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SOME REMARKS ON THE TWISTED BURNSIDE-FROBENIUS
THEORY FOR INFINITELY GENERATED GROUPS

EVGENIJ TROITSKY

Abstract. The TBFTf conjecture, which is a modification of a conjecture by Fel’shtyn
and Hill, says that if the Reidemeister number R(φ) of an automorphism φ of a (countable
discrete) group G is finite then it coincides with the number of fixed points of the corre-

sponding homeomorphism φ̂ of Ĝf (the part of the unitary dual formed by finite-dimensional
representations). The study of this problem for residually finite groups was a subject of a
recent activity. We prove here that for infinitely generated residually finite groups there
are positive and negative examples for this conjecture. It is detected that the finiteness
properties of the number of fixed points of φ itself also differ from the finitely generated
case.

Introduction

Suppose G is a (countable discrete) group and φ is its automorphism. The Reidemeister
number R(φ) is the number of its Reidemeister or twisted conjugacy classes, i.e. the classes
of the twisted conjugacy equivalence relation: g ∼ hgφ(h−1), h, g ∈ G. Denote by {g}φ the
Reidemeister class of g.

The following two interrelated problems are in the mainstream of the study of Reidemeister
numbers.

The first one is the following conjecture by A.Fel’shtyn and R.Hill [8]: R(φ) is equal to the

number of fixed points of the associated homeomorphism φ̂ of the unitary dual Ĝ (the set
of equivalence classes of irreducible unitary representations of G), if one of these numbers

is finite. The action of φ̂ on the class of a representation ρ is defined as [ρ] 7→ [ρ ◦ φ].
This conjecture is called TBFT (twisted Burnside-Frobenius theorem). In fact it generalizes
to infinite groups and to the twisted case the classical Burnside-Frobenius theorem: the
number of conjugacy classes of a finite group is equal to the number of equivalence classes
of its irreducible representations.

Some later by A.Fel’shtyn and co-authors the second problem was formulated (see [9] for a
historical overview) the problem of description of the class of groups having the R∞ property.
A group has the R∞ property if R(φ) =∞ for any automorphism φ : G→ G. Evidently, the
second problem is in some sense complementary to the first one: the question about TBFT
has no sense for R∞ groups (formally having a positive answer).

The TBFT conjecture was proved for finite, abelian and abelian-by-finite groups [8, 10].
After that a counter-example was detected in [12]. This counterexample led to the following
new version of the conjecture called TBFTf : if R(φ) < ∞, then it is equal to the number

of fixed points of φ̂ on the subspace Ĝf ⊂ Ĝ formed by finite-dimensional representations.
In [20] we prove that only finite representation (i.e. factorizing through a finite group) can
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be fixed by φ̂ if R(φ) < ∞. In [11] the TBFTf conjecture was proved for polycyclic-by-
finite groups. Also some counter examples were found among infinite groups with a finite
number of usual conjugacy classes. In [19] some steps to the case of general finitely generated
residually finite groups were made. In [17] some relations of the TBFTf and properties of
the twisted inner representation were considered. A more general approach to a TBFT-like
property was developed in [34].

The property R∞ was proved and disproved for many groups. Since its study is not a main
goal of the present paper, we restrict ourselves to giving reference to several papers and the
literature therein: [7, 28, 13, 14, 33, 24, 9, 1, 21, 2, 15, 27, 29, 31, 30, 4, 16, 22, 23, 32, 5, 3, 18].
In some situations the property R∞ has some direct topological consequences (see e.g. [23]).
Some basic theory on relations of Reidemeister numbers with Dynamics can be found in
[26, 6].

We start from Section 1 where some necessary facts about Reidemeister numbers are
formulated. Also we slightly generalize these facts.

The free finitely generated group Fn (n > 2) has the R∞ property (in particular, because
it is a hyperbolic group [7, 28]). In contrast with this, the infinitely generated free group F∞
has automorphisms with R(φ) < ∞ [3]. In Section 2 we prove that TBFTf holds for this
example. Also we show that nevertheless the number of fixed points of φ itself is infinite in
contrast with the finitely generated case [17].

In Section 3 we construct examples of infinitely generated residually finite groups such
that TBFTf fails for them.
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1. Preliminaries

The following easy statement is well known:

Proposition 1.1. Suppose, H is a φ-invariant normal subgroup of G and φ : G/H → G/H
is the induced automorphism. Then Reidemeister classes of φ map onto Reidemeister classes
of φ. In particular, R(φ) 6 R(φ).

The key observation in [11] is as follows.

Proposition 1.2. The TBFTf conjecture holds for a specific automorphism φ if and only
if the functions on G of the form fρ(g) = Trace(Φρ ◦ ρ(g)) give a basis of the space of that
functions which are constant on the Reidemeister classes (i.e. twisted class functions), where

ρ runs over φ̂-fixed points and Φρ is the intertwining operator between ρ and ρ ◦ φ, defined
uniquely up to scaling.

The following statement slightly strengths (to the case of infinitely generated groups)
considerations in [11] and [17].

Proposition 1.3. The following properties of φ : G→ G with R(φ) <∞ are equivalent:

1) TBFTf holds for the specific φ;
2) The stabilizer subgroup of any Reidemeister class (under left shifts) is of finite index in

G.
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Proof. First of all, the second property evidently is equivalent to the following one: left shifts
of twisted class functions form a finite-dimensional space V ⊂ `∞(G).

TBFTf implies that some matrix coefficients of φ̂-fixed representations form a basis in the
space of twisted class functions (by Prop. 1.2). All left shifts of these functions generate,
on the one hand, the mentioned above space V . On the other hand, this space is the space
of all matrix coefficients coming from a finite collection of irreducible representations (the

collection of φ̂-fixed representations). Thus, V is finite-dimensional and 2) holds.
Conversely, suppose 2). In particular, the intersection of all stabilizers is a subgroup

H ⊂ G of finite index. Thus, x ∈ H iff for any g, z ∈ G there exists hg,z ∈ G such that
xgzφ(g−1) = hg,zzφ((hg,z)

−1). Then for any y ∈ G, we have

yxy−1gzφ(g−1) = y
(
xy−1gzφ(g−1)φ(y)

)
φ(y−1) = y

(
hy−1g,zzφ((hy−1g,z)

−1)
)
φ(y−1).

Thus, yxy−1 ∈ H and H is normal. Also, for the same x, we have

φ(x)gzφ(g−1) = φ
(
xφ−1(g)φ−1(z)g−1

)
= φ(hφ−1(z)φ(h−1) = φ(h)zφ((φ(h))−1),

where h = hφ−1(g),φ−1(z). Thus, H is φ-invariant. Then p : G → G/H gives a bijection
of Reidemeister classes, and in particular, TBFTf for φ. Indeed, suppose two classes are
mapped to one class. This means that there is an element h ∈ H which is not in their
stabilizers. A contradiction. �

2. A positive example

In this section we revisit an example of an automorphism ϕn : F∞ → F∞ with R(ϕn) = n,
constructed in [3] for each positive integer n, where F∞ is the free group with countable set
of generators {x0, x1, . . . }. We will prove that TBFTf holds for these ϕn.

Denote by θ : {x0, x1, . . . } → F∞ a surjective map (not unique), such that θ(xi) is a
word containing x0, . . . , xi−1 and their inverses. Now fix a positive integer n. For each
i = 0, . . . , n − 1 denote by Ji ⊂ {x0, x1, . . . } the subset formed by those xk that the sum
of powers of generators in θ(xk) is equal to i modulo n. Denote Wi := θ(Ji). Thus, Wi

is formed by those elements of F∞ for which the sum of powers of generators is equal to i
modulo n and we have

{x0, x1, . . . } = J0 t J1 t · · · t Jn−1, F∞ = W0 tW1 t · · · tWn−1.

Define ϕn : F∞ → F∞ on generators by the formula ϕn(xk) := (θ(xk))
−1xk(x0)

i, where i is
the number of that Ji which contain xk. For any w ∈ F∞ there exists m such that θ(xm) = w.
Let k ∈ {0, . . . , n − 1} be such that xm ∈ Jk, i.e., the exponent sum of w is k modulo n.
Then

w = xm(x0)
k(x0)

−k(xm)−1θ(xm) = xm(x0)
k((θ(xm))−1xm(x0)

k)−1

= xm(x0)
k(ϕn(xm))−1 ∈ {(x0)k}ϕn .

On the other hand, all elements from one Reidemeister class have the same exponent sum
modulo n (denote it by ESn), because for any w ∈ F∞ and any generator xk ∈ Ji one has
by the definition of Ji

ESn(xkw(ϕn(xk))
−1) = ESn(xkw(θ(xk)

−1xk(x0)
i)−1)

= ESn(w) + ESn(θ(xk))− ESn((x0)
i) = ESn(w) + i− i = ESn(w).
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Thus, each class contains (x0)
i and they are pairwise distinct. The details can be found in

[3].
Now, we can observe that in fact these classes are Wi, i.e., a subgroup W0 and its cosets.

Also the epimorphism
ESn : F∞ → Zn

is equivariant (for the identity automorphism induced on Zn) and is a bijection of Reidemeis-
ter classes by Prop. 1.1 since the numbers are equal. Thus, TBFTf holds in this situation.

Also, we are interested to calculate the number of fixed points of ϕn. This is important
for various arguments in the field (see e.g. [25, 17]).

Consider the case of ϕ1. Then by definition ϕ1(xk) = θ(xk)xk. There exist a number
s = s(k) such that θ(xs) = (θ(xk)xk)

−1xk. Thus

ϕ1(xkxs) = (θ(xk))
−1xk(θ(xs))

−1xs = (θ(xk))
−1xk((θ(xk)xk)

−1xk)
−1(xk)

−1xkxs = xkxs.

So, the number of fixed points is infinite.
By the universal property of the abelianization we have a commutative equivariant diagram

of epimorphisms

F∞

ab ""

ESn // Zn

Z∞,
ESn

==

which give bijections of Reidemeister classes. For the automorphism induced by ϕ1 the
images of the same points xkxs are fixed after abelianization, and they are distinct. Thus,
we still have an infinite set of fixed points.

So, in contrast with the finitely generated case [17, Prop. 3.4], an automorphism ϕ with
R(ϕ) <∞ of a general residually finite (even Abelian) group can have infinitely many fixed
points.

3. A negative example

Consider the following example of an infinitely generated residually finite group G and its
automorphism φ with R(φ) < ∞. The examples of such form naturally arise as invariant
quotients of general infinitely generated residually finite groups (in particular, some invariant
subgroups of finitely generated residually finite groups).

Let F be a finite non-trivial group and G = ⊕i∈ZFi, Fi ∼= F , i.e.

G = {g = (. . . , g−1, g0, g1, g2, . . . ) | gi ∈ Fi, gi 6= e only for a finite number of i}.
Evidently G is an infinitely generated residually finite group.

Suppose φ is the right shift, i.e. φ(g)i = gi−1, i ∈ Z.

Lemma 3.1. R(φ) is equal to |F |, in particular it is finite.

Proof. Let a, g ∈ G. Then
(gaφ(g−1))i = giai(gi−1)

−1.

First, let us detect when two elements of the form

α0 = x, αi = e for i 6= 0, β0 = y, βi = e for i 6= 0,

are twisted conjugate. The condition is:

g0x(g−1)
−1 = y, gi(gi−1)

−1 = e for i 6= 0.
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Thus,

g0 = g1 = . . . , g−1 = g−2 = . . . .

Since gi = e for large i, g = (. . . , e, e, e, . . . ). Thus, α and β are twisted conjugate if and
only if they coincide.

Now let us show that any element a = (. . . , ai, . . . ), ai = e for i < −m and i > n, is twisted
conjugate to some element of the same form as α (with x = an . . . a−m). The condition is:

g0x(g−1)
−1 = a0, gi(gi−1)

−1 = ai for i 6= 0.

Thus

g1 = a1g0, g2 = a2a1g0, g3 = a3a2a1g0, . . .

g−1 = a−10 g0x, g−2 = a−1−1g−1 = a−1−1a
−1
0 g0x, g−3 = a−1−2a

−1
−1a

−1
0 g0x, . . .

We have a unique restriction: gi = e for large i. Hence,

anan−1 · · · a1g0 = e, e = a−1−m · · · a−10 g0x.

Thus g0 should be (anan−1 · · · a1)−1 and x = an . . . a−m satisfies the restriction. �

Lemma 3.2. Suppose, F has a trivial center. Then TBFTf fails for G.

Proof. As it is known (see Prop. 1.3), TBFTf is equivalent to the property: the stabilizer
subgroup of any Reidemeister class (under left shifts) is of finite index in G (for φ with
R(φ) <∞).

In our case the stabilizer of {e}φ is trivial (= {e}). Indeed, let

a = (. . . , e, . . . , e, a−m, . . . , an, e, . . . , e, . . . )

be a non-trivial element from the stabilizer, i.e., a−m 6= e. Since ae ∈ {e}φ, then a ∈ {e}φ
and a−m · · · an = e. Since a−m is not in the center of F , there exists b ∈ F such that
ba−mb

−1(a−m)−1 6= e. Consider β ∈ G with all components trivial, except of b−m−1 := b and
b−m := b−1. In particular, β ∈ {e}φ. In the same time aβ 6∈ {e}φ, because the product of its
components is

ba−mb
−1a−m+1 · · · an = ba−mb

−1(a−m)−1a−ma−m+1 · · · an = ba−mb
−1(a−m)−1 6= e.

A contradiction. �

Remark 3.3. Evidently, the argument can be extended to a more general center.

Remark 3.4. Of course, in the opposite case, when F is Abelian, G is Abelian too and
the TBFT should be true (see [11] for details). In the present case one can write down the
desired fixed (1-dimensional) representations explicitly:

(ρi)
⊗∞, i = 1, . . . , |F |, where {ρ1, . . . , ρ|F |} = F̂ .

But in a more general case these invariant representations will be infinite dimensional.
Even a more bad fact is that there is only as many of them as #F̂ . This is strictly less than
|F | = R(φ) for a non-Abelian F .
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[3] Karel Dekimpe and Daciberg Gonçalves. The R∞ property for free groups, free nilpotent groups
and free solvable groups. Bull. Lond. Math. Soc. 46, No. 4, 737–746, 2014.
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