1], we are in a position to apply the ordinary Banach space
Implicit function theorem to solve the nonlinear system -

§A =0 ﬁ»6(8-1dS+-S—1AS) =0 when A is small enough.

We will use annuli of general radius to simplify the proof of lemma 5.1.

(g).
Also because S1 is a 1-manifold and both [A,A] and F are 2-forms that
1. Lo .
are zero on S , the P o L7 bbotstrapplng procedure of theorem 2.5. of
[U1] breaks down here. However, we substitute another argument.

Let 0<R<é4 .

Theorem 3.1.:

Let 1 be a trivial bundle over S; . Let A be a connection on p .

Suppose in some trivialization A defines a covariant derivative by
D, =d -FAe where Ae = Ag (R,6)d8 . Then, there exists a trivialization in which
- - = - - 0
= (S 1 = |
A, A=AyR,0)d0, SR[A] 0 and ||A||iost < K|'|A ||L°°,s;,

© 1 , with K independent of R . As in [U1] theorem 2.5, we

note this procedure determines the trivialization only up to constant multi-

plication by an element of G .

1

Proof: We must solve 5“1,(8_1d5-+8- AeS) =0 for S : Instead, following [U1],

S

we solve 581(e_udeu-+e_uAeeu) =0 for u.

R

Now by direct calculation this is equivalent to solving

. d -u 9e%  -u,® ul _
(*) : 8—9' [e a—e——+e Ae(R,e)e :l 0 .

Now consider the expression:

Q(u,B) = L e © QEE +eYge"
’ 26 30

¢ =]

. . . e 1, 1.
This expression induces a C -map on u € C2(SR,G) , BE C'(SR,G) .
1. 1 1 1
Q: C2(SR,G)xC'(SR}G)"—9-CO(SR,G) . The image actually lies in:
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1

07, 1 _ 0,1 _ -
C” (8p,6) = {E € C(Sg,6) | <€,up> =0, u, € 6)

similarly define:

N .
27 ¢ _ 2.1 . -
C (SR,G) = {u€c (sR,c) : ISL u = 0} .

L 1

Now consider Q : 02 (SL,G):{C’(SL,G) —> C0 (SL,G) . Then is an iso-

41%0,0)
morphism. Now the ordinary implicit function theorem in Banach spaces tells us
we may solve Q(u,Ae) =0 if IAel © 1 1is sufficiently small.
8 'L »Sp
Now in order to get our estimates we rewrite this solution method in terms of

the inverse function theorem and use a well known estimate of the size of the

neighborhoods in the inverse function theorem [AMR Box 2.5, pg 105]

Now from the form of (*) we note that we may define: EI{(G) = u(R,0) and
40 (8) = AJ(R,0) and solve:
uR(G)

-u,(8) -u_(8) u_ (8)
. 3 [ R R ) R 6 97
(**) ae [e ae + e 'ée (e)'e J =0 .
1 ot 1,
Let U= C (5,6) be open. Let Ve C™ (8§ ,6) be open. Let E = C (S ,6)
1 n

Let HcC CO (SI,G) be open. Let F = C0 (Sl,G) . Let the norms on E and F be
the canonical norms induced by the sup-norm on & . E x F 1is a Banach space with
norm given as the sup of the norms on E and F .

- u(8) _
Define Q(u,B) = %5 (e u(8) §£E§§""l )

o rapRE {1 ot
Q(u,B) is a C -Banach map Q : C” (§ ,6) xC (S8 ,6) —> C

§_(8)e3(6)] and note that
1
(s ,6)

Define ¢ : UxV-— ExH by ¢ : (B,u) > (B,Q(u,B)) . Then ¢ 1is a

I , 0 X
¢ - Banach map and D¢)(O,O)(x1,x2) = 3 a2 x1 is an isomorphism. We
’
S . 2
a8 ae2

have; u(8) = ¢ (A g (8),0)

Now, we apply Corollary 2.5.6, Box(2.5.A) pg 105 of [AMR] with the R in
[AM] chosen so that K is fixed. We may do this by the smoothness of the map

¢ . Now restrict to the intersection of the R-ball about (0,0) with UxV.
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We note that we may write (D<1>(0,0))-l explicitly by integrating the above

definition of (Dd(0,0)) as a pair of ordinary differential equations and that

it follows from sup-norm estimates on this integral and on its derivatives

that M is bounded as well. We also see from our formula for (D$(0,0)) that
R, - Banach ball

L 1is bounded as well, Thus ¢ is a diffeomorphism from the 2

in U X V about (0,0) onto the R,-Banach ball about zero. We choose our

- 3
u(® = ¢ 1(Ag(e),O) to be the unique element of the preimage in this R2~ba11

(0,0) . We note that with this domain and co-domain ¢ ' is Lipshitz

-Banach ball about

about
continuous with Lipshitz constant 2L asa map from the R3

zero. Thus if |:_’sg(R,9)|°o SI is small enough that
9

R
0 R3
|A9(6)|w’51 < -5, we see that: Su .
sup | u(8) | + sup| 5G| <k lAag@® [l

S S

Now recalling the definition of the u and éEB we see that:

8
spp [ ul+ syl g5l < Kl ag®®) |, g1
R R

with K independent of R . Thus,

6
sup | § | + s%pl desl < K(G) |AB(R,B) |m,8£ :

1
SR R
Now,
. 1 1,8 0 ! 0
||A||Lw’8; = ||s"as+s aTs]] s ||dS[|m’S£q|A_[lm,S;SEEK(G)|A8(R,B)|m,3;
8 ~ 8
A 1 g t
AL gt s K@ a1, o
Finally

L < R||Ae||m’3; s K(G)-|Ag|Lw g - Q.E.D.

A | o
Rl s o

Corollary 3.1.: Let O < R1 S 4 . Under the assumptions of lemma 2.3. there exists

.. 1
a gauge on the restriction of N over SR

in which the restriction of the
1

~

D=g 1 +K with;

connection defines a covariant derivative given by e|S
R



_.]6_

A=4.(R,0)d0,5 . 1[A] = 0 and [A,(R,0)| .1 < B(R) with B(R,) +0 as
0 SR 8 m,SR 1 1
R1¢'0 . L

6 . .. .
Proof: Let A in theorem 2.1. be the restriction of the connection form te n

in an exponential gauge from the origin. Noting the estimates of lemma 2.3 apply

theorem 3.1. Q.E.D.

Theorem 3.2.: (of theorem 2.8. of U1) Under the hypothesis of lemma 2.3. and

2.4., assuming ||h||L1 B < Yy , there exists rg > 0 sufficently small, such
™R
0 T
that if 0 < r,<r,< rg with = < 100 there exists a gauge for n over
i
Ur o in which the connection defines a local covariant derivative D = d+A
172
with: A = Ar(r,ﬁ)dr+-Ae(r,6)d6,|Ae(ri,ﬂ)| < B(rz) <v; (1=1,2) , SSAS =0
_ . . Ky . . ) X
on r=r ,r, , SA =0 in U ,||A]| £ — with K independent of
1772 r,,r ®,U r
1°7°2 r,,T 1
ror 1272
172

Proof: By choosing r% small enough it follows from lemma 2.3. that

2
|Ae exp(r,e)l < B(r) <y for all r < r, - Thus, by the above Corollary 3.1.
there exists a gauge on S: (1 = 1,2) 1in which the restriction of the connection
i
defines a local covariant derivative D, = d.|.1 +A, with A, = Al(r,,0)do
i 6'S: i i B i
T
with Gg 1 [Ki] =0, |Kg(ri,8)| < B(ri) < Y . Now, apply lemma 2.4. with
~t,0 i Yt,0 _ %
AT = AI for t = r, and A"’ = A2 for t = T, - Then, we have a gauge over

- in which the restriction of the connection induces a local covariant
1°°2

derivative D = d+A , A= K’(r,e)dr-ﬁxe(r,e)de“ with : Kr =0,
r

~ - -i ~ )
Ag(r ,0):= A(r.,0)do = Ai(ri,e),|Ae(ri,e) | = |Ae(ri,8) | < B(r,) <y and with
I'Kilm'“r - SR max [%~-. k-lL‘l-IlFHUD u Foo (We have wased

1772 t=x,,1, B i st
][Ks(ri,ellw’sl = %T |xe(ri,8) |; note that K is independent of r,,r,

' L : K K
because T < 100) . Now note that ||F||Oo U < — IB lh| pS — Y - Thus, the

. b

2 r1,r2 ry RO r1

second ‘term-in the braces,satisfies klt|-||F|]|_ u <X L . so, we have
r,,r &
1772
~ K

||||°°U "r_
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Now we apply the argument of [U1] theorem 2.8. exactly to get a new

gauge over U- in which D=d+A, A =0, & A =0 =0

{ N PR
- TT, s's Ixl=t'r

for.all ¢ € [r$,r2] and our estimates on A and its boundary values then

give the required estimates on A . Q.E.D.

Now, we apply a single scale change of the form x = Ay (which does not
change the value of any scale invariant integrals) to make r? above equal
to 4.

As in [U1], at the end of the paper we need to construct a global Hpdge
gauge over a sufficiently small punctured ball once we know that curvature is

bounded. We have:

Theorem 3.3.: (cf. theorem 2.7. of [U1])

Let 0 <R < R0 S 4 . Let n. be a bundle over BR -{0} « R2 with a

o Y 0
connection §atisfying cofidition H(2) . Let F be the curvature form of this
connection and let ||F||°° g <Y - Then, there exists E1 , 0< E1 <Ry
b
R
and a trivialization for ' T restricted over B - {0} such that the connection
1
induces a local covariant derivative D = d+A and 6A = 0 in Bﬁf . More-
1

1 K
over, 8 A =0 on S'f{' A || ST Y -
1

Proof: We use the same arguments as in the previous proof but applied to a ball. First

we choose R, ‘small enough that - |A (31,8)] < B(r) <y , then we apply

1 8,exp
corollary 3.1. on the sphere SR , then we apply the argument of theorem 2.7.
1

. o~ 1
of [U1] exactly. Note that in theorem 2.7. of [U1] k1 ~TxT @S well,

Q.E.D.
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4. Some Eigenvalue Estimates

In this section all forms are smooth and real valued.
Lemma 4.1.: On U = {x{r, s [x| st} , 0<r, 4 . Let

A =uﬂu|m is a 1-form with Ow = 0, GSws =0 on 29U, I|x[=r(*w)s =0

v , W#% ad6 where a is a nonzero real constant.}
r1S|x|Sr2

<dW, dw>

Let E{(w) = RS
>

- Then if X = Inf’E(y) yWe have X # 0 .
WEA -
Proof: It is sufficient to minimize E(w) with <u,u> *0, we€A-. Aséame
X =0 and;noththis_%mplies <dw,dw> = 0 . Then if we let T £ Kerd N Cg(U) we
see by calculatiogrthat the Kuler-Lagrange equation gives <dw,dt> = 0 . Since
this holds for all T with compact support in U we have &dw =0

.

Let ws = TW be the tangential part of W on each boundary sphere of ‘BU
and let wN = Nw be the corresponding normal component (cf:[Mo pg. 302]). Since
is a 1-form on the outer boundary B+U of U we have that dws = 0 . Thus ws
is a harmonic 1-form on 3+U and thus we = cd® for some constant ¢ .

Now, consider © = #*® . Since Odw + d6w = 8dw = 0 by assumption, we have
*d*d*g = 0 inside U . Thus in U, déo = 0 . On the other hand, Sw = 0 inside
U implies that do = 0 inside U and thus (d6 + 8d)g = 0 inside U . Thus
0 1is a harmonic 1+form inside U .

Since do =0 and I|x|=r*w = IIX|=ILO =0 we have 0 = df for some
function f£(r,0) 1inside U . Since O 1is harmonic in U it follows that

dd¢ = d6df =0 in U . Thus f is biharmonic in U .
It follows from flxl 0 =0 that I[x|=r %%—dﬁ = 0 and thus f 1is

=r
periodic in 6 . Moreover w, :'me = Tw = T(*0) = %% rd6 . Recall, we have just
shown that ws| . =cdb . Since r 1is constant on 3ty , Wwe see that
o U
-+
%% =¢ on 0U.
4 of

. +
Now separate variables and solve A'f =0 , 3, = ¢ on 0 U . We observe that

f= (alogr+ brzlog r + cr2 + D)(g(®)) with a,b,c,D as constants. Since
%% =c on 93U we have g(8) 1is a constant, at no loss of generality absorbed

in the constants a,b,c¢,D .

Since 0 = df we obtain ¢ = (%fdr + 2rb log r + br + 2cr)dr .
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(a + 2br210g r + br2 + 20r2)d9

*O’ =
d*0 = ((4br log r)+ 4br + 4er)drd®
*d*g = 4b log r + 4b + 4c , since *drdf = Lo
/g r
‘ 4% a 2
Thus dg&o = < = 0=b =0 thus O = (; + 2cr)dr , py = (a + 2cr’)dB . Now
<d Ws du>=
since A = 0 we have 0 = — with <yp,w> ¥ 0, thus dw= 0, which

<w,w>a .

_implies ¢ = 0 . Thus "W = adB which is impossible by hypothesis. Thus

we have a contradiction which implies X # 0 .

Q.E.D.
Lemma 4.2.: Let U = {x|r15|x|$r2} . There exists aj > 0 such that: if
w € A, where A = {y|w is a 1-formon U , I|x[=r(*hps =0, r€ [r1,r2] .
<dw,du> 144
suplw| , <@} , and A = Inf VU then A >
@ 0 <@, w>— 2
ou L A U 1:2
Proof: At no loss of generality we may assume <w,w>E}= t . Since w 1is a
co-closed t-form in U we have:
- *
<dw,dw>U>= <8dw,w>5 . J gy dwha R R
<Ww,Ww> 5 <w,w>ﬁ <w,w>ﬁ <l > <, W
=T+ II .
Now, lets estimate III| . Letting || || denote the pointwise norm on

forms we have: (estimating |*dwhw| by Hélder pointwise).

ltx| slluglly, 0 foull #anll s ag Syl *dull
$ 1.7 (3u) au 0 ‘09U

. Now, since #*dw is a function in U so O&(*dw) = O , we apply the trace

inequality for Hyo functions to obtain:
3

gl o] s 5l sl + 2 [JUU aull] s

K1[IﬁH6dw||] + Ky<dw,dw>  (Holder)

p K1<6dw,<5dw> + K, <dw,dw> .

3

Thus:

|11} € @

3

o]
0 <du.),d(ﬁ>J

[Ede,&duD + K
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{(Note that @§dw = Aw since §w=10 ).

Now, let 0O denote the Laplacian. on co-closed 1-forms on U with zero

tangential boundary values on 23U ., Note that D possesses a complete set
of smooth orthonormal eigenforms because of the spectral theorem for self-adjoint
compact operators and elliptic regularity. Expanding © 1in these elgenfunctions,

choosing Oy small enough and using elementary arithmetic, it follows that the

< = . .
quantity -—qﬂ—d—ugli is bounded from below by (1+€(0:))7\.1 , where )\1 is the first

positive elgenv;ﬁue of O on co-closed 1-forms w with wy = 0 on JdU . We
now estimate l1 essentially by  constructing the eigenfunctions of O using
classical special functions.

Thus, we must find the first positive X for which &dw = Aw for some
co-closed form on U with vanishing boundary values. We assume at no loss of
generality that <ww>y = 1

First we write O&dw= Aw on co—-closed 1-forms in local polar co-ordinates.

We obtain by elementary computations that if w = PdR + Qd6 , then

o}
Q. P
[')\Q = (Qgg) +'§B_—é@+ PQR] T de o+

1 1 .
“AP + — (Q,,) - —5 (P )]dR.
R2 RO R2 96

Thus gives us the system of equations:

1

(a) “(Qup) — — (Pon) — AP =0
”Rf RO R2 09
Q
(b) PR+§+"‘3'=O
R
Q P
- R- 4 8. -
(©) Qr "R YR " FPer*AM=0.

Now, let P = elmef(r) . For P to be well-defined, we require m to be an
integer. Since, I|x|=r(*w)s = 0 , we obtain m # 0 . Substituting in the

above differential equation for P we get:
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| 2
{f(R)}R + [1;§

=

[f(R)] + + A:II f(R) =0 .
RR

Letting w

£(R} , using the above equation for £(R) we obtain:

(%) w__ +

x
=
=

2
e .
v + Ll ;z} w = 0 (Bessels equation)

Since w vanishes on |x| = r, and x|

r, , we have w(r1) =0,
w(rz) = 0 . If instead we solve (*) with w(0) =0 , w(rz) = (0 we do not

increase the first positive A for which there is a nonzero solution of
(*). Thus we solve (*) with the boundary conditions w(0) =0 , w(pz) =0
for expository simplicity. The solutions are W = cdwml(JX‘x) with

{n(/i r2) = 0 . The smallest positive value of A 1is bounded below by ~h0
where /Xa r, = Z and Z 1is the first positive zero of J (x) = 0 (note

hat m#0 ). Thus A > A. > 525 | Finally, we have X olah g
tha m . us 0 ".'.'""‘é" KIR-p y,‘ 1 '--7'-

r ’ r

0y is small enough. 2 : 2
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5. Broken Hodge Gauges

We now state the properties of special gauges — the Broken Hodge Gauges -
constructed from previous gauges by matching by rotations by constant elements

of G . These gauges where first used in {U1].

Definition 5.1.: Let U' = {x|u%-$ Ix| s -iET} where 1 3T &2 and
. . T T
i=0,1,2,3... 5 and Lét s* = {x| |x] = -1} .

Lemma 5.1.: (cf. lemma 4,5 [U1] and {émma 4.5 [Sb2]) (Broken Hodge Gauges).
Let n, be a bundle over U' obtained as tbe restriction of a bundle over
B2 - {0} . Let Ai be the restriction to U- of a connection AO on ny -
Let n, and AO satisfy the conditions of def%nition 2.1. Then, there exist
local trivializations (gauges) for n; over pt sugh that in these gauges
Ai induces a local covariant derivative D" =d + A" , and curvature form Fi

with:
(a) G&A" =0
) 6 A =0 on Ut
s's
(e) f(*A)S = 0 on absolute cycles

@  sup|al )] < 7311

1

(e) f ilAi(x)|2dx < i i|Fi(x)|2dx

U =y, (tH?) Ty
' ] o .
(e') for any a>1, [ i|xla|Al(x)|dx < =-I———I—§- f i|x|a|F1(x)|2dx
U (k—y3(“r 7))

(Here A 1is the A of lemma 4.1 and Yy = ky in the conclusion of
Theorem 3.2).

(£)  lim Ay(x) =0
i au’
- 21
. 1 . 9 :
(g J .|A1]2dx s —JQE—— f .]Fl(x)l dx , if T 1is close enough to one
ut 437Y5 Tyt

;EO'./_L_Zl

g f i|x|a|Al|2dx 4 Z~3:~—-f -|x|a|Fl 2dx , 1f T 1is close enough to one
U T3 Tyt

1(x) on S*

M) Al = alt
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Proof: a = d follow by our implicit function theorem results, theorem 3.2,

and by matching gauges by a constant element of G as in the proof of lemma
4:5 pg. 25 of [U1]. Note that we produce (h) by this construction. Thus the
A1 match to form a 1-form A, continuous on B2 - {0} .

(f) follows because of the estimate in Theorem 3.2.

Sublemma: For each i, A" is not of the form cdf for some constant ¢ .

Proof of Sublemma: By (h) this constant must be independent of 1 and

thus A = cd® . But, by (f) we have c¢c =0 ., (e) follows as in Corollary 2.9
of [Ut], estimating | i|[Al,A1][2dx < sup[Allzf i|A1|2dx as in lemma 4.5 of
U U

[sB2] (cf. also corollary 2.6 in {U1]), and noting that because of the sublemma above
we may minimize the functional of Corollary 2.9 [U1] over 1-forms with the additional
condition that they are not of the form cdf , ¢ constant, so that the zero

eigenvalue o0s not taken on because of lemma 4.1.
(e') follows from (e) by estimating the weights from below and pulling them

through the integrals.

To prove {g) we use theorem 3.2 with r, = ~%— and r, = —ng . Since r,
T T
and r, are less than four, noting we have done the dilation following theorem
*
3.2 in the text so that r, = 4 , it follows from theorem 3.2 that
sup'|Ae(ri,8)| <ky =Yg . Choosing Yy < 0 (ao defined in the hypothesis of

i

ou _ }

lemma 4.2) it follows from lemma 4.1 and lemma 4.2 that ) > 14(Tl—1)2 >

> l%—(Tl)A > 45 (Tl)Z if T 1s close enough to 1. Now, noting (d) we see that

T
(g) follows from (e).

(g') follows from (g) in the same way that (e') follows from (e).



-24-

6. Some Improvements on Morrey's Theorem

In this section we state some improved versions of Morrey's theorem in

2-dimensions that will be used later.
First we state Morrey's theorem in 2-dimensions.

Theorem 6.1, (Morrey's Theorem in 2-dimensions) [MO]. Let u € H;(Q) with

u 2 0 and suppose that: § 1s a locally Lipshitz domain in R?', and
IQVuVE-rf udx £ 0 for all non-negative £ € c:(Q) . Let £ satisfy the

Morrey Condition:

IB - Q|f|1+€ Sc RB for all By © 2 and some €, > 0 then
2
B(}s{upp) [u(x) | a IB(x ,p+a) |u(y) | dy for all B(xo,p) c B(xo,p+a) .
0’

Proof: Identical to the proof of Theorem 5.3.1 of [MO], pg. 137, except that
we need our somewhat stronger Morrey Condition because ‘the inequality
{ g|w| Sc [f| Vw | dxi—f| g|n’/2 dx] fails in 2-dimensions due to critical

Sobolov exponents.

m -
We would now like to note that if u € ¢ () we can state an improvement

of Morrey's estimate involving E;-IB(X p+El)|u()')[dy . This improvement follows
- a

from an 1terat10n argument of E. Bomb1er1 See [BO], pg. 66.

Theorem 6.2 (Bombieri). Let § be compact. Let u € Coo in £ and let u =2 0 .

Let u satisfy:

sup (u(x))2 — f u2dx for all concentric B _,B <, 0<p<R.
B R™p
B (R-p) R
P
Then
sup u(x) = — IB udx where B, and B are as above.
B, (R—p) R P

Proof: Use the iteration at the top of pg. 66 of [BO]. Q.E.D.



~25w-

We will also need an improved Morrey theorem based on the Alexanderov-

-Bakelman estimates and due to Trudinger [TR].

Theorem 6.3. Let § be a compact domain in R® . Let u € Wz’n(Q) weakly

satisfy: Au+au £0 in Q, with a>1 and u 2 0 . Then, for any p € (0O,n]
and g € (0,1),, we have for all concentric balls BOR and BR in & with
R < 1 that:

sup u S cR_n/pHul

B
o,R

| where ¢ 1s independent of R and u .
.p,BR

Proof: This follows from the more general estimate of Theorem 2.1, pg. 5 of [TR]
with ¢ independent of R by the remark after Corollary 2.3 of [TR] with
h, =1+b R2 < 1+b with b, = a > 1 . The theorem in [TR] is stated for weak

R 2 2 2
solutions; however, its proof shows it is also valid for weak subsolutions.

Q.E.D.
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7. A Regularity Theorem for the Higgs Field

- - - oo .
In this section we assume that the Higgs field is a C solution of the

field equation:
(YMH2) D*D¢ = % (1% - ")

in the punctured unit ball B2-{0} . As in [Sb2] the assumptions on ¢ near

the origin depend on the sign of A .

Because of the criticality of the Sobolev exponent %%E- for L2 functions

in 2-dimensions, we require several technical changes from the argument in

[SB2]. This is where we use the estimates of section 6.

The main result of this section is:

© . . 2 . 2
Theorem 7.1. Let ¢ be a C solution of (YMH2) in B -{0} in R .

We assume:

(a) Y € H;(BZ) if x>0

®) @€ H;(Bz) ifE A =0

2+e,_ 2 — 2
L (B”) for some € >0 and lim IB /B luf =0, if

t>0 17t |x1210g2(%

(c) ¢ €
A<O.

Remark 7.1: That condition (c) is natural follows by considering the case when the

sructure group is commutative (i.e., the real numbers) and looking at the scalar

inequality

Au-l-u3 2 0 .

Then, u = 1ln r-r 1is an unbounded function satisfying the above inequality and

In r-r is in all LP except for p = o .

Also note that our condition (c) is weaker than ¢ = o(log Ix|) and that

@ € 0(log Ix!) is stromger than (c).
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Similarly, we see that conditions (b) and (a) are natural by considering
Au =0 in B2-{0} . Then u = 1ln |x| is an unbounded solution of Autu’ =0

. 1
with u ¢ HZ(BZ)
To prove 7.1 we make strong use of the fact that u = |pl 1is a weak solution

in B2-{0} of: (Alol) z % (lw|2-m2)|w| , where A 1is the ordinary Laplacian

on functions. This follows from Weitzenblock-like identities and details may be

found in [Sb2] (formula 2 and lemma 1.2.).
At no loss of generality we assume u 2 1 so that ||u||B2__{0} 2 1

For example, in case (b) the function |¢| is subharmonic. First we dis-

pose of case (b).

Proof (case (b)): Consider a sub-ball B(x.r) in Bz-{O} with 0 < r < %

(MAX(dist(x,0), dist(x,aBz))) and thus by Morrey's theorem [MO, pg. 137] we have:

1/2
K 2.1
sup(u) < —-[f u dx =J .
B(x,r) T B(x,2r) J
If r>r, we have J 3 K(RO)IlullH;(BZ-{O}) . We may choose r, . Now there
exists a sequence of test functions ng € CE(BZ) with n; = 0 for |x| g Ei ,

that tend to 1 as Ei tends to zero and such that IIVhi|2dx + 0 as ite

[SB2]. Choose r, close enough to zero that for any fixed r $§ r, we can choose

0 0
i(r) such that BO,E.(r) n Bx,2r =0 , ni(r)]B 2 1/2
1 X,2r
1 2 .
meas (Bx,4r n BO,Ei) 2 Jp meas Bx,4r and such that IBX 4I|Vni| dx S K, , where
Ko will be chosen below.
. 1/2 1/2
Now: u(x) £ sup(u) S K f Uzdx < 2K | (n.u)zdx]
B r B(X 2r) T B(x 2r) ]
(X,I’) ’ L]
2K s V2 2 1/2
S = [f (n.u) dx] S K [I |V(n,u) | dx] , (Poincaré ineq.)
T B 1 B 1
(x,4r) (x,41)
S 2 2 2, 12
S K [[IB ]Vni| dx][fB u dX]*—IB |Vu | dx] =1
(x,4r) (x,41) (x,471)
S K|lul|

H;TBZ-{O}) , with K depending on K, . Now choose K, small enough
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so that K < 1 and we have I & | ul] 1,02 _ . Thus:
H, (8" - {0}

sup (u) £ K[[|u1|H1(B2_{O})] <o,
Bz-{O} 2 Q.E.D.

We now dispose of Case (a).

Proof: (Case (a)). In Case (a) we have that u = |¢| solves Au 2 % (uz-mz)u

with A > 0 . Thus: Au 2 % (uz-mz)u . Now consider the two sets.
A={xc¢€ B2-{0} such that u S m} ,
B =1{x€ B2-{0} such that u > m} .

€0
These sets are pairwise disjoint. Now, because u € C on B2- {0} , the set B

is open.

Cover B by a countable collection of small ballg, each contained in B .
Then on any such small ball in B we have Au 2-0 and by the estimate above used

in the proof of case (b} we obtain:
sup u $§ K Ilu||H1(B2-{O})
B 2
Nowon A, u 1is bounded above by m . Hence u 1is bounded on Bz'-{O} .
Q.E.D.

We now prove case (c). This requires some work because the proof of

Proposition 2.3 of [Sb2] fails in 2-dimensions. The main problem is that when
2

n-2
when n = 2 ., Nevertheless we establish the same estimate as in the conclusion

n = 2 inequality (1.14), page 7 of [Sb2], fails since =® and c =
of Proposition 2.3 of [Sb2] using a modified technique.

First we prove the following propositon.

Proposition 7.1 (cf. Prop. 2.3 of [Sb2]). If condition (c) is satisfied, either

we have:
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{ 'ﬁ:2|vu|2dx s k[ IVn|2u2 dx
2 2
B B
. . o, 2 .
for all test functions -7l in CO(B ) or u is bounded.

Proof: We use a sequence QK of test functions that vanish
for |x| s € » tend to 1 as Ex tends to zero and such that
flVﬂKlzdx ~—> 0 as K —> « . These are defined cf. [G] pg. 547 bottom, by:

(0 for [x| s Ex ]

e

ﬁK=ﬁ (xp=-{ 1 for |x| 21 {

1

- + log Ix] for e, < |x| <1
L 1 £ K
( log ( = ) K )
£
K
Remark 7.2: Note that our growth condition in case (¢) is chosen exactly to in-

sure that u 2 YN |-—> 0 as K —> o .,
B2 K

Now let N be C: and let N be a ¢” function vanishing in a neighbor-
hood of the origin. Use.thectest function T = (nﬁ)z(u) as & 1in:
fVu-VE:h{S fhugdx for all non-negative £ € C: (Bz-{O})_, where
h = -% (|w]2-m2) and u = |®| . We get:

k[ M2 |vul?ax s []2nnvu] [V u] dx+ (A7) ho? dx = I,+I, .

Now, I, & uj'(nﬁ)ZIVUJde-FC(u)ﬂV(nﬁ)|2|h|2dx and the first term on the

right may be absorbed into the left hand side. Also, J| v(nn) [zuzdx s

K[J'|Vﬁ|2u2dx-Ff |Vﬁ |2u2dx] . Note that || Vﬁ|2 dx —> 0 if we set 7 =7

and let k —> o _ Do this. Thus, in the limit as k —» o« |

L S‘f|Vn|2|u|2dx - Now, I, =J'(nﬁ)2hu2dx SJ‘(nﬁ)zhuzdx_. Since A £ 0 we have
supp NN supp N

b= ol®-h s 2 dot® 1 s kS am?lel’fu)Pax -
supp N N supp N

k

J2 .

We now estimate J2 :

Remark: The estimate of 12 in the proof of proposition 2.3, pg. 11 of [Sb2],
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is based on the inequality: J'ngdx s Cn||g||n/2J'|Vw|2dx which is proved
using Sobolev's inequality. This inequality estimates 12 from above by a sum

of terms, the first of which is proportional to ||¢|| 9 - Then use is made of
L

conformal scaling to make ||¢|] 2 small.
L

In two dimensions however, the Sobolev estimate has a critical exponent and
constant ¢ corresponding to this exponent is infinite. Thus we need a new
argument.

This new estimate is contained in the proof of the following sublemma.

Sublemma 7.1. Let B2- {0} > 2 > supp n N supp N . Then: J, < C[IQ[¢|2dx] .

[f () P + |9 | Zaxd

Remark: The idea of the proof is that V |¢|2 is a weak sub—-solution (in fact
a ¢ solution) of an elliptic equation on supp 1 N supp N . Thus by a Morrey-

-like estimate (Bombieri's lemma) we can estimate  sup lo| s %—[I ¢2dx]1/2 .
B(R)cQ B(2R)cQ

Then by simple estimates we get a "Reverse Holder inequality'" with
||¢||2+E,B(R)C§2 estimated from above by |[¢||2,B(2R)c$2 . The sublemma then
follows from a covering theorem. We do it now.

2

Let V = ¢ , let all balls B(r) be contained in { . Let Qo =

supp N N supp n < & . Choose the balls By so that Bp © B2R c QD and
1

100

oc
Since u is C in Qo we can at no loss of generality assume that u 2 1

4

meas(BAR n Qg) 2 meas B Then Qo is covered by a number of such balls.

4R 7

on QO . (If no such Qo exists then u is bounded.) Recall that u = lo| is

a subsolution of Au 2 % (|u|2-m2)[u| 2 % (|u|2)|u! in {  since A < 0 . Thus
Au-% lu|3 20 in QO . Now since u 21, u¢€ ¢” on Qo ,we have:
A(|u|2) = 2ul.\u+2|Vu|2 2 Au . Thus V = |u|2 is a C subsolution in Q, of

AV + ( %l-|u])v 2 0 . Note that ( %l [u]) is in L (by our growth

1+€,3_,e>0

assumption ¢ € L2+€(B2)) . We now apply Theorem 6.1 (Morrey's theorem in 2-dimen-

sions) and theorem 6.2 (Bombieri's lemma) to get
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C |1

sup V=1 . vl ax , Vv concentric in §2
B(R)CQO RZ B(ZR)CQO B(R) ,B(2R) , o)
Thus
2
sup ¢ S-E | ¢ dx ] 2
B(R)CQO R B(ZR)CQO
We now use the above inequality and Holder's inequality to achieve our
estimate of J2 . Using Holder's inequality with p = 1-#% , q = ZgE we get:
2¢€ 2+€ £ 2+E
= 2. (228 ) 2 ,fIE
2+€ - £ 2+€ [ ® £
58 | s g 7€) miw €T Ll -3,
Now extend nﬁu to B with the extension equal to zero on QC N B
4R o 4R
and call the extension E(nnu) . We have
2¢ 2 2+€ € 41
£ T 228 (501 2
2+ 2} 2+ = 2+e° 2
J3 s [IB sup ¢] € [IBR¢ ] £ [IB E(nnu) € ]
R 4R

Now use Sobolev's inequality in the form:

: 1/t 1/2
[IB utdx} s cr?/t [jB |Vu[2dx] where t 2 2
4R 4R
1 . c _ = _
for u € HZ(BéR) with u=0 on BAR n QO . We let u=E(mnu) and t = (2(2+€))/e
to get:
2(2+€) € 2
[JB E(mw] € } 2ve ¢, g2¥€ [;B |vE<nﬁu>12dx]
4R 4R
and thus
2¢_ 22
IB cQ ¢2nzﬁ:2u2dx < (sup, ¢) 2+e, f [VE(nﬁu)|2dx]-fI ¢2dx 2¥e dc2*e
R™0 B B ] |’B
R 4R R
2 1/2 - .
Recall that supp [ (K/R)[JB ¢ dx] . Thus combining all our estimates
R 2R
we get:
2e £ 2
fg cq o2’ s [% (J’B ¢2dx)1/2} 27€ o [CR2+€ }.[jB ¢)2dx].2+€-[IB |V(Enﬁu)|2dx}.
R 0 4R R 4R
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But IB |VE(nﬁu)[2dx s f IVE(ﬂﬁu)|2dx so we have:

4R QOnBAR

2.2-2 2 2 A =
IB T nn % wlax < K[IB ¢ dx]{IB (Nnu) “dx + |V(nnu)|2dx} .
RT0 2R R Q.NB
0 4R
Now using Besocovitch's covering lemma and changing constants appropriately
we have jQ¢2(ﬁﬁizgcﬂfQ¢2][IQ(nﬁu)2dx-+fQ|V(nﬁu)|2dx . This completes the proof
of the sublemma.
Q.E.D. (Sublemma)
Now we return to the main proof and use the sublemma. We have, using the
sublemma and recalling that conformal invariance implies that we.may choose
[I¢2dx]1/2 < Y (where Y may chosen small) that:
- 2 2 2 2 = 2
(11) ng(nnk) [Vu|“dx < IQ|Vn] u”dx + g(k) + c(y)[(fQ|V(nnku)| dx)
+e(fol (M %a0] with e(y) + 0 if Yy~ 0 and lim gl =0 .
koo

Note that:

- 2 2=2 2 = 22
(111 IQ|V(nnku)l dx £ 2an nk.|Vu| dx-+2IQ|V(nnk)| udx
so from (II) and (III) we obtain

- .\2 2 2 2 2-2 2

(V) Kfo(mn )7 [Vu| dx s IQIVnI u dx+g(k)+zc(y)[fﬂn Ny |Vul%dx

+2f_|vnn, |2udx] + () (R [ (m, w2ax]

Q k Q2 k ’

Now choosing Y small enough we absorb the term 2C(Y)Iﬂlnﬁk]2|Vu|2dx in the
left hand side of (IV) and we get:

-2 2 2 2 -2 2 = 2
(V) Kfglnn, [719u] ax < g(k) + [|Vn]|“u dx+c(y)[2fQ|Vnnk! u” o+ K[ (M, u)Tdx .
Now using growth condition c, we have
- - 3 - 2
IQ|V(ﬂnk)[2u2dx p 2I|Vn|2u2dx-+2In2(|Vnk|)2u2dx s ZIQ!anzuzdx-+2f|u2|Vnk|

+ sup n S 2f|anzu2dx-+h(k)
Y
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where h(k) + 0 as k + ® . Using this in (V) we obtain
- (2 2 r~ 2 2 - 2

(V1) nglnnkl |Vu|“dx £ h(k) + g(k) +KJQ]vn| u dx+KC(Y)IQ(nnku) dx
with C(y) + 0 if vy -+ 0 . But

Jo(n U)zdx = [ . (mn )zuzdx < 2f |v(m )|2u2dx-+2f nz;i21Vu|2dx

2 k BZ k = BZ k B2 k )
Thus

=2 2 o~ 2 2
(vi1) Kf ,|nn |7 |Vu|%dx € h(k) +g(k) + K[ ,|on|“|u|“ax
B2 k B2
+2K(Y) [ 2IV(nﬁk)|2u2dx+2K(Y)I 2nzﬁi |V | 2dx
B B

(again with K(y) ¥+ 0 as y ¥ 0.)

Now choose Yy small enough and absorb the last right hand term on the left

hand side.
= 12,5 42 ~ 2 2 - 22
(vin) kf ,[nn |[Vu|%dx € hlk) +g(k) +Kf o |9 “u"ax + 2r (1) | L 190 ) [Fuax
B B B

But, | 2|V(nﬁk)|2u2dx = IQ|V(nﬁk)]2uzdx = A (we have already shown that

A S 2IQ|Vn|202dx-+h(k) , with h(k) + 0 as. k + « ., Thus combining terms we

obtain
(IX)  KJ 2|m_1k|2|Vu|2dx < m(k) +XJ 2|Vn|2u2dx
B B
with m(k) + 0 if k » o .
Now, let k + « and we get:
x> I 2|n|2|Vu|2dx < K[ 2|Vn!2u2dx
B B

with K independent of u .

Now we prove Theorem 7.1.
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Proof: Theorem 7.1 now follows from De-Georgi iteration, pg. 76 [LU] which
uses the estimate of Proposition 7.1 as its basic inequality.
Q.E.D.

We now conclude this section with a final corollary.

Corollary 7.1. Under the hypothesis of Theorem 7.1, D¢ is in L2(Bz)

Proof: This is the same as the proof of Corollary 2.4 of [Sb2].

Q.E.D.
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8. A Subelliptic Estimate for (F,9)

In this section we assume that (F,¢) 1is a smooth solution in Bz-{O} c
R2 of (YMH1) and (YMH2) and that F and D¢ belong to LI(BZ) . We define the
total field h(x) = |F| + |D¢| + |¢|‘? . ’

The main result of this section is a preliminary growth estimate on h(x) .
Because we are in two dimensions the argument based on Lemma 3.4 of [Sb2]} fails
completely., In fact, Lemma 3.4 is false in our setting. We substitute an argument
based on the estimates of Section 6. Qur main estimate will then follow by conformal
scaling.

Denote by V_= {x|p/2 S | x| S 2p} the reference .ring about the puncture. We
require that I]h[k1(B4) <y <9§ for ¥ cchosen small enough.

Theorem 8.1. There is a comstant C such that for |x| =71, |x|2h(x) pS

C||h|k1(vr) . This is true in all smooth gauges.

To prove Theorem 8.1 we consider solutions of the Yang-Mills-Higgs equations

in a bundle over the unit reference ring V {y|1/2 s |y| s 2} . We obtain a

1 =
(s}
bound on the L norm of the total field h which we state as:

Proposition 8.1. Let..h be the total field of the smooth pair (F,¢) in a

bundle over V, . If [[h]|, < Y, » then there is a constant C such that

h(y) s C||C”,I for y belonging to the unit sphere in V1(||y||= 1) . Before
L (V)
1

proving Proposition 8.1 we show that Proposition 8.1 implies Theorem 8.1.

Proof: Map the reference ring Vt onto V. by the scale transformation

y = x/r . The field equations are invariant und;r this transformation. By assumption
and using norm invariance ||hH1 = ||h||1 S Y <Y, . Therefore in y
L (v,y) L (vr)
coordinates F, ¢ , and h satisfy the hypothesis of Proposition 8.1. Pulling
back to V. and using the fact that h(y) = rzh(x) , the inequality above becomes
our conclusion.
Q.E.D.

We need Lemma 8.1 of [$b2] which follows in any dimension from the
Weitzenblock identity.

Lemma 8.1. The scalar function h 1s a solution of the subelliptic inequality
Ah + (ah+b)h 2 0 where a = 10 + 2|A| and b = |)\|m2 .

Proof: This is the same as Lemma 3.3 of [Sb2].

We now prove a preliminary estimate from which a Morrey condition will

follow later. We have
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Lemma 8.2, Let h be as above in v, . Then on any ball 31/4 of radius 1/4
centered on |y| =t in v, we have: Let H = h+b+1 . Then sup H S Kfﬁ H dx
BI/A 1/2

' /4 in V1 , where . b 1is the constant defined

above, and where K 1is independent of h . (In fact, K depends on a ).
Proof: Recall that h 2 0 and h satisfies Ah + ah2 + bh 20 in V1 .
Now let H = h+b+1 and notice that H 2 t . Now, elementary computations imply

A?Y) + an® 2 0 in V. , since A(H%) 2 2HAH 2 AH and a,b 2 0 .

where 31/2 is the doubling of B

1
Now we apply Theorem 6.3 of section 6 to this equation, with p = 1/2 and

R =1/2 . We get

sup (Hz) < (1/2)_4K[f§ v de]2 , sup (H) = ETg oy Hdx .
B1/4 1/4

/271 1/2 1
Now since H = h+b+1 we are done. Note that K depends on a and not on m .

w0

Moreover | b = Ix] S 2 n’ rdrd8 and since m has conformal weight one
B<R BcR
this integral is scale invariant. Recall fh is scale invariant. Noting that in

theorem 6.3 that K has conformal weight two, we see choosing ¥ > 1 that this

estimate 1s scale invariant.

Q.E.D.
Now, as promised, we use Lemma 8.2 to get a Morrey-type condition on h
Lemma 8.3. Let Eé be any ball of radius p centered on |y| = 1 with
p S 1/4 . Then, if h is defined as above, [f, B84y € < kpf e>0 B> 0

P
Proof:

< < Bfe < K[~ K K [~ <
sup h = sup h £ sup H = KIB H s KIB1/2 h+b+1 S KIV h + KIB (b+1) < K,y + K,

Bp B1/4 B 1/2 1 1/2

where K2 depends on b .. Note, the above integral estimate is scale invariant as
in lemma 8.2, Thus, since K, and K, have conformal weight two the pointwise

. . . . +
estimate is scale invariant. Thus [fﬁ h1 Edy] < K3(Y,b)0 . Here KB(y,b)
P

has conformal weight two. Note, that this estimate is also scale invariant. Q.E.D
Remark: Note, this is the appropriate Morrey condition for Morrey's theorem in

2-dimensions — — Theorem 6.1 of Section 6.

Now we finally prove Proposition 8.1.
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Proof of Proposition 8.1. Since h satisfies a Morrey condition on the

above balls Eb centered on |y| =1 and 0 < p < 1/4 , the function ah + b

also satisfies a Morrey condition on these balls. Now recall Ah + (ah+b)h 2 O

in Vi Thus applying Theorem 6.1 of Section 6 we get. sup h & C[fg o hzdy]1/2
N _ Bp 2p 1

where Bp and ﬁép are both centered on |y| = 1 . Note by .theorem 6.1 the
constant C has conformal weight one so that this estimate is scale invariant.

Now we apply Bomberi's improvement on Morrey's Theorem - Theorem 6.2 of
Section 6 with p =1, to obtain sup h £ E}g h dy , where ﬁ;p c V1 and

Bp 4p

Ep < Bhp are concentric and are centered on |y| = 1 . Thus by a covering argument
we have sup h = Cfv h . Note that by theorem 6.2 T and C have conformal weight

ly|=1 L
two so that this estimate is also scale invariant.

Q.E.D.
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9. An Elliptic Estimate

In this section we improve our results to obtain a final growth condition
on the curvature F and on D¢ . We assume that F € L1 , that ¢ is bounded
and hence that D¢ € L, by Corollary 7.1. Since integration by parﬁs is essential
in these arguments, we must work in an L, setting., Just as in [Sb2] this forces
us to use weighted L, norms.

Qur first aim in this section is to obtain a growth condition on the Higgs
field. This will be used in the next section to estimate the total curvature.

Theorem 9.1. Jy |Ddjdx S Kp . 0 <p<T<2.
' P
‘Proof: Since Dy € L2 apply Hdlders inequality.

Q.E.D.

Remark: Note that the integral on the left hand side is scale invariant so
that by scaling we can shrink the ball and decrease the left hand side. The right
hand side, which came from the differential equations, picks up a scale factor
that quantifies this decrease.

This improvement on conformal scaling estimates is key in the method of
[U1]. For similar estimates with the same scaling behavior cf: estimate (4.7)

in (Sb2) , the estimate pg. 28 line 16 [Uh1].

Theorem 9.2.

! ]xlle(x)lzdx < C1f

11 2(g |2+ ]0|Yax + c,f  |F|%as .
|xIST

x|sT x|=1

We will prove Theorem 9.2 at the end of this section. But we first have:

gy

Corollary 9.1. | |y[2|F(y)|2dy S Cp1 , 0 <p<T.
lylsp
Proof: Starting with the inequality of the conclusion of Theorem 9.2 we change
. 2 2 2 2 2
scale to obtain | ly|“1F(y) |“dy s p"[|Do{“dy + p°f |¢|4dy+c p3j |F|2ds
lylse ly|sp lyl=p Y
Recall that we have just proved that f| |D¢|2dy < K, - Using this fact, and
y|sp
since ¢ is bounded, we get | |y|2|F(y)I2dy s Kspz + 0203(p-2)f |y|2|F|2dS
. lylse lyl=p
Letting £(p) = [ |y|“|F(y)|2dy we obtain f(p) < Kspz + Czpf'(p) . We
ylsp

integrate this inequality from p =T to p =r to obtain f(p) $C - p1
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We now prove Theorem 9.2. We do this by working in the broken Hodge gauges

of Lemma 5.1.

Proof of Theorem 9.2. Assume we are working in broken Hodge gauges on n

U,
1

for each i . Note that if T > 1 1is taken sufficiently cleose to t and if

7 is chosen small enough, then we have (T2/4.5—Y4)1/2(2+(Y4/2)) < 1.
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This arithmetical fact is the reason for all the estimates of eigenvalues
in Section 4 and Lemma 5.1. Thus we now assume Y < Yy <y, - We

integrate by parts to obtain | |x|2|Fi(x)|2dx =
U. .
i %, 214 it 2. i 12
U U . S S

boundary terms. Now, using the field equations, we get

18 S [x0p,00 2f 4 [xl?T At ax
u U

s (21G.s=y ) vty IxPIF P+ e 2Cpel? + fol®ax .
U U

Since the coefficient of the right hand side is less than one, we obtain by
] 7 3 -
subtraction (1-e')[ .|x| |Fl(x)|2dx s .|x|2(|D¢|2+|¢l4)dx + [ . .~ .ALA(*F) |x|2 .
i 1 i-1 18 S
U u S S
Adding the integrals over each ut , 1 =1,2,3,..., we see that intermediate

boundary integrals cancel out.

Recall that ]F||x1 . 5 K/rsz _{0}|F|dx s ;/r2 . Thus
2

5 s : s i ' : - .
Ijéi|x| A;A(*Fl)s| S Kfsi|x| |A§||F;||x|de S Kr sgplA;|I ((r/e)T7d0 $ ke sgplA;| < Kr.

Sl S Sl

sup(1/r)|A;| S K sup|A;| where A; = Asde .
st st
Note that in broken Hodge gauges we worked hard to get lim sup |Ag| = 0 . Thus
i-o g
. 2.1 i
lim |f . |x|“AAG*B)L| =0 .
. 1 S s
1= 5

Now consider the outer boundary term: [ OA;A(*F;) . We have :

s

|[ A1A(*F )| s r(J |A1|2dx)1/2(f |F'|2di~:)1/2 . We would like to use an estimate

SOIS S q° 5 g° S
of the form

. 1,2 1,2
(*) { O]ASI dx S KJ 6IFSI dx .

S .S

However, because the Laplacian on all co-closed 1-forms on s° = {x||x| =1} is

zero, we do not have this inequality. We will use instead the inequality:

1 1 1,2 K 1,2
(*%) J'SO|ASA(*F )gls t-:fUilF | “av + = J'SOIF |“dx for e>0 .
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Now we prove (%),

Lemma 9.1, {(#**) 1s valid.

Proof: Let T1 = {xll £x £T} . We have
Wor | < f |A1A(: Nl s Ik K 1,2
1[S°ASA( F )S| ols Fg sfso gl ds + 2 jSO]F |“ds V € > 0 . But

1,2 1,2 1,2 1,2 . .. 1
jso|AS| ds s jSO|AS| ds + IBB1 IAS| ds = jaT1iAS| as . since A is in H,(T,)
1 T
and since &8A =0 , we have from the trace inequality for Sobolev functions that
2112 1,2 1,2
jSO|AS| ds s C1fT1|A |© + CIT1|dA |“ so that,
1,2 142 1,2
ISOIAS| ds s [ [Ag]%ds + [0 |AS| ds
s 1
T

_ 1,2 1,2 1,2 1,2 : 1,2
= IaTIIAsl ds s C1IT1|A | dV+CZIT1|dA |© s c1jU1|A | dv+csz1|dA |“av .

Now, in our broken Hodge gauge we have also that [ 1iA1[2 s KI 11F1]2dv and
U U
1 . . .
sup|A1[ S Kt which implies that

U1

laat|? s jaa'+1/20at, 4" - a20at a0 5 1FY 2+ c)at )t < B2 6 ke? AT

and thus [ |Al|2d5 s E} |F1|2dv + X |A1|2dV so that | |A1|2dS S KJ |F1|2
o'"’8 1 1 'S 1
S [} U S U
and thus | O|A;A(*F1)S| s ekf |r'|%av + 2y JIrilfas .
S U 5 Q.E.D

Now we have, using Lemma 9.1, that
1 1 1 1 2,.1,2 K 1,2
ljsoASA(*F )Sl < jSOIASA(*F )| s eK(T)IUi|x| |7 |“av + - IsolF |“ds .

Now we return to our task of estimating [ i|x|2|Fl(x)|2dx . We have
U

(1-e"J i|x|21Fl(x)|2dx s J i|x|2(|D¢|2+|¢]4)dx + f oA;A(*F1)S . We now apply
U u S

our estimate from Lemma 9.1 of the boundary terms to the above inequality. We

obtain

0o s [ [x|2(po %01 Praxve [ 1F'[av + £, IFLlas .
T U T

(1-e")fy |xf
.T
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Since U1 < BT we choose € small and subtract the second right hand term

from the left hand side. We obtain

(1=e'") IB |x|2|F(x)|2dx g IB

x12(Ips|%+1¢|®yax + kf _|F|%ds . Since
T T S

sup |F| < KIV |F| S Ky , the term Kf 0]F|2dS is bounded. Thus we have proved
1 S

SO

Theorem 9.2.
Q.E.D.
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10. Statement and Proof of the Removable Singularities Theorem

In this section we finally prove our main theorem on removable singu-

larities, Theorem 10.1.
First, we combine all our previous estimates to obtain

Proposition 10.1. For some & > 0 , [x|2_6(|F(x)]-+|D¢(x)|) sc,
058 |x] s1/2.

Proof: Let Vp = {lig S |x] <2p}, 0<p < T/2 . We have already shown that if

h is the total curvature, then sup lh(x)[||xl=r < _E_E.IV [h|dx , 0 st s
It r

2
Thus |r| (|F(X) + |D¢|)||x|=r s CHhIIL (V )

2 . . 2 ’
C3||¢ I|L ) - Since ¢ is bounded, |!¢ ||L v ) S Cr . Since IB [p$|“ s C
i r 1" 'r T
0<rsT , it follows from Holder's inequality that IB |D¢| SKr , V_,

0 <rst. Thus IV |IDd| s Kr, O0<r S T/2.
r

2
We also have; (0 <7t s 1/2) , IV lx[2|F(x)| dx S Kp . Thus by Holder's
r

inequality we obtain IV |F(x)|dx s [IV le_zdx]”2 [fv |1v:|2|F(x)|2dx]1/2 <
r r r

1/2 1/2 1/2 1/2'

IV |g|2|F(x)|2dx]
r

g S~y Ixlalxlas)
X

Thus [, [FGOlax ske'/2, 0<rs /2.
T

s KLfy [xI*190 o

1/2

We have shown that Ir|2(|F(x)|-+|D¢|) S Kr -+Kr-+Kr2 ,

O<rsST/2.

[ 1xl=x

Thus if 0< 6 < 1/4 ve have |r|? ([FGO|+[pg]) [}, SKe' /270 ke O 0K

Corollary 10.1. The curvature F 1is in L? for 15 P <355 -

Proof: Elementary arithmetic.
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Corollary 10.2. (F,$) 1is a weak solution of the field equations in the

full ball Bi .

Proof: Elementary using Corollary 10.1. Compare Corollary 5.3 of [Sb2].

Proof of Theorem 10.1: This follows from Corollary 10.1 by exact repeti-

tion of the last two pages of [Sb1].

We are finished!

Q.E.D.
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