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DEVELOPMENTS IN THE THEORY OF JACOBI FORMS
by

Nils-Peter Skoruppa

1. Introduction

We would like to begin this survey with some very general remarks about Jacobi forms.
These remarks will be as vague as general. But, perhaps, they will give the reader a
rough idea of what this survey is dealing with. Later on we shall be as concrete as

possible and we shall try to explain everything from scratch.

If one would have to explain Jacobi forms by a diagram, then one could possibly
give the following one:

Siegel modular forms

of degree two
Maass
special theta lift “f t saito-Kurokawa
(Kudta, 0da) lirt
Jacobi
forms
lptic modular forms Smmur‘a elliptic modular forms
orhalf integral weight m’t of integral weight

The diagram has to be understood in the following sense: there are various well-known
connections between those different types of modular forms occuring in the diagram.
Key-words for these connections are written at the corresponding connecting arrow.
The point is that the diagram is commutative, and that the best way from one type of
modular form to the other is the way passing through the center of the triangle. To
make the term ‘best’ a little bit more precise: The connections to the center are quite
natural (as natural as Jacobi forms are), and the classical correspondences along the
edges can be most easily understood and technically handled when interpreted as the

sum of two suitable Jacobi form —~ modular form correspondences.

However, first of all these Jacobi — modular correspondences had to be discovered,
and actually their discovery was historically the starting point for a proper theory of
Jacobi forms. There have already been appearances of Jacobi forms in the literature

before (although these functions were not called Jacobi forms at that time). Shimura
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gave a new foundation of the theory of complex multiplication of Abelian functions
using these functions (cf. [Sh]). Kuznetsov constructed functions which are almost
Jacobi forms from ordinary elliptic modular forms (cf.[Kuz]). Berndt studied the field
of Jacobi functions (cf.[B]), and Feingold-Frenkel used them in a paper on Kac-Moody
algebras ([F-F]). © Finally, in the early eighties Eichler and Zagier, stimulated by the
proof of the Saito-KKurokawa conjecture, developed a systematic theory of Jacobi forms

along the lines of Hecke’s theory of modular forms. This resulted in the monography
[E-Z].

Since then the theory of Jacobi forms has grown quite a bit. There are several
beautiful and/or deep results about Jacobi forms. Moreover, Jacobi forms gave and are
still giving interesting contributions to other parts of mathematics. And so the above
diagram is no longer sufficient to reflect all aspects of Jacobi forms, nor it is necessary
to justify their existence. If one takes into account the more recent developments, then

a more up-to-date picture could look like this:

application theory of Heegner points
- o at Jeast ————— theory of elliptic genera
implicit appearance in string theory

good modular forms _
of 1/2-Integral weignt | < [NOF 2nG skew-hol.)
in the sence pf Kohnen perfect
correspongence
proper

‘ . elliptic modular forms
of integrat weight

Here the modular forms of half-integral weight (to be more precise, Kohnen’s ‘+’-forms)
are considered as proper subset of the Jacobi forms. The meaning of ‘proper’ is roughly
as follows: Kohnen’s refinements of the Shimura lift are valid only in the case of modular
forms of odd, squarefree level. If one wishes to generalize the work of I{ohnen to general
levels the technical difficulties seem to become overwhelming, it is not even clear how
to generalize naturally the definition of I{ohnen’s ‘4’-space to higher levels. These
difficulties can be overcome very easily by replacing modular forms of half-integral
weight throughout by Jacobi forms. This lies at hand since a certain part of the whole
variety of Jacobi forms can be considered in a natural manner as Kohnen ‘+’-forms. If
one accordingly establishes the Shimura correspondence for Jacobi forms, as was done
in [S-Z], this whole theory turns out to be smooth without any technical (or natural)

restrictions.

Y If a paper is missing here then this is due to the author’s ignorance and not to a

low opinion of the paper in question.



Unfortunately, at that point, there was a tiny gap left: there have been modular
forms of integral weight which did not correspond to Jacobi forms although they should.
Meanwhile this gap can be filled by introducing a certain type of non-holomorphic
Jacobi forms: this is indicated by the term ‘skew-holomorphic’ in the above diagram.
The resulting, completed correspondence between Jacobi forms and modular forms is
now that easy to formulate that it seems to leave no wishes open. Moreover, this
correspondence is not merely a tool to study Jacobi forms (although it is), but it is
rather a deep (and nevertheless handy) tool for studying elliptic modular forms of
integral weight and their arithmetical significance. All this is combined in the adjective

‘perfect’ in the above diagram.

In the following we shall try to explain the highlights of the theory of Jacobi forms
so far obtained. We shall not speak about its applications listed in the diagram. For this
the interested reader is referred to [G-K-Z] (for Heegner points), [Z1] (for elliptic genera),
[C] (for a sporadic appearance of skew-holomorphic Jacobi forms in string theory). Also,
we shall not speak about its applications to the theory of p-adic interpolation and p-adic
L-functions (cf. [K1}). And finally, we shall also not speak about results concerning
Jacobi forms of higher degree (or genus); for this the reader is referred to [Mul],[Zi].
Instead we have inserted a section to recall the basic features of the Jacobi forms since,
to our feeling, Jacobi forms are not really common property yet. Finally, we would like
to stress that the list of references at the end is not at all complete, it only reflects what

is touched or mentioned in this article.

2. What are Jacobi forms?

Let k be an integer, and let M(Spo(Z)) denote the space of Siegel modular forms of
degree 2 and weight k on the full Siegel modular group. By definition this is the space
of holomorphic functions F(7,2,7') in three complex variables 7,2,7’ with 7,7’ from
the Poincaré upper half plane ) = {r = u + v € C|v > 0} and z from C such that
S(1)S(r') ~ §(2)? > 0, which are periodic in each variable with period 1, which satisfy
P22 7 - i:—) = 7¥F(r,z,7'), and the Fourier expansions of which have the form

Frar= Y Apmmarionsesns

nrmge,nm>0
r2—4mngo0

¥

where A(n,r,m) = A(n',»',m') if the quadratic form [n,r,m] (= nX? + rXY + m¥?)

is equivalent modulo SLy(Z) to the quadratic form [n',»', m'].

In particular, such a function F is periodic with respect to 7', and thus we may
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consider its Fourier expansion solely with respect to this variable:

F(r,z, ") = Z bum(T, 2)e2™mT
m>0
This is the so called Fourier-Jacobi development of F. Of course, ¢(r, z) is nothing else
but 3 A(n,r,m)e?™(*7+72) Tt is clear that the automorphic behaviour of F' implies
also some automorphic behaviour of the ¢,,(7,z). For m = 0 it can easily be checked
that ¢, i1s independent of z, and, considered as function of 7, it is nothing else than
an elliptic modular form of weight k. For positive m the function ¢ = ¢,, satisfies the

following three conditions:

(1) ¢(7,z) is a holomorphic function in T € §) and z € C,
(ii) ¢(r,z) is periodic in each variable with period 1 and it satisfies the

functional equation

-1 2 —2mimEs _ .k
¢( T ,T)e =T ¢(‘T,Z),

(ii1) the Fourier expansion of ¢ is of the form

Hra= Y O n)EmCTt

A,r€Z,A<0
r2mAmod4m

where the Fourier coefficients C(A,r) depend on r only modulo 2m.

(To identify the latter Fourier development of ¢ = ¢,, with the one given above, set

A=r%—4mn and C(A,r) = A r’—4 r,m).) The function ¢ is a prototype of what

4m ?

is called a Jacobi form. More precisely, any function ¢(7, z) which satisfies these three
conditions is called a Jacobi form of weight k and index m. The space of all such

functions is denoted by Ji m.

Of course, in these considerations one does not have to stick to Siegel modular
forms on the full modular group. Dropping this restriction and mimicing the above
procedure, one is led to the Jacobi group J(R) and to the general notion of Jacobi
forms as automorphic forms on this group. The Jacobi group J(R) is a certain central
extension by S!, the group of complex numbers of modulus one, of the natural semidirect

product of SLy(R) with the group of row vectors R?:
J(R) = SLy(R)  R? - S™.

Identifying SLo(R), R? and S! with their canonical images in J(R) so that any 7 €
J(R) can uniquely be written as n = A[A, pu]s (A4 € SLy(R), (A, i) € R%,s € S1), the
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multiplication law in J(R) is given by nn' = A4'[(\, )A" + (N, i')]ss’e?™*. Here &
denotes the determinant of the two by two matrix with (A, x)A’ as first and (X, u') as
second row. The Jacobi group acts on § x C by - (7,2) = (%,%’i), and on
functions ¢ on f x C by

. _ mim( =atar 2 , . .
(Ble,mn) (1.2) = ¢(n - (1, 2))(cr + d)~*e? (ZElre) AT r 22t an) g

Here, as above, n = A[A, u]s with A = (), and k,m is a given pair of integers. For a
given subgroup T of finite index in SLz(Z) set 'Y := T « 2%(C J(R)). Then the space
Ji,m(T) of Jacobi forms of weight k and index m on T’ is defined to be the space of all
holomorphic functions ¢(7, 2) on ) xC, satisfying ¢|x mn = ¢ for all € T" and having for
any A € SLy(Z) a Fourier expansion ¢lk,md = 3 ca(n, r)e?™ (772 with c4(n,r) = 0
for 72 > 4mn. (Here the n are in general not integral but rational numbers with bounded
denominator depending on A.) For positive m the space Ji m(SLo(Z)) coincides with
Ji.m as defined before, and the spaces Ji m(I") are the natural generalizations of the
Jkm-

Note that the really interesting Jacobi forms occur for positive index only: a Jacobi
form ¢(7, z), considered, for fixed 7 as a function of z, is nothing else but a holomorphic
theta function on C/Z1 + Z with 2m zeroes; thus, there are no Jacobi forms different
from zero for negative m, and a Jacobi form of index m = 0 does not depend on z and

may be considered as a function in 7 transforming like an elliptic modular form.

One could go even further and define Jacobi forms of half-integral weight. In this
wider class of Jacobi forms the simplest of all are those which gave their name to the

whole theory, namely the Jacobi theta functions

g2
Imp(rz)= 3 emlETHD

rex,
r=pmodim

(m a positive integer, p an integer modulo 2m), and which occur already in the work
of C.G.J. Jacobi. In the up-to-date language these Jacobi theta functions are then
elements of J%,m(l"(tim.)). By the way, these theta functions, or at least combinations
of them, occur in the Fourier Jacobi development of the simplest of all Siegel modular
forms of degree two, the form ¥®(r,z,7) =3 ez ?rilrlr2rarta’s’)

The Jacobi theta functions are not only the simplest of all examples of Jacobi
forms but in some sense they are also the most basic Jacobi forms. To explain this in
more detail let us consider for simplicity the case of a Jacobi form ¢ of index m and,

say for simplicity, on SLy(Z). The special property of such a form that its Fourier
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coefficients C(A,r) depend on r only modulo 2m can also be stated by saying that

2m
p=1

hp(t) (of course, one has explicitly h,(t) = Y., C(A,p)e*™ ?n",) It is known that

the Jacobi theta functions 9, , are invariant under SLy(Z) with respect to ‘[y ..’ (to

any such ¢ can be written as ¢(7,z) = 3°7 h,(7)m ,(7,2) with suitable functions

be precise, not each ¥, , is fixed by SL,(Z), but only the space spanned by all the
Um,, is). Comparing this transformation law with the one satisfied by ¢, and observing
that the h, are uniquely determined by ¢, it can be seen that that they transform so
to speak dual to the Jp, ,. In fact, the h,(7) belong to M;_;(I'(4m)), the space of
modular forms of weight & — 3 on the main congruence subgroup T'(4m). Even more,

the correspondence ¢ — Ei:l hp ® 9m, , defines an isomorphism

~ SLa(X)
Jk,m—_’ (Mk—i(r(‘lm)) ® span{'omyplp = 1) et ,2771}) .

Here M,_;(I'(4m)) is considered as SLy(Z)-right module via the usual (projective)
action of SL;(Z) on modular forms of weight k — %; as mentioned before SLo(Z) acts
(projectively) on the space spanned by the 9,, , via ‘|§,m” thus it acts (in fact, really,
not only projectively) on the tensor product of these two spaces, and the right hand

side of the above isomorphism denotes the subspace in this tensor product consisting of

those elements fixed by SL,(Z).

This isomorphism is the main key to understand the connection between Jacobi
forms and elliptic modular forms of half-integral weight. A closer investigation of this
connection was given in [S1]. However, we do not want to go into this here but it
may give the reader who is well aquainted with elliptic modular forms an intuitive

understanding of the basic features of the theory of Jacobi forms.
These basic features are:

e For each pair of integers Jy ., Is finite-dimensional (actually one has
dim J m = &2 + O(1) for k — o).

o there exists a Hecke theory for Jacobi forms, i.e. for each positive natural
number l, relative prime to m, there exists a natural Hecke operator T(l) on
Jx,m, and the space Ji , has a basis consisting of simultancous eigenforms
with respect to all T(1).

o there exists a natural notion of Jacobi Eisenstein series and Jacobi cusp

forms.

usp
\m

— amy?
cusp forms (to be precise, (¢,v) = fS ¢(r, z)y(r, z)e“‘_u"'vk-‘ﬂgg—ﬂﬂ where

o there exists a Petersson scalar product (¢,¥) on J.""7, the space of Jacobi
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§ is a fundamental domain for $ x € modulo SLy(Z) 7 and u,z and v,y
denote the the real and imaginary parts of T and z respectively).

Similar basic facts hold for the more general spaces Jr m(T") too, of course.

Before ending this short review of basic ingredients of the theory of Jacobi forms it
should be noted that Jacobi forms are very concrete objects. Here is an illustration of
this fact: If we multiply a Jacobi form by an elliptic modular form we get back a Jacobi
form with the same index but, of course, with a different weight; in other words the
space P ez Jk,m is a module over the ring .7 Mi(SL2(Z)) = C[E;, Eg] of elliptic
modular forms on the full modular group; it is even a free module of rank 2m. The two
generators in the case m =1 are

E‘{(T, z) = Z (1|k,17?)(7',z)

€5ty g, \SLa@)”

_3 ra(n ei(ri=A s
st T ot () et

A,reR, A0 n>1
r?s Amod4d -
—6 2 1 d 8 21ri(ii'—2r+sz)
=n(r)™" Y {r?Ei(r) - —W,k(d—Ek(T)) (~1)%
r,o€X t T .
rZasmod2

for k=4 and k=6. (For the first identity cf.[E-Z], for the second one [S1].) The no-
tations are: SLQ(Z); =subgroup of all n € SLy(Z)’ such that 1]; 17 = 1 for even k;
furthermore,
(-1)3rk-3
Ve T ok (k= 1)((k — 1)
2

ra(n) = { {z mod 2n|z® = A mod 4n},

and, as usual,

4k - winr xir rinT
Epn(r)=1-5— (Z: d**=Ne?minT p(ry =T [[(1 - &) .

2k n>1 dn n21

3. Jacobi forms and Siegel modular forms

The starting point for the theory of Jacobi forms here as well historically was the fact
that any Siegel modular form has a Fourier-Jacobi development. As indicated above,
and as will be further shown in the following sections, the theory is very well developed
at present. Thus it lies at hand to set up the following program:

o Study Siegel modular forms (of degree 2) via their Fourier-Jacobi develop-

ment.

To the author’s knowledge there are only two main results in this direction. The

first stems from the very early beginning of the theory of Jacobi forms.
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Theorem ([A-Ma-Z2]). For each non-negative integer m there exists an operator

Vin : Jk,1 — Ji,m, given explicitely by

Zc(n,r)e%ri(nr-i-r:f) — Z( E L 1 (ﬂ z)) 21ri(nr+rz),

n,r n,r a|(n,r,m)

such that the map ¢ — ¢|V with

(BIV)(r,2,7') = > (¢|Vm)(7, 2)eFmimT’

m>0

defines a Hecke-equivariant embedding Jx 1 — Mi(Sp2(Z)).

(In the formula for ¢|Vp the term Za|0 a*~1¢(0,0) has to be interpreted as $((1 — k).)
The image of the above embedding is the so-called Maass Spezialschar and the discov-
ery of this embedding was one of the major steps in the proof of the Saito-Kurokawa

conjecture.

The second theorem along the lines of the above program is the following one.

Theorem ([K-S]). Let F and G be two cusp forms in M(Sp2(Z)), let

F(T,Z:T') = Z qu(r’z)ehrimr' G(T, Z,T') = Z 'l,bm('?', z)e?n'imr’
m>1 m>1
be their Fourier Jacobi developments, and denote by {¢m,%¥m) the Petersson scalar

product of the Jacobi cusp forms ¢,, and ¥,. Then the series

¢ma lrbm)

m?

Drg(s) = ((2s — 2k + 4) Z

m2>1

converges absolutely for large R(s) (actually for R(s) > k+1) and it has a meromorphic
continuation to €. It is entire if (F,G) = 0 and otherwise has a simple pole of residue
residue %; (F,G) at s = k as its only singularity. Moreover it satisfies the functional

equation
D} g(s) := (2m)"*T(s)T(s — k + 2)Dp,g(s) = Dy g(2k — 2 — s).

(Here (F,G) denotes the Petersson scalar product of F and G, i.e. (F,G) equals the
integral [ F(7,z,7)G(7,z,7")(vv' — y*)**dudzdu'dvdydv’, where u,z,u’ and v,y,v’
denote the real and imaginary parts of 7, z, 7', respectively, and where the integral has

to be taken over a fundamental domain for the Siegel upper half plane of degree two
modulo Sps(Z).)



The above theorem obviously shows some anology to the theorem about the Rankin
convolution of two elliptic modular forms and, indeed, its proof is essentially an adaption
of the Rankin-Selberg method to the case of Siegel modular forms of degree two. What
is striking in the above theorem is the fact that for even k the Dirichlet series Dp g(s)
satisfies exactly the same functional equation as the Andrianov (or Spinor) zeta function
Zp(s) associated to Siegel-Hecke eigenforms F'. At present the exact relation between
the series D g(s) and the Andrianov zeta functions is not known. There is only a

partial result, which, in a different formulation, can already be found in the work of
Gritsenko [Gr].

Supplement to the last Theorem. Let k be even. If G is an element of the Maass
Spezialschar and F is a Hecke eigenform then Dp g(s) = {(¢1,¥1)ZF(s).

Thus the above theorem give rise to some open problems:

e Does a Hecke eigenform F' in M(Sp2(Z)) necessarily have ¢; # 07 (Note
that an affirmative answer would give, via the above theorem and its sup-
plement, a new proof for the analytic continuation and functional equation
of the Andrianov zeta function. The answer is of course affirmative for those
forms belonging to the Maass Spezialschar, but it is also true for the first
Hecke eigenform not belonging to the Spezialschar, which has weight 20 and
which has been calculated in [Kur].)

o If Fis a Hecke eigenform in M(Sp2(Z)), but not in the Maass Spezialschar,
what is then the relation between Dp p(s) and the Andrianov zeta functions
associated to elements in M(Sp2(Z)), if there exists any? ( Note that one
has D p(s) # ZFr(s) since, by the above theorem, Dp r(s) does have a pole
whereas, by a result of Evdokimov and Oda, Zp(s) does have none.) Can
it be the case that Dp r(s) provides a counterexample to a so far unproved

but exspected converse theorem?

4. Jacobi forms and elliptic modular forms of integral weight

That what one may consider as the main theorem in the theory of Jacobi forms can be

summarized to the following theorem.

Theorem ([S-Z]). For each pair of integers k,m € Z, m > 0 the space Ji m of Jacobi
forms of weight k and index m is Hecke-equivariantly isomorphic to a certain natural

subspace MM, _,(m) of the space May_2(T'o(m)) of all elliptic modular forms of weight
2k — 2 on T'y(m).



A first and rough description of the space of modular forms occuring in the theorem is
Mi(m) = {all newforms on I‘o(m)}@{a nice choice of oldforrns}.

More precisely, the space IM(m) is spanned by all f € My(Iy(m)) such that the
standard L-series L(f, s) = 3,5, a(£)¢™° of f(1) = 3 a(€)e’™*" is of the form

L(f,s) = (][] @»(«))L(g,5)

Pl

for some m'|m, some new form g on I'g(m’) and polynomials @Q,(s) in p~* satisfying

Qp(s) = pF7IQ, (k — s)

for p*|| Z. * The symbols Dﬂf(m) denote those subspaces which consist of all f € IM(m)
such that L*(f, s) := (27)"2*miD(s)L(f,s) = £L*(f, k — s), respectively.

It is left to the reader to contemplate this definition of the space 9MMi(m). But we
should add that it may be viewed as the span of all those Hecke eigenforms f on I'g(m)
such that the eigenvalues of f with respect to the various Atkin-Lehner involutions
reflect rather an intrinsic property of f and are not just an accident occuring when
changing levels. Secondly, one of the most striking features of this space Mg (m) is that
it has the simplest dimension formula among all subspaces of M (Ig(m)) which are still
big enough to reflect all various kinds of species occuring on I'y(m) in weight & (In fact,
one has dim 9 (m) = d(m(k—1))+3a where d(z) = & — 3($)— 1(=*) ((*) =Legendre
symbols) and a denotes the greatest integer with a?|m). The same remark applies to
the formula for the traces of the Hecke operators acting on 9 (m). Thus, there are
geveral hints that the spaces 9x(m) seem to be very natural and they may deserve

further attention (For more arguments the reader is referred to [S-Z].)

* This definition is not strictly precise. First of all the expression ‘new form’ is
usually not applied to Eisenstein series, so a word of explanation is perhaps indis-
pensable: the space of ‘new form Eisenstein series’ in M (To(m)) is by definition 0
if m is not a perfect square or k = 2,m = 1; otherwise it is spanned by the series
S0 (Edu d"‘ly(d)x(ﬁ;)) e?™¢ where y runs through all primitive Dirichlet charac-
ters modulo y/m (with the convention 37, d*1%(d)x(§) =0 or = 3¢(1 — k) for x #1
and x = 1, respectively). Secondly, if £ = 2, then x(m) contains additionally the
series my Ey(myT) — moEg(mer) for all decompositions m = mjm,. Here E; is the

(non-holomorphic) modular form E,(7) =1 - Fﬁs'(?j ~ 2435, (Zdu d) e2milT
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As mentioned in section 2, Jacobi forms are very closely connected to elliptic mod-
ular forms of half-integral weight. In particular, it is possible to show, using the
isomorphism described in section 2, that for prime numbers m and even % the map
¢ = Zizl hpy @0 p Zi:l h,(4mrt) defines a Hecke-equivariant isomorphism of Jg m
with that part of Kohnen’s ‘+’-space Mf:'_i(m) such that this isomorphism, Kohnen’s
refinement of the Shimura lift (cf. [K2]), and the lifting of the above theorem all together
yield a commutative diagram. In that sense the above theorem may be considered as a

generalisation of Kohnen’s work on the Shimura lifting.

For m = 1 the above theorem, together with the theorem of the preceeding sec-
tion about the Maass lift, yields the Saito-Kurokawa lift, i.e. it establishes a Hecke-
equivariant isomorphism between the Maass Spezialschar in M (Sp2(Z)) and the space
Mji—2(SLa(Z)). (Originally, this correspondence was proved to be true using the cor-

responding Kohnen ‘+’-spaces.)

Note that the above theorem presents itself in a completely smooth, natural and
untechnical manner, once the notion of a Jacobi form is accepted. Even the still slightly
technical term ‘Hecke-equivariantly’ could be eliminated; we shall come back to this in
the last section, where we shall reformulate the above theorem. There we shall also give
one or two hints that the above theorem can (and should) be read as a theorem about

modular forms rather than a theorem about Jacobi forms.

However, for the moment there is one tiny lack of beauty in the above theorem.
This is the ‘—’-sign attached to the symbol M,x_3(m). In particular, there are so far
no Jacobi forms corresponding to Myi_2(1) (= Mi(SLe(Z))) for k divisible by 4. If

there is any hope to fill this gap, then one obviously needs a new type of Jacobi form.

5. Skew-holomorphic Jacobi forms

The simplest of all examples of Jacobi forms are, as pointed out before, the Jacobi theta
L2 . .

series ¥y, ,(7,2) = ZI‘Epmod'Zm e2™i(fm7+77) They may be considered — at least with

respect to their analytic features — as prototypes of the Jacobi forms. In particular,

they are holomorphic in 7 and z. But moreover they satisfy the heat equation

.8 o
(STTZTTLE - @)ﬂm‘p(’r, z) = 0.

The latter is not true for the Jacobi forms so far considered. Thus it is reasonable to ask
whether there are further natural examples of automorphic forms on the Jacobi group
J(R) satisfying the heat equation. To find such examples it lies at hand to look at

Jacob theta series attached to quadratic forms which, of course, must not necessarily be
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definite. Non-holomorphic elliptic modular forms attached to quadratic forms have been
constructed systematically in [V]. By mimicing the method of this paper it is possible

to generalize the results stated loc.cit. from elliptic modular forms to Jacobi forms.

Theorem ([S3]). Let F be a symmetric, non-singular, integral n x n matrix with even
diagonal. Let p(X) be a function on R™ such that p(X)e~"X FX is a Schwartz function
and (ﬁ-V'F‘lv + Xt V)p = (k — 5 )p for some k € Z. Finally, let Xo € I", and set

m = %X&FXO, D =(-1)1det(F), £= level ofF.
Then the series

I(r,z) = E p(Vv[X + 2)L’U])Pf".()‘{tFXTHWFX"Z) (v=Im7, y =Imz2)
v
Xezn

satisfies

p 2mim( TSl a0y,
19(:_::&},%&) (CT_}_d)—k‘CT_i_dIk_.!e Trlm( 3 +A%r+2 ) _ (%) 19(1-,2)

forall A= (¢}) €To(£), and all A, € L.

‘

(The notations are: ‘.“’=transposition, V* = (%,. ., 52=) for X = (x1,...,2,), thus

Y Bzn
Xt.v=5%"_, mr%; recall that the level of F is the smallest positive integer £ such
that £F~! is integral with even diagonal entries. Note that n has necessarily to be even

(as can be shown using the assumption ‘k € Z77).)

For positive definite F and p(X') = 1 the theorem produces in a known way holomor-
phic Jacobi forms. But we also find such functions as we are looking for: consider a ma-
trix F' with signature (1,n —1), n even, pick a vector X, € Z" with X{F X, > 0, choose
a vector = € C" and a non-negative integer d, and set p(X) = (E'F X )le2™X1 FXL
(for any n-vector X, we use X | = X — %%%Xo). If d > 2 we assume = 'F=, = 0.
Then p(X) satisfies the assumptions of the theorem (with k =1 —d — ). Moreover,
it is easily verified, differentiating term by term, that v‘g‘ﬁ(r,z) with the correspond-
ing ¥ constructed from these data satisfies the same heat equation as the Jacobi theta

functions do.

We can look at these examples as the prototypes for a new kind of Jacobi form.
Thus, after a closer examination of these examples we would be led to the following: for
a subgroup T of finite index in SLy(Z), we define Ji ;(T'), the space of skew-holomorphic

Jacobi forms of weight k and index m on T, to be the space of all smooth functions ¢(7, z)
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on $ x C, which are holomorphic in z and satisfy (Sm'm% — gy)tﬁ('r,z) = 0, which
satisfy ¢|; ,n =¢ foralln €T Z?, and which, for each A € SL,(Z), have a Fourier
development of the form ¢(7,2) = Y ca(n, r)ez""("”io‘-%i””) with c4(n,7) =0 for
r? < 4mn. Here, for any pair of integers k, m, the slash operator [} m is defined by
almost the same formula as ‘|’ with the only difference that the factor (e7 + d) has
to be replaced by (7 + d)“‘ Yer + d|.

However, we are mainly interested in Jacobi forms on SL,(Z), and here, as in the
holomorphic case and for positive m, the above definition is easily seen to be equivalent
to the following one. The space J; ,, of skew-holomorphic Jacobi forms of weight k and
index m (on SLy(Z) ) is the space of all functions ¢(7, z) satisfying:

(i) ¢(t,z) is a smooth function in T € $), and holomorphic in z € C,
(ii) ¢(7,z) is periodic in each variable with period 1 and it satisfies the

functional equation
-1 z — i 32 Lk
B(—, 2)e T =7 r]g(r, 2),
(i1i) the Fourier expansion of ¢ is of the form

zw'(' -a +ﬂﬂ_lw+n)
#(r,z) = E C(A,r)e

A,rEX, AP0

r2= Amoddm

(T = u+1iv)

where the Fourier coefficients C(A,r) depend on r only modulo 2m.

Note that the shape of the Fourier development (iii) implies that ¢(7,z) satisfies the
heat equation, whereas it would imply that ¢(r, z) is holomorphic in 7 if we would have
to sum over non-positive A. Thus, if we replace in (ii) the expression 7*7!|r
and the condition A > 0 in (iii) by A < 0 we reobtain exactly the definition of the
holomorphic Jacobi forms. (This is the reason that we superfluously wrote |A] for A in
(iii).)

With regard to this formal analogy in the definition it will not be unexspected

| by T*

that skew-holomorphic Jacobi forms exhibit essentially the same basic features as the
holomorphic ones, e.g. Ji , is finite dimensional, one has a natural Hecke theory, the
notion of Eisenstein series, cusp forms, Petersson scalar product, connection with elliptic

modular forms of half-integral weight etc..

To give a completely explicit example of those theta functions which led to the
definition of skew-holomorphic Jacobi forms apply the above theorem to F = ? [1)) ie.

set
T z) Z e21r:(.str+£'—59—w+(a+t)z)

s telX
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or, more generally,

. . myia=mat)2 .
Timy,ma(T,2) = E (mys — mat)* 1eg’”(’”+L—qu—wﬂmlwmzt)z)’
s tel

where k = 1,2 and m = m;m; is any given decomposition of a given positive integer m.
From the above theorem (or by a simple, direct application of Poisson summation) it is
easily verified that Tk;m,,m, € J{ ,,,. Starting with these relatively simple functions it is
easy to construct more examples: multiplication of a skew-holomorphic ¢(r, z) by f(—7),
where f(7) is an elliptic modular form, yields again a skew-holomorphic form with the
same index; using this, the space D¢z Ji | becomes a free o7 Mi(S5L2(Z) )-module

of rank two; it is possible to show that
Ji1=Mp_1(SLo(Z)) - T(7,2) & My_3(SLo(Z))) - U(T,2)

Whel'e
2 2 2 2
f o rt_d rf4d iv+ )

Qm(
T(r,z) = E e
d,rck
r?@d?mod4

as above, and

U(r,z):= %T(T, z)+ %T(r, 2)Ey(—7).

6. The Main Theorem of the theory of Jacobi forms

If we denote by C(A,r) the A, r-th Fourier coefficient of the skew-holomorphic T2, m,

€ J3 1, m, introduced in the foregoing paragraph, i.e. if we set

C(A,r) = Z (mys — mat),

2,tEXR
(mll—m,l)3=A
mpedmate=r

then it 1s easily checked that

Tty — e — 24 Z E C(dz, d) eZm’t‘r = mlEz(m] T) - szz(sz).
> ajt

Recall that my Ey(my7) — moEq(m,7) defines an element of 9R;(m1m2). These exam-

ples are special (and the simplest of all) cases of the following general theorem.

14



Main Theorem. For any pair of positive integers k,m, k > 2 the space Ji,m @ J{ ,,
is Hecke-equivariantly isomorphic to Maox_o(m). More precisely, one has, for any fun-

damental discriminant A and any integer r such that r? = A mod 4m, a map
Sa,rt Jem @ Jg m — Mak—g (M),

given explicitely by

fr2o 2414 .
‘21rt('—4—Au+Hﬂ—|-w+rz) . A .
E C(A,r)e " " r—bE E a2 = C(5a,4r) eZmilr,
racz : 60 \ aft 4
r?mAmod4m

It commutes with all Hecke operators and maps Ji m and J;’m to M5, _, (m) and
DR;"L,_Q (m) respectively. Some linear combination of the maps Sa , defines an isomor-

phism.

The expression a2 (&) C L;A L:) for £ = 0 has to be interpreted as the
alt o \3 ' a

a
value of %CQ«,(O,T) Ea2] (%) a?ats=2-k.)

Note that the description of Hecke operators for Jacobi forms is implicit in the
theorem since it explains what a Jacobi Hecke eigenform has to look like: a Jacobi form
¢ is a Hecke eigenform if and only if its image under all Sa , is a Hecke eigenform, or,

what is equivalent by some formal manipulations, if and only if the Dirichlet series

Y Cy(ePheryee

t>1
(¢, m)=1

has an Euler product for all » and all fundamental A such that 2 = A mod 4m. Thus,
in order to understand or to apply the theorem, it is not necessary to study Hecke
operators for Jacobi forms.

Half of the theorem, namely the part concerning the holomorphic Jacobi forms, was
proved in [S-Z]). To be honest, the other part is not yet completely proved. (Its proof
depends on a comparison of the traces of Hecke operators acting on Jacobi forms and
modular forms. This can be done without doubt completely analoguous to the case of

the holomorphic Jacobi forms but it is not completely written up yet.)

The theorem is, at the first glance, clearly a theorem about the arithmetical struc-
ture of the spaces of Jacobi forms. This is, of course, not of any interest for those who
are not at all interested in Jacobi forms. But it is also (or even, rather) a theorem
about elliptic modular forms: first of all, it links, as explained in the introduction and

by theorems cited or indicated above, elliptic modular forms to other types of modular
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forms. Secondly, and this is perhaps the most important point, it provides a new tool
for the study of elliptic modular forms in M(To(N)). If we consider, say, a new-Hecke
eigenform on I'g(m), then, by the Main Theorem, there is a unique Jacobi form (up
to multiplication by constants) of index m corresponding to it via the above theorem.
This Jacobi form does not only carry explicit information about the Fourier coefficients
of the modular form (via the explicit description of the above Sa ), but, as can be
shown, also the values of the L-series of the given modular form at the integer points
in the critical strip, and more generally the periods of that modular form, are explicitly
given by the Fourier coefficients of this Jacobi form. And this Jacobi form links both
informations. The result about the special values is obtained by computing the adjoint
maps of the Sa » with respect to the Petersson scalar products (and after restriction to
cusp forms, of course). For details and more information in this direction (at least in

the case of holomorphic Jacobi forms) the interested reader is referred to [G-I{-Z].

To conclude this overview, we give some examples of Jacobi forms which are more

subtle than those so far considered. Fix a matrix (3 ‘g) € S5Ly(Z) and set

1 , c —%(b‘—dmac+(a'q+‘;—‘)2) 2mwi (—‘t—-—'a—b:mqm" r+rz)
O(r,z;n) = v? Z an——e e .
n

ra,bcecl
b=rmod2m

Here n € R, and, as always, 7 € 9, z € C, v = (7). Moreover, for each triple a, b, c we

use

a' = maa® + bay + ¢y, ¢ = maf® + bBE + 6.

By the theorem of section 5 this transforms like a skew-holomorphic Jacobi form of

index m and weight 2 in 7, z, although it is none. But if we set
qSA('r,z):m_‘}/ ©(r,z;n)—
0 N

then this still retains the transformation laws satisfied by ©(r, z;7) and by a simple

computation
2 2
2mi (f—ﬁn—‘?‘— u+-"—%|“Al £v+rz)
da(r,z) = E ca(A,r)e ,
A,rEZ,AD>0
r2gAmodam
where

ca(A,r) =1{(a,b,c) € L(A,r)|d >0, ¢’ <0} - #{(a,b,c) € L(A,r)]a' <0, ¢ >0}
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f !
a c
- E Bi(—)+ E Bi(—).
m m
(a,b,e)EL(A,r) (a,b,e}EL{A,r)
0<a’<m,e'=0 a'=0,0¢e’' ¢m

Here
L(A, ™) ={(a,b,c) € Z|b* —4mac = A, b =r mod 2m},

By(z) = z — 1 is the first Bernoulli polynomial, and a’,¢' have the same meaning as

above. Thus ¢ 4(7, 2) is a skew-holomorphic Jacobi form of weight 2 and index m.

Note that the two sums in the last formula vanish unless A is a perfect square.
By the Main Theorem (and the facts that ¢ 4 is a cusp form and that Sa , maps cusp
forms to cusp forms if A # 1), we thus obtain for example, for any m such that DJZ'{(m)
contains only one cusp form, say f(7) = 3,5, af(£)e*™*" and a;(1) = 1, and for any
r, A, r? = A mod 4m, A # 1 fundamental, the identity

Z Z sign(a') » £7°

€21 | (a,be)EL(at?,rt)
alef <0

= (a_m;(a’,) sign(a’) » X (g (%) p(f)e“’) (; ag(£)e*

a’c’ <0 -
(The reader may verify that the first sum on the right hand side of the last identity for
m =11 and A = (:l3 ?), A = 5,r = 7 equals —1; thus, in general, the given identities
really involve the modular forms f.)

The method used here to produce the Jacobi forms ¢4 can be generalized. It is
even possible to construct in this way, for any arbitrarily given index m, a set of Jacobi
forms of weight 2, the Fourier coefficients of which can be described as explicitly and
effective as those of ¢4, and of which it can be shown that they span the whole space of
(holomorphic and skew-holomorphic) Jacobi forms of index m. Via the Main Theorem
we then obtain as well a simple arithmetical rule to generate explicitly the space of all

modular forms of weight 2 on Ig(m) for any given m. For details the reader is referred
to [S2].
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