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Abstract

In this paper we study a generalised Kummer surface associated to the Jacobian of
those complex algebraic curves of genus two which admit an automorphism of order three.
Such a curve can always been written as y? = z® + 2xz3 + 1 and &% # 1 is the modular
parameter. The automorphism extends linearly to an automorphism on the Jacobian and
we show that this extension has a 9, invariant configuration, i.e., it has 9 fixed points and 9
invariant theta curves, each of these curves contains 4 fixed points and through each fixed
point pass 4 invariant curves. The quotient of the Jacobian by this automorphism has 9
singular points of type A, and the 94 configuration descends to a 94 configuration of points
and lines, reminding to the well-known 16¢ configuration on the Kwnmer surface. Our
“gencralised Kummer surface” embeds in IP* and is a complete intersection of a quadric
and a cubic hypersurface. Equations for these hypersurfaces are computed and take a
very symmetric form in well-chosen coordinates. This computation is done by using an
integrable system, the “even master system”.
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1. Introduction

Recently several studies were published on the geometric aspects of Hamiltonian sys-
tems which are algebraically completely integrable. For a general introduction, see [AvM1].
From the point of view of algebraic geometry, these integrable systems lead to an original
approach to study projective embeddings of Abelian varieties and their Kummer varieties,
explicit equations for affine parts of these varieties, ... It follows that integrable systems
may be used to study and solve some questions in algebraic geometry, especially in curve
theory and the theory of Abelian varieties; the present paper is a particular example of
such a question.

In order to state this question, let us recall from the classical literature some basic
facts about the Kummer surface of the Jacobian of a genus two curve I'. Such a curve
being always hyperelliptic, it carries an involution r with six fixed points (the Weierstrass
points of I'); this involution extends linearly to the Jacobian of I where it has sixteen fixed
points and sixteen invariant theta curves (i.e., translates of the Riemann theta divisor),
each invariant curve contains six fixed points and each fixed point belongs to six invariant
curves, giving a so-called 164 configuration of curves and points. The quotient of the
Jacobian by this involution is a singular surface, the Kummer surface, and it embeds in
IP? as a quartic surface. An equation for this surface has classically been obtained (in
several forms) by purely algebraic methods (see [H]).

Something very analogous happens when the genus two curve I' has an automorphism
o of order three, in which case the curve has an equation y? = 2% 4 2k2? + 1 (here x? # 1
is the modular parameter as we will show). The symmetry of order three extends to the
Jacobian and leads now to a 94 configuration as we will prove both directly and by using
an analogue of the theta characteristic, which expresses in general the obstruction for a
line bundle to descend to a quotient. In the present case this characteristic turns out
to be a quadratic form which takes values in IF3 (the field of three elements). Such a
configuration, which has essentially only one projective realisation has been considered by
Segre and Castelnuovo (see [S] and [C]). The singular surface obtained as the quotient of
the Jacobian of T' by the order three automorphism will be shown to embed now in IP*
as the intersection of a quadric and a cubic hypersurface. The nine singular points are of
type A2 and are part of a 94 configuration of lines and points on this surface which, after
desingularisation, is a K-3 surface.

The question now i1s to compute explicit equations for the quadric and cubic hyper-
surface. To this aim we need to introduce well-adapted coordinates and this is where the
integrable system comes in. The system is chosen in such a way that among its invariant
surfaces we find the Jacobians corresponding to the genus two curves with an automor-
phism of order three. Such a system was first constructed by the second author in [V]
in analogy with a system introduced by Mumford (see [M2]). It gives on the one hand
explicit equations for affine parts of the Jacobians which concern us here, on the other
hand it allows us to construct an explicit base for the functions with a pole of order three
at one of the invariant theta curves. Among those functions the ones which are invariant
by o are easily determined and the image of the Jacobian in IP* by these functions is



computed from these explicit data. The final result is that in terms of an appropriate base
for P* — formed by the five fixed points which do not belong to one of the invariant theta
curves — the equation for the quadric hypersurface is given by

c(y1 +ya)(ve +ys +va —yo) + &2 +y3)(ys + ys + ya — yo) = cys + T3,

while the equation for the cubic hypersurface is given by

Eyiyalyz +ys — vo) — Evaya(y1 +y4 — o) =0,

wherec=k+4+landc=1-«.

The special curves considered here are actually the chiral Potts N-state curves cor-
responding to N = 3 (see [R]). The results and techniques in this paper generalise to all
chiral Potts curves. We hope to return to this in the future.



2. An equation for the curve T.

We consider a curve ' of genus two, equiped with an automorphism of order three,
denoted by o. By the Riemann-Hurwitz formula the quotient I'/o has genus zero and
o has four fixed points. Since I' has genus two it is also hyperelliptic; the hyperelliptic
involution will be denoted by 7 and its fixed points are the six Weierstrass points on T'.
We have the following diagram

r - P
3:1
WTJ’2:I
]Pl

o necessarily maps Weierstrass points to Weierstrass points, hence the commutator [o, 7]
fixes all these points and we see that o7 = 70 since the only automorphisms which fix
all Welerstrass points are 7 and identity. It follows on the one hand that ¢ induces on
IP! a fractional linear transformation & of order three, and on the other hand that the
four fixed points of o consist of two 7T-orbits. We may therefore suppose that ¢ is given
by 6(z) = ez, e = exp(zT"‘), by chosing a coordinate z on IP' such that these two orbits
correspond to z = 0 and £ = co. The images of the Weierstrass points formn two orbits of
three points under &, which correspond to the roots of the equation z* = A3 and 2% = A~3,
possibly after a rescaling of z. Obviously A # 0; since both orbits are different, A* # A ™3,
i.e.,, A% £ 1. This shows that [ has an equation

y? = (2" = N*)(=* - A7),
=% 4+ 2k2® + 1,

(1)

with & #£ £1.

Obviously, every equation of the form (1), with & # +1 defines a siooth curve of genus
two with an automorphism (z,y) v (ez,y) of order three; also, if « in (1) is replaced by
—#& then an isomorphic curve is obtained. Conversely, let there be given two isomorphic
curves I and [ with respective automorphisms o and ¢’ of order three. We may suppose
that the isomorphism ¢: ' — I respects the automorphism, i.e., o = o'¢. We claim that
if I and I'' are written as above as

T:y? =2 + 2x2% 4+ 1,

IMy? =25+ 26'2% + 1,
then x* = &2, To see this remark that ¢ obviously commutes with 7, hence there is
an induced linear transformation ¢ which satisfies ¢(ez) = ed(z), for all z € IP'. Thus

¢(z) = pz and ¢(z,y) = (pz,y), giving u® = 1. It follows that x? # 1 can be taken as
modular parameter.

The automorphism group of T’ contains a subgroup which is isomorphic to S3 x Z/2Z,
as is seen immediately from (1); it actually coincides with this group, unless x = 0 (in
which case the group of automorphisms jumps to D¢ x Z/2Z). Namely, there is apart
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from the hyperelliptic involution 7 an action of S3 by means of which the Weierstrass
points belonging to one o-orbit can be at random permuted. For future use we choose an
element p of order two in this symmetry group S3 corresponding to a transposition in Ss,
say u(z,y) = (z7',yz ) and remark that it commutes with 7 but not with o. Its fixed
points are the two points in 77 !{1}, hence I'/x is an elliptic curve.

We will find it convenient to denote the fixed points of o, which are mapped by =, to
0 (resp. co0) by 07 and o, (resp. 00, and co;). Then 7(0;) = 04, T(00;) = 002 and we may
suppose u(01) = 0oy giving also ji(0og) = co0g. In the same way we denote the Weierstrass
points corresponding to the z3 = A*-orbit by A, o(X;) = Ait1 (indices are taken modulo
3) and the ones corresponding to the z® = A~3-orbit by X;, #();) = X;. Then the action
of Sy x Z/2Z on these points is contained in the following table.

order 01 09 00 002 Ai /—\i
o 3 04 09 004 002 Ait1 Ai-
T 2 09 01 Qg o0 /\i :\1‘
7 2 00, 009 01 02 A Ai
Table 1



3. The 9, configuration on the Jacobian of T

Let J(T') denote the Jacobian of I and for a divisor D of degree 0, let [D] denote
the correspoding point in J(T') (i.e., its linear equivalence class). A useful fact about the
Jacobian of a curve of genus two is the following: for any fixed @y, @2 € T, every element
w € J(T') can be written as w = [P + P» — @1 — @2]; moreover this representation is
unique iff P, # 7(P,), all P+ 7(P) and @ + 7(Q) (P,Q € T') being linearly equivalent,
P+ 7(P) ~; Q+7(Q). In the present case of curves (1) which have an automorphism o of
order three, the cover 7, associated to o provides in addition (using the notations of the
previous section for the fixed points of o) the following linear equivalences

301 ~1 302 ~i 3001 ~1 3002. (2)

The automorphism ¢ extends in a natural way to an automorphism on J(T'), also denoted
by . It is given and well-defined for w = [Py + P, — @) — Q2] as follows: o(w) =
[o(P1) + o(P2) — o(@Q1) — o(Q2)].

Proposition 1 The automorphism o hes nine fized points and nine invariant theta

curves on J(T').

Proof

The principal polarisation on J(I') is invariant under Aut(T'), hence the isomorphism
J(T) — J(T') from J(T) to its dual J(T') is Aut(T')-invariant and the second statement
follows from the first one.

To count the number of fixed points we use the holomorphic Lefschetz fixed point

formula ]
Y (=DPtrace f*luroay = Y T =B’ ()
p f(Pa)=Pa

for a holomorphic map f: M — M, where B, is the linear part of f at the fixed point p,.
We apply it for f = o and M = J(T); in this case HP°(J(T')) may be identified with the
p-th anti-symmetric power of the cotangent bundle at any point of J(I"). For the left-hand
side in (3), the base of H??(J(I')) may thus be taken in a point [P} + P, — @ — Q3] as
{4, Q2} = {wi(P) + wi(Py), wo(Py) + wz(P)}, where w; = ' 'dz/y and Q; A Q; is a
generator for H2?(J(T)). Since o*Q; = €'Q;, (i = 1,2), the left hand side in (3) gives

2
Z(—l)”tracea'mp,ou(p)} =1 — trace (8 g) +1=23.

p=0

As for the right hand side, obviously all B, are equal, in fact

pe=(5 &) @



when local coordinates dual to £, and €, are picked around the point P,. Therefore
det(I — By) = (1 — €)(1 — €?) = 3,

and the number of fixed points of ¢ is indeed nine. 1

Of course these fixed points can also be counted by writing down an explicit list. If we
write every point w € J(I') as w = [Py + P2 —200;] then cw = wiff o( Py )+ 0(P2) ~; P+ P,
i.e., P, = 7(P,) or P, and P, are both fixed points for o. Using (2) we arrive at the following
list

{0, 01 — 0g, 02 — 01, 001 — 002, 0Oz — 001, 0] — 001, O — OOz, 01 — 007, 02 — o01}. (§)

The nine invariant curves are then given by the nine translates over these points of the
image of I in J(T') by the map z + [z ~ c04]. Since this curve obviously contains exactly
the four fixed points

{O, 002 — 0014, 01 — 00y, O2 — 001},

each of the nine invariant curves will contain exactly four fixed points. Dually, every fixed
point belongs to four invariant curves since the origin O belongs to the four curves

{z— [z —o0i], 2~ [z -0, 1=1,2}

Remark that the fixed points form a group F (isomorphic to Z/3Z & Z/3Z) which
is a subgroup of J5(T'), the three-torsion subgroup of J(I'). On J3(T) there is a non-
degenerated alternating form (:,-) induced by the Riemann form corresponding to the
principal polarisation. The subgroup F' C J3(I') has the following property.

Proposition 2 The group F of fized points of 0 on J(T') is a totally 1sotropic subgroup
of J3(T') with respect to the Riemann form (-,-).

Proof

o is a symplectic automorphism of J3(I') & (Z/3Z)*, which satisfies 1 + o + 0% = 0;
also dimker(o — 1) = 2. It follows that F consists exactly of the elements of the form
o(z) — = where ¢ € J3(T'). Finally, if y € F, then obviously (y,o(z) — z) = 0. 1

Apart from the Riemann form, which coincides on J3(I') with Weil’s pairing e3 (see
[LB]) a function can be defined on F with values in the group of cubic roots of unity.
It is analogous to Mumford’s quadratic form (theta characteristic) on the two-torsion
subgroup J3(T') of J(T') and can be defined in complete generality (see [BE]). It mesures
the obstruction for a line bundle to descend to the quotient J(I')/o. One can define it
as follows. Choose a linearisation of £ with respect to the cyclic group Z/3Z generated
by o, i.e., an isomorphism ¢: L56*(L) with ¢(0) = Idz(). When z is a fixed point of o,
then ¢ induces an isomorphism of £(z) which is multiplication by a root of unity e(z), and
e:x — e(x) is the desired function. It depends on the choice of £ itself and not only on
the polarisation. If © is the (theta) divisor which corresponds to £, i.e., £ = [©], then the
corresponding e = eg may be computed as follows. Let f = 0 be a local defining function
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for @ in z. Since the divisor © is non-singular, the leading part h of f is linear and we
have o*(h) = e(z)h. Since the singular points are of type Az, as is seen from (4), there
exist local coordinates {u,v} in z such that o*(u) = eu and o*(v) = €?v. Therefore we
have either h = u and e(z) = ¢, or h = v and e(z) = €2. Also if z ¢ © then e(z) = 1. It
follows that eg is explicitly given for all z € F by

eo(z) = 04T, 0 Or equivalently eg(x)v = o,v for all v € T, 0. (6)

The automorphisms p and 7 act on F' as well as on the set of invariant theta curves.
It is desirable to have a “totally symmetric” theta curve, i.e., invariant by o, 7 and gu. The
main observation of this paragraph, from which the 94-configuration is a consequence, is
the following.

Proposition 3  There i3 a unique totally symmetric theta curve among the nine invari-
ant thete curves. The function eg associated to this curve © i3 a quadratic form on F; it
18 gwwen in e sustable base for F and upon identification of the group of cubic roots of 1
with IF3 by ee(r,s) = r? —s* (mod 3).

Proof

The existence of the curve is clear: since the polarisation is invariant by the group
Aut(T), we may find an invariant invertible sheaf which gives this polarisation, hence also
an invariant divisor. It is unique since if there are two Aut(I')-invariant curves, then their
(two) intersection points must be invariant under Aut(T') which is impossible by Table 1.
It is easy to identify ©: it is given by the image of P — [P + co; — 2002]. To see this,
remark that it can be written as

P [P+ 8 +7(S)— 352,

independent of the choice of S1,S5; € {01, 02, 001, 002}. From this representation it is also
clear that © contains the four points [7(S)) — Si], S1 € {04, 02, 0oy, 002}.

Let us determine eg in terms of the base {(1,{3} where {; = [00; — 00y] and (; =
[o2 — 0;]. Since ¢ = o7 and 72 = 1 it follows using the chain rule that if o(z) = z and
v € T;(;)©O then

ea(T(2))v = 0.v = T 0xTu¥ = eo(z)TeTev = eo(z)v,

hence eg(r(z)) = ee(x). In the same way it follows from o = uo~'u that eg(u(z)) =
eo(z)!. Therefore, if we identify the group of cubic roots of unity with IF3 by eg(¢;) = 1
then eg is given by

eo(r(y +s(2) =r* —s* (mod 3)).
1

The 94 configuration is now described as follows. if w and w' are two fixed points,
then

w€O+uwiff e(w—w')#£0.
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It follows that every invariant theta curve passes through four fixed points and that every
fixed point belongs to four invariant theta curves. Moreover we have seen that the function
ee determines the direction of the tangent to © in the fixed points of o. Therefore, if
w,w' € F then © + w and O + ' are tangent in a common point z € F if and only if

co+w(z) = eotuw ().
Since egy,(z) = eo(z — w), this condition is rewritten as
eo(z —w) =ee(z —w')
which is satisfied for w' = 2z — w (only). We conclude that the four invariant curves
running through one fixed point come in two pairs: since any two theta curves always
intersect in two points (which may coincide), the curves of one pair are tangent in their

unique intersection point and the curves of opposite pairs intersect in two different points
(see Figure 1, which also contains the dual picture, equally present in the 94-configuration).

dual

Figure 1: The incidence of points and lines on the 94-configuration



4. Equations for J(I')/s in P*

In this section we will compute explicit equations for the quotient S = J(I')/o as an
algebraic surface in IP*. Since o has nine fixed points, it has nine fixed points and we have
seen that they are of type A;. The minimal resolution of these singularities of S leads to
a K-3 surface (a generalised Kummer surface), which we will denote by X (see [B]). Let
7: J(T') = S be the quotient and denote by © the unique divisor given by Proposition 3.

Proposition 4  Let M be the divisor on S for which 7*(M) = [30]. Then M is very
ample and allows to embed S as the complete intersection of a quadric and a cubic threefold
in IP*.
Proof

Since most of the proof is standard, we only give few details. Using the quadratic form
eo we see that £®3 = [30] descends to an invertible sheaf M on S, i.e., 7*(M) = L®3.

Let us denote the line bundle on X which corresponds to M by N. Then using £- £ =2
we find

18 = L® . L® = (degn)M -M =3M - M,

so that M - M = 6, which is also the self-intersection of N. Therefore, we find by the
Riemann-Roch Theorem (for K-3 surfaces),

NN
x(N)=>c(0x)+—2 =2+3=5.

It follows moreover from Serre duality and Kodaira vanishing (for K-3 surfaces) that
dim H(X,O(N)) = 0 for i > 0, so that dim H*(X,O(N)) = x(N) = 5.

The morphism ¢5 corresponding to N factorises via the blow-up p: X — § and is
shown to provide an injective morphism ¢: S — IP*. If we consider now the surjective map

Sym H°(X,N) = @oH® (X, N®),

whose kernel leads to the defining equations for the image of S in IP*, we see by a dimension
count as above that the kernel contains a quadratic as well as an (independent) cubic form.
Since the degree of N equals six, we see that the image is the complete intersection of a
quadric and a cubic hypersurface in IP*. 1

We will now use the so-called even master system, introduced and studied by the
second author in [V]. Let us shortly recall what is needed for our purposes. Let us denote
by ©' one of the four invariant theta curves which is tangent to ©, say ©' = O+ [coz — 004].
Then every point w € J(I') \ (© 4+ ©) is written uniquely as [P + @ — 200,] and P, Q ¢
{oo1,002}. It follows that we may associate to w three polynomials u(z) = z* 4+ ujz + ua,
v(z) = vz + vz and w(z) = z* — w2 + wez? + w1z + wy byt

uy = —z(P) — z(Q), uy = z(P)z(Q),
y(P) —y(@) o = HPW(Q) — 2(Q)y(P)
z(P) — =(Q)’ ’ z(P) — 2(Q)

tif z(P) = z(Q) then the definitions of v; and v, are adjusted in an appropriate way

v =
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and w(z) is defined by the fundamental relation u(z)w(z)+v*(z) = f(z), where f(z) is the
right hand side of our equation y? = 2% + 2kx3 + 1 for the curve I'. The coefficients of this
fundamental equation actually lead to affine equations for the affine part J(T') \ (O + ©')
and are easily written out as

2
wo — uj +ug =0,
wq —+ Wott; — U U = 2"3,
2
wy + wiky + ugwg +vy =0, (7)
wyug + wouy + 20302 =0,

Ugwg + U% = 1.

Remark that the action of o on these coordinates is very simple: the action is diagonal and,
if we assign to (up,uz, vy, v, wy, w;, we) the weights (1,2,2,3,2,3,4), then all equations
in (7) are weight homogenous and each variable is multiplied by € as often as given by its
weight. Clearly the action leaves the equations (7) invariant.

A second ingredient which we need from [V] is that we may find explicitly in terms
of these variables (a base for) the polynomials which have a pole of order three along
© and are holomorphic elsewhere. This is done by using a vector field on J(I') and its
Laurent solutions which are written down there (we refer to [V] Sect. 6.b for more details).
Obviously a weight homogeneous base for these functions can be chosen and functions
which are invariant by o are the ones whose weight is a multiple of three. The list is the
following.

20 = 1,
z1 = ugug — va,
29 = 2u1 (UQ + vy — 'u,‘lq),
_ 2 2 .2 2 . 3 (8)
23 = 2ugv} + 2v; + 2upv1(2ug — ui) + 2uyva(uy — vy — Sug) + 2u3,
z4 = 203 ~ 2(u? + 4up)v? 4+ 10v2(wy vy — vy} + 203 (Tugu? — ud — 11u3)

+ 20,(2K + 15ujup — 5ul) + 2(u? — uz)® — 10u — 4xu;u,.

To find the image of J(T') in IP* it suffices to eliminate the variables u;, v; and w; from
(7) and (8). In fact, from the first three equations of (7) the variables w; are eliminated
linearly and the other equations reduce to

26(uy — u?) 4 3uyud — uyv? — dugud 4 2010 +ud =0,

(9)

. 4 2 2,2 4 .8 .2
—2Kujug + uguy — uguy — Jujuy + uy + vy =1,

so it suffices to eliminate uq, u, v; and vy from (9) and (8) (we have already eliminated
the w;-variables in (8)). In the latter z, and z, are solved linearly for v, and vy,

2 22
vy =uy —ug o

2uy’ (10)

U2 = U Uy — 21,

10



and the new equation for z3, obtained by substituting (10) in (8) is then solved linearly
for uy as ,
2u
Ug = —21 (23 — 2139 — 2212) . (11)
2
After substitution of (10) and (11) in the last equation of (8) and in the equations of (9),
we are left with three linear equations in u}, which reflects the fact that J(I') will be a 3:1
cover of its image in IP*. If we eliminate u3 we arrive at the following two equations:

8z? - 24&212 — 4 (2kz9 + 623 + 24) 21 + 4Kz3 — 2&212, — 32223 — 2924 = 0,
8::;1 - 1t3.-czis —4(2+4 2kzy + 623 + 24) zf + (Src + 4kz3 — 2nz§ — 429 — 32923 — 2224) z
+ 2Kkz0z3 + 1423 4 224 — 22;‘) 4 z3z4 + 5z§ = 0.

Using the first equation, the second equation can be replaced by

8 (1 — 3&2) zf +4 (~—2n’ + (1 - 2&2) z9 — brz3 — nz4) z1 + 2 (1 - 52) z%

- 523 — K2y (52:3 + 24) + 223 (2’52 - 7) — 2324 — 224 = 0,

or equivalently by {ZAZ = 0, where

[ 0 —8k 0 22k —7) -2 \
-8k 16(1 — 3x%)  4(1 — 2x%) —24k ~4k
A= 0 4(1 - 2k%)  4(1 - k%) —bk —K
2(2x% = 7) —24K —5K -10 -1

\ —2 —4K —K -1 0 )

Although at this point these equations for the quadric and cubic hypersurfaces which
define S as a subset of IP* (which we will identify in the sequel with $) may not seem
very attractive, we will see that natural coordinates can be picked for IP* in which these
equations take a very symmetric form. Indeed, the choice of base we have picked for IP*
was rather arbitrary: for example, the coordinates of the nine fixed points for ¢ do not
possess special coordinates in terms of the present base. The first interesting observation
is here that if the five fixed points for o which do not lie on © are taken as base points for
IP* then the four fixed points on © take a simple form and are independent of x. To see
this, let &« = 007 — 003 and f = 0; — 0, and remark that the points

{01 _a"ﬁw —0’+ﬂ, a'"lg: Ct+ﬁ}
are the five poins which do not lie on ©. To find their coordinates, use a local parameter

t and take x = ¢,
y=1 (1+s3) + 0 (),

11



picking either sign around o, or oy, and in the same way, £ = t~! and

t3) +0(t*)

for 0oy and coy. Then a careful computation yields the following coordinates:

1-2k2

y=:{*:(t_3—|—n'+

O :(0:0:0:0:1),
ot f:(0:0:1: £1: F3 — 2k),
—ca (1 £l F2 — 2k: F26: 467 £ 14k + 4).
We take the points
{O! —O[—ﬂ, _a+ﬁu a_ﬁ:a+ﬁ}

as base points for IP* (in that order), i.e., O = (1:0:0:0:0), etc., with associated coordi-

nates yo,...,y4. Then the four fixed points on @ have as coordinates
«a=(1:1:1:0: 0), —a =(1:0:0:1:1),
g =(1:1:0:1:0), —f =(1:0:1:0:1),

and we see that they lie on the (2-dimensional!) plane

Yo =Y2 T ¥ys =t + va,

and it is easy to see that in fact © is contained in this plane. The translations 7o and
T correspond to projective transformations of the surface and take in terms of these
coordinates the simple form

-1 1 1 0 0 -1 1 0 1 0
-1 0110 -1 0110
ta=]-1 1 0 0 1 and tg=| 0 0 0 1 0O
0 01 00 -11 0 0 1
0 1 0 0 0 0 1.0 0 O

from which the equations for the planes to which the other invariant curves belong, are
obtained at once. This configuration of nine points in IP* is characterised by the fact that
there exist nine planes with the property that each of these planes contains four of the
nine points and every point belongs to four of the planes. Thus we have recovered in a
direct way a configuration that has been studied in the work of Segre and Castelnuovo on
nets of cubic hypersurfaces in IP* (see [C] and [9]).

The equations of the quadric and cubic hypersurfaces @ and C take in terms of the
new coordinates the following symmetric form.

Q:e(yyr +ya)(y2 +ys +va —vo) + &(yz + y3)(y1 + ¥z + y4 — vo) = cyi + &3,
C:3y2(yi +ya +ya — vo) + Seyz (1 + ya)(y2 — vo) + voys + y1ys) —
ngf(yz + s+ s —yo) — &y ((v2 + 3 )(¥1 = Yo) + Yova + yayz) = 0,
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where ¢ = k + 1 and ¢ = 1 — k. The cubic equation can he simplified in a significant way
by adding to it the equation for @ multiplied with ¢?y; — &2y,. The result is

Czy1y4(y2 +ys—yo)— Ezyzya(yl +y1— %) =0.

If we define

I = -, T4 = Y2,
T2 = —Y4, T5 = Y1 + Y4 — Yo,
Tz = Yo — Y2 — Y3, e = Y3,

then S is given as an algebraic variety in IP® by

C 2621'1132333 + 52174.’175355 = 0,
Q ZC(JE*[IQ + Z92T3 + :E]Zl’lg) + E($4I5 + x5z + $4£L‘6) = 0, (12)
Hizy+z,+z3+z4+25+ 76 =0,

and the singular points of S are now the points A;; (4,7 = 1,...,3) with a 1 on the i-th
place, a —1 on position 3 + j and zeroes elsewhere; the nine planes they belong to are
given by H N (z; = zj43 = 0) for 7,7 = 1,...,3. This presents the 9, configuration in
the form used by Segre and Castelnuovo. Remark that if one changes the sign of & in the
equations (12) then an isomorphic surface is obtained (interchange ¢ & ¢ and z; « zi43
for i = 1,...,3), in agreement with the fact that x? is the modular parameter.
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