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1. Introduetion

In this paper we prove a removable singularities theorem for the eoupled

Yang-Mills-Higgs equations over a two dimensional base manifold M.

1.a. Preliminary Definitions

Let M be a domain in R
2

and n be a vector bundle over M with

eompaet strueture group Ge O(n) and Lie algebra G . Let the metrie on G

be indueed by the traee inner produet on O(n) and let n have ametrie

eompatible with the action of G . Let d be exterior differentiation, 0 its

adjoint, and let ,] denote the Lie bracket in G.

exaetly and define the Riggs field <.p using the determinant

the determinant bundle raised 1 Sections ofto i-power.

10 a fixed co-ordinate system but we have weight 1

A eonneetion determines a eovariant derivative D whieh within a loeal

trivialization defines a Lie algebra valued 1-form A by D c d+A . On

* *p-forms we have loeally Dw = dw + [A,w], D'w c ow + *[A,*w] where D is

the adjoint of D. We denote the curvature 2-form by Fand have
1F c dA + 2[A,A] in this loeal trivialization.

Gauge transformations are ~seetions of Aut n which set on connections and

curvature forms according to the transformations:

Ag -1 -1= g Ag + g dg

Fg -1= g Fg

The pair (A,F) is gauge equivalent to (Ä,f) iff there is a gauge

transformation g such that A = Ag and F = Fg .

We now follow [S62]

bundle. We denote by L

this bundle are constant

under scale transformations.

The Riggs field <.p is a section of n·· 0 L . Therefore, in a fixed

co-ordinate system <.p may be regarded as a matrix-valued function. Under scale

charges y = rx , <'p(y) = <'p(x) (cf.: [p] [SB2]).
r.

The Yang-Mills-Higgs equations are:

(YMH1)

(YMH2)

*D F = [lXp,<.p]

* A 2 2D lXp c i( I<.pI -m)<.p
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where A is a fixed real constant and where m is a section of Land

hence constant in a fixed co-ordinate system but having weight 1 under scale

changes. Thus under the transformation y = rx we have m' = m/y . The equations

(YMH1,2) are thus invariant under the scale transformation. y = rx.

Certain norms are invariant under scale transformations. For example

11 tP 11 2 is invariant and if 1.Jl i s any p-form
L

also have an important fact used in [U1].

II1.Jlll 2/p is invariant. We
L

_ Fact -[.U1]

Supp~se 1.Jl E L
2

/p with II1.Jlll 2/p invariant. Theu, g1ven any y > 0 there
L

is a metric go conformally equivalent to the Euclidean metric in which on

bounded sets in R
2

; flwl 2
/
p dx < y .

This fact follows from conformal invariance and the continuity of the

LP-norms. See rUF] for details.

We now assume that M = B
2

- {o} , where B
2

1S the Z-ball of radius 44 4
centered at the origin. We also assume that every connection has some gauge in

which it is C1 over the punctured ball.

1.h. Statement of the Main Theorem

We now state our Main Theorem:

(YMH2)and

be the connection

and

(YMH1 )

be a connection on

satisfy(F ,tp)M • Let

be as above. Let

over

and let Tl

Theorem 10. 1

Let M = BZ - {a}

that satisfies condition H(Z), defined in section 1.c. Let F
co

form of A and let F be C

over M. Let F E L1 (B2) .

If A ~ 0 let ~ ~ H~(BZ) . If A< 0 let. ~ E L
2

+
E(BZl

= 0 . Then, there exists a continuous gauge transformation

such that (F,tP) is gauge equivalent to a Cco-pair over B~ and the bundle extends

continuously to a bundle over B~ .'

A theorem of this type was first proved by K. Uhlenbeck for the pure Yang-Mills

equations over R4 1n [U.1]. Later Parker [p] extended the result to the coupled

Yang-Mills-Higgs equations over R4 • Papers of L.M. snd R.J. Signer [SB1], [SB2],

[SB3] proved similar theorems for dimension 3 and for all higher dimensions. This
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paper fills the two-dimensional gap in the literature.

We would like to thank L.M. Sibner for suggesting this problem and C. Taubes

for a useful abelian example suggesting that holonomy would be important.

1.c. Auxiliary Gauges

Condition H

We wish to introduce a condition on the connection A that insures that

the bundle is trivialover the punctured disk M above. This condition is a

"holonomyll condition called condition H.

We use the conventions of [KN1] Vol. 1 pg. 71-72. We first define some

useful paths.

Definition: Let 9..R : [0, 1] f· be given by 9..R : t -~ (R cos 2~t~ SR
R sin ·2~t) with 51 = {x E R2

1 lxI R} . We say that 9..R
is the standardR

loop for 51 . Let Le ~ : [0, 1] ~R be given by Le
: t ~ (Rt,O) . We call L

eR
the standard line.

Now, choosing the fiber over (R,O) as standard and choosing a point

"Q" on this fiber we have a unique A-horizontal ~ift of the standard loop

9..
R

· Parallel transport on this lift is carried by the faithful right action

of corresponding elements of the structure group G. We denote the group

element that corresponds to the transport of "Q" around the full loop 9..
R

by

geR) .

Definition 1.1.: The map CR : (0,4] ~ G given by R ~ geR) is a

path denoted by CR .

Now, we define condition H(K) and condition H .

Definition 1.2.: (condition H(K)): If as R~O the elements geR)

considered as points on the carrier of the path C
R

approach the identity
K

element ~n the C~-topology we say the connection satisfies condition H(K).

Theorem 1.1.: The following is equivalent to condition H(1) : There

exists a trivialization over a small ball BR - {a} , 3R ' a < Ra ~ 4 centered

° 0at the origin, in which the connection defines a local co-variant derivative

*D = d+A, A = Ar(r,e)de + Ae (r,.8)de with Ar(r,S) , Ae(r,S) E: r(G S T (BR.a- {al))

and with lim Ae (r,8) = °, with the limit taken
r-+Q"
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1.n the sup-norm topology on ~.

over theFroof (1~2) Choose an orthonormal framing

{(r,O) 10 S r ~ c} . Extend this to a framingray

{v.(r,8)} of Tl
1.

{v. (r,O)} by parallel trans­
1

lation around the circles R..R. Then, 'Vev. = °,v. (r,S) = v. (r,O) 'g(r,8) for1. 1. 1.
some g(r,S) E G • In particular, v.(r,2TI) = v.(r,O)·g(r) for same1. 1.
ger) = g(r,2n) E G . Thy hypothesis imply that for small c, the element ger)

is elose to the iden~ity so that ger) = eip (h(r» for same her) E G . Let

~ : [O,2n] ~ [0,1] be a smooth function which vanishes near ° and 1.S near

2n . Then w.(r,8) = v.(r,S)·exp(-iP(S)h(r» is a srnooth orthonormal frarning of1. 1. .
.n over B2-{O} • In this framing the eonnection form is: (A8)~ < VSw.,w. > =

. J 1. J
<[Ve(v. ·exp(~(8)h(r))] ,w.>=-tp' (S)h(r)o ... HeneelAel S e !h(r) 1 + ° as r + 0 •

1 . J ~J

(2~1). This follows from standard O.D.E. estimates on integrating the parallel

transport equation for eaeh horizontal lift of R..R'

Q.E.D.

Remark 1.1.: Thus eondition H(l) implies that tlte bundle f\ is

trivialover B2 - {a} .
Ra

Lemma 1.1.: Under the eonditions of theorem l:l, let the eonneetion

satisfy eondition H(2) • Then, there exists a IDeal trivialization in whieh the

eonneetion induees the loeal co-variant derivative D = d+A, A:=Ar (r,8)dr+Ae (r,G)dB ,

and we have: lim A (r,O) = °, lim Ae(r,S) cO, lim -d~r (AS(r,e» = ° .
r~r r~ r~

Proof: We start with the orthonormal framing v. over the standard ray
1.

Le used in the beginning of the proof of theorem 1.1. We use this framing to give

a loeal trivialization for the bundle restricted to have the standard ray as a

base spaee. The connection restriets and we denote the restricted connection by

V This connection defines
- i

<Vv.(r,O), v.(r,O) define{A (r,O)}. .- > Now we.- .
r r J r ~ J

s(r) E G as the solution to:
ds(r) = -Ä (r,O)s(r), SeRO) = I 3

R o < Ra < 1
dr , , .'r

°Now define ~. (r,O) := v. (r,O) . s(r) Note that1. 1.

(~ (r,O)}~ < 'V v. (r,O), ~.(r,a)
-1 - 5- 1 (r) ds(r).- > = S (r)A (r,O)s(r) +

r J r 1. J r dr

lim '" i V ~.(r,O), v.(r,O)and thus; {A(r,O)}. 0 = lim < > .
r~ J

r~
r 1. J
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Now carry out the proof of theorem ~ with {vi} replaced by {~j} • Note

that in the gauge constructed for which lim AS(r,S) 0 we have
r....o

lim {A (r,O)}~ = lim < V w.(r,O), w.(r,O) > = lim < V;.(r,O), ;.{r,O) ~ 0 •
r....o r J r....o r 1. J r-+O r 1. J

d i
Note also that; lim {dr(AS(r,S))}j =

r....o
H(Z) .

lim h'(r)~(S)8.. = 0 by condition
r....o 1.J

Q.E.D.

Definition 1.3.: We call this gauge the auxiliary gauge.

Lemma 1.Z.: Let the conditions of theorem 1.1 hold. Let the connection

satisfy condition H(Z) . Let the connection be in Ll(B
R

) • Then in the auxiliary

gauge we have: f~IAr(r,S) Idr < 00 , 0 < R ,< RO . °
Proof: In the auxiliary gauge we have:

R
f Z7rf °
o °

]Fr,e l
. rdrdS

r

Fix R, 0 < R S RO and integrate:

o :s S :s Z1T

Thus:

for all R; 0 < R S RO . Let 0 < a < R . Then:

R . R R e I aAS(r,t) If IA (r,S)ldr ~ J IA (r,Oldr + f JO a dtdrara rar

- + f:f~IFre,(r,t)ldtdr,+ 2f~J~IAr(r,t) I IAe(r,t) Idt •

Thus we have: fRIA (r,S) ldr :s C(R) + foS[fRIA (r,t)dr]Z!Ae(r,t) !dt I, with C(R) + 0- ara r
as R 4- a •

Now we- apply Gronwallts inequality, pg. 189 [AMR] to get: 0 < r < R

s1.nce lim IAe(r,8) I ~ 0 . Thus, letting a 4- 0 we have
r-+O
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Q.E.D.

Definition 1.4.: Let WR = {x E B1 1 1~ ~ jx 1 ~ 16R. S 1} .

Lemma 1.3.: Under the hypothesis of theorem ~., let the connection satisfy

condition H(Z)'- and suppose that 1I F 11 co ~ KZ 1I h 11 L1 (W) (where 11 h I1 L~ .
L (lxlcR) R " . R'

is invariant under scale changes) with 0 < 16R < Ra (K independent of R).
'. -. _ . RI dAr (r , e) I

Then in the auxiliary gauge we have: Ja d8 dr < co

Proof: In the auxiliary gauge we have:
aAr aAe Ra
~ - ~ + [Ar,Ael = Fr8 · Thus, letting 0 < a < R ~ 16 . We have:

RI dA 1 RI aAe I RIa a: ldr ~ Ia ~ dr + JaZIArJ IAeldr

R RI dA I r ~(r) + ~ sup IAejJ:l~rJdr+ JalFreldr, Ja ;nf dr ~
a<r<R

JRJF e\dr ';;'(r) +0 R\ dAr
Idr r~(r) + D(t)+ with as ri-O ; Ja ae s

a r

+ f:tll F(x)11 co dt with D(r)-}O, ~(r)-}O as r+O.
L (t:::llx!)

Here we have used

Now, fix a and

such that a2-~ ~
2

F
reF(x)dxdy = Fredrde ~ F(x) = --r--

Rand define mEZ+ to be the first positive integer

Then:

J:tllF(x)1l co dt=
L (t=lxl)

i=m 2- i + 1
t J ·R tll F(x) 11~' dt

i=l ~-i.R L (t=\xl)

i=m
:i L sup

i=l 2-i~T~z-i+1.R

1=m K 16Z- i + 1·R Z [ (Z-i+1. R)2
S L J JaIT!h(x) Ird8dr ~-2---~

i=l (Z-iR)2 z-i
R

16
i=m ,-i+1

~ .L 16K JZ. ·16·R Ih(x)! rd8dr
1 c 1 -1

2 ·R
16
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~ l6K 1I h(x) 11 Ll (B ) •
R

Thus, finally we have:

Now 1eta 4- 0 -.

Q.E.D.

Rernark: Such an estimate on 11 Fli <Xl is indeed proved (in any smooth
L

gauge over the punctured ball) independently (lf A,F are weak solutions oE

YMH1,2 ) in section 8. Ihus, we may assume the conclusion of this lemma

holds in the auxiliary gauge.
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2.a. Exponential Gauges

Definition 2.1.: Let n be a vector bundle over B
R

- {O} c R
2 . If there exists

a loeal trivialization in whieh the eonneetion defines a loeal eovariant

derivative D = d + A withexp
AS (r,S)dS and such that:',exp

A E r (G '9 T* (B
R

- {O})) A
exp exp

Ae · (0,8): = lim A
S

(r,8) = 0
-,exp r"+ 0' ,exp

A (r,S)dr+
r,exp

as weIl as:

(a) If FEL1(BR) with IIF!ILoo(lxl=RL~KR21Ihll1 with Ilhl1 1L (WR) L (WR)

invariant under eonformal sealing then A
e

(r, &) = for FR (t ;e) dt,exp e

I1A (x) 11 ~ -2
1

1x 1 max 11F( t , 8) I100 • (Her e
exp 00 t< Ix I

F = dA +.! [A A ] )exp 2 exp' exp ,

(then we say that this trivialization is an exponential gauge).

Lemma 2.1.: If R is small enough and the eonneetion satisfies condition H(2)

then undeL condition (a) or (b) above there is an exponential gauge for n

Proof: First we show that lim Ae (r,e) = 0 . First we do ease (a). Choose
r + 0 ,exp

R suffieiently small that we have an auxillary gauge and lemmas 1.2, 1.3 apply.

Then, by the absolute continuity of Lesbesque integration we note that in this

-. R . R IdAr(r,S) I
gauge fo IAr (r,8) Idr ~ Q(R) and 11m f

O
de.. :.dr:;; Q(R) , where lim Q(R)=O.

r+O R~

Starting from the auxillary gauge, apply the proof of lemma 2.1 of [U1]

and note that

(~)
-1 -1

AB (r,8) = 0 (r,S)Ae(r,8)o(r,8) + 0 (r,S) .dSo(r,S) , where o(r,S),exp ,

is the transformation to the exponential gauge eonstrueted in lemma 2.1

of [U1]. Now, we wish to use (*) to show that lim IAe (r,S) 1 = 0 .
r + 0 ,exp

We note that the first term satisfies:

lim lo-1(r,8)Ae(r,S)o(r,8) 1 = lim IAe(r,B) 1 O.
r+O ' r+O

We also note that lo-l(r,e)d
S

(o(r,o) I



-9-

Now we note that 0(r,8) is a solution of the differential equation in

lemma 2.1 [line 12, pg 14 [U1]]. Since the right side is C 1 in 0 for

r > 0 , it follows by the standard theorem for continuous dependence on para­

meters for ODE solutions [H] ,using 0(r
O

,8) for r
O

> 0 fixed anti

arbitrary as initial condition for the equation starting at r = r O ' we have
doCr,S)

that dS exists for r > 0 ·.,We give an improved estimate for our case:

Thus we have:
do(r,8)

dr =-Ar (r,8)oCr,8), 0(0,'3) = I

0(r,8) = 1+ f~-Ar(t,S)O(t,8)dt

Let f(r,8+h) - f(r,8)
~h Sf(r,S) = --~~h~--~-,

dt < 00 we have, if h is small, (using a standard

r r IdA (t, 8) I convergence theorem) :
fol'\,S(Ar(t,S» Idt < f

0
2 ~8 dt thus:

I
dA (t, e) I

l.ßh , 80 ( r , e) I ~ 2f ~ ~ t cl t + f~ I ~h, 8 oC t , 8) I IAr ( t , A) lcl t

Now applying Gronwallts inequality we have:

r + 0 •

wi ttJl QCr) ·tU as ri'U. 'rhus

lim Ae (r,8) = 0 •
r~ ,exp

li)h,eCoCr,S» I :;;; K(r) exp [f~ IAr(t,S) I dt] with K(r) + 0 as

I ~6 o(r,6) I::: Q(R)'Ihus letting h + 0 we have

'Cb) The proof is the same noting that

If F E Loo(BR) the proofs of lemma 1.2. and lemma 1.3. (mutus mutandis)

are greatly simplified. Thus the conc lusions of. these lemma' s hold if we assume
00

F E L instead in the hypotheses.·

Thus in case a and in case b we have lim lAS J
t-+Q ,exp

Q •
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Remark 2.1.: Note that this does not follow just from the est,i.llInte (2 - 1 - ;])

of lemma 2. 1 because in ease (a) we have not ,assumcd a-prior i that F is

bounded over the punetured ball. Moreover in our case we need

lim
r+O

IA I - 0etexp - to prove the estimatestas we will show.

Now we derive the estimates on A . We do ease (a) first. We do the in-

tegration in the proof of lermna 2.1 [U 1] and obtain

1im Ir I K rA. (x) - lim rA. (x)x F .. (x) dx = 1-11 We show that 11
E+ 0 E K 1J Jtexp F --+ 0 J texp

vanishes iff

unbounded at

1im A
e

= 0 • This is neeessary sinee
r -+ 0 t exp

lxI = 0 t at least a-priori.

lA. (x)1 might be],exp

We note that in the exponentia1 gauge A "" Al (x tY) dx + A
2

(x ,y) dy =
exp texp ,exp

Ae(r,S)dS ,so writing dx and dy in terms of dS and dr we obtain

rA 1 (x) = Ae sin Sand rA2 (x) = Ae cos S · Thus 1im rA 1 (x) =0
, exp , exp t exp , exp '[' ~ 0 ' ex p

and 1im r A
2

(x) = 0 iff
r-+O ,exp

1im AS(r,S) = 0 . Thus the integral formu1a of
r-+O

[Ul] pg 14 lioe-2 holds. In polar eo-ordinates this implies Dur estimate.

Another way to see this is to note that sinee A 0 we haver,exp

dA dA
rtexp Stexp + [A A ] = Fas dr rtexpt Stexp r,S

Thus:
dAS,exp

dr "" FrO

A8 (r,8) -AS (E,S) "" Ir FrSdr,exp ,exp E

This is equivalent to the integration in lemma 2.1 [U1]. Thus to get the

estimate we need 1im AS (rtS) = 0 whieh we have proved.
r -+ 0 ' exp

(ease b). Onee again t we have shown that lim A
S

(r,8) ~ 0 whieh shows
r -+ 0 ' exp

that the integral estimate of lemma 2.1 of [Ul] holds. Then,sinee in ease b we

have bounded eurvature, our estimate follows exaetly as in lemma 2.1 [U1].

Q.E.D.
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Z.b. Tr~nsvcrsc G~ugcs

Definition 2.Z.:

Lenuna 2.2.: Let Tl be a vector bundle over B - {O}cR
Z

as described in the
Ra

introduction. Let Al be a connection on n satisfying condition H(2) , with

curvature form F . Let 0 < R < Ra . Suppose we are given a trivialization on

S~ 'of the restricted bundle over s~ in which the restrietion induces a co­

variant derivative D:c d + A • Then, there exists an extension of this

trivialization into an inner annular collar neighborhood

U = {x E R
Z I r

1
:;i lxi:;;; r

Z
c R} , in which Al induces a covariant derivative

r 1 ,R=rZ

(a1so denoted, wi th abuse of no ta tion by D = d + A) and moreove r:

(a) A = 0
r

(b)

and over U we have the estimate:r
1
,r

Z
=R

+ CIx I s UPT 1 F ( TX) I .

r 1<!x!<T<R
k ( x 1

,
x Fkj\t,~) we integrate from t = Ix I to

t Rand obtain: (Here for clarity we have slightly changed notation).

Letting T = RT we obtain

(I l i I I R ( i I I + 1 flx l\, x
k

( i IAj X,x / x ) = TXT Aj R,x / x) ~ R ~ TOTXT Fkj T,x /Ix )dT

~lich is (b). (c) follows by pulling the sup .through the integral.

Q.E.D.

Z with a connection satis-Lemma 2.3.: Let Tl be a bundle over B
R

- {a} c R

fying condition H(2) . Let the Ob' L1 (B - {al) and let Fcurvature e 10

:;;; Kz f
B Ihl 1

Ra
satisfy sup IF I < 00 with f Ih I invariant under seale changes.

Ixl=r r Zr BZr
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over B
R

- {O}
1

. Let D' be

A I (x) . Th e n ,A I 1
exp SR

1

D ::l d + A
exp

in the restrietion cf the exponential' gauge.

a < R
1

< 2R
1

~ Ra • In the exponential gauge for nLet

let the indueed eovariant derivative be denoted by

the restrietion of D to n 1
8
1
R

1

We have D' = dS IS1 +Alt • Denote
R exp SR

1 1

Ae(R
1

,8)d8 and

(b) IIA t (R
1

,S) 11
00

S1 :;;; 1 ß(R
1

)
R

1' R
1

Proof: (a) follows from the estimates on A in the exponential gauge given
8,exp

in the previous seetio~; (b) follows beeause on S1 we have
R

1

/ 22 1A t 1 2
groS 1

, R
1

Q.E.D.

Lemma 2.4.: (cf. lenrrna 2.4. in [u1])

=Let 0 < ZR1 ~ Ra ~ 4 . Let n be a bundle over U
r 1 ,r2

{x I r
1

~ Ix I ~ r 2 ~ R
1

} with a eonneetion with bounded eurvature. Let the bundle

and its eonneetion be restrietions of a bundle over BR - {ü} and a connection
a

satisfying condition H(Z) as weIl as condition (a) on eurvature in Definition

~ Suppose gauges are chosen on nl s1 for t = r
1
,r

2
~n whieh the connection

t
restricted to s~ defines eovariant derivatives D~ + At, 8

}

for

in which the connection

~ K rnaxandt

Then, there exists a gauge on n over U
r 1,rZ

defines a loeal covariant derivative D c d+A with Al s1 = At,S
t

{ 11 At , 8 I IL00S1 ,k· I t 1 I IF I I00 U
t=r 1' r Z ' t ' r 1 ,r2

(here K is proportional.ta but this is harmless to us).

Proof: Match transverse gauges from the boundaries with exponential gauges ex­

actly as in leunna 2.4. of [U1], and llse our lemma Z.2 (c).

Remark 2.2.: We use balls of arbitrary radius to simplify the proof of the

estimates in lemma 5.1. condition (g).
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3. Application of the Implicit Function Theorem

As in [Ul], we are in a position to apply the ordinary Banach space

Implicit function theorem to solve the nonlinear system .

ö'A c 0 ~ ö(S-l dS + S-l AS ) = 0 when A is small enough.

We will use annuli of.general radius to simplify the proof of lemma 5.1.

(g) •

Also because Sl

are zero on S1
. , the

is a l-manifold and both [A,A] and F are 2-forms that

LP to L
oo

Dgöfstrapping procedure of theorem 2.5. of

[Ul] breaks down here. However, we substitute another argument.

Let 0 < R < 4 •

Theorem 3.1.:

which

lAS ILoo st <
, R

note this

1Let n be a trivial bundle over SR. Let A be a connection on n .
Suppose in some trivialization Adefines a covariant derivative by

De = d
e

+ A8 where Ae = A~ (R,8)d8 . Then, there exists a trivialization in

D = de+A, Ä = Ae (R,8)d8, 0Sl [A] = 0 and IIÄll Lcosl < KI'! A8 1I L
co Sl.

R ' R ' R '

KIA~ILoo S1. , with Kindependent of R. As in [Ul] theorem 2.5, we
, R

procedure determines the trivialization only up to constant multi-

plication by an element of G.

Proof:Wemustsolve ~~1 (S-ldS+S-1AeS) =0 for S
R

we solve ö Sl (e-udeu + e-uASeu) c 0 for u.
R

Insteaq, following [Ul],

Now by direct calculation this is equivalent to solving

a [-u de~ -u e u]ä8 e aB" + e Ae(R, S) e = o .

Now consider the expression:

Q(u,B) d [e-u de
u

-u u]ae ae+ e Be

Th . .. d C
OO

E C2( S'Rt , /f'-.) B E C~ (SR1.-, K-:)1S express10n 1n uces a -map on u u u
2 1~ 1 1 0 1

Q : C (SR,G)xC '(SR,G)'-. c (SR'~) . The image actually lies in:



-14-

-l
cO (S~,G) = {~ E CO(S~,G) I <~,uO> = ° t U o E: G}

similarly define:

-l
C

2 (S~,G) = {u E C2(S~,(i) : I sl u :: o} •
R

2.l 1 1 1 O-l 1
Noweonsider Q: C (SR,G) xC (SR'(;) ~ c (SR,G) • Then d l Q(O,O) is an iso-

morphism. Now the ordinary implieit funetion theorem in Banaeh spaees teIls us

we may solve Q(u,A~):: 0 if IA~ILoo Sl is suffieiently small.
, R

Now in order to get our estimates we rewrite this solution method in terms of

the inverse funetion theorem and use a weIl known estimate of the size of the

neighborhoods in the inverse funet ion theorem [AMR Box 2.5, pg 105] .

Now from the form of (*) we note that we may define: ~R (8) = u(R,8) and

~ ~ (8)
e

Ae(R,8) and solve:

u (8)
-uR (8) 8 u (8) 1

(**)
a [-UR(6)a(e R )ae e a8 + e ·~e(8).e R J 0

-l
cl (51 ,G)Let U c Cl (Sl, ,G) be open. Let V c C2

(51 ,G) be open. Let F -~ -

-l ..L
Let He cO (S 1 , G) be op~n. Let F = cO (S 1, ,G) . Let the norms on E and F be

the canonical norms induced by the sup-norm on G. E x F is a Banuch space with

norm given as the sup of the norms on E and F .

,(j) .

antI note that

Q

a (e-~(8) a(~(8» + e-~(8) _B (e)e~(G)]ä8 ----:a::-::e=--.;....

-l ..L

cZ (S1 ,G) x Cl (S1 ,G) -7 cO (S1
00

C -Banach map

Define

Define 4>: U x V~ E x H by 4>: (.!!.'~) ~ (!!.,Q(~,.!!.» . Then q, lS a

00 :: [_~ '_'"°2 ] [ Xx
2

1
]C - Banach map and D 4> (0,0) (xl ,x

Z
) 0 0 lS an isomorphism. He

ae de2

have; u(e)

Now, we apply Corollary 2.5.6, Box(2.5.A) pg 105 of [AMR] with the R in

[AM] chosen so that K is fixed. We may da this by.the smoothness af the map

4> • Now restriet ta the intersection of the R-ball about (0,0) with Ux V.
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We note that we may write (D<I>(ü,O»-l explicitly by integrating the above

definition o( (U<~(O,O» as n pair o( ordinary diffcrenl.:lnl. eqtl:ltiolls ,111<1 l.:h:lt

it follows from sup-norm estimates on th~s integral and on its derivatives

that H is bounded as weIl. We also see from our formula for (D<P(O,O» that

L ~s bounded as weIl. Thus <I> is a diffeomorphism from the R
Z

- Banach 'ball

in U x V about (0,0) onto the R
3

-Banach ball about zero. We choose our

u(S) = <I>-1(A~(8),O) to be the unique element of the preimage in this R
2
-ball

nbout (0,0). Hc notc tlw.t with this domain and CO-UOIlWLIl l!l-l is Lipsllitz

continuous with Lipshitz constant 2L as a map from the R
3

-Banach ball about

zero. Thus if 1~~(R,8) 1
00

81 is smal1 enough that
, R

8 R3I~ (8) I00, 8 1 < T ' we see t hat: du

SUt 1!:!.(6) 1+ sUil 0;1 < KI~~ (6) 181,00 •

S S

Now recalling the definition of the u and A 8
-8

we see that:

sup I u I + sup I ~~ I < K I A
8
8

(R, 8) I 00 8 1
Sl Sl , R
R R

with Kindependent of R. Thus,

e
sup I S! + sup I desl < K(G) I Ae(R,8) 1

008 1 •
81 81 , R

R R

Now,

Finally

Q.E.D.

Corollary 3.1.: Let 0 < R1 ~ 4 . Under the assumptions of lemma 2.3. there exists

a gauge on the restrietion of n over 8
1

in which the restrietion of the
R

1

connection def ines a covariant derivative given by D = d
S
Is1 + A with;

R
1
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Ä c ÄS(R,S)dS,oS1 [Ä]
R

R
1

-t 0 •

Proof: Let A8 1n theorem 2.1. be the restriction of tlle connection form to n

Q.E.D.

in an exponential gauge from the origin. Noting the estimates of lemma 2.3 apply

theorem 3.1.

Theorem 3.2.: (of theorem 2.8. of U1) Under the hypothesis of lemma 2.3. and

sufficently small, such

over

Ci 1\ = 0S S

D = d + A

(i = 1,2) ,

r* > 0Z
r
-l < 100 there exists a gauge for n
r

1
in which the connection defines a loeal covariant derivative

2.4., assuming I Ihl I
L

1,B
R

< Y , there exists

o
that if 0 < r 1 < r Z < r~ with

on oA o in with K independellt of

Proof: By choosing r~ 8mnll enough it fellows frem lerruna 2.3. that

lAS Cr,8) I < ß(r) < y for all r < r
Z

• Thus, by the above Corollary 3.1.,exp
there exists a gauge on 51 (i = 1,2) in whieh the restrietion of the eonneetion

r.
1

and with

o

K
$ -i Y • Thus 1 the"

r
1

So, we have

r-.J

A
r

Now note that

t = rand At, 8 = Ä for t = r Then we have a gauge over1 2 2 • ,

in which the restriction of the eonneetion tnduces a loeal covariant

Os 1 [Ai] = 0 ,
r.

1

= Al for

second:term"in the braces,satisfies

with

defines a IDeal eovariant derivative Di = dsls1 +Äi with Äi = Ä~(ri,8)de
r.

1

IAsiCr. ,8) I < ß(r.) < y . Now, apply lemma 2.4. with
1 1

Ur
1
,r

Z
derivative D = d + A A = Ar(r,S)dr + ASCr,S) de:- with

AsCr.,A):= AeCr.,e)de = Ä.Cr.,s),1 Äei(r.,S) 1= IAs(r.,B) I< SCr.) < y1 111 1 1 1

II A11 '" 11 ~ K 11l:1 x IL. k· I t I · I1 F 1I I . (\.JI' 11:1 VI' 11 ~;t'd
t r t r _ r' oo,U

1 Z t- r 1' r Z 1 r 1' r 2

) IAs(r. ,sI I s 1 = _1 I Ae(r. ,8) I . note that K 1S independent of
1 00, r. 1 ,

r. 1
1

r
1because -' < 100)

r 2
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Now we apply the argument of [U1] theorem 2.8. exactly to get a new

gauge over '0.. in which D = d + A o.A = 0 , ..8':
S
A

S
= 0, f A = 0r

1
,r

2
'l.xl=t r

for.all t E [r
1
,r

2
] and our estimates on A and its boundary values then

give the required estimates on A . Q.E.D.

Now, we apply a single scale change of the form x = Ay (which does'not

change the value of a~y seale invariant integrals) to make

to 4.

r*1
above equal

As in [U1], at the end of the paper we need to construct a global Badge

gauge over a suffieiently small punetured ball onee we know that curvature is

bounded. We have:

Theorem 3.3:: (cf. theorem 2.7. of [U1])

2
Let '0 < R < R

O
;;;; 4 • Let n: be a bundle over B

R
- {O} c R with a

o
conneetici~ . Ja:'i:i'sfylng cciidr~~~1i· H(2) Let F be the curvature form of this

< y . Then, there exists

D =- d+A

such that the connection

. More-in

B''''' - {O}R,
and oA = 0

over

induces a loeal covariant derivative

eonnection and let IIF 11
00

B
, R

cl "" I" . f 0 "dan a tr~v~a ~zat~on or .~ r restr~cte

over, o A = 0. S S on

Proof: We use the same arguments as in the previous proof but applied to a ball. First

lAß (R1 ,8) I < ß(r) < y , then we apply,exp
, then we apply the argument of theorem 2.7.

we choose i
1

·small enough that
1

corollary 3.1. on the sphere SR,
of [U1] exactly. Note that in theorem 2.7. of [U1] "" 1

k
1

"" TXT as weIl.

Q.E.D.
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4. Some Eigenvalue Estimates

In this seetion all forms are smooth and real valued.

Lemma 4.1.: On U = {xlr 1 ~ lxi ~ 'r2} , 0 < r 2 ~ 4 • Let

A =.!{w Iw is al-form with eSw "" 0, eS w
s s °

where a is a nonzero real eonstant.}

Let E(W) <d0.1,"dW> _.' -Then if
<W,W>

*_' 0, w E A·. As surne
00

T ~ KerO n eO(U) we

<dw,dT> = 0 . sinee

odw = 0 .

Proof: It is suffieient to m1U1m1ze E(w) with <~.W>

X 0 an~"~not~ _thj-s _~mplies <dw,dw> =:= 0 • Then if we let

see by caleulation:--.that the Euler-Lagrange equation gives

this holds for all T with eompaet support in U we have

w
s

W on each boundary sphere of dU

eomponent (ef:[Mo pg. 302]). Sinee

we have that dW cO. rhus W
s s

for some eonstant e .

uinside

U • rhus in

0' = *w . Sinee

da = 0

inside

Now, eonsider

implies that

*d*d*a = 0

u

Let w = TW be the tangential part of
s

and let W c NW be the eorresponding normal
N

. ~+U1S al-form on the outer boundary 0 of U

. . ~+U dS18 a harmon1e 1-form on 0 and thus W = e
s

OdW + dOW "" OdW = 0 by assumption, we have

U , dca"" 0 . On the other hand, .cw = ° inside

and thus (do + od)a c 0 inside U • Thus

isf

for some

and thus

it follows that

0' c df

Reeall, we have just

we see that

fl ' 0' c 0 we havexl=r"
o is harmonie in U

biharmonie in U.

h f df da 0
t at Ixl=r ae ~

TW = T(*a) =~ rd8
dr +

is eonstant on a U

f[xl""r a = 0

8 . Moreover

w I + = ed8
s d U

+dU.o~

It follows from

A4 f -_ 0 df +Now separate variables and solve u , dr c e on a U • We observe -that

f . c (a log r + br
210g r + er2

+ D) (g (8» with a, b, e, D as eonstants. Sine'e
df +ar = e on a U we have g(8) is a eonstant, at no 108S of generality absorbed

df
dr = e

periodie in

shown that

0' is a harmonie l~form inside U.

Sinee da = 0 and flxl=r*W

-funetion f(r,8) inside U. Sinee

dOcr = dodf = 0 1n U • rhus f is

in the eonstants a,b,e,D.

Sinee a "" df we obtain a a
(-~dr + 2rb log r + br + 2er)dr .
r
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(a +
2 2 2

*0 = 2br log r + br + 2er )d8

d*o «4br l<?g r)+ 4br + 4er)drd8

*d*(J 4b log r + 4b + 4e sinee *drd8
1 1

= , =- = -
;g r

Thus' dca

since A = 0

. imp1ies

= 4b = 0 ~ b = 0 thus 0 = (~ + 2er)dr , w = (a + ZcrZ)d8 . Now
r r<dw,dw>-

we have 0 = r U with <w,w> * 0 thus dw = 0 , which
<w,w>ü

c = 0 . Thus ·w ~ ad8 which is impossible by hypothesis. Thus

we have a contradiction which imp1ies A * 0 •

Q.E.D.

o
Lenuna 4.2.: Let . There exists 00 '> 0 such that: if

U , f Ix I=r ( *.(1) s
14'4

then A > --Z .
r Z

~roof: At no lass of genera1ity we may assume <w,w'> Ü = 1 . Since w is a

U = {xlr1~lxl~r2}

(u E A ,where A r:l {w Iw is al-form on
<dw,dw>­

supll wll 00 < a O} ,and A:::I Inf <w w>_U
au LA' U

eo-c10sed 1-form in U we have:

<dw,dW>Ü <OdW,w>ü
+

f au*dwAw I + 11=<w,w> Ü <w,w>Ü <w'w>Ü <W, w>- <W,W>
I"'-J

= I + 11 .
Now, lets estimate lrrl Letting I1 11 denote the pointwise norm on

forms we have: (estimating I*dwAw I by Hö1der pointwise).

-
Now, since *dw is a function in U so o(*dw) o , we app1y the trace

inequa1ity for H 1~2 .functions to obtain:

rhus:
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(Note tha t üd'w = ts-w s ince o.w = 0 ).

Now, let 0 denote the Laplacian. on co-closed 1-forms on U with zero

tangential boundary values on aU. Note that 0 possesses a complete set

of smooth o~~honorIDal eigenforrns because of the spectral theorem for self-adjoint

compact operator~ and elliptic regularity. Expanding W in these eigenfunctions,

choosing .a
O

small enough and using elementary arithmetic,.it follows that the
. <dw. dw>- . ~ - . . .

quant1ty . ~,w> U 1S bounded from below by (1+E(a))A 1 ,where A
1

18 the f1rst

positive eigenvattue of 0 on co-closed 1-forms w with w = 0 on aU. We 's
nowestimate Al essentially by' constructing the eigenfunctions of 0 using

classical special funetions.

Thus, we must find the first positive A for which odw. = AW for some

co-elosed form on U with vanishing boundary values. We assume at no loss of

generality that <w,w>Ü = 1 •

First we write öd w = A',W on eo-closed l-forms in loeal polar co-ordinates.

We obtain by elementary computations that if w = PdR + Qde , then

o = ödw - AW
\ .

[-AQ -

[-AP +

QR Pe ]
(QRR) + ]f - Fr + FQR · de +

Jj (QRe) - Jj (Pee)]dR
R R

ThuB g1ves us the system of equations:

(a) ~'(QRe) -
1 (Pee) - AP :::I 0

R2
R

(b) P + ~ +
Qe

0
R R R

2

(e) QRR
_ QR-~ Pe

AQ o .+ - - P +
R R SR

Solving for QS 1n (h) and using this in (a) we obtain:

3
P

+~ + P
0P + RPR - + AP = .

RR R
2

R
2

Now, let P = eimef(r) . For P to be well-defined, we require m to be an

integer. Sinee, flxl=r(*w)s cO, we obtain m * 0 . Substituting in the

above differential equation for F we get:
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Letting w t(R) , using the above equation for f(R) we obtain:

o (Besse1s equatiori)

is sma11 enough.

since w vanishes on lxi = r
1

and lxi = r z , we have wer 1) = 0 ,
wert) z:::I 0 . If instead we solve (*) with w(o) = 0 , w(rZ) = 0 we do not

increase the first positive >- for which there is a nonzero solution of

(*). Thus we solve (*) with the boundary conditions w(O) = 0 , w(~Z) = 0

for expository simp1icity. The solutions are w = cJ
1ml

(Ir·x) with

Jm(1X r Z) cO. The sma11est positive va1ue of A is bounded be10w by -AO
where I\; r

Z
= Z and Z is the first positive zero of J

1
(x) = 0 (note

h 0 ) "\"\ ~ 14 . 4 .~ F"11 h "\ > 14· 4 1" ft at m::/:: • Thus 1\ > 1\0 > ~-'. • !'-na y, we ave 1\1 ----y-
r Z r Z



-22-

5. Broken Hodge Gauges

We now state the properties of special gauges - the Broken Hodge Gauges ­

constructed from previous gauges by rnatching by rotations by constant elements

of G. These gauges where first used in [Ul].

. 1 1
Definition 5.1.: Let U

1
= {xl-r s lxi S -r=T} where 1 ~ T S 2 and

. T 1 T
i 0, 1.,_~,3•• 0.- ;. and let s1 = {xl lxI =~} •

T.

Lemma 5.1.: (cf. lemma 4~5 [Ul] and lemma 4.5 [Sb2]) (Broken Hodge Gauges).

Let n be a bundle over U
1

obtaiued as the restrietion of a bundle overi
B2 - {O} • Let Ai be the restrietion to U

1
of a conuection A

O
on n.O •

Let nO and AO satisfy the conditions of def~nition ~. Then, there exist

local trivializations (gauges) for n.. over U
1 such that in these gauges

1 1 i
A. induces a loeal eovariant derivative D c d + A ,and eurvature 'form F.

1 1

with:

(a) oA
1 = 0

(b) o A
1 = 0

S S
on

(e) J(*A) = 0 on absolute cycles
s

(e)

is the

(e ') for any

(Here A

Ct

Ct > 1 , J . Ix Ial Ai (x) Idx :;; --T---..ir---=-2
U

1 (X-Y3(T ) )

of lemma 4.1 and y = ky
3

in the conelusion of

(f)

(g)

(g')

Theorem 3.2).

~ im A~ (x) I .::< 0
l-m au1

. ..... 1/T2i . 2J . IA11 2
dx .oi J i IF

1 (x)] dx , if
U1 4.5-Y3 U

f ·lxl Ct IAi l2dx :;; T
Ct

/T
2i

f .lxI Ct
]F

i I2
dx

U1 4.S-Y3 U1

T is elose enough to oue

, if T is elose enough to one

(h) on



-23-

Proof: a -Jo d follow by our implicit function theorem results,theorem 3.2,

and by rnatching gauges by a constant element of G as in the prooE oE lemma

4.5 pg. 25 of [Ul]. Note that we produee (h) by this eonstruction. Thus the

A~ match to form al-form A, eontinuous on B2 - {a} .

(f) follows beeause oE the estimate in Theorem 3.2.

Sublemma: For each i, Ai is not of the form ede for some eonstant e .

ProoE of Sublemma: By (h) this eonstant must be independent of i and

thus A = cde . But, by (f) we have e cO. (e) follows as ~n Corollary 2.9
. . 2 . 2 . 2

of [U1],-estimating f .1[A
l ,A1.]1 dx ~ sup[A1.l f .[All dx as in lenrrna 4.5 of

U1. U1.

[8B2] (cf. also eorollary :l.G in [Ul]), anu noting that because of the sul>lellllllu abüve

we may minimize the funetional of Corollary 2.9 [Ul] over 1-forms with the additional

eondition that they are not of the form ede ,c constant f so that the zero

eigenvalue os not taken on because of lemma 4.1.
(e') follows from (e) by estimating the weights from below and pulling thern

r = 1 • Since r 1
2 1=1

T

Eollowing theorem

it follows from lemma 4.1 and lennna 4.2 that >.. > 14(T i - 1)Z >

> 4·5 (Ti)Z if T is elose enough to 1. Now, noting (d) we see that

through the integrals.

Ta prove (g) we use theorem 3.2 with r = ~ and
1 1.

T

and r
Z

are 1ess than four, noting we have done the dilation
* .3.2 in the text so that r
2

::: 4 , lt follows from theorem J.2 that

sup , [A
e
(ri' 8) [ < ky = Y3 · Choosing y3 < et

o
(eta defined in the hypothasis of

dU
i

lemma 4.2)
14 ( i)Z

> 2 'T
'T

(g) follows from (e).

(g') follows from (g) 1.n the same way that (e') follows from (e).



-24-

6. Some Improvements on Morrey's Theorem

In this section we state some improved versions of Morrey's theorem in

2-dimensions that· will be used later.

First we state Morrey's theorem in 2-dimensions.

1
Theorem 6.1. (Morrey's Theorem in 2-dimensions) [MO]. Let u E HZ(n) with

u ~ 0 and suppose that: n is a locally Lipshitz domain in R~·, and
00

fn'iJu'iJ~+fudx$O forallnon-negative ~EcO(n). Let f satisfythe

Morrey Condition:

fB nlfl1+EdX ~ c Rß for all B
R

e n and some E,ß> 0 then
Re

sup I u(x) I
Z

$ c2 fB(x ,p+a) 1 u(y) I
Z

dy for all B(xO'p) e B(xO,p+a) e n .
B(xO'P) a 0

Proof: Identical to the proof of Theorem 5.3.1 of [MO], pg. 137, except that

we need our somewhat stronger Morrey Condition because ·the inequality

f gl w1
2 ~ c [J 1 \Jw I 2dx + J 1 g 1 n/Z dx] fails in 2-dimensions due to critica1

n
Sobolov exponents.

00

We would now like to note that if u E C (n) we can state an improvement

of Morrey's estimate involving KZ fB(x ,p+a) lu(y) !dy . This improvement follows
.- .F a 0

fro~-an iteratid~ argu~ent of E. Bombieri. See [BO], pg. 66.

Theorem 6.2 (Bombieri). Let n be compact. Let

Let u satisfy:

00

u E C in n and let u ~ 0 •

Z
sup (u(x» ;;;
B

p

Then

c
Z

(R-p)

2fB u dx
R

for all concentric o < p < R .

sup u(x)
B

p

$ c fB u dx
(R_p)2 R

where and B
P

are as above.

Proof: Use the iteration at the top of pg. 66 of [BO]. Q.E.D.
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We will also need an improved Morrey theorem based on the A1exanderov­

-Bake1man estimates and due to Trudinger [TR].

Theorem 6.3. Let n be a compact domain in Rn . Let u E W2 ,n(n) weak1y

satisfy: l1u + au ;;;j 0 in n, with a > 1 and u;;: ° . Then, for any p E (O,n]

and 0 E (0,1) " we have for all concentric balls

R < that:

and in n with

sup u ;;;; c R -n/p 11 u I! B where c is independent of Rand u.
B p, R

cr,R

Proof: This fo110ws from the more general estimate of Theorem 2.1, pg. 5 of [TR]

with c independent of R by the remark after Coro11ary 2.3 of [TR] with
2

hR = 1 + b2R < 1 + b2 with b2 = a > 1 • The theorem in [TR] is stated for weak

solutions; however, its probf shows it is also valid for weak subso1utions.

Q.E.D.
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7. A Regularity Theorem for" the Riggs Field

00

In this seetion we assume that the Riggs field is a C solution of the

field equation:

in the punetured uni t ball B
2 - {O} • As in [Sb2] the assumpt ions on cf> near

the origin depend on the sign of A.

Beeause of the eritieality of the Sobolev exponent 2n
n-2

for functions

in 2-dimensions, we require several technical changes from the argument in

[SB2]. This is where we use the estimates of section 6.

The main result of this section is:

Theorem 7.1. Let cf> be a C
OO

solution of (YMH2) in B
2

- {O} in R2 .

We assume:

(a)

(b)

<.P E: H
1

(B
2

) if
2

tP E HJ(B
2

) if

A: > 0

A = 0

(c)

A < 0 •

o , if

Remark 7.1: That condition (c) is natural follows by considering the case when the

sructure group is commutative (i.e., the real numbers) and looking at the scalar

inequality

3
.6u + u ~ 0 .

Then, u c In r-r is an unbounded function satisfying the above inequality and

In r - r is in all LP except für p = 00 •

Also note that our condition (c) is weaker than tP c O(log lxi) and that

tP E O(log lxI) is stronger than (c).
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5imilarly, we see that conditions (b) and (a) are natural by considering

l1u = a in B2 - {a} • Then u = In lxi is an unbounded solution of ßu + u3 :::: a
1 2

with u ~ HZ(B ) .

in

To prove 7.1 we make strong use of the fact that u = I~I is a weak solution
2 A 2 2B - {a} of: (ß I~I) ;:;: 2" (I~I - m ) I~I , where ß is the ordinary Laplacian

on functions. This follows from Weitzenblock-like identities and details m~y be

found in [5b2] (formula 2 and lemma .1.2.).

At no loss of generality we assume u 2: 1 so that 11 u 1I BZ _ {a} ~ 1 •

For example, in case (b) the function I~I ~s subharmonic. First we dis­

pose of case (b).

Proof (case -(b»: Consider a sub-ball B(x.r) in B
Z

- {a} with a < r < i
(MAX(dist(x,a), dist(x,OB2») and thus by Morreyls theorem [MO, pg. 137] we have:

K [ 2 11
/

2
sup(u) ~ - JB( Z)U dXJB(x,r) r x, r

J •

~ E. ,
~

itooas

r a · Now there

n. ::::l ° for
~

JIV'n. IZ
dx -+- a

~
tends to zero and such thatE.

~
asthat tend to

If r > r a we have J ~ K(RO) J lull H1(B2 _ {al) • We may choose
2 002

exists a sequence of test functions ni E Ca(B) with

[8BZ]. Choose r a close enough to zero that for any fixed r ~ r a we can choose

i(r) such that B n Bx,2r = $ , ni(r) IB '= 1/2 ,O,E.(r) x,2r~

(B n Ba,E.)
1 and such that JB IVn. 1

2
dx :S Ka ' ·wheremeas x,4r ~ 10 meas Bx,4r x,4r ~

~

Ka will be chosen below.

Now: K [ 2] 1/
2

ZK [ 2 11
/ ZJB u 'dx ~ r- JB (n i u ) dX

Jr (x,2r) (x,Zr)

(Poincare ineq.)

I

:SKlluIIH2~'(B2_{a}), . hK d d· K N h K 11 hw~t epen ~ng on a. ow c oose a sma enoug
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so that K < and we have I ~ I1 u I1 H1(B2 - {a}) . Thus:
2

sup (u) ::; K[ IluIIH~(B2 _{O})] < 00

B2_{a}

We now dispose of Case (a).

Q.E.D.

Praof: (Case (a)). In Case (a) we have that u = I~I solves

with A > a lm ~
A 2 2 consider the two. Thus: - (u - m )u Now sets .
2

2 u ~ m}A = {x E B - {a} such that ,

2 u > m}B {x E B - {a} such that

These sets are pairwise disjoint. Now, because

is open.

co 2
u E C on B - {a} , the set B

Cover B by a countable collection of small balls, each contained in B .

Then on any such small ball,in B we have ßu ~,a and by the estimate above used

in the proof of case (b) we ohtain:

Now on A, u is bounded above by m. Hence u 1.S bounded on B
2

- {a} .

Q.E.D.

We now prove case (c). This requires some work because the proof of

Proposition 2.3 of [5bZ] fails in 2-dimensions. The main problem is that when
2nn e 2 inequality (1.14), page 7 of [5h2], fails since --- = co and c = co
n-2 n

when n = 2 . Nevertheless we establish the same estimate as in the conclusion

of Proposition 2.3 of [Sh2] using a modified technique.

First we prove the following propositon.

Proposition 7.1 (cf. Prop. 2.3 of [5b2]). If condition (c) is satisfied, either

we have:



A :::; a we have

-Z9-

J -n-·.ZlouIZdx<." f lonl 2 2 dBZ v oOl K B2 v u x

for all test functions .' n in C~(B2) or u is bounded.

Proof: We use a sequence n
K

of test functions that vanish

for lxi ~ EK tend to 1 as cK tends to zero and such that

flvnK12dx ~ 0 as K~ 00 • These are defined cf. [G] pg. 547 bottom, by:

0 for lxi ~ cK
EK- - (I x I)~c,_ Ix I ~ 1n =n forK

('xl) for c
K

< lxi< 11 • log E
Klog ( - )

E
K

Remark 7.2: Note that our growth condition in case (c) is chosen exactly to in­

sure that f
B

lul
Z lvn1(1~ a as K -+ 00 •

2

00 - 00

Now let n be Co and let n be a C function vanishing in a neighbor-

hood of the origin. Use.the~test function T = (nn)Z(u) as ~ in:

f'Ju.'J~ dx ~ fhuE; dx for all non-negative E; E C~ (B
Z - {al) ., where

A I 1
2 2h = - '2 (qJ - m) and u = IqJ I . We ge t :

~ 2 ,2 - 2 2 -
Now, 1 1 ;;i ~ f (nn) 1Vu J dx + C(~)~ 'J(nn) I Iu I dx and the first term on the

right may be ahsorhed into the left hand side. Also, f I 'J(nn) I ZuZdx ~

K[ f l'Jnl 2u2dx + f I vTi I 2u2dx ] . Note that f I Vn 1
2 dx ~ 0 if we set n = nk

and let k ~ 00 • Do this. Thus, in the limit as k ~ 00

f I IZI 2 - 2 2 - 2 21
1

~ 'iln ul dx . Now, 1
2

=f (nn) hu dx:iJ (nn) hu dx_. Since
supp n In supp n

I :;; Kf (nn)ZI<pI
Z
luI

2
dx

2 supp n n supp n

We now estimate J z

Remark: The estimate of 1
Z

in the proof of proposition 2.3, pg. 11 of [8hZ],
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is based on the inequality: I gwZdx S cnllglln/2 I IvwlZdX which is proved

using Sobolev's inequality. This inequality estimates I
Z

from above by a sum

of terms, the first of which is proportional to I I~I I Z . Then use is made of
L

conformal scaling to make I I~I I Z small.
L

In two dimensions however, the Sobolev estimate has a critical exponent and

constant c corresponding to this exponent iso infinite. Thus we need a new
n

argument.

This new estimate LS contained in the proof of the following sublemma.

Sub lemma 7.1. Let BZ-{O}:::Jn:::Jsuppnnsuppn . Then: J2:;:;c[Ir2I~IZdX].

[fn.( nnu) Zdx + fn lV(nnu) :1
2~x-l_.~~

Remark: The idea of the proof LS that V = 1~12 LS a weak sub-solution (in fact
co

a C solution) of an elliptic equation on supp n n supp n . Thus by a Morrey-

-like estimate (Bornbieri's lemma) we can estimate sup 1~1 S ~ [I ~Z~x]l/2
B(R)c r2 R B(2R)cr2

Then by simple estimates we get allReverse Holder inequality" with

11~llz+E:,B(R)cn estimated from above by IlepIIZ,B(ZR)cSl . The sublermna then

follows from a covering theorem. We do it now.

Let V = ~Z , let all balls B(r) be contained in n . Let n =
0

supp n n supp n C n . Choose the balls BR so that BR c BZR C Slo and

meas(B4R n n C
)

1
B4R · Then n is covered by a number of such balls.

0 ~ 100 meas 0
co

Since u is C in r2 we can at no loss of generality assume that u ~ 1
o

u t;: I~ 1 iso
r-

is bounded.) Recall thatuexists thenn
o

on (lf no such n
o

a suhsolution of l:iu ~ ~ (I u 1
2

- m
2

) lu 1 ~ ~ (I u 1
2

) lu J in no since A < 0 . Thus

ßu - ~ lu 1
3 ~ 0 in r2

0
• Now since u ~ 1 , u E C

CO

on no ' we have:

ß(luI
Z

) t;: ZUßu+zIVujZ ~ ßu . Thus V = jul
Z

is a C
CO

subsolution in n of
o

ßV + ( -ZA Iu I)V ~ 0 .. Note that (-ZA 1u I) LS in L (by our growth
1+E:,3,E:>O

€
assumption ep E L

Z
(B

Z)) . We now apply Theorem 6.1 (Morrey's theorem in Z-dimen­
+€

sions) and theorem 6.2 (Bombieri's lemma) to get
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C . 1

sup v $ 2: f B(2R)cn lvi dx
B(R)c(2 R 0

o
VB(R) ,B(2R) concentric in (2

o

Thus

sup cf>

B(R)cQ
o

c [ <p2 ] 1/2
;;;ä R fB( 2R)endx .

o

We now use the aboye inequality and Holder's inequality to achieve our
E: 2+E

estimate of J
2

Using Holder's inequality with p = 1 +2 q = --E-- we get:

~ 2 (2+E) ( E ) 2 2+s
2+E: [ _. --E-- ] 2 +E: r 1P ]'-E

J 2 :;;; I sup cf> I fB(R)cn (nnu) . lJJj(R)CO J]
B(R)cr2 0 . 0

o

Now extend' nnu to B
4R

with the extension equal to zero on r2~ n B4R

and call the extension E(nnu) We have

Now use Sobolev's inequality in the form:

t z 2where
[

. t 11/ t
[ 2 ]1/2f

B4R
u dXJ ~ CR2/ t f

B4R
IVu l dx

for u E H~(B4R) with u c 0 on B4R n n~ . We let u E(nnu) and t = (2(2+E))/S

to get:

2 (2+E)

[ fB IE(nnu) I E
4R

E 2E

] 2+E ~ c R2+E [fB4R'VE<nnu>12dX]

and thus

Recall that sUPB cf> $
R

2E 2 2e:

<SUPBR~) 2+E.[f
B4R

lvE<nnU) 12dX].[fBR$2dX] 2+E [CR2+E ] .

(K/R)[J cf>2 dx ]1/2. Thus combining all our estimates
B

ZR
we get:
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Now using Besocovitch's covering lemma and changing constants approp~iate1y

we have Jn<t>2(nn·)·2~C[f
n

<t>2] [fn(nnu)2dx + fnlv(nnu) 1
2

dx . This completes the proof

of the sublemma.

Q.E.D. (Sublemma)

Now we return to the main proof and use the sublemma. We have, using the

sub lemma and reca11ing that conformal invariance imp1ies that we.:may choose

rI<t>2 dx ]1/2 ~ y (where y may chosen sm~11) that:

if Y ~ 0 and 1im g(k)
k-+oo

o •

Note that:

I 1
- 1

2 f 2- 2 1 1
2 I 1 - 1

2 2(111) n V(nnk
u) dx::i 2 nn n k V'u dx + 2 n V(nnk) u dx

so from (11) and (111) we obtain

f - 2
1

1
2 J 1 1

2 2 2- 2 1 1
2

(IV) Kn(nnk) gu dx::i n gn u dx+g(k) + 2C(y) [Inn n k gu dx

f I
- 12 2 ~ - 2+2 n gnnk u dx] +C(Y)[KIn (nnku) dxl.

Now choosing Y sma1l enough we absorb the term 2c(Y)Inln~12JvuI2dx in the

1eft hand side of (IV) and we get:

- 2 2 2 2 I I - 12 2 I - '2(V) KInlnnk ) JVul dx ;S g(k) + JIVnl u dx+C(y)[2 n Vnnk u +K n(nnk
u )' dx .,'.

Now using growth condition c, we have

• sup n ;S 2Jlvn!2u2dx + h (k)
n
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where h(k) ~ 0 as k + 00 • Using this in (v) we obtain

with C(y) ~ 0 if Y + 0 . But

Thus

(VII) Kf 21nnkl21V'ul2dX ~ h(k) +g(k) +KI 21V'n121u12dx
B B

f I
- 12 2 I 2- 2 I 1

2
+ 2K (y) 2 V' (nnk) u dx + 2K (y) zn n k V'u dx

B B

(again with K(y) + 0 as y + 0.)

Now choose y small enough and absorb the last right hand term on the left

hand side.

(VIII) KI 2lnnklZIV'ulZdx ~h(k)+g(k)+KI zlV'nIZuZdx+ZK(y)I zlV'(nnk)IZuZdx.
B B B

I 1 - 12 Z 1 - IZ Z·But, 2 V'(nnk) u dx = In V'(nnk) u dx = A (we have already shown that
B

A :i zInlV'nlzuzdX+h(k) ,with h(k) 1- 0 as. k + 00 • Thus combining terms we

obtain

(IX) KI zlnnklZIV'ulZdx ~ roCk) +KI zJV'nlZuZdX
B B

with roCk) + 0 if k + 00 •

Now, let k + 00 and we get:

(X) I zlnlzlvulzdx :i Kf zlV'nlzu2dX
B B

with Kindependent of u.

Q.E.D.

Now we prove Theorem 7.1.
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Proof: Theorem 7.1 now fellows from De-Georgi iteration, pg. 76 [LU] which

uses the estimate of Proposition 7.1 as its basic inequality.

Q.E.D.

We now conclude this section with a final corollary.

Corollary 7.1. Under the hypothesis ef Theorem 7.1, Dep 1S 1n

Proof: This is the same as the proof 'of Corollary 2.4 of [5b2].

Q.E.D.
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8. A Sube11iptic Estimate for (,F,p)

In this section we assume that (P,~)

2
R of (YMH1) and (YMH2) and that Fand

total field h(x) = ]p] + ID~I + I~I~

The main resu1t of this section is a pre1iminary growth estimate on h(x)

Because we are in two dimensions the argument based on Lemma 3.4 of [Sb2] fai1s

comp1ete1y. In fact, Lemma 3.4 is fa1se in our setting. We substitute an argument

based on the estimates of Section 6. Dur main estimate will then follow by conforma1

sca1ing.

Denote by V = {x IpiZ :;; I x :;; 2p} the reference .ring about the puncture. We

require that 11 hll (B ) < y < 9 for 9 ~chosen small enough.
14·

Theorem 8.1. There is a constant C such that for lxI = r , IxI 2h(x) ~

911 h Il (V ) • This is true in all smooth gauges.
1 r

To prove Theorem 8.1 we consider solutions of the Yang-Mi11s-Higgs equations

1n a bund1e over the unit reference ring V
1

= {y11/2 ~ Iyl :;; Z} . We obtain a
co

bound on the L norm of the total field h which we state as:

Proposition 8.1. Let_ -h be the total field of the smooth pair (F,~) in a

bund1e over V1 • If 11 h 11
1

< y 2 ' then there is a cons tant C such that

h(y) ;s eil eIl 1 for y be10nging to the unit sphere in v1(ll yll = 1) • Before
L (V 1)

proving Proposition 8.1 we show that Proposition 8.1 implies Theorem 8.1.

Proof: Map the reference ring Vt onto V
1

by the scale transformation

y = x/r . The field equations are invariant under this transformation. By assumption

and using norm invariance 1I h 1I 1 = 1I h I1 1 :;; y < y 2 · Therefore in y
L (V

1
) L (V

r
)

coordinates F, ~ ,and h satisfy the hypothesis of Proposition 8.1. Pulling

back to V aud using the fact that h(y) ~ rZh(x) , the inequality above becomes
r

our conclusion.

Q.E.D.

We need Lemma 8.1 of [8bZ] which follows in any dimension from the

Weitzenblock identity.

Lemma 8.1. The scalar function h is a solution of the subelliptic inequality

ßh + (ah+b)h ~ 0 where a = 10 + ZIAI aud b = IAlm
2

Proof: This is the same as Lemma 3.3 of [8b2].

We now prove a preliminary estimate from which a Morrey condition will

follow later. We have
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defined

of radius 1/4

S Kf...... H dx
B1/ Z

R

~

Lemma 8.2. Let h be as above in V1 . Then on any ball B1/ 4
centered on Iy I = 1 in V1 we have: Let H h+b+'l. Then ~up H

~ ß 1/l~
where i 1/ 2 1S the doubling of B

1
/ 4 1n V1 ' where . b is the constant

above, and where K is independent of h . (In fact, K depends on a).

Proof: Recall that h ~ 0 and h satisfies ßh + ah 2 + bh ~ 0 in V1 .

Now let H c h+b+1 and notice that H ~ 1 • Now, elementary computations imply
2 2 2

6(H) + aH -~ 0 1n V
1

,since 6(H) ~ 2HßH a 6H and a,b ~ 0 .

Now we apply Theorem 6.3 of section 6 to this equation, with p ~ 1/2 and

1/2 . We get

2
~up (H )
B1/ 4

-4 2
~ (1/2) K[Ji cv Hdx]

1/2 1
~up (H) s 'Khr cv H dx .
B1/ 4 1/2 1

Moreover J Zb
BcR

this integral is

Now since
~

H = h+b+1 we are done. Note that K depends on a and not on m.
Z

~ lAI! 2 m rdrd8 and since m has eonforrnal weight one
Bc:R

seale invariant. Reeall fh is scale invariant. Noting that in
~ ~

theorem 6.3 that K has eonformal weight two, we see chaos ing 'K > 1 tha t this

estimate is seale invariant.

Q.E.D.

Now, as promised, we use LeIIUßa 8.2 to get a Horrey-type condition on h .

~

IylLennna 8.3. Let B be any ball of radius p eentered on withp
[f

B
h1+Edy]~/E < K ßp ~ 1/4 . Then, if h is defined as above, - D, E: > 0 ß > 0

p
Proof:

where KZ depends on b ., Note, the above integral estimate is senle invariant as

in lenmla 8. Z. Thus, sinee K1 and KZ have eonformal weight two the pointwisc.

1 Z

eßtimate 1S seale invariant. Thus [JB h 1+Edy]1+E ~ K
3

(y,b)pl+E . Here K
3

(y,b)
p

has conformal weight two. Note, that this estimate is also seale invariant.
Q.E.D.

Remark: Note, this is the appropriAte Morrey cond itiuII for Morrey,' s theorem ,in

2-dimensions - - Theorem 6.1 of Section 6.

Now we finally prove Proposition 8.1.
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Proof of. Proposition 8.1. Since h satisfies a Morrey condition on the

above balls B centered on Iyl = 1 and 0 < p < 1/4 , the function ah + b
P

also satisfies a Morrey condition on these balls. Now reca11 6h + (ah+b)h ~ 0

Th . 6 f . 6 <." C[ f-· h Zdy] 1/ Z1n V1. us app1Y1ng Theorem .1 0 Sect10n we get, sup h ~ .-B BZpCV 1
..... P

where Bp and BZp are both centered on Iyl = 1 • Note by.theorem 6.1 the

constant C has conforma1 weight one so that this estimate is sca1e invariant.

Now we app1y Bomberi's improvement on Morrey1s Theorem - '- Theorem 6.Z of

Section 6 with p = 1 , to obtain ~up h ~ efB h dy , where B4p C V
1

and
Bp 4p

B C B4 are concentric and are centered on Iyl = 1 • Thus by a covering argumentp p
we have su~ h ~ cfv h . Note that by theorem 6.Z C and C have conforma1 weight

lYI>=1 1

two so that this estimate is also sca1e invariant.

Q.E.D.
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9. An Elliptic Estimate

In this section we improve our results to obtain a final growth condition

on the curvature Fand on D$. We assume that FELl ' that ~ is bounded

and hence that D$ E L Z by Corollary 7.1. Since integration by parts is essential

in these arguments, we must work in an LZ setting. Just as in [SbZ] this forces

us td use weighted L2 norms.

Dur first aim in this section is to obtain a growth condition on the Higgs

field. This will be used in the next section to estimate the total curvature.

Theorem 9.1. JB lD$ldx ~ Kp . 0 < p < t < Z •
P

-Proof: Since ~ E LZ apply Hölders inequality.

Q.E.D.

Remark: Note that the integral on "the left hand side is scale invariant so

that by scaling we ean shrink the ball and deerease the 1eft hand side. The right

hand side, whieh eame from the differential equations, pieks up aseale faetor

that quantifies this decrease.

This improvement on eonformal sealing estimates is key in the method of

[Ul]. For simi1ar estimates with the same sealing behavior cf: estimate (4.7)

in (8hZ) , the estimate pg. 28 1ine 16 [Uhl].

Theorem 9.2.

J !xIZIF(x) 1
2
dx

IxlSt
S C1J Ix I 2 ( 1D<p I 2+ 1<p 1

4
) dx + C2J IF I 2cl S •

Ix1~1 Ix 1=1

We will prove Theorem 9.2 at the end of this section. But we first have:

Corol1ary 9.1. I l yI 2 IF (y) 1
2dy S cp1 , D < p < 1

Iyl$p

3 -2 I 2
1

1 2
CZP (p)I yj F ciS

Iyl=p y

+ CZpf'(p) · We

Proof: Starting with the inequa1ity of the eonclusion of Theorem 9.2 we change

seale to obtain J lyI 2 jF (y) 1
2

dy ~ p2IID<PI
Z

dY + pZI 1<p1 4dy+C p3J IFI 2dS.
Iy I~p Iy I~p Iy I=P Y

Reeall that we have just proved that I ID$1
2

dy ~ K
4

. Using this fact, and
!ylSp

sinee <p is bounded, we get I IYI2 IF (y) 1
2
dy ~ K

S
P

2
+

lyl~p
'} 2 2

Letting f(p) = I lyILIF(y) I dy we obtain f(p) ~ KSP
Iyl~p

1integrate this inequa1ity from p = 1 to P ~ r to obtain f(p) ~ C . P

Q.E.D.
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We now prove Theorem 9.2. We do this by working ~n the broken Hodge gauges

of Lenuna. 5.1.

Proof of Theorem 9.2. Assume we are working in broken Hodge gauges on nlu.
~

for each i . Note that if T > 1 is taken sufficiently close to and if

is chosen small enough, then we have
2 1/2

< 1Y4 (1 /4.5-y4) (2+(Y4/2» .
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This arithmetica1 fact is the reason for all the estimates of eigenva1ues

in Section 4 and Lemma 5.1. Thus we now assume y < Y3 < Y4 . w~

integrate by parts to obtain J IxI 2 1Fi (x)1 2dx =
U' .

'* 2' , 1, 2 ' '2
J ,(A

1
,D (lxi F

1
)) - f ,(1/2[A

1
,A

1
], lxi F

1
) + J '-1-f .As

1Al x l.(*F)5 = 1 1 + 1 2 +
u1 u1 . 51 S1

boundary terms. Now, using. the fie1d equations, we get

Since the coefficient of the right hand aide is less than one, we obtain by

subtraction (l-E')J, IxI
2

IF
i

(x) 1
2

dx ~ J ,lxI2(ID~12+1~14)dx + J . 1-f ,As
i
A(*F)slxI

2
•

U1 U1 S1- S1

Adding the integrals over each ui , i = 1,2,3, •.. , we see that intermediate

boundary integrals cance1 out.
. 2 A 2

Reca11 that lFI Ixl=r ~ Kir J
B2

-{o}IF 1dx ~ y/r • Thus

Kr s~pIA~1 S Kr •

S1

s~p(1/r)IA~1 S K s~pIA~1 where A~ c A~da •
51 S1

Note that in broken Hodge gauges we worked hard to get lim sup IA~I = 0 • Thus

i~ Si

Now consider the outer boundary term: fsoA~A(*F~) . We have:

IJ A1"(*F)1 <" K(J IA 1
1
2dx)1/2(J IF 1

1
2dx)1/2 Id l'k '

S
O.SH S - • We wou 1 e to use an est1mate

SO S SO S

of the form

However, because the Laplacian' on all co-closed 1-forms on SO = {xl lxi = T} is

zero, we do not have this inequality. We will use instead the inequality:

(**)
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Now we prove (**).

Lemma 9.1. (**) is valid.

1
Proof: Let Tl C {xl~ ~ x S T} • We have

If A~A(*Fl)sl ~ I IA~A(*Fl)sl ~ EI IAs I
2

dS + ~ f lF
1

1
2

dS Y E > 0 • But
5° SO 5° E SO

f IA
1

1
2

dS S f IA
l

1
2

dS + f l As
1

1
2

dS c f~T IAsl12dS . Since A is in H
2
1(T 1)

50 S S0 S aB 1 0 1

T
and since ÖA 1

= 0 , we have from the trace inequa1ity for Sobo1ev functions that

I .11 2 I 1 12 1
1
2solAs dS ~ Cl Tl A 1 + cI

T1
1dA so that,

fsolA~12dS $ fsolA~12dS + faBllA~12dS
-
T

1 2 1 2 1 2 .1 2 . 1 1 2= f aT IAsl dS ~ c1fT IA 1 dv+czfT IdA 1 ~ c1f l 1A I dV+CZJ 1 dA I dV
1 1 1 U U

Now, in our broken Hodge gauge we have also that f ]A1 [2 ~ Kf \F 1 \zdV and
U

1
U

1

suPlA
1I ~ KT

1
which imp1ies that

U
1

IdA
1

1
2 ~ IdA

1
+1/2 [A

l
, A

l
] - 1/2 [A

l
,A

l
] 1

2 ~ I F
1

1
2

+ C1A
l

1
4 ~ 1F

1
12 + KT

2
]Al 1

2

and thus

and thus

Q.E.D.

Now we have, using Lemma 9.1, that

If A~A(*Fl)sl ~ f IA~A(*Fl) 1 ~ EK(T)f . Ixl
Z lF1

IZdV + ~] lF
1

1
2
ds.

S° 5° U~ E SO

Now we return to our task of estimating f. ]xI
2

IF i (x) 12dx . We have
U~

(l-E ' )] . IxI
2

IF i (x) 12dx ~ f . IxI2(ID~12+1~14)dx + J As
1
A(*F 1

)S • We now app1y
U~ U~ S°

our estimate from Lemma 9.1 of the boundary terms to the above inequa1ity. We

obtain
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since U
1

c B we choose € sma11 and subtract the second right hand term
T

from the 1eft hand side. We obtain

(l-e") fB IxI
2

1F(x) 12dx S f B lx]2(ID$1
2

+1$1
2

)dx + Kf olFI
2

dS . Since
T T 5

sup IFI ~ Kfv IFI ~ Ky , the term Kf olFI
2

d5 is bounded. Thus we have proved
50 1 S

Theorem 9.2.

Q.E.D.
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10. Statement and Proof of the Removab1e Singu1arities Theorem

In this section we fina1~y prove our main theorem· on removab1e singu­

1arities, Theorem 10.1.

First, we combine all our previous estimates to obtain

Proposition 10.1. Forsome 8>0, IxI 2- 8(IF(x)!+lnep(x)I):;;;c,

o :;;; lxi S T/2 .

~roof: Let Vp = {!-'1 S Ix! < 2p}, 0 < p < T/2 . We have a1ready shown that if

h is the total curvature. then sup Ih(x) '11xl er ::; I:12 Ivr Ih Idx. 0::; r ::; 1 •

~ cl1 h Jl L (V) S c111FliL (V )+ c
2 1I nepllL (V)+

1 r 1 r 2 .r

~ is bounded. I 1~21 I
L

(V) ~·cr2 . Since I
B

ID~12 ::; C ,
1 r r

Thus J r 1
2

( IF(x) + Inep I) 11 x I=r

2
c311 ep IIL (V ) • Since

1 r

o < r S T , it fo110ws from Holder's inequality that IB In~l ~ Kr
r

V
r

o < r ~ T . Thus Iv Inepl ~ Kr, 0 < r ~ T/2 .
r

2 2
(0 < r ~ T. / 2) , Iv Ix ! IF(x) I dx ~ Kp . Thus by Ho 1der' s

r

S [IV Ix 1-2dx] 1/ 2 [IV Ix 12 1F(x) 12dx] 1/2 ~.
r r .

[Iv 1~12IF(X) j2dx ]1/2 ~ K[I
v

IxI 2 IF(X) 1
2dx]1/2:;;;Kp 1/ 2 .

r r

We also have;

inequa1ity we obtain Iv jF(x) Idx
r

[ITI I P __1__ lxldlxld8]1/2
o p/2 Ixl 2

f I 1
1/2Thus V F(x) dx ~ Kp ,0 < r ~ T/2 .

r

We have shown that !rI
2

(IF(X)! + Inepl) !Ixl=r :S Kr
1

/
2

+Kr+Kr
2

,

o < r ~ T/2 .

Thus if 0 < 8 < 1/4 we have
2-8 1/2-8 1-8 2-8 ~

Irl (IF(x) 1+ln~,I) Ilxl=r~KP +Kr +Kr ~K.

Q.E.D.

Corollary 10.1.,', The curvature F is in LP for 2
<-~,-p <- 2-8'

Proof: Elementary arithmetic.
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Corollary 10.2. (F,~) 1S a weak solution of the field equations 1n the
2full ball B
4

.

Proof: Elementary using Corollary 10.1. Compare Corollary 5.3 of [Sb2].

Proof of Theorem 10.1: This follows from Corollary 10.1 by exact repeti­

tion of the last two pages of [Sb1].

Q.E.D.

We are finished!
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