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0. Introduction

Let A =ZFq[T] be the polynomial ring over a finite field ITq
with g elements, K its quotient field, and K, the completion
of K at its prime at infinity. Non-zero elements of A are
monic if their leading coefficient equals one. In a series of
papers (e.g. [5], [6], [7]), D. Goss has introduced and investi-
gated the X _-valued zeta function of K which interpolates the
sums Ea_k (a € A monic, , k €N) . Let s, (k) = Zak

(a € A monic of degree 1i) . Then si(k) =0 for 1 large, and
Esi(k) (1 2 0) appears as the value of zeta at -k [6]. Another

source of interest in these "numbers" is the link between their



congruence properties and class number formulas,which leads to

a Kummer-type criterion for abelian extensions of K [5].

In this article, we study the si(k) . Among other things, we
prove certain relations between si(k) and the polynomial

gamma function Fk , for special values of k . These relations
(i.e. (6.3)), had been empirically observed by Goss [6]. For k

of the form qh-1 , we obtain a simple expression for si(k)

by means of elementary arithmetic functions (see(4.1}). Further,
we have some results on the size of si(k) and on congruences
modulo small primes. Questions of this type have been studied for
the first time by L. Carlitz in the thirties. In particular, (1.13)

and a part of (3.4) are due to him [2], but given there with

different proofs.

1. Some arithmetic functions

For natural numbers i , define the following elements of A :

(1.1) [1] = Tqi—T '
L, = [(i)[i-11 ... [1], and
p, = [111i-119 ... S
Put further L0 = D0 = 1 . Obviously, Li = [i]Li-1 and

= I3 g
D, = [i1 Di_, .



Let £ € A be monic, prime, of degree d dividing i . Mod f
@ =T , thus f divides [i]. Counting the number of such f

we obtain

(1.2) [i] f ( £ monic, prime, deg f|i ) ,

(1.3) D

| f ( £f monic, deg £f =i ) , and

(1.4) L

]

L.c.m. { £f|f monic, deg £ =i } ,

where (1.3) and (1.4) are easy consequences of (1.2). Next, let

k| qi _ .
(1.5) {i] = Dk/(DiLk_i) (=0 for i > k)
and
(1.6) e (z) = § ( nk'l[k] T
: k i

Then ek(z) is a monic separable g-additive polynomial with
coefficients in A . ( g-additive: ZFq—linear; separable:

coefficient of 2z 1s non-zero). Equating coefficients, we have

(1.7) e, (Tz) = Te, (z) + [kle] . (z)
and
(1.8) e (z) = el (z) -p37Te (z)

k-1 "k-1

[

!



Since IE‘a €— K* consists of the (g-1)-st roots of unity,

(1.9) TT (x-¢) = x3-x.
C€IE

By logarithmic derivation, the following frequently used formulas

result:
(1.10)  J1/ (x-¢) =-17 (x3-x)
(1.11)  Se/(x-c)=1/xTT-1 .

Let H be a finite-dimensional IFq—subspace of K_ , and let

eylz) =TT (z-h) ,
h€H

which is a monic separable g-additive .polynomial. Let H ‘be a

direct sum H = U ®&® V , and let the IFq-spaces u' , V' be

defined by U' = eV(U) and V' = eU(V) . Comparing zeroes, we
get
(1.12) eH(z) = eU.(eV(z)) = ev.(eU(z)) .

Note that composition of two g-additive polynomials results in
another g-additive polynomial.
Now let A, = {a € A|deg a < k} . (As usual, we assume the

degree of 0 € A to be -« .,)



1.13. Proposition [2]

(i) e, (z) = e, (2) = TT (z-a) ;
(ii) ek(Tk) =D

Proof: 1In view of (1.3), (ii) follows from (i). Let fk be the

right hand side of (i). We use induction on Kk , the case k = 1

being given by (1.9). Thus let k > 1 . We have

- k-1 - ; . -
Ay —ZFqT ® A _, - By induction hypothesis, fk_1 = ey and
! k-1 - Therefore, putting U = ek_1(ZF Tk-1) , we

) =D q

k_
ey (T

have

-1

_1z

- ,9_pd
eU(z) = z Dk
Using (1.12) and (1.8),

£,(2) = egle,_,(2) = el (z)-D3Tle (2) = e (2)

1.14. Corollary: Y 1/(z-a) = [g]/ek(z)

aEAk

Proof: Logarithmic derivation of (1.131i}.

2.. Power sums

For i, k 2 0 , define

(2.1) si(k) = 3 ak (a monic, deg a = i)



In particular,

viously, the Si(k)

so(k) =1

is a prime ideal of A of degree

and si(O) =0 if i > 0 . Ob-

satisfy congruences of Kummer type, i.e.

d , and

if p

_ d
k s k' mod (g -1) , then
(2.2)

For these numbers,

sider the one concerning i . We write

monic of degree i-1
s; (k) =
Now § ¢® =-1 |if
ce TF
q
Hence
(2.3) sy (k) =- ¥

j<k

there are two recursions.

si(k) = si(k') mod p

Let us first con-

a=Th+c with b
and c € ]Fq and get
Y (Tb + c) &
b,c
) /k) 13§ pick
jsk M b,c
0 < s =20 mod (g-1) , and zero otherwise.

(

k)
i/

i .
T s, 13 .

jsk mod (g-1)

Let p be the characteristic of IFq

! 3

pS
sS,p

Then by Lucas

the p-adic expansions,

S
'pE> '

and k = ) kg

k
S,p

0 s <

s,p

i.e. Ij P .



520 'P
k
where (.s,p) =0 if k < J . In the sequel, we often
Jg s,P S+P
P
write " = " for the congruence of integers in :Tp . In particular
k . .
2.5 .} %0 j £k , all (k) =1 +2_ (k- .
2.5) (%) 0 = (3, sk Looall ) = 20 = 8 (3) 48 (k=3)

Here ip(k) denotes the sum ] k_ b of p-adic digits.

Now consider the expansions of k and Jj with respect to q:
S . . S . .

k = § kg o 3= ¥ j .94 , but now 0 £ k_,j, < g . Since these

are derived in the obvious way from the p-adic expansions, (2.4)

still holds, i.e.

() =TT () -
but (2.5) has to be replaced by
(2.6) (g) + 0= (j_ 85k, all 5) = &(3) 5 2(k) ,
L(kx) =} k, = sum of g-adic digits.

(2.7) In order to control the binomial coefficients, we define

the relation " < " on non-negative integers by

j<ke (i) j < k ; (i1) j=k mod(g-1) ; (iii) (?)* 0 mod p .



Since 2(3j) g mod (g=-1), Jj <k implies 2(j) s (k) -qg+1

Further, " < " 1is transitive, as one sees from (;)(i) =
r\{r-t
t\r-s/ °

(2.8) Let p be the following operator on non-negative in-

tegers: If k is written in the form

e
k = a®,
15558 (k)
where always (i) e, < € and (ii) ey < es+q ¢, then
p{k) =-«, if (k) < g=-1, and
eS
p{k) = k- q otherwise .
1$s5g-1
_ 0 ~ i i-1
Put further p(-®) =-o , p (k) =k , and p =9p o p
Example: g =3 , k=71 = 2+2.3+3%42.3° | Then
2 4
o(k) = 69 , p%(k) = 63, p (k) =27, pl(k) =-o

2.9, Lemma: If 4 s k and £(j) = 2(k) then p(3) = p(k) .

Proof: Let ey (resp. eé) be the exponents occurring in the
representation (2.8) of k (resp. of j) . Since 2(j} s (k) ,
there are less eé than e, and since j £ k , the:tail of
(leaving off the contribution of the first g-1 eé) is less

than the tail of k .



2.10. Corollary: 3j < k implies ps(j) pS+1(k) for all

A

s 2 0

Proof: For s = 0 , the assertion is j

IA

p(k) which follows
from (2.7) and the construction of p(k) . Assume s > 0 . From
(2.7), 2(05_1(j)) S 2(p%(x)) and, by induction hypothesis,

S+1(k) .

05"1(3) < 05(k) . Thus by the lemma, p°5(j) < p

The next proposition is a refinement of Thm. 1 in [11].

2.11. Proposition:

(i) For i >0, degs, (k) s p(k) S S
(ii) If the following condition is satisfied:

(*) For 0 <s £ i, ( k ;) # 0 mod p ,

0° (k)

equality holds in (i).

Proof: (2.3) combined with (2.10) gives deg s1(k) s p(k) , i.e.
(i) for i = 1 . Now use induction on ii{ deg si(k) S

sup {j + deg S,
hyp.) s p(k) + pz(k)+ .es pi(k) , i.e. (i). Condition (*) says

_1(j)|j < k} s sup {j+p(3)+... pi_1(j)} (by ind.

that ps(k) is the-unique maximal j such that there exists a

chain j = jS < 3 < i < j1 < k . Now (ii) follows from (2.3).
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2.12, Corollary: si(k) =0 for i > 2(k)/(g-1) . In par-

i

ticular, si(k) =0 if k < g -1.

2.13. Remark: By (2.5), (*) is automatically fulfilled for

p prime. Another example where (*) holds is given by

s}
L}

(@F-1) +k' , k' =0mod q~ , and £(k') < q , as comes from

the expansion k = (g-1){(1+qg+ ... qi-1)+ k' .

P
It}

3. The generating function

Let X and 2z be two indeterminates over K . Then ei(X-z) ,
considered as a polynomial in X over K(z) , has

{z-ala € Ai} as its set of zeroces. Thus

(3.1) P, ,(z2) = ] (z-a)F
r
a€A
i
is the k-th power sum which may be computed by Newton's for-
mulas [1, Ch. IV]. In view of ei(x-z) = ei(X)-ei(z) and (1.13),

we obtain

(3.2) B, ,(z) =0 (k < gt -1) ,
_ i i _ i
Pi'k(z) (-1) Di/Li = [0] (k'=g -1 ,
i

and for k 2 g



i
S S FE ] LSRN S =

b (-1)1[3} p . -e.(z)P =0 .
1,859 +g

ik-g+1  *  ikq

(The first two equations result from the specific form of e

combined with Newton.)
If we put

_ k
(3.3) Pi(U,z) = kgopi’k(z)u ,

we arrive at

. i
(-1y*p, /1, -vd =1

1= qufq + (—1)i i qu_1-e (z)Uqi
i-1 0 i

]

P; (U,2) -7

. i
(—1)1Di/Li-Uq =1

-1 qi qi
ei(U YU -ei(z)U

. i, i,
and ,noting ei(T ) = Di ’ Pi,k(T ) = si(k) ,
i
) gt-1
(3.4) s, (0u* = (-nip, /L, Skl _—
k30 * i’ 7 T q*
e, (U"Hu? -p.U

A result essentially equivalent with (3.4) has been obtained by

Carlitz [2, Thm. 9.5]. Let us now derive some consequences of

i+1_

(3.4). Let k < g 1 . By (2.12), the highest possible non-

zero Sj is s; = si(k) that will now be computed. Let
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k' = k-—(qi-1) . We may assume k' > 0 ; otherwise, si(k)

would vanish (k' < 0) or equal (—1)iDi/Li(k' = 0) . Let
_ N i

(3.5) k' = ad +...+aq (aN + 0)

be the g-adic expansion. Since

o i-3[1] .at-q’
e. (U )Uq = z (-1) J[] ud 74 ’
i Lo, J
jsi

si(k) is contributed by each representation of k' as a sum

(3.6) T oo (gt -qd) + gt = k',
j<i J

where £ and aj are non-negative integers, as results from

i+1 _ i

expanding (3.4). Now, since k' < g g~ , the numbers

}aj(j < 1) and B are < g . Comparing (3.5) and (3.6), we read

off:
(3.7) oy = 0 (3 <N},
= q-ay (3 = N) ,
= q..1.-aj (N < j <1i) ,
g = a; + 1- ) a.

j<i
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in case N < i , and aj =0, B = ai if N =i . In par-
ticular, any solution of (3.6) is uniquely determined. If B

happens to be negative, there will be no solution of the type

required, and Si(k) = 0 . In what follows, we assume the solution

(aj,B) of (3.6) to exist. Then by (3.4),

_ (i v B AN L T I ER A
(3.8) s; (k) = (-1)"D,/L,-M D/ TT (( 1) [jj) ,

j<i
where M denotes the multinomial coefficient

M= (ag+...rta; +B) 1/ (agt ..o o [ 1BL)

(which may vanish). In order to evaluate the product, we need

the easily proved formulas

a-1 _
(3.9) lss Dt = Ds+1/Ls+1 and

a®(g-1) q
(3.10) I3 Lo_¢ = DS/Ls
Up to the constant factor (-1)rM , si(k) equals

j oL
D?+B/L.- (D./D.L3 .) I . Let us first assume N < i . Then
i i j<i S R T Ky -
from (3.5)
N-1 N N+1 i-1 i

(3.11) k= (g-1) +...+ (g-1)g +(aN-1)q ta 9 teeeta g +(ai+1)q

.
! b
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is the g-adic expansion of k . We may now use the relation-
ship between (aj,B) and bj to express si(k) through these
coefficients. After some calculations, repeatedly applying (3.9)
and (3.10), we arrive at

B

(3.12) s, (k) = (-1)"M. T [ L
jsi

j(bj—q+1) b,
1) jsi

b

Note that the last factor | | DjJ equals the value T of the

k
Carlitz-Goss factorial at k [4], [12]. These factorials have

been interpolated by Thakur [10] to a continous K, - valued

gamma function with nice arithmetic properties. Let now N = i ,
i.e. k = ql--1+bqi ;, 0 <b <g . In that case, by (3.7) and

_ (_qyi b+ . _ _qz 1
(3.8), si(k) = (=-1) Dy /Li , l.e. si(k) = (-1)°T as follows

k"
from the definition,ofwl‘k . Note this agrees with (3.12).-since

b, =.g-:1. 1f j-< i . Itsis. easy to evaluate the terms M ‘and.-,r

J
in (3.12), 'The final result (which_does not distinguish between

the.cases N <1 and N = i ) is summarized in

+1

3.13. Theorem: Let k < ql -1 have the g-adic expansion

k =) quj . Then

j
g- (b.-g+1)
= - r-o. - J .
sp(k) = (-DFem . TTL . Ty
jsi

where r = i+ § (i- j+1)bj , and M is the multinomial co-
j<i :

efficient ( + .) b! = g-1-b. (j < i) , and
DIV B 3 9 )
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bi' = (k) -i(g-1) .

3.14. Corollary: In the above situation, let i = 1

]‘=b0+bﬂ ' £=b0+m 2 g-1 . Then

b
1) L=q+1
s, (k) == ( [1] .
1 q-—1-b0}

In the spécial case g = p prime, this result has also been

obtained by Ireland-Small [8].

From (3.4), we can also derive some congruences for the si(k) .
Let p be a prime of A of degree 4d S i . We may easily deter-
mine the order ord x of p in x = Li’ Di , and [%]  Where

J < i . Let gif(r) Dbe the greatest integer function of r € Q
(which is usually denoted by [r]). Let further i = i,+1i.d ,

0" 1
j = 3g+3,d ., 0 ig, jy<d.

3.15. Lemma:

(1) ord L, = gif (i/4) ;
i i.d
(ii) ord D; = q 0 (@ | - 1)/(qd— 1 ;
. i i 3 j .
(iii) ord [;] = (g -q 0--q +q 0)/(qd--1)--cq:| , where
c = i1- j1 if io 2 j0 y and c = iT- j1— 1 otherwise.

Here, (iii) follows from (i) and (ii) which are direct con-

sequences of the definitions of Li and Di , respectively.
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Considering the cases in (ii) separately, we obtain

3.16. Lemma: [;] £ 0mod pes 3 =i-4a.

3.17. Corollary: Let p be a prime of degree d s i and

k € N arbitrary. The following assertions are equivalent:
(1) d =1 and k = 0 mod (ql_ 1)
(li) Sl(k) = -1 mod p ;

(iii) si(k) $ 0 mod p .
Proof: Clearly, (i) = (ii) = (iii) . Let us show (iii) = (i) .
Consider (3.4) reduced mod p . From si(k) § 0 , we derive

i _[i ) . gy i-T
{(-1) Di/Li = {0] $ 0, i.e. d =1 . Further, Di/Li = (-1) mod p ,
which follows for instance from (3.9). Hence the generating

. i i

function mod p becomes congruent to - UY -1/(1-Uq -1y , so (i)

follows.

4, Computation of si(qh— 1)

In this section, we show

4.1. Theorem:

0 (h < 1)

s (qh- 1) = i
* (-1)"p,/(DE_.T.,) (h 2 i) .



In contrast with the simple formula, no simple induction
argument seems to apply, since in (2.3) and (3.4), arguments

k which are not of the form qh-1 occur.

Our first step towards the theorem is to write

h i i-1 h—1
(4.2) s;(q"-1) = (r+a, 77 Ll ag) @
qi-1713
.h
= § 19k with
Ry 5= 1 a./(Ti4-ai_1Tl_1~+... ag)
Ay g
the agr --- »3;_4 running over ITq » and a; = 1 . Thus we are

reduced to determine K j - We have to introduce some notation. &

For a k-tuple r = Tyr eee 4T of non-negative integers, put
(4.3) q(r) =q +...+q " .

In particﬁlar, g(r}) = 0 1if r 1is the empty tuple of length 0

Next, we define

- q(r)
(4.4) By g - yoT ,
where r runs through those r of length k that satisfy

0 sr, £ ... 8 r, < i , Similarly,
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(4.5) B 7 pa(z)

1l

L4

i,k

but now with r satisfying 0 £ r, < ... <r, < i . Thus, if

1 k
we let
k
(4.6) g, (x) = TT (x-19) ,
0sk«<i
_ _11 S i-s :
then g, (X) = 2.( 1) Bi,sx . Obviously,
ssi
(4.7) AO,k = BO,k =0 , Al,O = Bi,O = 1 (i > 0) ,
Bi,k =0 (k > 1) , and
- q
Bivi,k+e1 = TRioq, kB ket

. : J+ky L
4.8. Lemma: Let 3j > 0, k 2 0 . Then ej(T ) DjAj+1,k .

Proof by induction on Jj+k : The case k = 0 1is given by

(1.13). Now

e (I = e (23 w31 Q3 @Iy (1.7
= a2 q q ]
TDjAj+1’k*'[j] Dj_1Aj'k+1 (ind. hyp.).
. q _ J+k+1, _ g
But [3) D 5 =Dy, so e,(T ) = DS(TAS 4 AT )
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We know a priori

; - - - i
(4.9) Ky j = ! 1/a = =1/
a monic of degree i

which follows from (1.14). Let us now compute Ki j(j < i) ,
’

using (1.10) and (1.11).

K" y aj/(Ii-+... agd= 1 ¥ a, ) /@ s ag) -
! & _qre-1dy ai_1,...,aj+1 aj aj_1,...,a0

Again by (1.14), the innermost sum equals

v i i-1 j _
(1) Dj{(Ljej(T vag (T ... ayT )) . Let Q =1Qfa;_ 4+ ... ,2

ej(Tj+1) . Thus

j+1)

_ i
= ej(T ) + ...+ aj+1

= (-] . . .D.
Ky 5 = (=1°D /L, ] N . g a;/(Q+a D)
=170 %541 Y
= -0/, T p972/ (@3- 0¥y
(=1) Dy /Ly ) Q3 “/(Q¥-0py )

ai_1,...,aj+1

using (1.11). Comparing (1.11) with (1.10), we see: If we re-
place the factor Q in the numerator by -Dj ; the modified sum

evaluates to Ki e Correspondingly, replacing Q by —aSDj ’
I

where j <s <i, yields K, s ° Therefore,
’

_ o3 v i-1
DK, 5= (=10, /L ] (ej(T)+ai_1ej(T1 ) +...+a

J+1,, na-1, ~d_~~a-1
) ej(T ))Dj /(Q-QDj )

3+1
i-1""'aj+1

L i i-1 3+1
= e (TK; s +e (T DK 4 g+ ve (MK |,
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Taking (4.8) into account, this gives

-K =

R R P I TR LY S S DR PO T L I P T

Bivr, 1%, 941

(4.10) )
s20

Aj+1,i-j-s Ki,i-s =0 (3 < 1) -

In the next section, we will prove

-1yi-3-s _ o
(4.11) 520( 1) Bjy1,i-j-s Bi,s = 0 (3 < i)

In view of K, , = (—1)i/Li , (4.10) and (4.11) then show by
r

descending induction on j :

Ces = (- 1y]
4.12. Proposition: Ki,j (-1) Bi,i-j/Li

This in fact finishes the proof of Theorem 4.1 (modulo (4.11))

Of course, if h < i then si(qh-1) = 0 ; otherwise,
. h
-nins. (g®-1) = (-niL, 7 9k
i%i iLg. i,3
j<i
i-3pda"
- z (=1) T Bi'i_j
h
= gi(Tq ) (see (4.

h o j
TT (9 -197

0sj<i

r

6))
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i-1
[h1fh-119 ... [h-1i+ 119

i
q
/PRy -

4.13. Remark: Possibly, using the method of Goss polynomials

described in [3], one may compute sums of type K, 5 but with
’
powers r > 1 in the denominator. This would give an approach
to si(qh-r) and {(optimistically) to something like a functional

equation for the Goss zeta function.

5. Some algebra

The reason for (4.11) to hold is of a general algebraic nature

(an identity of Newton type between certain symmetric functions,
i.e. Thm. 5.7), and does not depend on our special situation. As
I could not find an equivalent result in the literature, and the

induction used is tricky, I will present the complete proof.

In this section, F 1is an arbitrary field and X, T1, T2 .o
are indeterminates over F . For i > 0 , we put
(5.1) By g = 1T,
£_
r running through the set of k-tuples satisfying
0O<r, £ ... £r, 1, T _ =TT ees T . Further, let
1 k r r r

= 1 k
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(5.2) gi(X) = | (X-TS)
D<ssi
_ k i-k
= ]Z( (-1)°B; | X ,

considered as a polynomial over F[T1, .es 'Ti] . Spezialization
r-1
F ——+£Fq r T, —> T4 yields the numbers A, , B, , and the
7 [ [

polynomials 9 of the last section. With the conventions

Ai,k = Bi,k =0 if k < 0 , Ai,O = Bi,O = 1 , we have
(5:30 Ryiqx T Pkt TierPivn ke and

(5.4) Bivq,x = By x*Tis1Bi k-1 -

Iterating (5.3), we arrive at

(5.5) Ai+1,k - sgo Ti+1 Ai,k—s :

5.6. Lemma: Let i,k > 0 . Then (—1)sBi’SAi'k_S =0 .

sz20

Proof: We use induction on 1 , where the case i = 1 reduces

to B1'0A1'k = B1'1A1’k_1 . This results from B1’0 =1,
A = ¥ a = oK1 B =T, . Let U be the sum
1,k 17 1,k=-1 1 ! 1,1 1 i,k

in question. Then
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=1 .
SZO(“1’ Biv1,sPie1,k-s

c
]

i+1,k

I (1%, (+T

B, _ .) R
s3>0 ;S 1+1 7i,s-1" i+1 i ,k-s-r

)
rz0
(by (5.4) and (5.5))

_ r T r+1
= 1 T3V x-r Tie1 Y1, %x-r-1
rz0

rz0

(interchanging the summation order and collecting terms). By

induction hypothesis, Ui K—r vanishes for r < k (and it

vanishes a priori for r > k ). Hence only the terms Ui 0

. N _mik=1)+1
contribute, i.e. Ui+1,k =7 U Ti+1 U

i+1Y%i,0 = 0 , which

i,0

proves the lemma.

5.7. Theorem: Let 0 < j £ i and k g2 i-3j+1 . Then

s -
sgot-n Bi,sPj,k-s = 0 -

Proof: As usual, by induction on i , the case i = 1 being

included in the lemma. Let Vi be the sum in question, and

rdak
let 4 si+1, k2 (i+1)-9+1 . Then

S

I

7 (-1)°8B,

V. . A, =
l+1'J;k 520 l+1,S j,k—S

" Vi,9,k T Tie Vi, g,k

.

If j £ i , the requirements on (i,j,k} and on (i,j,k-1) are
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satisfied, and both terms vanish by hypothesis. If, however,

j = i+1 , then Vi+1,j,k =0 by (5.06).

5.8. Corollary: Assertion (4.11) is true.

Proof: Put k = i-j+1 in (5.7), then replace j by Jj+1

1A

(so O j <« i instead of 0 < j £ i)', and specialize
r-1

F ——9£Fq ’ '1‘.r — 74 as stated in (5.2).

5.9. Remark: Let Ai,k ’ Bi,k

defined by (4.4), (4.5), respectively. Then A, , =] a, ,(n)T"
’ ! n r

be the elements of & =IFq[T]

_ n .
Bi,k = 2 Bi,k(n)T , where ai'k(n) (resp. Bi,k(n)) is the
number of representations of n by k powers (resp. k different
powers) of g less than ql ;, considered mod p . Then (5.7)

gives congruences mod p for these numbers.

6. Applications to zeta values

For k 2 0 , let Z(X,k) € A[X] be the polynomial

) si(k)xl , which is of degree s %(k)/(g-1) by (2.12) . Then
i20

Z(X,k) is closely related to the value at -k of Goss's

Km—ﬁalued zeta function (see [6], Ch. 5).

6.1 Lemma: If 0 <k = 0 mod (g-1) , then 2(1,k) = 0 .
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Proof:

z2(1,k)

7 oa¥ (a € A monic of degree < N , some N >> 0)

-3 (ca)k (a as above, c €IT§)

= PN,k(o) (see (3.3))

which is zero for N large enough.

(6.2) We define the polynomial fk(x) = Z{(X,k) , in case

k # 0 mod (g-1) , and fk(x) = Z(X,k)/(X-1) otherwise. Hence
fk(1) equals the Goss-Bernoulli number B(k) whose congruence
properties are related to a Kummer-type criterion ([5], see also

[9]). Write

- J
£.(X) =} £ 1% -

r

(6.3) Let now k Dbe a number of the form k = (ql--‘l)+cqi

r

0 <c < q . Making extensive computations (see [6], 5.2, or

[12]), Goss observed the following empirical facts:

(1) deg £, (X) = 1i ;

(ii) deg fj X strictly increases with j , as long as Jjsi
4

a3 a — — i -
(iii) deg fi—1,k = deg fi,k cqg”

L2

3
f



- 26 -

(iv) £, = #T

All of this is now included in our results. Distinguish two

cases:
(6.4) c <g-1, so k 1is not divisible by g-1 , and
£5 % = 850k . Now oY(k) = cqt o2*1(x) =-= , and all the

k
binomial coefficients (pj(k)) are % 0 mod p . Thus (i), (ii),

(iii) result from (2.11), and (3.13) yields (—1)1rk for the
leading coefficient, i.e. (iv}.
(6.5 ¢ =g-1,s0 k=0mod (g-1) , and £, ., =-7 s (k) .
j.k . n
. X nsJ
We have pl+1(k) = 0 and (pj(k)) # 0O mod p for j s i+1

Again (2.11), combined with (6.1), implies (i), (ii), (iii).

Finally, £, = leading coefficient of fk(x) = L.c. of

i,k
_ i+1 _ _ (_qyit1
Z2(X,k) = si+1(q 1) = (=-1) Di”/Li+1 (by (4.1))
= (—1)1+11"k since k = (g-1){1 +q1+...-+ql) . Of course,

(4.1) gives much better information in this case.



(1]

[2]

(3]

(4]

[5]

(6]

(7]

[8]

[9]

[10]

- 27 -

References

N. Bourbaki: Algébre. Paris: Masson 1981

L. Carlitz: On certain functions connected with poly-
nomials in a Galois field. Duke Math. J. 1, 137-168, 1935

E.-U. Gekeler: On the coefficients of Drinfeld modular
forms. MPI Préprint. Bonn 1987

D. Goss: Von Staudt for ZFq[T]. Duke Math. J. 45, 885-910,
1978

D. Goss: Kummer and Herbrand criterion in the theory of
function fields. Duke Math. J. 49, 377-384, 1982

D. Goss: The arithmetic of function fields 2: The "cyclo-
tomic" theory. J. of Algebra 81, 107-149, 1983

D. Goss - W. Sinnott: Class groups of function fields.
Duke Math. J. 52, 507-516, 1985

K. Ireland - D. Small: A note on Bernoulli - Goss poly-
nomials. Canad. Math. Bull. 27, 179-184, 1984

S. Okada: Kummer's thedory for function fields. To appear
D. Thakur: Gamma functions and Gauss sums for function

fields and periods of Drinfeld modules. Harvard Thesis.
Cambridge 1987



- 28 -

{111 E. Thomas: On the zeta function for function fields
over :Tp . Pacific J. Math. 107, 251-256, 1983

[12] D. Goss: The TI'-function in the arithmetic of function

fields. To appear in Duke Math. J.



