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DEVELOPMENTS IN THE THEORY OF JACOBI FORMS

by

Nils-Peter Skoruppa

1. Introduction

We would like to begin this survey with some very general remarks about Jacobi forms.

These remarks will be as vague as general. But, perhaps, they will give the reader a

rough idea of what this survey is dealing with. Later on we shall be as concrete as

possible and we shall try to explain everything from scratch.

Ir one would have to explain Jacobi forms by a diagram, then one could possibly

give the following one:

Siegel modul<Y" farms
of deg-ee two

/J.s\
special theta !ift 11

1

ft Saito-KtrOkawa

j
(KUdla,Oda) Jacobl lif~t

forms

/ ~
e1l1pUc modular forms
of half-intel}'al weight

Shfmura... elliptic modular forms
11ft of 1nteg-al wellj"lt

The diagram has to be understood in the following sense: there are various well-known

connections between those different types of modular fonns occuring in the diagram.

I(ey-,vords for these connections are written at the corresponding connecting arrow.

The point is that the diagram is commutative, and that the best way from one type of

modular form to the other is the way passing through the center of the triangle. To

make the term 'best' a little bit more precise: The connections to the center are quite

natural (as natural as J acobi forms are), and the classical correspondences along the

edges can be most easily understood and technically handled when interpreted as the

sum of two suitable Jacobi form - lllodular form con·espondences.

However, first of a11 these J acobi - modular correspondences had to be cliscovered,

and actually their discovery was historically the starting point for a proper theory of

Jacobi forms. There have already been appearances of Jacobi forn1s in the literature

before (although these functions were not called J acobi forms at that time). Shilnura
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gave a new foundation of the theory of complex multiplication of Abelian functions

using these functions (cf. [Sh]). I{uznetsov constructed funetions which are almost

Jacobi forms from ordinary elliptic modular forms (cf. [I<uz]). Berndt studied the field

of J acobi fune tions (cf. [B]), and Feingold-Frenkel used them in a paper on I<ac-Moody

algebras ({F-F]). e::;:t Finally, in the early eighties Eichler and Zagier, stimulated by the

proof of the Saito-I{urokawa conjecture, developed a systematic theory of Jacobi fonns

along the lines of Hecke's theory of modular forms. This resulted in the monography

[E-Z].

Since then the theory of Jacobi forms has grown quite a bit. There are several

beautiful and/or deep results about Jacobi forms. 11:oreover, Jacobi fonns gave and are

still giving interesting contributions to other parts of lnathematics. And so the above

diagram is no longer sufficient to reflect all aspects of J acobi fonns, nor it is necessary

to justify their existence. Hone takes into account the lnore recent developments, then

a more up-to-date picture coulcllook like this:

app I icaUOfl theory of Heegler pOints
- orat /east--~"'''' theory of e1l1ptlc genera
implicit appearance in str1ng theory

goOO modular forms C hol. and skew-hol.l b elllptlc modular forms
of 1/2-1nteg-al welght Jacobi forms .......I---~...... of lnteg;-al weight
in h n n ~rect

proper correspondence

Here the IllOdular fonns of half-integral weight (ta be more precise, I<ohnen's '+'-fonns)

are considered as proper subset of the Jacobi fonns. The llleaning of 'proper' is roughly

as folIows: I{ohnen's refinements of the ShiInura lift are valid only in the case of lnodular

fonns of odd, squarefree level. If one wishes to generalize the work of I<ohnen to general

levels the technical difficulties seem to become ovenvhehning, it is not even clear how

to generalize naturally the definition of I<ohnen's '+'-space to higher levels. These

difficulties can be overcome very easily by replacing n10dular forms of half-integral

weight throughout by J acobi forms. This lies at hand since a certain part of the whole

variety of J acobi forms can be considered in a natural manner as I{ohnen '+'-forms. If

one accordingly establishes the Shimura correspondence for Jacobi forms, as was done

in [S-Z], this whole theory turns out to be smooth without any technical (or natural)

restri ctions.

<;:) If a paper is missing here then this is due to the author's ignorance and not to a

low opinion of the paper in question.
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Unfortunately, at that point, there was a tiny gap left: there have been modular

forms of integral weight which did not eorrespond to Jaeobi forms although they should.

Meanwhile this gap ean be filled by introducing a eertain type of non-holomorphie

Jaeobi forms: this is indieated by the term 'skew-holomorphic' in the above diagrarn.

The resulting, eompleted eorrespondenee between Jaeobi forms and modular forms is

now that easy to formulate that it seems to leave uo wishes open. Moreover, this

eorrespondence is not merely a tool to study Jaeobi forms (although it is), but it is

rather a deep (and nevertheless handy) tool for studying elliptie modular forms of

integral weight and their arithmetieal significance. All this is combined in the adjective

'perfect' in the above diagrarn.

In the following we shall try to explain the highlights of the theory of Jacobi fonns

so far obtained. We shall not speak about its applications listed in the diagrarn. For this

the interested reader is referred to [G-I<-Z] (for Heegner points), [Zl] (for elliptic genera),

[Cl (for a sporadic appearance of skew-holomorphic Jacobi forms in string theory). Also,

we shall not speak about its applications to the theory of p-adic interpolation and p-adic

L-functions (cf. [1<1]). And finally, we shall also not speak about results concerning

Jacobi forms of higher degree (01' genus); for this the reader is referred to [11u],[Zi].

Instead we have inserted a section to recall the basic features of the J acobi forms since,

to our feeling, Jacobi fonns are not really common property yet. Finally, we would like

to stress that the list of references at the end is not at all complete, it only reflects what

is touched 01' mentioned in this article.

2. What are Jacobi forIlls?

Let k be an integer, and let A1k (Sp2(Z)) denote the spaee of Siegel modular forms of

degree 2 and weight k on the fuH Siegel modular g1'oup. By definition this is the space

of holomorphic functions peT, z, T') in three complex variables T, z, T' with T, T' from

the Poincan~ upper half plane jj = {T = U+ iv E C Iv > O} and z froln C such that

SS(T)SS(T') - ~(z)2 > 0, which are periodic in each variable with period 1, which satisfy

F( ~l, ~,T' - Zr
2

) = Tk F( T, z, T'), and the Fourier expansions of which have the form

peT, z, T') =
n,r,mEZ,n,m> 0

r 2 - 4mn so-

A(n r m)e21f'i(nr+rz+mr
l

), , ,

where A(n, r, m) = A(n' , r ' ,m
/) if the quadratic form [n, r, m] (= nX2 + r XY +my2)

is equivalent modulo SL2 (Z) to the quadratic fonn [ni, 1,1, m'].

In particular, such a function F is periodie with respect to T', and thus ,ve Inay
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consider its Fourier expansion solely with respect to this variable:

F( T, z, T') = L 1>m(T, Z)e21rimr'.

m~O

This is the so ealled Fourier-Jacobi deve10pment of F. Of course, <p( T, z) is nothing else

hut 2:: A(n, r, m)e2'1f"i(nr+rz). It is deal' that the automorphic behaviüur of F implies

also some automorphie behaviour of the 1>m(T, z). Für m = 0 it can easily be checked

that <Pm is independent of z, anel, considereel as ftulction of T, it is nothing else than

an elliptic modular form of weight k. For positive m the funetion <p = 1>m satisn.es the

fo11owing three conditions:

(i) 1>(T, z) is a holomozphic function in T E j) and z E C,

(ii) 1>(T, z) is p eriodic in each variable wi th period 1 an cl i t satisfies t}le

functiona,l equation

rJ...(-1 z) -21rim~ krt.( )
I.f/ -, - e T = T I.f/ T, Z ,

T T

(iii) the Fourier expansion of<p is of the form

1>(T, z) =
~,rEZ.~<O

r2~~mod4m

2
C(.6., r)e21ri(r 4~~ r+rz)

where tbe Fourier coefflcients C(~, r) depend on r only modulo 2m.

(To identify the latter Fourier development of 1> = <Pm with the one given above, set

.6. = r 2 - 4mn and C(.6., r) = A( r:~.6.,r, m).) The funetion 1> is a prototype of what

is ca11ed a Jacobi form. More precisely, auy funct ion <p (T, z) which satisfies these three

conditions is called a Jacobi form of weight k and index m. The space of 3011 such

functions is denoted by Jk, m'

Of course, in these considerations one does not have to stick to Siegel modular

forms on the fuH modular group. Dropping this restrietion and luimicing the above

procedure, one is led to the Jacobi group 3(R) and to the general nation of Jacohi

forms as automorphic fonus on this group. The Jacobi group 3(R) is a certain central

extension by SI, the group of cOluplex numbers of madulus one, of the natural seluidirect

product of SL2 (R) with the group of row vectors 1R 2 :

Identifying SL2(R), R2 anel SI with their cananical iInages in 3(R) so that any 7] E

:?,(R) ean uniquely be written as 1] = A[A, 1l]8 (A E 8L2("), (A, Il) E R2
, 8 E Si), the
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multiplieation law in J(R) is given by 7]1]' = AA'((A,/-l)A' + (A',j.t')]ss'e2rriK
. Here K.

denotes the determinant of the two by two matrix with (A, fL )A' as first and (A', f-l') as

seeond row. The J aeobi group aets on Sj x C by 7J • (7, z) = (~;$~, Z~;~1 f! ), and on

funetions 4; on jj X C by

Here, as above, 7J = A(A, J-1.]s with A = (: ~) , and k, m is a given pair of integers. For a

given subgroup r of finite index in SL2 (Z) set rJ := r <X Z2( C J(R)). Then the space

Jk,m(r) of Jaeobi fOnDS of weight k and index m on r is defined to be the spaee of aH

holomorphie funetions 4;(7, z) on jj xe, satisfying 4; Ik, m 1] = tP for 8111] E rand having for

any A E SL2 (Z) a Fourier expansion 4;!k,mA = L: cA(n, r)e2rri(nr+rz) with cA(n, r) = 0

for r 2 > 4mn. (Here the n are in general not integral but rational numbers with bouncled

denominator depending on A.) For positive m the spaee Jk ,m(SL2 (Z)) eoincides with

Jk,m as defined before, and the spaees Jk,m(r) are the natural gencralizations of the

Jk,m'

Note that the really interesting Jaeobi forms oeeUT for positive index only: a Jacobi

form tP(T, z), eonsidered, for fixed 7 as a funetion of z, is nothing else but a holomorphic

theta function on ell7 + Z with 2m. zeroeSj thus, there are no Jacobi fonns different

from zero for negative m, and a Jacobi form of index 1n = 0 does not depend on z and

may be considered as a funetion in 7 transforming like an elliptic modular form.

One eould go even further and define Jacobi forn1s of half-integral weight. In this

wider dass of J acobi fonns the silnplest of a11 are those which gave their name to the

whole theory, namely the Jacobi theta functions

t9 m ,p(T, z) =
rEI,

r=pmod:ilm

(m a posi tive integer, p an integer modulo 2m), and whieh occur already in the ,vork

of C.G.J. Jacobi. In the up-to-date language these Jacohi theta funetions are then

elements of J! ,m(r(4m.)). By the way, these theta functions, or at least combinations

of them, oceur in the Fourier Jacobi development of the simplest of all Siegel modular

forms of degree two the form 19(2)(7 z 7') = """ e2rri(r2T+2raz+s2r')
, "L....ir,aEl .

The Jacobi theta functions are not only the silnplest of all examples of Jacobi

forms hut in some sense they are also the most basic Jaeobi fonns. To explain this in

more detail let us consider for silnplicity the case of a J acobi form</> of index m and,

say for simplicity, on SL2(l). The special property of such a form that its Fourier
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coefficients C(~, r) depend on r only modulo 2m ean also be stated by saying that

any such </> can be written as 4>(r, z) = L:~:1 hp(r)19m,p(r, z) with suitable functions

hp(r) (of course, one has explicitly hp ( r) = I:ö C(~, p)e21TiWr.) It is known that

the Jaeobi theta funetions 19 m ,p are invariant under S L2(l ) with respect to '1 1,m' (t 0

be precise, not each {)m,p is fixed by SL2 (Z) , but only the space spanned by all the

{Jm,p is). Comparing this transformation law with the one satisfied by 4>, and observing

that the hp are uniquely determined by 4>, it can be seen that that they transfonn so

to speak dual to the {)m,p' In fact, the hp(r) belang to 1I1k_~(r(4m)), the space of

modular forms of weight k - ~ on the main congruence subgroup r(47n). Even lnore,

the correspondence </> t---+ L:~:1 hp12' {Jm,p defines an isolnorphism

Here 1I1k _ i (r(4m)) is considered as S L2 (l) -right module via the usual (projective)

action of SL2(l) on modular forms of weight k - ~i as mentioned before SL2(Z) acts

(projectively) on the space spanned by the 19m,p via 'I!,m', thus it acts (in fact, really,

not only projectively) on the tensor product of these two spaces, and the right hand

side of the above isomorphisln denotes the subspace in this tensor produet consisting of

those elements fixed by SL2 (Z) .

This isomorphism is the main key to understand the conneetion between Jacobi

forms and elliptic modular forms of half-integral weight. A doser investigation of this

connection was given in [SI]. However, we do not want to go into this here hut it

may give the reader who is wen aquainted with elliptic modular forms an intuitive

understanding of the basic features of the theory of Jacohi forms.

These basic features are:

• For each pair of integers Jk, m is finite-dimensional (ac tually one bas

dimJk,m = k;; + 0(1) for k -+ 00).

• there exists a Hecke tbeolY for Jacobi forms, i.e. for each positive natural

number I, relative prime to m, tbere exists a natural Hecke operator T(/) on

Jk,m, and the space Jk,m has a basis consisting of simultaneaus eigenfonns

wi tb respect to all T(l).

• tbere exists a natural nation of Jacobi Eisenstein sel'ies aJld Jacobi cusp

farms.

• tbere exists a Petersson scalar product (4),7/;) on Jzu:t, tlle space of Jacobi,
2

cusp fonns (ta be precise, (</>, 7/;) = 1;} c/>( T, Z )'!f;(T, Z )e- 4TJ;:W v k dud~~xdY lV]lere
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~ 18 a fundamental domain for Jj x C modulo SL2 (Z) J, and u, x and v, y

denote tbe the real and 1maginazy parts of r and z respectively).

Similar basic facts hold for the more general spaces Jk,m(r) too, of course.

Before ending this short review of basic ingredients of the theory of Jacobi forms it

should be noted that Jacobi forms are very concrete objects. Here is an illustration of

this fact: If we multiply a Jacobi form by an eIliptic modular form we get back a Jacobi

form with the same index hut, of course, with a different weightj in other words the

space EBkEI Jk,m is a module over the ring EBkEI .l\1k(SL2 (Z)) = C[E4, E6] of elliptic

modular forms on the fuH modular group; it is even a free module of rank 2m. The two

generators in the case m = 1 are

E{(r,z) := L: (1Ik,17])(r,z)
71E SL2 (Z) 'k. \SL 2 (1) J

= t91,o(r, z) + {I. L: !ßlk-~ (L: r:k~~)) e21l'i(~T+rz)
.ö.,rEZ,.ö.<O n>1
r 2 1iii.o.mod4 -

= 7](r)-6 '" {r2E k (r) - ~(~Ek(r))} (_lYe21l'i(~T+8z)
L...J 7rzk dr
r.·EiI

r~ .. mod2

for k=4 and k=6. (For the first identity cf.[E-Z], for the seconcl one [SI].) The no­

tations are: SL2(Z) ~ =subgroup of all 7J E SL2(Z)J such that 1!k,17] = 1 for even k;

furthermore l

r6.(n) = ~ {x mod 2nlx2 == ß mod 4n} l

and, as usual,

Eu(r) = 1- ;k L:(L:d2k-l)e2..inT,

2k n2: 1 dln

,I. = 2k-2r(k - t)((k -1)

7](r) = eW II (1 - e21l'inT) .

n2:1

3. Jacobi fornls and Siegel lllodular fornlS

The starting point for the theory of J acobi forms here aB weIl historically was the fact

that any Siegel modular form has a Fourier-Jacobi developlnent. As indicated above,

and as will be further shown in the following sections, the theory is very weIl developed

at present. Thus it lies at hand to set up the following program:

• Study Siegel modular fornls (of degree 2) via tlleir Fourier-Jacobi develop­

ment.

To the author's knowledge there are only two main results in this direction. The

first sterns from the very early beginning of the theory of J acobi forms.
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Theorenl ([A-Ma-Z2]). For each non-negative integer m tllere exists an operator

Vm : Jk,l ---+ Jk,m, given explicitely by

L c(n, r)e211"i(nr+rz) ~ L ( L ak-1c( :~, ~ »)e21ri (nr+rz),
n,r n,r al(n,r,m)

such that the map 4> f--4 4>IV with

(4)IV)(T,z,r'):= L (<pIVm)(T,Z)e211"imr'

m2: 0

defines a Heeke-equivariant embeddillg Jk,l ~ A([k(Sp2(Z».

(In the fonnula for 4>IVo the tenn 'L:alo ak-1c(O, 0) has to be interpretecl as ~((1 - k).)

The image of the above embedding is the so-ealled Maass Spezialschar and the discov­

ery of this eInbedding was one of the n1ajor steps in the proof of the Sajto-I(urokawa

eonjeeture.

The second theorem along the lines of the above program is the following one.

Theorelll ([K-S]). Let F and G be two cusp forms in A1k(Sp2(Z»), let

F(T,z,r') = L 4>m(r,Z)e211"imr'

m2:1

G(T, z, T') = L: 'l/Jm (T, Z)e2 11"imr
l

m2:1

be their Fourier Jacobi developmellts, and denote by (rPm,7J;m) tbe PetersSoll sca.lar

product of tbe Jacobi cusp forms 4>m and 'l/Jm. TlJen tbc series

DF,a(S) := ((2s - 2k + 4) L (<P:~m)
m2:1

converges absolutely for large ~(s) (actually for a?(s) > k +1) aJld it has a InerOlTIorphic

continuation to C. It is elltire if (F, G) = 0 and otherwise has a sunple pole of residue

residue (:~k;): (F, G) at s = k as its only sillgularity. Moreover it satisfies the fUllctional

equatioll

D'F,c(s) := (21r)- 2S r(s)r(s - k +2)DF,O(S) = D'F,c(2k - 2 - s).

(Here (F, G) denotes the Petersson sealar produet of Fand G, i.e. (F, G) equals the

integral JF(r,z,rl)G(T,z,r')(vvl - y2)k- 3 dudxdu'dvdydv', where u,x,u' and v,Y,v'

denote the real and ilnaginary parts of T, Z, TI, respectively, and where the integral has

to be taken over a fundaInental don1ain for the Siegel upper half plane of degree two

modulo Sp2(Z).)
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The above theorem obviously shows some anology to the theorem about the Rankin

convolution of two elliptic modular forms and, indeed, its proof is essentially an adaption

of the Rankin-Selberg method to the case of Siegel modular forms of degree two. What

is striking in the above theorem is the fact that for even k the Dirichlet series D F,a(s)

satisfies exactly the same functional equation as the Andrianov (01' Spinor) zeta function

ZF(s) associated to Siegel-Hecke eigenfonns F. At present the exact relation between

the series D F,a(s) and the Andrianov zeta functions is not known. There is only a

partial result, which, in a different formulation, can already be found in the work of

Gritsenko [Gr].

Supplement to the last Theorenl. Let k be even. Jf G is an element of the Maass

Spezialschar and F is a Hecke eigenform then DF,a(S) = (</>I, 'l/Jl)ZF(S).

Thus the above theorem give rise to same open problems:

• Does a Hecke eigenform F in A1k(Sp2(Z)) necessarily have </>1 1= O? (Note

that an afRrmative answer would give, via the above theorem and its sup­

plement, a nelV proof for tbe analytic continuation and functional equation

of tbe Andrianov zeta function. Tbe answer is of course aHirmative for tbose

forms belonging to the Maass Spezialschar, but it is also true for the first

Hecke eigenfonn not belonging to the Spezialsc11ar, lvhich has weight 20 and

which has been calculated in [[(ur].)

• Jf Fis a Hecke eigenform in 1l1k(Sp2(Z)), but not in the Maass Spezialschar,

what is then the relation between D F,F(s) and the Andrianov zeta functions

associated to elements in 1l1k(Sp2(Z)), if there exists any? ( Note that one

has DF,F(S) 1= ZF(S) since, by the above theorem, DF,F(S) does have a pole

lvhereas, by a result of Evdokimov and Oda, Z F(s) does have none.) Can

it be the case that D F,F(s) provides a counterexample to a so far unproved

but exspected converse theorem?

4. J acobi farIns and elliptic Inod ular fornlS of integral weight

That what one may consider aB the main theorem in the theory of Jacobi forms can be

slUIlmarized to the following theorem.

Theorem ([S-Z]). For each pair of integers k, mEZ, m > 0 the space Jk,m of Jacobi

forms o[ weight k and index m is Hecke-equivariantly isomolpllic to a certajn natural

subspace 9n;-k_2(m) of the space 1l12k- 2(rO(7n)) of a1l elliptic modular forms of lveight

2k - 2 on ro(m).
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A first and rough description of the space of modular forms occuring in the theorem is

9nk(m) = {all newforms on ro(m)}EB{a nice choice of olclforms}.

More precisely, the space 9R k ( m) is spanned by all f E M k(r0 ( m )) such that thc

standard L-series L(J, s) = L:l?l a(e)e-" of J(T) = 2: a(e)e2rrifT is of the form

L(J,s) = (TI Qp(s))L(g,s)
pl~

for some m 'Im, same new form 9 on r 0 ( m') and polynomials Qp ( s) in p -" sat isfying

for pt II-!f!r. >I< The symbols 9nt(m) denote those subspaces which consist of all J E 9Jtk ( m)

such that L>I«f,s):= (27r)-2"m i r(s)L(f,s) = ±L>I«j, k - s), respectively.

It is left to the reader to contemplate this definition of the space 9nk(m). Eut we

should add that it may be viewed as the span of all those Hecke eigenforms f on ro(m)

such that the eigenvalues of f with respect to the various Atkin-Lehner involutions

reflect rather an intrinsic property of fand are not just an accident occuring when

changing levels. Secondly, one of the most striking features of this space 9)1k(m) is that

it has the simplest dimension formula among all subspaces of Mk(rO(m)) which are still

big enough to reflect all various kinds of species occuring on r o(m) in weight k (In fact,

one has dirn 9)1k ( m) = d( m( k - 1))+!a where d(x) = t2 - !(~ )- ~(~4) (( :) =Legendre

symbols) and adenotes the greatest integer with a2Im). The same remark applies to

the formula for the traces of the Hecke operators acting on 9R k (m). Thus, there are

several hints that the spaces 9Jt k ( m) seem to be very natural and they may deserve

further attention (For more arguments the reader is referred to [S-Z).)

>I< This definition is not strictly precise. First of all the expression 'new fornl' IS

usually not applied to Eisenstein series, so a ward of explanation is perhaps indis­

pensable: the space of 'new form Eisenstein series' in lV[k (r0 ( 1n)) is by definition 0

if m is not a perfect square or k = 2, m = 1; otherwise it is spanned by the series

L:l?O (L:dll dk- 1X(d)x( ~)) e2rrilr where X runs through aU primitive Dirichlet charac­

ters modulo vm. (with the convention L:dlo dk
-

1X( d)X( ~) = 0 01' = !((l - k) for X f=. 1

and X = 1, respectively). Secondly, if k = 2, t hen 9Jt k ( m) contains addi tionally the

series mlE2(mlT) - m2E2(m2T) for aH decompositions 1n = mlm2. Here E2 is the

(non-holomorphic) modular form E2(T) = 1 - ~ - 24 L:l?l (L:dll d) e2rrilT.
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As mentioned in seetion 2, Jacobi forms are very closely connected to elliptic mod­

ular forms of half-integral weight. In particular, it is possible to show, using the

isomorphism described in section 2, that for prilne numbers m and even k the map

4J = L:~:-l hp Q9{)m,p 1-+ L:~:-1 hp(4mr) defines a Hecke-equivariant isomorphism of Jk,m

with that part of I<ohnen's '+'-space A1
k
+ 1 (m) such that this isomorphism, I<ohnen's
-]'

refinement of the Shimura lift (cf. [1<2]), and the lifting of the above theorema11 together

yield a commutative diagram. In that sense the above theorem may be considered as a

generalisation of I<ohnen's work on the Shimura lifting.

For m = 1 the above theorem, together with the theorem of the preceeding sec­

tion about the Maass lift , yields the Saitü-I<urokawa lift, Le. it establishes a Hecke­

equivariant isomorphism between the 11aass Spezialschar in M k (Sp2(Z)) and the space

A12k- 2(SL2(Z)). (Originally, this correspondence was proved to be true using the cor­

responding I<ohnen '+'-spaces. )

Note that the above theorem presents itself in a completely smooth, natural and

untechnical manner, ance the nation af a Jacobi fOrIn is accepted. Even the still slightly

technical term 'Hecke-equivariantly' could be eliminated; we sha11 come back to this in

the last section, where we sha11 refonnulate the above theorem. There we sha11 also give

ane or two hints that the above theorem can (and should) be read as a theorem about

modular forms rather than a theorem about J acobi forms.

However, far the moment there is one tiny lack of beauty in the above theorem.

This is the '-'-sign attached to the symbol 9n2k - 2 (m). In particular, there are so far

no Jacobi forms corresponding to 9n2k - 2(1) (= Mk(SL2(Z))) for k divisible by 4. If

there is any hope to fi11 this gap, then one obviously needs a ne\v type of Jacobi form.

5. Skew-hololllorphic J acobi fornls

The simplest of a11 examples of Jacobi forms are, as pointed out before, the Jacobi theta

series {) m, p ( T, z) = 2:r= pmod 2m e21r i (~ r+ r z). They lnay be considered - at least wi th

respect to their analytic features - as prototypes of the Jacobi forms. In particular,

they are holomorphic in T and z. But moreover they satisfy the heat equation

a a2

(81l"im aT - az 2 ) t9 m ,p(T, z) = o.

The latter is not true for the Jacobi forms so far considered. Thus it is reasonable to ask

whether there are further natural examples of automorphic fonns on the Jacobi group

3(R) satisfying the heat equation. To find such examples it lies at hand to look at

Jacob theta series attached to quadratic forms which, of course, must not necessarily be

11



definite. Non-holomorphie elliptie modular forms attached to quadratie forms have been

construeted systematically in (V). By mimieing the method of this paper it is possible

to generalize the results stated loc.cit. from elliptie modular forms to Jacobi forms.

Theorelll ((S3]). Let F be a symmetrie, non-singular, integral n x n matrix with even

diagonal. Let p(X) be a funetion on Rn sueh that p(X)e-1rxt
FX is a Schwartz function

and (~; \7'p-l \7 + X t . \7) p = (k - %)p for some k E Z. Fina.Jly, let X o E zn, Bnd set

Then the series

1xtFxrm = '2 0 0, D = (-1)'" det(F), P, = level 0/F.

19(7, z):= L p( y'V(X + ;Xo])e1ti (X
t
FXr+2X

t
FXoz)

xez"

satisfies

(v = Im 7, Y = Im z)

(~) 19(7, z)

for all A = (~~) E ro(i), and all A, I-l E Z.

(The notations are: '. t '=transposi tion, \7 t = (a~l ' ... , a~n) for X = (Xl, ... , Xn), thus

X t . \7 = L::;=l X r a~r; recall that the level of F is the smallest positive integer esueh

that ep-l is integral with even diagonal entries. Note that n has neeessarily to be even

(as can be shown using the assumption 'k E Z').)

For positive definite F andp(X) =1 the theorem produces in a known way holo010r­

phic Jaeobi farms. Eut we also find such functions as we are looking for: consider a ma­

trix F with signature (1, n -1), n even, pick a veetor X o E zn with XJFXo > 0, choose

a vector =E Cn and a non-negative integer cl, and set p(X) = C=: tPX.L)de21tX.1. tpX.1.

(for any n-vector X, we use Xl. := X - ~"i~~~Xo). If d ~ 2 we assume =1. 'P=i. = 0.

Then p(X) satisfies the assumptions of the theorem (with k = 1 - d - ~). Moreover,

it is easily verified, differentiating term by term, that v- ~ 19 (7, z) wit h the correspond­

ing {) constructed from these data satisfles the same heat equation as the J aeobi theta

funetions do.

"VVe ean look at these examples as the prototypes for a new kind of Jacobi form.

Thus, after a doser examination of these examples we would be led to the following: for

a subgroup r offinite index in SL2(Z) , we define J';,l (r), the spaee of skew-llolomorphic

Jaeobi forms of weigh t k and index m on r, to be the space of all smooth funet ions 4>(7, z)

12



on jj X C, which are holomorphic in z aod satisfy (8rrim/;. - %z22 )4>(r, z) = 0, whieh

satisfy 4>lk m 7] = 4> for aH 7] E r cx: Z2, aod whieh, for eaeh A E S L 2(Z) , have a Fourier
, 2

developmeot of the form 4>(r,z) = I::cA(n,r)e2rri(nr+
r
;~mniv+rz) with cA(n,r) = 0 for

r 2 < 4mn. Here, for any pair of integers k, m, the slash operator 'I'k m' is defined by,
almost the same formula as 'It,m' with the only difference that the faeter (cr +d)k has

te be replaeed by (Cf + d)k-1Icr + dl.

However, we are mainly interested in J acobi forms on SL2 (Z) , and here, as in the

holomorphie case and for positive m, the above definition is easily seen to be equivalent

to the following one. The space J"k,m of skew-holomorpbic Jacobi {orms of weigllt k and

index m (on S L 2 (Z) ) is the space of all fune tions tjJ( 7, z) satisfying:

(i) 4>(7, z) is a smooth function in 7 E Jj, and hololnorphic in z E C,

(ii) 4>(7, z) is periodic in each variable with period 1 and it satisfies the

functional equation

.-h( -1 z) -2rrim J! _ -t-11 l.-h( )'t' -, - e T - 7 7 't' 7, Z ,
7 7

(iii) tlle Fourier expansion of 4> is of tbe form

"" 2rri (r~~~ u+ r2t,.l~! iv+rz)
4>(7,Z) = L.J C(~,r)e (7=u+iv)

~,rE:lI:,.o.~O

r2:a:~mod4m

wbere tbe Fourier coefficients C(~, r) depend on r only modulo 2m.

Note that the shape of the Fourier development (iii) ilnplies that 4>(7, z) satisfies the

heat equation, whereas it would imply that 4>(7, z) is holon10rphie in 7 if we would have

to sum over non-positive~. Thus, if we replaee in (ii) the expression rk-1lrl by 7
k

and the eondition ~ ;::: 0 in (iii) by ~ ::; 0 we reobtain exactly the definition of the

holomorphic Jacobi forms. (This is the reason that we superfluously wrote 1~1 for 6. in

(iii).)

With regard to this fonnal analogy in the definition it will not be unexspected

that skew-holomorphic Jacobi forms exhibit essentially the same basic features as the

holomorphic ones, e.g. JZ,m is finite dimensional, one has a natural Hecke theory, the

notion of Eisenstein series, cusp forms, Petersson scalar product, connection with elliptic

modular forms of half-integral weight etc..

To give a completely explicit example of those theta functions which led to the

definition of skew-holomorphie Jacobi forms apply the above theoreln to F = (~ ~), Le.

set

T( 7, z) = L e2rri("tr+~iv+(a+t)z)

a,tEZ

13



or, more generally,

where k = 1,2 and m = ml m2 is any given decomposition of a given positive integer m.

From the above theorem (01' by a simple, direct application of Poisson summation) it is

easily verified that Tkj m l,m2 E J;,m' Starting with these relatively simple functions it is

easy to construct more examples: multiplication of a skew-holomorphic ljJ(r, z) by J( -'7),

where J(r) is an elliptic modular form, yields again a skew-holomorphic form with the

same index; using this, the space EBkEI J;',l becomes a free EBkEZ]l,I[k(SL2(Z) )-module

of rank two; it is possible to show that

where

T(r,z) =
d,rEZ

r 2 1iii1d 2 mod4

as above, and
a 7ri

U(r,z):= ~T(r,z)+ -T(r,z)E2(-r).ur 12

6. The Main Theorenl of the theory of J acobi forIlls

If we denote by C(~, r) the ~, r-th Fourier coefficient of the skew-holomorphic T2 ;ml ,m2

E J; m m introduced in the foregoing paragraph, i.e. if we set
, 1 2

C(ß, r) =
',tE­

(ml·- m 2 1)2:c::d
ml,+m2 tcr

then it is easily checked that

Recall that ml E2(mIr) - m2 E2( m2 r) defines an elen1ent of 9nt (ml m2 ). These exam­

pIes are special (and the siluplest of all) cases of the following general theorem.

14



Main Theorelll. For any pair oE positive integers k, m, k ~ 2 the spaee Jk,m EB J;,m

is Heeke-equivariantly isomorphie to 9J12k- 2(m). More preeisely, one has, for any fun­

damental discriminant ~ and any integer r such that r 2 =~ mod 4m, a map

given explicitely by

It eonllTIutes with a1l Heeke operators and maps Jk,m and J; m to 9n;-k_2 (m) and,
9ntk_2 (m) respectively. Some linear eombination oE tile Inaps St::..,r dennes an isomor-

phism.

(The expression 2: a lt ak
-

2 (~) Cf/> (~~, ~r) for f = 0 has to be interpreted as the

value of ! Cq, (0, r) 2:a ~ 1 (~) a - ~ at s = 2 - k.)

Note that the description of Hecke operators for Jacobi forms is implicit In the

theorem since it explains what a Jacobi Hecke eigenform has to look like: a Jacobi form

<p is a Hecke eigenform if and only if its image under a11 S.6.,r is a Hecke eigenform, 01',

what is equivalent by some formal manipulations, if and only if the Dirichlet series

L Cf/> (e2~,fr).e-s
l>1

(l.";;)c1

has an Euler product for an rand an fundamental ~ such that r 2 == .6. fiod 4m. Thus,

in order to understand or to apply the theorem, it is not necessary to study Hecke

operators for Jacobi f?rms.

Half of the theorem, namely the part conceming the hololuorphic Jacobi fonus, was

proved in [8-Z]. To be honest, the other part is not yet completely proved. (Its proof

depends on a comparison of the traces of Hecke operators acting on Jacobi forms and

modular forms. This can be done without doubt completely analoguous to the case of

the holomorphic J acobi fonns hut it is not completely written up yet.)

The theorem is, at the first glance, clearly a theoren1 about the arithmetical struc­

ture of the spaces of Jacobi forms. This is, of course, not of any interest for those who

are not at an interested in Jacobi fOffi1s. ~ut it is also (01' even, rather) a theorem

about elliptic modular farms: first of a11, it links, as explained in the introduction and

by theorems cited 01' indicated above, e11iptic n10dular forms to other types of 1110dular
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forms. Secondly, and this is perhaps the most important point, it provides a new tool

for the study of elliptic modular forms in Mk(ro(N)). If we consider, say, a new-Hecke

eigenform on ro(m), then, by the Main Theorem, there is a unique Jacobi form (up

to multiplication by constants) of index m corresponding to it via the above theoren1.

This J acobi form does not only carry explicit information about the Fourier coefficients

of the modular form (via the explicit description of the above S~,r), but, as cau be

shown, also the values of the L-series of the given modular fonn at the integer points

in the critical strip, BIld more generally the periods of that modular form, are explicitly

given by the Fourier coefficients of this Jacobi fonn. And this J acobi fonn links both

informations. The result about the special values is obtained by computing the adjoint

maps of the S~,r with respect to the Petersson scalar products (and after restrietion to

cusp forms, of course). For details and more information in this direction (at least in

the case of holomorphic Jacobi forms) the interested reader is referred to [G-I(-Z].

To conclude this overview, we give some examples of Jacobi forms which are more

subtle than those so far considered. Fix a matrix (~~) E SL2 (Z) and set

Here Tl E R, and, as always, 'T E J), z E C, v = ~('T). 110reover, for each tripie a, b, c we

use

By the theorem of section 5 this transforms like a skew-holomorphic Jacobi form of

index m and weight 2 in 'T, z, although it is none. But if we set

1
00 d

4>A('T, z) = m-! B ('T, z; TJ)....!1.
o Tl

then this still retains the transformation laws satisfied by B( 'T, Zj 1]) and by a silnple

computation

A,rEI'.A>O
r~aAmod"m

where

CA(ß, r) = ~{(a, b, c) E .c(ß, r)la' > 0, c' < O} - ~{(a, b, c) E .c(ß, r)la' < 0, c' > O}
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Here

(4,b,e)E.c(.6.,")
O<a'<m,e'=O

(a,b,e)E.c(.6.,r)
a'=O,O<e'<m

L:(.6.,r) = {(a,b,c) E Zlb2 -4mac =~, b r mod 2m},

B] (x) = x - ! is the first Bernoulli polynomial, and a' ,c' have the same meaning as

above. Thus cPA(T, z) is a skew-holomorphic Jacobi form of weight 2 and index m.

Note that the two sums in the last formula vanish unless .6. is a perfect square.

By the Main Theorem (and the facts that cPA is a cusp form and that S,6"r maps cusp

forms to cusp forms if .6. =1= 1), we thus obtain for example, for any m such that 9nt (m)

contains only one cusp form, say /(T) = L:l~l aj(e)e21rilr and al(1) = 1, and for any

r, .6., r 2
_ .6. mod 4m, .6. =1= 1 fundamental, the identity

L { L Sign(a/)} .e-~
l~] (a,b,e)E.c(.6.l 2 ,rl)

a'e' <0

(The reader may verify that the first sum on the right hand side of the last identity for

m = 11 and A = (~ ~), ~ = 5, r = 7 equals -1 j thus, in general, the given identities

really involve the modular forms /.)

The method used here to produce the Jacobi forms cPA can be generalized. It is

even possible to construct in this way, for any arbitrarily given index m, a set of Jacobi

forms of weight 2, the Fourier coefficients of which can be described as explicitly and

effective as those of <PA, and of which it can be shown that they span the whole space of

(holomorphic and skew-holomorphic) Jacobi forms of index m. Via the Main Theorem

we then obtain as weIl a simple arithmetical rule to generate explicitly the space of all

modular farms of weight 2 on ro(m) for any given m. For details the reader is referred

to [82].
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