
ON POWER SUMS OF POLYNOMIALS

OVER FINITE FIELDS

ERNST-ULRICH GEKELER

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26

5300 Bonn 3

MPI/87-26



On power sums of polynamials aver finite fields

Ernst-Ulrich Gekeler

o. Introduction

1 • Same arithrnetic funetions

2 . Power sums

3. The generating funetion

4. Computation of si (q
h

- 1)

5. Some algebra

6 . Applieations to zeta values

References

o. Introduction

Let A = lF [T] be the polynomial ring over a finite field lF
q q

with q elements, K its quotient field, and K the completion
00

of K at its prime at infinity. Non-zero elements of A are

monie if their leading coefficient equals one. In aseries of

papers (e.g. [5], [6], [7]), D. Goss has introduced and investi-

gated the K -valued zeta function of K whieh interpolates the
00

I a- k (a E A monie, , k E:IN) Let s. (k) I a
ksums . =

1.

(a E A monie of degree i) . Then s. (k) = 0 'for i large, and
1.

I s. (k) (i '= 0) appears as the value of zeta at -k [ 6] • Another
].

souree of interest in these II numbers ll is the link between their
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congruence properties and class number formulas,which leads to

a Kummer-type criterion for abelian extensions of K [5].

prove certain relations between

In this article, we study the s. (k) . Among other things, we
1

s. (k) and the polynomial
1.

gamma function r k , for special values of k. These relations

(i.e. (6.3)), had been empirically observed by Goss [6]. For k

of the form qh_1 bt i i 1 . f si(k), we 0 a n a s mp e express10n or

by means of elementary arithmetic functions (see(4.1)). Further,

we have some results on the size of s. (k) and on congruences
1

module srnall primes. Questions of this type have been studied for

the first time by L. Carlitz in the thirties. In particular, (1.13)

and apart of (3.4) are due to hirn [2], but given there with

different proofs.

1. Some arithmetic functions

For natural numbers i, define the following elements of A

( 1 • 1 )
i

[i] = Tq - T

L . = [i] [i - 1] ••• [1], and
1

i-1
D. = [i][i-1]q ... [1]q

1.

Put further La = Da = 1 . Obviously,

D. = [i] D~ 1 •
1. 1-

L. = [i]L. 1
1 1-

and
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Let f E A be monie, prime, of degree d dividing i. Mod f ,
d

Tq ~ T , thus f divides Ci]. Counting the number of such f,

we obtain

(1 • 2 )

( 1 • 3 )

( 1 • 4 )

Ci] =~ f ( f monie, prime, deg fli ) ,

D. = ~ f (f monie, deg f = i ) , and
1.

L. = t.e.m. { flf manie, deg f = i } ,
1.

where (1.3) and (1.4) are easy consequenees of (1.2). Next, let

( 1 • 5 )

and

i
= Dk/(D.Lk

q
.)

1. -1.
(== 0 far i > k)

(1 • 6)

Then e
k

(z) is a monie separable q-additive polynomial with

eoe ff icients in A. ( q-additive : :IF -linear; separable:
q

eoeffieient of z is non-zero). Equating eoefficients, we have

(1 .7)

and

e k (Tz) = Tek ( z) + [k] e~_1 (z)

(1 • 8)
q q-1

== e k - 1 (z) - Dk - 1 e k - 1 (z) •
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Since JF*~ K* consists of the (q - 1) - st roots of uni ty,
q

( 1 • 9 ) n (X - c) = X
q - x .

cElFq

By logarithmic derivation, the following frequently used formulas

result:

(1.10)

(1.11)

L 1 / (X - c) = - 1 I (X
q

- X)

Lc / (X - c) = 1 / (Xq - 1 - 1 )

Let H be a finite-dimensional F -subspace of
q

K , and let00

= n (z - h) ,
hEH

which is a monic separable q-additive ,polynomial. Let H ·be a

direct sum H = V m V , and let the F -spaces VI , VI be
q

defined by UI = ev(u) and V, = eU(V) . Cornparing zeroes, we

get

(1.12)

Note that cornpos i tion of two q-additive polynornials resul ts in

another q-additive polynomial.

Now let Ak = {a E A I deg a < k} . (As usual, we assume the

degree of 0 E A to be -00.)
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1.13. Proposition [2]

(i) ek(z) ;;;; e
A

(z) ;;;; n (z - a)
k aEAk

(ii) k
ek(T ) ;;;; Dk .

Proof: In view of (1.3), (ii) follows from (1). Let f k be the

right hand side of (i). We use induction on k, the case k;;;; 1

being given by (1.9). Thus let k > 1 . We have

Ak ;;;; F qTk- 1 m A
k

- 1 · By induction hypothesis, f k - 1 ;;;; e k - 1 and

k-1 k-1
e k - 1 (T );;;; Dk - 1 • Therefore, putt1ng U;;;; e k - 1 ( F qT ), we

have

e
u

(z) ;;;; z q - Dq - 1 z
k-1

Using (1. 12) and (1. 8) ,

Proof: Logarithmic derivation of (1.13i)~

2 •. Power sums

For i, k ~ 0 , define

( 2 • 1 ) s.(k) ;;;; L a k
1.

(a monic, deg a ;;;; i) .
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sO(k) = 1 and si(O) = 0 if i > 0 . Ob-

s. (k) satisfy eongruenees of Kummer type, i.e.
1.

if P is a prime ideal of A of degree d, and

dk ::i k I mod (q - 1) , then

(2.2)

For these numbers, there are two reeursions. Let us first eon-

sider the one eoneerning i . We wr i te a = Tb + e with b

monie of, degree i - 1

s. (k) =
1.

=

and c E lF and get
q

L (Tb + c) k
b,c

Now L eS = - 1 i f 0 < S 5! 0 mod (q - 1) , and zero otherwise.
cE lFq

Henee

(2 . 3) si(k) =- L (k\ Tjs. 1 (.j)
j<k j) 1.-

ji::ik mod (q-1 )

Let p be the eharaeteristie of lF and k = L k s
q s,p p

j L js,p p
s the p-adic expansions, i.e. 0 :;; k s,p' js,p= < p .

Then by Lucas
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mod p ,

where if kS,p < js,p · In the sequel, we often

write 11 = n for the congruence of integers in F . In particular
p

(2.5) ( ~) * 0 <=-;0 (j ~ k , all s) ~ 9., (k) = 9., (j)+9., (k-j) •
J s,p s,p P P P

Here R.. (k)
P

denotes the surn \ k of p-adic digits.
l.. s,p

Now consider the expansions of k and j with respect to q :

k I k s j I jsq
s but 0 ~ k . Since these= sq . , = , now s,J s < q .

are derived in the obvious way from the p-adic expansions, (2 .4)

still holds, i.e.

(
k\
j)

but (2.5) has to be replaced by

(2.6)

9.,(k)

( ~) * 0 • (j ~ k , all s) • ~(j) ~ ~(k) ,
J s s

= L k = sum of q-adic digits.s

(2.7) In order to control the binomial coefficients, we define

the relation 11 < 11 on non-negative integers by

j < k ~ (i) j < k ( i i ) j = k mod (q- 1 ) (ii i ) ( ~) *0 mod p •
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Since ~(j) - j rnod (q - 1) , j -< k irnplies ~ (j) :i ~ (k) - q + 1

Further, 11 -< 11 is transitive, as one sees from (~)(~) =

(r\(r-t)
t) r-s .

(2.8) Let p be the following operator on non-negative in-

tegers: If k is written in the form

e
k = L q s

1:;;s:i~(k)

where always (i) e ~ e 1 and (ii)
5 s+ e < e " thens s+q

p(k) =-00, if

e
p (k) = k - L q S

1:is~q-1

.Q. (k) < q - 1 , and

otherwise .

Put further p ( - 00) paCk) k and i i-1=- 00 , = , p = p 0 p

Example: 3 k 71 2 3 Thenq = , = = 2+2·3+3 +2·3

p(k) = 69 p2 (k) = 63 , p3 (k) = 27 , p 4 (k) =- 00

2 • 9. Lemma: I f j:i k and ~ ( j) :i ~ (k) then p (j ) ~ p (k) •

Proof: Let e (resp. el) be the exponents occurring in thes s

representation (2.8) of k (resp. of j) • Since Q,(j) :i ~(k) ,

there are less e' than e , and since j:i k , the:tail of j
S s

(leaving off the contribution of the first

than the tail of k.

q-1 el)
5

is less
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2.10. Corollary: j < k implies pS(j) ~ ps+1(k) for all

s ~ 0 .

Proof: For s = 0 , the assertion is j ~ p(k) which follows

from (2.7) and the construction of p(k) . Assume s > 0 . From

(2.7), ~(ps-1 (j» ~ ~(ps(k» and, by induction hypothesis,

ps-1 (j) ~ pS(k) . Thus by the lemma, pS(j) ~ pS+1 (k) .

The next proposition is a refinement of Thm. 1 in [11].

2.11. Proposition:

(i) For i > 0 , deg s. (k) ~ p (k) + ... + pi (k) .
1.

(ii) If the following condition is satisfied:

For 0 < s ~ i ,

equality holds in (i) ~

( k .) • 0 mod p ,
pS (k)

Proof: (2.3) combined with (2.10) gives deg s1 (k) :iI p(k) , i.e.

(i) for i = 1 . Now use induction on i: deg s. (k) ~
1.

sup {j + deg si-1 (j) 1 j < k} :i sup {j + P (j) + ••• pi-1 (j)} (by ind.

hyp.) :i p (k) + p2 (k) + ••• pi (k) , i.e. (i). Condition (*) says

that pS(k) is the·unique maximal j such that there exists a

chain j = j < j 1 < ... < j1 < ks s- Now (ii) follows from (2.3).
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s. (k) = 0 for i > 9., (k) / (q - 1) . In par
1

ticular, s. (k) = 0 i f k < qi - 1
1

2.13. Remark: By (2.5), (*) is automatically fulfilled for

q = p prime. Another example where (*) holds is given by

k = (qi - 1) + k' , k' =:i 0 mod qi , and .Q.,(k') < q , as comes from

the expansion k = (q - 1) (1 + q + ••• qi-1) + k'

3. The generating function

Let X and Z be two indeterminates over K . Then e. (X - z) ,
1

considered as a polynomial in X over K(z) , has

{z - al a E A.} as its set of zeroes . Thus
1

( 3 • 1 ) P. k(z) =
1,

is the k-th power sum which may be computed by Newton's for-

mulas [1, Ch. IV]. In view of

we obtain

e. (X- z) = e. (X) - e. (z)
111

and ('·.1 3) ,

(3.2) Pi,k(z) 0 (k <
i - 1)= q

P. k(z) ( - 1) i D. /L. [~] (k'= i - 1)= = q
1, 1 1

and for k ~
iq
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r i ] i[i1 _Pi k - Li-1 P i i -1 + · .. + (-1) 0J p. i-ei (z) p. i - 0 ·
, i,k-q +q 1.,k-q +1 1.,k-q

(The first two equations result from the specific form of

combined with Newton.)

If we put

e. ,
1.

(3.3) P. (U,z) =
1.

kI P. k(z)U
k~O 1.,

we arrive at

P. (U,Z) =
1. i

- e. (z) uq
1.

. i 1
(-1 ) 1.n . /L. •uq 

1. 1.
;;;:

1 i i
e. (U- ) Uq - e. (z) uq

1. 1.

(3.4) I s. (k) uk
;;;:

k2:0 1.

(-1)in ./L .
1. 1.

iq -1
U

A result essentially equivalent with (3.4) has been obtained by

Carlitz [2, Thm. 9.5]. Let us now derive some consequences of

(3.4). Let k < qi+1 - 1 . By (2.12), the highest possible non-

zero s. is s. ;;;: s. (k) that will now be computed. Let
J 1. 1.
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k I = k - (qi - 1) . We rnay assurne k' > 0 ; otherwise, s. (k)
1.

would vanish (k' < 0) or equal (-1)iD./L . (k ' = 0) • Let
1. 1.

(3.5) i+ a.q
1.

be the q-adic expansion. Since

= L (_1)i-j[~]
• C' • J
J"'1.

s. (k) is contributed by each representation of k' as a surn
1.

(3.6) I a. (qi - qj) + Bqi = k I ,

j<i ]

where Band a. are non-negative integers, as results frorn
J

expanding (3. 4). Now, since k I < qi+ 1 - qi , the nurnbers

a.(j < i) and Bare< q . Cornparing (3.5) and (3.6), we read
J

off:

(3 • 7 ) Cl. = 0
J

= q - a
N

= q-1-a.
J

B = a. + 1 - La. ,
1. j<i J

(j < N) ,

(j = N) ,

(N < j < i) ,
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in case N < i , and a. = 0 , ß = a. if N = i . In par-
] J.

ticular, any solution of (3 • 6) is uniquely determined. If ß

happens to be negative, there will be no solution of the type

required, and s. (k) = 0 . In what follows, we assume the solution
J.

(0..,6)
J

(3.8)

of (3.6) to exist. Then by (3.4),

s. (k) = (-1)iD /L ·M D~ n ((_1)i-j+1[~lJ)o.j ,
1. i i 1... JJ<1 .

where M denotes the rnultinornial coefficient

(which rnay vanish). In order to evaluate the" product, we need

the easily proved formulas

(3 • 9)

(3.10)

and

Up to· the' cönstant factor (-1)r.M , Si (k) equals

1+ß qj o..
D. /L.·n (D./D.L .. ) J • Let us first assume N < i . Then

1. 1... 1. J J.-J
J<1

_fram (3. 5)

(3.11) ~1 N N+1 i-1 i
k = (q-1) + ... + (q-1) q + (~-1) q + ~+1q + ... + a i - 1q + (ai+1) q
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is the q-adic expansion of k. We may now use the relation-

ship between (a.,ß)
J

and b.
J

to express s. (k)
1

through these

coefficients. After some calculations, repeatedly applying (3.9)

and (3.10), we arrive at

(3.12)
qj (b . -q+ 1) b .

= (-1)rM• n L· . J n D.J
1-J J

j~i j~i

b.
Note that the last factor n Dj

J equals the value r k of the

Carlitz-Goss factorial at k [4], [12]. These factorials have

been interpolated by Thakur [10] to a continous K - valued
00

gamma function with nice arithmetic properties. Let now N = i

i ii.e. k = q -1 +bq 0< b < q. In that case, by (3.7) and

(3.8), s. (k) = (-1)iD~+1/L. , i.e. Sl' (k) = (-1)i rk "as follow_s
~ ~ 1

from the definition ,of ,rk • Note this agrees wi th,. (3.-12). ·-.s'ince

b. = :q:-:-..:1l if' j"< i". It.,is~-easy to evaluate the terms, M 'and,-Jr
J

in (3. 1,2) -. 'The final resul t (which _.does not dis tinguish between

the,cases .N < i and N = i ) is summarized in

3. 13 • Theorem: Let k < qi +1 - 1

k = L b.qj . Then
J

have the q-adic expansion

s. (k)
1

qj(b.-Q+1)
= ( -1 ) r ".. "M • n L. . J • r k '

j~i 1-J

where r = i + I
j<i

(i-j+1)b.
]

, and M is the multinomial co-

efficient ( bi ) b ~ = q - 1 - b. (j < i) , and
bO' ... ,bi ' ] J
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b! = 9.(k) - i(q-1) .
1.

3.14. Corollary: In the above situation, let i = 1 ,

In the special case q = p prime, this result has also been

obtained by Ireland-Small [8J.

From (3.4) , we can also derive some congruences for the si(k) .
Let p be a prime of A of degree d :;a i . We may easily deter-

mine the order ord x of p in x = Li' D. , and [~] , where
1.

j < i . Let gif(r) be the greatest integer function of r E W

(which is usually denoted by [r] ). Let further i = i 0 + i 1d ,

j = j 0 + j 1d, O:;a i O' j 0 < d

3. 15. Lemma:

(i) ord L. = gif (i/d)
1.

(ii) ord
i O i 1d d

D. = q (q. - 1)/(q - 1)
1.

[~]
i i O j jo d

- cqj(iii) ord = (q -q -q + q ) / (q - 1) , where

c = i 1 - j 1 if i O ~ jo , and c = i - j - 1 otherwise.1 1

Here, (iii) follows from (i) and (ii) which are direct con-

sequences of the definitions of L.
1.

and D. , respectively.
1.
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Considering the cases in (ii) separately, we obtain

3 . 1 6 . Lemma: [ ~] + 0 mod p <=> j = i - d .

3.17. Corollary: Let p be a prime of degree d ~ i and

k E ~ arbitrary. The following assertions are equivalent:

(i) d = i and k!3 0
imod (q - 1)

(ii)

(iii)

s. (k) s - 1 mod p
).

s. (k) * 0 mod p •
).

Proof: Clearly, (i) q (ii) ~ (iii) . Let us show (iii) q (i) .

Consider (3.4) reduced mod p • From s. (k) * 0 , we derive
1

(-1liDi/Li = [~] + 0 ,i.e. d = i . Further, Di/Li = (-1li-1modP

which follows for instance from (3.9). Hence the generating
i i

function mod p becomes congruent to - Uq -1 / (1 - Uq -1) , so (i)

follows.

h_4_.__C_o_m_p_u_t_a_t_l_·o_n_o_f__s i (q - 1)

In this section, we show

4.1. Theorem:

hs.(q -1) =
1

(h < i)

(h ~ i)
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In contrast with the simple formula, no simple induction

argument seems to apply, since in (2.3) and (3.4), arguments

k which are not of the form qh - 1 occur.

Our first step towards the theorem is to write

(4.2) hs.(q -1) =
1.

= I.< .J_1
with

K ~ ~ =
1,J I i i-1

a./(T + a. 1T + ••• aa)
J 1-

a i - 1 ,···,aa

the running over lFq , and a. = 1 . Thus we are
1.

reduced to determine K
i

. . We have to introduce seme notation. f/-
, J

For a k-tuple r = r
1

, ,rk of non-negative integers, put

(4.3)
r 1 r k

= q + ••• + q

In particular, q(E) = 0 if r is the empty tuple of length a .

Next, we define

(4.4)

where r runs through these r of length k that satisfy

o ~ r
1

~ ... ~ r
k

< i . Sirnilarly,
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(4.5)

but now with r satisfying 0 S r 1 < ••• < r k < i . Thus,:if

we let

(4.6) g, (X) =1.

kn (X - T
q

)
OSk<i

then g. (X) =1. L (-1)sB, xi - s • Obviously,
sSi 1.,S

(4.7) = 1 (i > 0) ,

B, k = 01., (k > i) , and

A. 1 k 1 = TA, 1 k + A~ k 11.+ , + 1.+, 1., +

4.8. Lemma: Let j > 0 , k ~ 0 . Then e , (T j +k) = D A. . 1 kJ J J+ ,

Proof by induction on j + k The case k = 0 is given by

( 1 • 13). Now

e. (T j +k + 1 )
J

= TD A [J'] D
q

A
q

j j+1,k+ j-1 j,k+1

(by (1. 7) )

(ind. hyp.).

But [ '] q e.(T j +k+ 1) = ( q)J D. 1 = D. , so D. TA. 1 k + A. k 1J- J ] J J+, J, +

= DIA. 1 k 1J J+ , +
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We know apriori

(4.9) K. i =1,
L 1/a

a monie of degree i

whieh follows from (1.14). Let us now compute

using (1. 10) and (1. 11 ) .

K.. (j < i) ,
1,J

Again by (1.14), the innermost sum equals

j . i i-1 j(-1) D. / (L . e . (T + a. 1T + ••• a. T » • Let Q = Q (a . l' ••• , a. 1)
J. J J 1- J 1- J +

. i j+1
= e. (T ) + ..• + a. 1e . (T ). Thus

J J+ J

K
i

.
,J

= (-1)jO./L. ·
J J

a./(Q+a.O.)
.J J ]

= (-1)jD./L ..
] J

using (1.11). Comparing (1.11) with (1.10), we see: If we re-

place the factor Q

evaluates to K. .
1,1

in the nurnerator by -D. , the modified surn
J

. Correspondingly, replacing Q by -a O. ,
5 J

where j < 5 < i , yields K. . Therefore,
1.,S

_ j \' i ...i-1 j+1 q-1 q q-1-D.K.. - (-1) D./L.· L -(e. (T )+a. 1e. ('1' ) + ... + a. 1e. (T ))0. I(Q -<J). )
J 1,J J ] a ] a 1.- J J+ ] J J

i-1'···' j+1

_. .-1 j+1
- e. (r)K . . + e j (r ) K. . 1 + •.•• + e . (T ) K. . 1 •

J 1,1 1,1.- J 1,J+
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Taking (4.8) into account, this gives

-K i . = A. 1 . jK. . + A. 1 . . 1Ki . 1 + .•• + A. 1 1K. . 1,J J+ ,1- 1,1. J+ ,1.-J- ,1.- J+, 1.,J+

i.e.

(4.10) \' A
j

1 .. K.. = 0
L. + ,1.-J-s 1.,1.-S

s~O

(j < i) •

In the next section, we will prove

(4.11) ~ (_1)i-j-s A B = 0
L. J'+1,i-j-s i,s

s~O

(j < i) .

Inviewof K.. = (-1)i/L .1.,1. 1.

descending induction on j :

(4.10) and (4.11) then show by

4.12. Proposition: K. . = (- 1) j B . . . /L. •
1.,J 1.,1.-J 1.

This in fact finishes the proof of Theorem 4.1 (modulo (4.11)):

Of course, if h < i then s. (qh - 1) = 0 ; otherwise,
1.

i h
(-1) LiSi(q -1) =

. h
(-1)iL . L TJq K..

1. .<. 1.,JJ_1

B. i .1., - J

h
= g.(Tq )1. (see (4. 6) )

= n
O~j<i
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i-1
= [h][h- 1]q ... [h- i + 1]q

4.13. Remark: Possibly, using the method of Goss polynomials

described in [3], one may compute sums of type

powers r > 1

K. . , but with
1.,J

in the denominator. This would give an approach

to hs.(q -r)
1.

and (optimistically) to something like a functional

equation for the Goss zeta funetion.

5. Some algebra

The reason for (4.11) to hold is of a general algebraic nature

(an identity of Newton type between eertain symmetrie functions,

i.e. Thm. 5.7), and does not depend on our special situation. As

I eould not find an equivalent result in the literature, and the

induetion used is trieky, I will present the eomplete proof.

In this seetion, F is an arbitrary field and X, T1 , T2 ...

are indeterrninates over F. For i > 0 , we put

(5 • 1 ) A. k1., = L
r

T
r

r running through the set of k-tuples satisfying

O < < ~.< r 1 - ••• - r k .a 1. , T
r

= T
r

1
T . Further, let

r
k
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n (X - T )
O<s~i s

of the last section. With the conventions

yields the nurnbers

considered as a polynomial over
r-1

F ~JF T ~ T
q

q' r

polynomials g.1.

F [T l' ... , Ti] . Spezialization

and the

A. k = B. k = 0 if k < 0 , A. 0 = B. 0 = 1 , we have1., 1., 1., 1.,

(5.3) A1+1,k = A. k + T. 1A . 1 k 11., 1.+ 1.+,- and

(5.4) B = Ba k + T. 1B . k 1 •i+1,k 1., 1+ 1.,-

Iterating (5.3), we arrive at

(5.5) A i + 1 , k =

5.6. Lemma: Let i,k > 0 • Then L (-1)sB. A. k = 0 •
s~O 1.,s 1, -s

Proof: We use induction on i, where the case i = 1 reduces

to B1 ,OA1 ,k = B1 ,1 A1,k-1 . This results frorn B1 ,0 = l'

A1 ,k T
k

A1 ,k-1
k-l

B1 ,1 T1 Let U. k be the= , = T
1 = . surn1 1,

in question. Then



Ui +1 ,k =

=

=
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\ s ,
L (-1) B. 1 A. 1 k>0 1.+ ,S 1+ , -S

5_

I (-1)s(B. +T i 1 Bi 1) I T7 1 A. k
5,=0 1,5 + ,5-, r~O 1+ 1, -s-r

(by (5. 4) and (5. 5) )

\ T7 U . '- \' Tr + 1 U
r~O 1+1 1,k-r r~O i+1 i,k-r-1

(interchanging the summation order and collecting terms) .- By

induction hypothesis, U. k vanishes for r < k
1, -r

(and it

r >vanishes apriori for

contribute, i.e.

proves the lemma.

k ). Hence only the terms U. 0
1,

= Tk U - T (k-1 ) +1 U - 0 , which
i+1 i,O i+1 i,O -

5 • 7 • Theorem: Let 0 < j ~ i and k i:: i - j + 1 . Then

1: (-1) sB . A. k = 0 •
s~O 1,S J, -s

Proof: As usual, by induction on i , the case i = 1 being

included in the lemma. Let V.. k be the sum in question, and
1,J,

let j ~ i + 1 , k ~ (i + 1) - j + 1 • Then

V. 1 . k= I (-1)sB. 1 A. k = I (-1)S(B. +T. 1Bi 1)A. k
1+ ,J, s~O 1+ ,5 J, -5 s,=O 1,5 1+ ,s- J,-s

= Vi' . k - T. 1 V. . k 1,J, 1+ 1.,J,-

If j ~ i , the requirements on (i,j,k) and on (i,j,k-1) are
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satisfied, and both terms vanish by hypothesis. rf, however,

j = i+1 , then V. 1 . k = 0J.+ ,],
by (5.6).

5.8. Corollary: Assertion (4.11) is true.

Proof: Put k = i - j + 1 in (5 . 7) , then replace j by j + 1

(so 0 ~ j < i instead of 0 < j ~ i) . and specialize
r-1

F ~lF T. --..,... Tq as stated in (5.2) .q r

n

5.9. Remark: Let A. k' B. k be the elements of
J., J.,

defined by (4.4), (4.5~, respectively. Then A. k = L
1.,

A =JF [T]
q

n
CL k(n)T ,

1.,

Bi,k = L ßi,k(n)T
n

, where ai,k(n)
n

number of representations of n by

(resp. ß. k(n)) is the
1.,

k powers (resp. k different

powers) of q less than qi , considered mod p . Then (5.7)

gives congruences mod p for these numbers.

6. Applications to zeta values

For k ;;: 0 , let Z(X,k) E A[X] be the polynomial

L s. (k)X i , which is of degree ~ t(k)/(q- 1) by (2.12) . Then
'>0 1.1._

Z (X,k) is closely related to the value at -k of Goss's

K -valued zeta function (see [6], Ch. 5).
00

6 . 1 Lemma: I f 0 < k == 0 mod (q - 1) , then Z (1 , k) = 0 .



- 25 -

Proof:

( ) \' a kZ 1,k = L (a E A monic of degree < N , some N» 0)

= - I (ca) k (a as above,

(see (3.3))

c E lF*)
q

which is zero for N large enough.

(6.2) We define the polynomial fk(X) = Z(X,k) , in case

k + 0 mod (q - 1) , and f
k

(X) = Z (X,k) / (X - 1) otherwise. Hence

f
k

(1) equals the Goss-Bernoulli number ß(k) whose congruence

properties are related to a Kummer-type criterion ([5], see also

[9] ). Write

= L f. k xj
] ,

(6.3) Let now k be a number of the form k = (qi - 1) + cqi

o < c < q . Making extensive computations (see [6], 5.2, or

[12]), Goss observed the following empirical facts:

(i) deg fk(X) = i

(ii) deg f. k strictly increases wi th j , as long as j ~ i
] ,

(iii) deg f i - 1 ,k
~

i
= deg f. k - cq

1.,
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All of this is now included in our results. Distinguish two

cases:

(6.4) c < q - 1 , so k is not divisible by q - 1 , and

f. k s . (k) Now piek) i pi+1 (k) and all the= . = cq = - 00 ,
J , J

k
binomial coefficients (pj(k)) are =t= 0 rnod p . Thus (i) , (ii) ,

(iii) result·from (2.11) , and (3.13) yields (-1)i rk for the

leading coefficient, i.e. (iv).

f. k = - L s (k) •
J, n:Sj n

for j:S i + 1 .

(6.5) c = 9 - 1 , so k == 0 rnod (q - 1) , and

k
We have pi+1(k) = 0 and (pj(k)) + 0 mod p

Again (2. 11), combined wi th (6. 1), implies (i), ( ii), (i1i).

Finally, fi,k = leading coefficient of fk(X) = ~.c. of

i+1 i+1
Z(X,k) = s. 1 (q -1) = (-1) D. 1/L i 1 (by (4.1))

~+ 1+ +
i+1 i

= (-1) r k since k = (q - 1) (1 + q + ••• + q ) . Of course,

(4.1) gives much better information in this case.
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