ON POWER SUMS OF POLYNOMIALS
 OVER FINITE FIELDS

ERNST-ULRICH GEKELER

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26

5300 Bonn 3

Ernst-Ulrich Gekeler

0. Introduction
1. Some arithmetic functions
2. Power sums
3. The generating function
4. Computation of $s_{i}\left(q^{h}-1\right)$
5. Some algebra
6. Applications to zeta values

References
0. Introduction

Let $A=\mathbb{F}_{q}[T]$ be the polynomial ring over a finite field \mathbb{F}_{q} with q elements, K its quotient field, and K_{∞} the completion of K at its prime at infinity. Non-zero elements of A are monic if their leading coefficient equals one. In a series of papers (e.g. [5], [6], [7]), D. Goss has introduced and investigated the K_{∞}-valued zeta function of K which interpolates the sums $\sum a^{-k}(a \in A$ monic, $k \in \mathbb{N})$. Let $s_{i}(k)=\sum a^{k}$ (a $\in A$ monic of degree $i)$. Then $s_{i}(k)=0$ for i large, and $\sum s_{i}(k)(i \geq 0)$ appears as the value of zeta at $-k$ [6]. Another source of interest in these "numbers" is the link between their
congruence properties and class number formulas, which leads to a Kummer-type criterion for abelian extensions of K [5].

In this article, we study the $s_{i}(k)$. Among other things, we prove certain relations between $s_{i}(k)$ and the polynomial gamma function Γ_{k}, for special values of k. These relations (i.e. (6.3)), had been empirically observed by Goss [6]. For k of the form $q^{h}-1$, we obtain a simple expression for $s_{i}(k)$ by means of elementary arithmetic functions (see(4.1)). Further, we have some results on the size of $s_{i}(k)$ and on congruences modulo small primes. Questions of this type have been studied for the first time by L. Carlitz in the thirties. In particular, (1.13) and a part of (3.4) are due to him [2], but given there with different proofs.

1. Some arithmetic functions

For natural numbers i, define the following elements of A :

$$
\begin{align*}
& {[i]=T^{q^{i}}-T,} \tag{1.1}\\
& L_{i}=[i][i-1] \ldots[1], \quad \text { and } \\
& D_{i}=[i][i-1]^{q} \ldots[1]^{q^{i-1}} .
\end{align*}
$$

Put further $L_{0}=D_{0}=1$. Obviously, $L_{i}=[i] L_{i-1}$ and $D_{i}=[i] D_{i-1}^{q}$.

Let $f \in A$ be monic, prime, of degree d dividing $i=\bmod f$, $T^{q} \equiv T$, thus f divides [i]. Counting the number of such f, we obtain
(1.2) $\quad[i]=T$ f (f monic, prime, $\operatorname{deg} f \mid i)$,
(1.3) $\quad D_{i}=\prod$ f $(f$ monic, $\operatorname{deg} f=i)$, and
(1.4) $L_{i}=$ l.c.m. $\{f \mid f$ monic, $\operatorname{deg} f=i\}$,
where (1.3) and (1.4) are easy consequences of (1.2). Next, let (1.5) $\left[\begin{array}{l}k \\ i\end{array}\right]=D_{k} /\left(D_{i} L_{k-i}^{q^{i}}\right) \quad(=0 \quad$ for $i>k)$
and
(1.6) $e_{k}(z)=\sum_{i \geq 0}(-1)^{k-i}\left[\begin{array}{c}k \\ i\end{array}\right] z^{q^{i}}$.

Then $e_{k}(z)$ is a monic separable q-additive polynomial with coefficients in A. (q-additive: \mathbb{F}_{q}-linear; separable: coefficient of z is non-zero). Equating coefficients, we have

$$
\begin{equation*}
e_{k}(T z)=T e_{k}(z)+[k] e_{k-1}^{q}(z) \tag{1.7}
\end{equation*}
$$

and
(1.8)

$$
e_{k}(z)=e_{k-1}^{q}(z)-D_{k-1}^{q-1} e_{k-1}(z)
$$

Since $\mathbb{F}_{\mathrm{q}}^{*} \longleftrightarrow K^{*}$ consists of the $(\mathrm{q}-1)$ - st roots of unity,

$$
\begin{equation*}
\prod_{c \in \mathbb{I r}_{q}}(x-c)=x^{q}-x \tag{1.9}
\end{equation*}
$$

By logarithmic derivation, the following frequently used formulas result:
(1.10) $\quad\left[1 /(x-c)=-1 /\left(x^{q}-x\right)\right.$
(1.11) $\quad \sum c /(X-c)=1 /\left(X^{q-1}-1\right)$.

Let H be a finite-dimensional \mathbb{F}_{q}-subspace of K_{∞}, and let

$$
e_{H}(z)=\prod_{h \in H}(z-h)
$$

which is a monic separable q-additive polynomial. Let H be a direct sum $H=U \oplus V$, and let the \mathbb{F}_{q}-spaces U^{\prime}, V^{\prime} be defined by $U^{\prime}=e_{V}(U)$ and $V^{\prime}=e_{U}(V)$. Comparing zeroes, we get
(1.12) $e_{H}(z)=e_{U},\left(e_{V}(z)\right)=e_{V},\left(e_{U}(z)\right)$.

Note that composition of two q-additive polynomials results in another q-additive polynomial.

Now let $A_{k}=\{a \in A \mid \operatorname{deg} a<k\}$. (As usual, we assume the degree of $0 \in A$ to be $-\infty$.)
1.13. Proposition [2] :
(i)

$$
e_{k}(z)=e_{A_{k}}(z)=\prod_{a \in A_{k}}(z-a) ;
$$

$$
\begin{equation*}
e_{k}\left(T^{k}\right)=D_{k} \tag{ii}
\end{equation*}
$$

Proof: In view of (1.3), (ii) follows from (i). Let f_{k} be the right hand side of (i). We use induction on k, the case $k=1$ being given by (1.9). Thus let $k>1$. We have
$A_{k}=F_{q} T^{k-1} \oplus A_{k-1}$. By induction hypothesis, $f_{k-1}=e_{k-1}$ and $e_{k-1}\left(T^{k-1}\right)=D_{k-1}$. Therefore, putting $U=e_{k-1}\left(\mathbb{F}_{q} T^{k-1}\right)$, we have

$$
e_{U}(z)=z^{q}-D_{k-1}^{q-1} z
$$

Using (1.12) and (1.8),

$$
f_{k}(z)=e_{U}\left(e_{k-1}(z)\right)=e_{k-1}^{q}(z)-D_{k-1}^{q-1} e_{k-1}(z)=e_{k}(z)
$$

1.14. Corollary: $\sum_{a \in A_{k}} 1 /(z-a)=\left[\begin{array}{l}k \\ 0\end{array}\right] / e_{k}(z)$.

Proof: Logarithmic derivation of (1.13i):
2. Power sums

For i, k ≥ 0, define
(2.1) $s_{i}(k)=\sum a^{k} \quad(a \operatorname{monic}, \operatorname{deg} a=i)$.

In particular, $s_{0}(k)=1$ and $s_{i}(0)=0$ if $i>0$. obviously, the $s_{i}(k)$ satisfy congruences of Mummer type, i.e. if p is a prime ideal of A of degree d, and $k \equiv k^{\prime} \bmod \left(q^{d}-1\right)$, then

$$
\begin{equation*}
s_{i}(k)=s_{i}\left(k^{\prime}\right) \bmod p \tag{2.2}
\end{equation*}
$$

For these numbers, there are two recursions. Let us first consider the one concerning i. We write $a=T b+c$ with b monic of degree $i-1$ and $c \in \mathbb{F}_{q}$ and get

$$
\begin{aligned}
s_{i}(k) & =\sum_{b, c}(T b+c)^{k} \\
& =\sum_{j \leq k}\binom{k}{j} T_{b, c}^{j} \sum_{b} b_{c}^{j} k-j
\end{aligned}
$$

Now $\sum_{c \in \mathbb{F}_{q}} c^{s}=-1$ if $0<s \equiv 0 \bmod (q-1)$, and zero otherwise.
Hence
(2.3) $\quad s_{i}(k)=-\sum_{\substack{j<k \\ j \equiv k \bmod }}\binom{k}{j} \mathrm{~T}^{j} \mathrm{~S}_{\mathrm{i}-1}(\mathrm{j}-1)$.

Let p be the characteristic of \mathbb{F}_{q} and $k=\sum k_{s, p} p^{s}$, $j=\sum j_{s, p} p^{s}$ the p-adic expansions, i.e. $0 \leq k_{s, p}, j_{s, p}<p$.
(2.4) $\binom{k}{j} \equiv \prod_{s \geq 0}\binom{k_{s, p}}{j_{s, p}} \quad \bmod p$,
where $\binom{k_{s, p}}{j_{s, p}}=0$ if $k_{s, p}<j_{s, p}$. In the sequel, we often write " = " for the congruence of integers in \mathbb{F}_{p}. In particular
(2.5) $\binom{k}{j} \neq 0 \Leftrightarrow\left(j_{s, p} \leq k_{s, p}\right.$, all s) $\Leftrightarrow \ell_{p}(k)=\ell_{p}(j)+\ell_{p}(k-j)$.

Here $\ell_{p}(k)$ denotes the sum $\sum k_{s, p}$ of p-adic digits.

Now consider the expansions of k and j with respect to q : $k=\sum k_{s} q^{s}, j=\sum j_{s} q^{s}$, but now $0 \leq k_{s}, j_{s}<q$. Since these are derived in the obvious way from the p-adic expansions, (2.4) still holds, ie.

$$
\binom{k}{j}=T T\binom{k_{s}}{j_{s}}
$$

but (2.5) has to be replaced by

$$
\begin{equation*}
\binom{k}{j} \neq 0 \Rightarrow\left(j_{s} \leq k_{s}, \text { all } s\right) \Rightarrow \ell(j) \leq \ell(k), \tag{2.6}
\end{equation*}
$$

$\ell(k)=\sum k_{s}=$ sum of q-adic digits.
(2.7) In order to control the binomial coefficients, we define the relation " < " on non-negative integers by

$$
j<k \Leftrightarrow \text { (i) } j<k \text {; (ii) } j \equiv k \bmod (q-1) ;\left(\text { iii) }\binom{k}{j} \neq 0 \bmod p .\right.
$$

Since $\ell(j) \equiv j \bmod (q-1), j<k$ implies $\ell(j) \leq \ell(k)-q+1$. Further, " < " is transitive, as one sees from $\binom{r}{s}\binom{s}{t}=$ $\binom{r}{t}\binom{r-t}{r-s}$.
(2.8) Let ρ be the following operator on non-negative integers: If k is written in the form

$$
k=\sum_{1 \leq s \leq \ell q^{q}(k)}^{e^{e}},
$$

where always (i) $e_{s} \leqq e_{s+1}$ and (ii) $e_{s}<e_{s+q}$, then

$$
\begin{array}{ll}
\rho(k)=-\infty, \text { if } & \ell(k)<q-1, \text { and } \\
\rho(k)=k-\sum_{1 \leq s \leqq q-1}^{q_{s}} & \text { otherwise. }
\end{array}
$$

Put further $\rho(-\infty)=-\infty, \rho^{0}(k)=k$, and $\rho^{i}=\rho \rho \rho^{i-1}$. Example: $g=3, k=71=2+2 \cdot 3+3^{2}+2 \cdot 3^{3}$. Then $\rho(k)=69, \rho^{2}(k)=63, \rho^{3}(k)=27, \rho^{4}(k)=-\infty$.
2.9. Lemma: If $j \leq k$ and $\ell(j) \leq \ell(k)$ then $\rho(j) \leq \rho(k)$.

Proof: Let e_{s} (resp. e_{s}^{\prime}) be the exponents occurring in the representation (2.8) of k (resp. of j). Since $\ell(j) \leq \ell(k)$, there are less e_{s}^{\prime} than e_{s}, and since $j \leq k$, the:tail of j (leaving off the contribution of the first $q-1 e_{s}^{\prime}$) is less than the tail of k.
2.10. Corollary: $j<k$ implies $\rho^{s}(j) \leq \rho^{s+\bar{q}}(k)$ for all $s \geq 0$.

Proof: For $s=0$, the assertion is $j \leq \rho(k)$ which follows from (2.7) and the construction of $\rho(k)$. Assume $s>0$. From (2.7), $\ell\left(\rho^{s-1}(j)\right) \leq \ell\left(\rho^{s}(k)\right)$ and, by induction hypothesis, $\rho^{s-1}(j) \leq \rho^{s}(k)$. Thus by the lemma, $\rho^{s}(j) \leq \rho^{s+1}(k)$.

The next proposition is a refinement of Thm. 1 in [11].

2.11. Proposition:

(i) For $i>0, \operatorname{deg} s_{i}(k) \leq \rho(k)+\ldots+\rho^{i}(k)$.
(ii) If the following condition is satisfied:
(*) For $0<s \leq i,\binom{k}{s^{s}(k)}$ 申 $0 \bmod p$,
equality holds in (i):

Proof: (2.3) combined with (2.10) gives $\operatorname{deg} s_{1}(k) \leqq \rho(k)$, i.e.
(i) for $i=1$. Now use induction on $i=\operatorname{deg} s_{i}(k) s$
$\sup \left\{j+\operatorname{deg} s_{i-1}(j) \mid j<k\right\} \leq \sup \left\{j+\rho(j)+\ldots \rho^{i-1}(j)\right\}$ (by ind.
hyp.) $\leq \rho(k)+\rho^{2}(k)+\ldots \rho^{i}(k)$, i.e. (i). Condition (*) says that $\rho^{s}(k)$ is the unique maximal j such that there exists a chain $j=j_{s}<j_{s-1}<\ldots<j_{1}<k$. Now (ii) follows from (2.3).
2.12. Corollary: $s_{i}(k)=0$ for $i>\ell(k) /(q-1)$. In particular, $s_{i}(k)=0$ if $k<q^{i}-1$.
2.13. Remark: By (2.5), (*) is automatically fulfilled for $\mathrm{q}=\mathrm{p}$ prime. Another example where (*) holds is given by $k=\left(q^{i}-1\right)+k^{\prime}, k^{\prime} \equiv 0$ mod q^{i}, and $\ell\left(k^{\prime}\right)<q$, as comes from the expansion $k=(q-1)\left(1+q+\ldots q^{i-1}\right)+k$.
3. The generating function

Let X and z be two indeterminates over K. Then $e_{i}(X-z)$, considered as a polynomial in X over $K(\dot{z})$, has $\left\{z-a \mid a \in A_{i}\right\}$ as its set of zeroes. Thus

$$
\begin{equation*}
P_{i, k}(z)=\sum_{a \in A_{i}}(z-a)^{k} \tag{3.1}
\end{equation*}
$$

is the k-th power sum which may be computed by Newton's formulas [1, Ch. IV]. In view of $e_{i}(X-z)=e_{i}(X)-e_{i}(z)$ and (1:.13), we obtain

$$
\begin{array}{ll}
P_{i, k}(z)=0 & \left(k<q^{i}-1\right), \tag{3.2}\\
P_{i, k}(z)=(-1)^{i} D_{i} / L_{i}=\left[\begin{array}{l}
i \\
0
\end{array}\right] \quad\left(k=q^{i}-1\right),
\end{array}
$$

and for $k \geq q^{i}$
$P_{i, k}-\left[\begin{array}{c}i \\ i-1\end{array}\right] P_{i, k-q^{i}+q^{i-1}}+\ldots+(-1)^{i}\left[\begin{array}{c}i \\ 0\end{array}\right]_{i, k-q^{i}+1}-e_{i}(z) P_{i, k-q^{i}}=0$.
(The first two equations result from the specific form of e_{i}, combined with Newton.)

If we put

$$
\begin{equation*}
P_{i}(U, z)=\sum_{k \geqq 0} P_{i, k}(z) U^{k}, \tag{3.3}
\end{equation*}
$$

we arrive at

$$
\begin{aligned}
P_{i}(U, z) & =\frac{(-1)^{i} D_{i} / L_{i} \cdot U^{q^{i}}-1}{1-\left[\begin{array}{c}
i \\
i-1
\end{array}\right] U^{q^{i}-q^{i-1}}+\ldots(-1)^{i}\left[\begin{array}{l}
i \\
0
\end{array}\right] U^{q^{i}-1}-e_{i}(z) U^{q^{i}}} \\
& =\frac{(-1)^{i} D_{i} / L_{i} \cdot U^{q^{i}-1}}{e_{i}\left(U^{-1}\right) U^{q^{i}}-e_{i}(z) U^{q^{i}}}
\end{aligned}
$$

and, noting $e_{i}\left(T^{i}\right)=D_{i}, \quad P_{i, k}\left(T^{i}\right)=s_{i}(k)$,
(3.4)

$$
\sum_{k \geq 0} s_{i}(k) U^{k}=(-1)^{i} D_{i} / L_{i} \frac{U^{q^{i}}-1}{e_{i}\left(U^{-1}\right) U^{q^{i}}-D_{i} U^{q^{i}}} .
$$

A result essentially equivalent with (3.4) has been obtained by Carlitz [2, Thm. 9.5]. Let us now derive some consequences of (3.4). Let $k<q^{i+1}-1$. By (2.12), the highest possible nonzero s_{j} is $s_{i}=s_{i}(k)$ that will now be computed. Let
$k^{\prime}=k-\left(q^{i}-1\right)$. We may assume $k^{\prime}>0$; otherwise, $s_{i}(k)$ would vanish $\left(k^{\prime}<0\right)$ or equal $(-1)^{i_{D}}{ }_{i} L_{i}\left(k^{\prime}=0\right)$. Let
(3.5) $k^{\prime}=a_{N} q^{N}+\ldots+a_{i} q^{i} \quad\left(a_{N} \neq 0\right)$
be the q-adic expansion. Since

$$
e_{i}\left(U^{-1}\right) U^{q}=\sum_{j \leq i}(-1)^{i-j}\left[\begin{array}{l}
i \\
j
\end{array}\right] U^{q^{i}-q^{j}},
$$

$s_{i}(k)$ is contributed by each representation of k^{\prime} as a sum
(3.6)

$$
\sum_{j<i} \alpha_{j}\left(q^{i}-q^{j}\right)+B q^{i}=k,
$$

where β and α_{j} are non-negative integers, as results from expanding (3.4). Now, since $k^{\prime}<q^{i+1}-q^{i}$, the numbers $\alpha_{j}(j<1)$ and β are $<q$. Comparing (3.5) and (3.6), we read off:
(3.7)

$$
\begin{array}{rlrl}
\alpha_{j} & =0 & & (j<N), \\
& =q-a_{N} & (j=N), \\
& =q-1-a_{j} & & (N<j<i), \\
B & =a_{i}+1-\sum_{j<i} a_{j}, &
\end{array}
$$

in case $N<i$, and $\alpha_{j}=0, \beta=a_{i}$ if $N=i$. In particular, any solution of (3.6) is uniquely determined. If β happens to be negative, there will be no solution of the type required, and $s_{i}(k)=0$. In what follows, we assume the solution $\left(\alpha_{j}, \beta\right)$ of (3.6) to exist. Then by (3.4),

$$
s_{i}(k)=(-1)^{i} D_{i} / L_{i} \cdot M D_{i}^{\beta} \prod_{j<i}\left((-1)^{i-j+1}\left[\begin{array}{l}
i \tag{3.8}\\
j
\end{array}\right]\right)^{\alpha} j,
$$

where M denotes the multinomial coefficient

$$
M=\left(\alpha_{0}+\ldots+\alpha_{i-1}+\beta\right)!/\left(\alpha_{0}!\ldots \alpha_{i-1}!\beta!\right)
$$

(which may vanish). In order to evaluate the product, we need the easily proved formulas

$$
\begin{equation*}
\prod_{t \leqq s} D_{t}^{q-1}=D_{s+1} / L_{s+1} \quad \text { and } \tag{3.9}
\end{equation*}
$$

(3.10)

$$
\prod_{t \leq s} L_{s-t}^{q^{t}(q-1)}=D_{s}^{q} / L_{s} .
$$

Up to the constant factor $(-1)^{r_{M}}, s_{i}(k)$ equals $D_{i}^{1+\beta} / L_{i} \cdot \prod_{j<i}\left(D_{i} / D_{j} L_{i-j}^{q j}\right)^{\alpha}$. Let us first assume $N<i$. Then from (3.5)

$$
\begin{align*}
k & =(q-1)+\ldots+(q-1) q^{N-1}+\left(a_{N}-1\right) q^{N}+a_{N+1} q^{N+1}+\ldots+a_{i-1} q^{i-1}+\left(a_{i}+1\right) q^{i} \tag{3.11}\\
& =\sum b_{j} q^{j}
\end{align*}
$$

is the q-adic expansion of k. We may now use the relationship between $\left(\alpha_{j}, \beta\right)$ and b_{j} to express $s_{i}(k)$ through these coefficients. After some calculations, repeatedly applying (3.9) and (3.10), we arrive at
(3.12) $s_{i}(k)=(-1)^{r} M \cdot \prod_{j \leq i} L_{i-j}^{q^{j}}\left(b_{j}-q+1\right) \prod_{j \leq i}^{D_{j}^{b}}$. Note that the last factor $\Pi \mathrm{D}_{\mathrm{j}}^{\mathrm{b}} \mathrm{j}$ equals the value Γ_{k} of the Carlitz-Goss factorial at k [4], [12]. These factorials have been interpolated by Thakur [10] to a continous K_{∞}-valued gamma function with nice arithmetic properties. Let now $\mathrm{N}=\mathrm{i}$, i.e. $k=q^{i}-1+b q^{i}, 0<b<q$. In that case, by (3.7) and (3.8), $s_{i}(k)=(-1)^{i_{D}}{ }_{i}^{b+1} / L_{i}$, i.e. $s_{i}(k)=(-1)^{i^{\prime}}{ }_{k}$, as follows from the definition of Γ_{k}. Note this agrees with (3.12) since $b_{j}=q-1$ if $j<i$. It is easy to evaluate the terms. M and.jr in (3.1.2). The final result (which does not distinguish between the cases $\mathrm{N}<\mathrm{i}$ and $\mathrm{N}=\mathrm{i}$) is summarized in
3.13. Theorem: Let $k<q^{i+1}-1$ have the q-adic expansion $k=\sum b_{j} q^{j}$. Then

$$
s_{i}(k)=(-1)^{r} \cdot M \cdot \prod_{j \leq i} L_{i-j}^{q^{j}\left(b_{j}-q+1\right)} \cdot \Gamma_{k}
$$

where $r=i+\sum_{j<i}(i-j+1) b_{j}$, and M is the multinomial co-
efficient $\left(b_{0}^{\prime}, \ldots, b_{i}^{\prime}\right), b_{j}^{\prime}=q-1-b_{j}(j<i)$, and
$b_{i}^{\prime}=\ell(k)-i(q-1)$.
3.14. Corollary: In the above situation, let $i=1$, $k=b_{0}+b_{1} q, \quad \ell=b_{0}+b_{1} \geq q-1$. Then $s_{1}(k)=-\binom{b_{1}}{q-b_{0}-b_{0}}[1]^{\ell-q+1}$.

In the special case $q=p$ prime, this result has also been obtained by Ireland-Small [8].

From (3.4), we can also derive some congruences for the $\mathrm{s}_{\mathrm{i}}(\mathrm{k})$. Let p be a prime of A of degree $d \leq i$. We may easily determine the order ord x of p in $x=L_{i}, D_{i}$, and $\left[\begin{array}{l}i \\ j\end{array}\right]$, where $j<i$. Let $\operatorname{gif}(r)$ be the greatest integer function of $r \in \mathbb{Q}$ (which is usually denoted by [r]). Let further $i=i_{0}+i_{1} d$, $j=j_{0}+j_{1} d, 0 \leq i_{0}, j_{0}<d$.
3.15. Lemma:
(i) ord $L_{i}=$ gif (i/d) ;
(ii) \quad ord $D_{i}=q^{\dot{j}_{0}}\left(q^{i_{1}}{ }^{d}-1\right) /\left(q^{d}-1\right)$;
(iii) \quad ord $\left[\begin{array}{l}i \\ j\end{array}\right]=\left(q^{i}-q^{i} 0-q^{j}+q^{j} 0\right) /\left(q^{d}-1\right)-c q^{j}$, where $c=i_{1}-j_{1}$ if $i_{0} \geq j_{0}$, and $c=i_{1}-j_{1}-1$ otherwise.

Here, (iii) follows from (i) and (ii) which are direct consequences of the definitions of L_{i} and D_{i}, respectively.

Considering the cases in (ii) separately, we obtain
3.16. Lemma: $\left[\begin{array}{l}i \\ j\end{array}\right] \neq 0 \bmod p \Leftrightarrow j=i-d$.
3.17. Corollary: Let p be a prime of degree $d \leq i$ and $k \in \mathbb{N}$ arbitrary. The following assertions are equivalent:

$$
\begin{equation*}
d=i \text { and } k \equiv 0 \quad \bmod \left(q^{i}-1\right) ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
s_{i}(k) \equiv-1 \bmod p ; \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
s_{i}(k) \neq 0 \bmod p \tag{iii}
\end{equation*}
$$

Proof: Clearly, (i) \Rightarrow (ii) \Rightarrow (iii) . Let us show (iii) \Rightarrow (i) . Consider (3.4) reduced mod p. From $s_{i}(k) \neq 0$, we derive $(-1)^{i} D_{i} / L_{i}=\left[\begin{array}{l}i \\ 0\end{array}\right] \neq 0$, i.e. $d=i$. Further, $D_{i} / L_{i} \equiv(-1)^{i-1} \bmod p$, which follows for instance from (3.9). Hence the generating function mod p becomes congruent to $-U^{q^{i}-1} /\left(1-U^{q^{i}-1}\right)$, so (i) follows.
4. Computation of $s_{i}\left(q^{h}-1\right)$

In this section, we show

4.1. Theorem:

$$
s_{i}\left(q^{h}-1\right)=\begin{array}{cl}
0 & (h<i) \\
\left.(-1)^{i_{D_{h}} /\left(D_{h-i}^{L_{i}}\right.}{ }^{i}\right) & (h \geq i) .
\end{array}
$$

In contrast with the simple formula, no simple induction argument seems to apply, since in (2.3) and (3.4), arguments k which are not of the form $q^{h}-1$ occur.

Our first step towards the theorem is to write

$$
\begin{align*}
s_{i}\left(q^{h}-1\right) & =\sum_{a_{i-1}} \ldots \ldots, a_{0}\left(T^{i}+a_{i-1} T^{i-1}+\ldots a_{0}\right)^{q^{h}-1} \tag{4.2}\\
& =\sum_{j \leq i} T^{j q^{h}} K_{i, j} \quad \text { with } \\
K_{i, j} & =\sum_{a_{i-1}} \ldots, a_{0} a_{j} /\left(T^{i}+a_{i-1} T^{i-1}+\ldots a_{0}\right),
\end{align*}
$$

the a_{0}, \ldots, a_{i-1} running over \mathbb{F}_{q}, and $a_{i}=1$. Thus we are reduced to determine $\mathrm{K}_{\mathrm{i}, \mathrm{j}}$. We have to introduce some notation. For a k-tuple $\underline{r}=r_{1}, \ldots, r_{k}$ of non-negative integers, put

$$
\begin{equation*}
q(\underline{r})=q^{r_{1}}+\ldots+q^{r_{k}} . \tag{4.3}
\end{equation*}
$$

In particular, $q(\underline{r})=0$ if \underline{r} is the empty tuple of length 0. Next, we define
(4.4) $\quad A_{i, k}=\sum T^{q(\underline{r})}$,
where \underline{r} runs through those \underline{r} of length k that satisfy $0 \leq r_{1} \leq \ldots \leq r_{k}<i$. Similarly,
(4.5) $\quad B_{i, k}=\sum T^{q(\underline{r})}$,
but now with \underline{r} satisfying $0 \leq r_{1}<\ldots<r_{k}<i$. Thus, if we let
(4.6) $\quad g_{i}(x)=\prod_{0 \leq k<i}\left(x-T^{q^{k}}\right)$,
then

$$
g_{i}(x)=\sum_{s \leq i}(-1)^{s_{B_{i}}} x^{x^{i-s}} \text {. Obviously }
$$

(4.7)

$$
\begin{aligned}
A_{0, k} & =B_{0, k}=0, \quad A_{i, 0}=B_{i, 0}=1 \quad(i>0) \\
B_{i, k} & =0 \quad(k>i), \text { and } \\
A_{i+1, k+1} & =T A_{i+1, k}+A_{i, k+1}^{q} .
\end{aligned}
$$

4.8. Lemma: Let $j>0, k \geq 0$. Then $e_{j}\left(T^{j+k}\right)=D_{j} A_{j+1, k}$. Proof by induction on $j+k$: The case $k=0$ is given by (1.13) . Now ่

$$
\begin{aligned}
e_{j}\left(T^{j+k+1}\right) & =T e_{j}\left(T^{j+k}\right)+[j] e_{j-1}^{q}\left(T^{j+k}\right) \quad \text { (by (1.7)) } \\
& =T D_{j} A_{j+1, k}+[j] D_{j-1}^{q} A_{j, k+1}^{q} \quad \text { (ind. hyp.). }
\end{aligned}
$$

But [j] $D_{j-1}^{q}=D_{j}$, so $e_{j}\left(T^{j+k+1}\right)=D_{j}\left(T A_{j+1, k}+A_{j, k+1}^{q}\right)$ $=D_{j} A_{j+1, k+1}$.

We know a priori

$$
\begin{equation*}
k_{i, i}=\sum_{a \text { monic of degree } i}^{1 / a}=(-1)^{i} / L_{i} \tag{4.9}
\end{equation*}
$$

which follows from (1.14). Let us now compute $k_{i, j}(j<i)$, using (1.10) and (1.11).
$K_{i, j}=\sum_{a_{i-1}, \ldots, a_{0}} a_{j} /\left(T^{i}+\ldots a_{0}\right)=\sum_{a_{i-1}, \ldots, a_{j+1}} \sum_{a_{j}} a_{j} \sum_{a_{j-1}, \ldots, a_{0}} 1 /\left(T^{i}+\ldots a_{0}\right)$.

Again by (1.14), the innermost sum equals

$$
\begin{aligned}
& (-1)^{j_{D_{j}} /\left(L_{j} e_{j}\left(T^{i}+a_{i-1} T^{i-1}+\ldots a_{j} T^{j}\right)\right) \text { Let } Q=Q\left(a_{i-1}, \ldots, a_{j+1}\right)} \begin{array}{l}
=e_{j}\left(T^{i}\right)+\ldots+a_{j+1} e_{j}\left(T^{j+1}\right) \text {. Thus } \\
K_{i, j}=(-1)^{j_{D} / L_{j}} \cdot \sum_{a_{i-1}}, \ldots, a_{j+1} \sum_{a_{j}} a_{j} /\left(Q+a_{j} D_{j}\right) \\
=(-1)^{j_{D_{j}} / L_{j}} \cdot \sum_{a_{i-1}}, \ldots, a_{j+1} Q D_{j}^{q-2} /\left(Q^{q}-Q D_{j}^{q-1}\right),
\end{array}, ~
\end{aligned}
$$

using (1.11). Comparing (1.11) with (1.10), we see: If we replace the factor Q in the numerator by $-D_{j}$, the modified sum evaluates to $K_{i, i}$. Correspondingly, replacing Q by $-a_{s} D_{j}$, where $j<s<i, y i e l d s K_{i, s}$. Therefore,

$$
\begin{aligned}
-D_{j} K_{i, j} & =(-1))_{D_{j} / L_{j}}^{j} \sum_{a_{i-1}}\left(\ldots,\left(e_{j}\left(T^{i}\right)+a_{j+1} e_{j}\left(T^{i-1}\right)+\ldots+a_{j+1} e_{j}\left(T^{j+1}\right)\right) D_{j}^{q-1} /\left(Q^{q}-Q D_{j}^{q-1}\right)\right. \\
& =e_{j}\left(T^{i}\right) K_{i, i}+e_{j}\left(T^{i-1}\right) K_{i, i-1}+\ldots+e_{j}\left(T^{j+1}\right) K_{i, j+1} .
\end{aligned}
$$

Taking (4.8) into account, this gives

$$
-K_{i, j}=A_{j+1, i-j} K_{i, i}+A_{j+1, i-j-1} K_{i, i-1}+\ldots+A_{j+1,1} K_{i, j+1},
$$

i.e.
(4.10)

$$
\sum_{s \geqq 0} A_{j+1, i-j-s} K_{i, i-s}=0
$$

$$
(j<i)
$$

In the next section, we will prove
(4.11) $\sum_{s \geq 0}(-1)^{i-j-s} A_{j+1, i-j-s} B_{i, s}=0 \quad(j<i)$.

In view of $K_{i, i}=(-1)^{i} / L_{i},(4.10)$ and (4.11) then show by descending induction on j :
4.12. Proposition: $K_{i, j}=(-1)^{j_{B}}{ }_{i, i-j} / L_{i}$.

This in fact finishes the proof of Theorem 4:1 (modulo (4.11)): Of course, if $h<i$ then $s_{i}\left(q^{h}-1\right)=0$; otherwise,

$$
\begin{aligned}
(-1)^{i} L_{i} s_{i}\left(q^{h}-1\right) & =(-1)^{i} L_{i} \sum_{j \leq i} T^{j} q^{h} K_{i, j} \\
& =\sum(-1)^{i-j} T_{T} j q^{h} B_{i, i-j} \\
& =g_{i}\left(T^{q^{h}}\right) \\
& =\prod_{0 \leqq j<i}\left(T^{q} q^{h}-T^{q}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =[h][h-1]^{q} \ldots[h-i+1]^{q^{i-1}} \\
& =D_{h} / D_{h-i}^{q^{i}} .
\end{aligned}
$$

4.13. Remark: Possibly, using the method of Goss polynomials described in [3], one may compute sums of type $K_{i, j}$, but with powers $r>1$ in the denominator. This would give an approach to $s_{i}\left(q^{h}-r\right)$ and (optimistically) to something like a functional equation for the Goss zeta function.

5. Some algebra

The reason for (4.11) to hold is of a general algebraic nature (an identity of Newton type between certain symmetric functions, i.e. Thm. 5.7), and does not depend on our special situation. As I could not find an equivalent result in the literature, and the induction used is tricky, I will present the complete proof.

In this section, F is an arbitrary field and $X, T_{1}, T_{2} \ldots$ are indeterminates over F. For $i>0$, we put

$$
\begin{equation*}
A_{i, k}=\sum_{\underline{\underline{r}}} T_{\underline{r}}, \tag{5.1}
\end{equation*}
$$

\underline{r} running through the set of k-tuples satisfying
$0<r_{1} \leq \ldots \leq r_{k} \leq i, T_{\underline{r}}=T_{r_{1}} \ldots T_{r_{k}}$. Further, let
(5.2)

$$
\begin{aligned}
g_{i}(X) & =\prod_{0<s \leq i}\left(X-T_{s}\right) \\
& =\sum_{k}(-1)^{k_{B_{i}}, k} x^{i-k},
\end{aligned}
$$

considered as a polynomial over $F\left[T_{1}, \ldots, T_{i}\right]$. Spezialization $F \longrightarrow \mathbb{F}_{q}, \quad T_{r} \longrightarrow T^{q}{ }^{r-1}$ yields the numbers $A_{*}, *, B_{*}, *$ and the polynomials g_{i} of the last section. With the conventions $A_{i, k}=B_{i, k}=0$ if $k<0, A_{i, 0}=B_{i, 0}=1$, we have

$$
\begin{equation*}
A_{i+1, k}=A_{i, k}+T_{i+1} A_{i+1}, k-1 \quad \text { and } \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
B_{i+1, k}=B_{i, k}+T_{i+1} B_{i, k-1} . \tag{5,4}
\end{equation*}
$$

Iterating (5.3), we arrive at

$$
\begin{equation*}
A_{i+1, k}=\sum_{s \geq 0} T_{i+1}^{s} A_{i, k-s} . \tag{5.5}
\end{equation*}
$$

5.6. Lemma: Let $i, k>0$. Then $\sum_{s \leq 0}(-1)^{S_{B}} B_{i, s} A_{i, k-s}=0$.

Proof: We use induction on i, where the case $i=1$ reduces to $B_{1,0} A_{1, k}=B_{1,1} A_{1, k-1}$. This results from $B_{1,0}=1$, $A_{1, k}=T_{1}^{k}, A_{1, k-1}=T_{1}^{k-1}, B_{1,1}=T_{1}$. Let $U_{i, k}$ be the sum in question. Then

$$
\begin{aligned}
U_{i+1, k}= & \sum_{s \geq 0}(-1)^{s} B_{i+1, s} A_{i+1, k-s} \\
= & \sum_{s \geq 0}(-1)^{s}\left(B_{i, s}+T_{i+1} B_{i, s-1}\right) \sum_{r \geq 0} T_{i+1}^{r} A_{i, k-s-r} \\
& (\text { by }(5.4) \text { and (5.5)) } \\
= & \sum_{r \geq 0} T_{i+1}^{r} U_{i, k-r}-\sum_{r \geq 0} T_{i+1}^{r+1} U_{i, k-r-1}
\end{aligned}
$$

(interchanging the summation order and collecting terms). By induction hypothesis, $U_{i, k-r}$ vanishes for $r<k$ (and it vanishes a priori for $r>k$). Hence only the terms $U_{i, 0}$ contribute, i.e. $U_{i+1, k}=T_{i+1}^{k} U_{i, 0}-T_{i+1}^{(k-1)+1} U_{i, 0}=0$, which proves the lemma.
5.7. Theorem: Let $0<j \leq i$ and $k \geqq i-j+1$. Then

$$
\sum_{s \geqslant 0}(-1)^{S_{B}}{ }_{i, s} A_{j, k-s}=0 .
$$

Proof: As usual, by induction on i, the case $i=1$ being included in the lemma. Let $v_{i, j, k}$ be the sum in question, and let $j \leq i+1, k \geq(i+1)-j+1$. Then

$$
\begin{aligned}
V_{i+1, j, k} & =\sum_{s \geq 0}(-1)^{s} B_{i+1, s} A_{j, k-s}=\sum_{s \geq 0}(-1)^{s}\left(B_{i, s}+T_{i+1} B_{i, s-1}\right) A_{j, k-s} \\
& =V_{i, j, k}-T_{i+1} V_{i, j, k-1} .
\end{aligned}
$$

If $j \leq i$, the requirements on (i,j,k) and on (i,j,k-1) are
satisfied, and both terms vanish by hypothesis. If, however, $j=i+1$, then $v_{i+1, j, k}=0$ by (5.6).
5.8. Corollary: Assertion (4.11) is true.

Proof: Put $k=i-j+1$ in (5.7), then replace j by $j+1$ (so $0 \leq j<i$ instead of $0<j \leq i)$, and specialize $\mathrm{F} \longrightarrow \mathbb{F}_{\mathrm{q}}, \mathrm{T}_{\mathrm{r}} \longrightarrow \mathrm{T}^{\mathrm{q}-1}$ as stated in (5.2).
5.9. Remark: Let $A_{i, k}, B_{i, k}$ be the elements of $A=\mathbb{F}_{q}[T]$ defined by (4.4), (4.5), respectively. Then $A_{i, k}=\sum_{n} \alpha_{i, k}(n) T^{n}$, $B_{i, k}=\sum_{n} \beta_{i, k}(n) T^{n}$, where $\alpha_{i, k}(n) \quad$ (resp. $\left.\beta_{i, k}(n)\right)$ is the number of representations of n by k powers (resp. k different powers) of q less than q^{i}, considered $\bmod p$. Then (5.7) gives congruences mod p for these numbers.
6. Applications to zeta values

For $k \geqq 0$, let $Z(X, k) \in A[x]$ be the polynomial
$\sum_{i \geq 0} s_{i}(k) x^{i}$, which is of degree $s \ell(k) /(q-1)$ by (2.12). Then
$\mathrm{Z}(\mathrm{X}, \mathrm{k})$ is closely related to the value at -k of Goss's K_{∞}-valued zeta function (see [6], Ch. 5).
6.1 Lemma: If $0<k \equiv 0 \bmod (q-1)$, then $Z(1, k)=0$.

Proof:

$$
\begin{aligned}
Z(1, k) & =\sum a^{k} \quad(a \in A \text { monic of degree }<N, \text { some } N \gg 0) \\
& =-\sum(c a)^{k} \quad\left(a \text { as above, } c \in \mathbb{F}_{\mathrm{q}}^{*}\right) \\
& =P_{N, k}(0) \quad(\text { see }(3.3))
\end{aligned}
$$

which is zero for N large enough.
(6.2) We define the polynomial $f_{k}(X)=Z(X, k)$, in case $k \neq 0 \bmod (q-1)$, and $f_{k}(X)=Z(X, k) /(X-1)$ otherwise. Hence $f_{k}(1)$ equals the Goss-Bernoulli number $\beta(k)$ whose congruence properties are related to a Kummer-type criterion ([5], see also [9]). Write

$$
f_{k}(X)=\sum f_{j, k} X^{j}
$$

(6.3) Let now k be a number of the form $k=\left(q^{i}-1\right)+c q^{i}$, $0<c<q$. Making extensive computations (see [6], 5.2, or [12]), Goss observed the following empirical facts:
(i) $\quad \operatorname{deg} f_{k}(X)=i \quad$;
(ii) $\quad \operatorname{deg} f_{j, k}$ strictly increases with j, as long as $j \leq i$;
(iii) $\quad \operatorname{deg} f_{i-1, k}=\operatorname{deg} f_{i, k}-c q^{i}$;
(iv) $\quad f_{i, k}= \pm \Gamma_{k}$.

All of this is now included in our results. Distinguish two cases:
(6.4) $c<q-1$, so k is not divisible by $q-1$, and $f_{j, k}=s_{j}(k)$. Now $\rho^{i}(k)=c q^{i}, \rho^{i+1}(k)=-\infty$, and all the binomial coefficients $\binom{k}{\rho^{j}(k)}$ are $\neq 0 \bmod p$. Thus (i), (ii), (iii) result from (2.11), and (3.13) yields $(-1)^{i} \Gamma_{k}$ for the leading coefficient, i.e. (iv).
(6.5) $\quad c=q-1$, so $k \equiv 0 \bmod (q-1)$, and $f_{j, k}=-\sum_{n \leq j} s_{n}(k)$. We have $\rho^{i+1}(k)=0$ and $\binom{k}{\rho^{j}(k)} \neq 0 \bmod p$ for $j \leq i+1$. Again (2.11), combined with (6.1), implies (i), (ii), (iii). Finally, $f_{i, k}=$ leading coefficient of $f_{k}(X)=$ lc. of $Z(X, k)=s_{i+1}\left(q^{i+1}-1\right)=(-1)^{i+1_{D_{i+1}} / L_{i+1}}$ (by (4.1)) $=(-1)^{i+1} \Gamma_{k}$ since $k=(q-1)\left(1+q+\ldots+q^{i}\right)$. Of course, (4.1) gives much better information in this case.

References

[1] N. Bourbaki: Algèbre. Paris: Masson 1981
[2] L. Carlitz: On certain functions connected with polynomials in a Galois field. Duke Math. J. 1, 137-168, 1935
[3] E.-U. Gekeler: On the coefficients of Drinfeld modular forms. MPI Preprint. Bonn 1987
[4] D. Goss: Von Staudt for $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$. Duke Math. J. 45, 885-910, 1978
[5] D. Goss: Kummer and Herbrand criterion in the theory of function fields. Duke Math. J. 49, 377-384, 1982
[6] D. Goss: The arithmetic of function fields 2: The "cyclotomic" theory. J. of Algebra 81, 107-149, 1983
[7] D. Goss - W. Sinnott: Class groups of function fields. Duke Math. J. 52, 507-516, 1985
[8] K. Ireland - D. Small: A note on Bernoulli - Goss polynomials. Canad. Math. Bull. 27, 179-184, 1984
[9] S. Okada: Kummer's theory for function fields. To appear
[10] D. Thakur: Gamma functions and Gauss sums for function fields and periods of Drinfeld modules. Harvard Thesis. Cambridge 1987
[11] E. Thomas: On the zeta function for function fields over \mathbb{F}_{p}. Pacific J. Math. 107, 251-256, 1983
[12] D. Goss: The r-function in the arithmetic of function fields. To appear in Duke Math. J.

