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Classically the vanishing of cohomology groups of 

a compact complex Kahler manifold X with values in cer­

tain locally free sheaves M is proved by studying 

positivity properties of the curvature form of a 

differentiable connection on M compatible with the com­

plex structure of X (e.g. (7]). If the Chern classes of 

M are non trivial, the connection is neither holomorphic 

nor integrable. Therefore, trying to replace the differen­

tiable connection with non trivial curvature by an inte­

grable holomorphic connection V , one has to choose a 

"boundary divisor" D and to allow V to have poles along 

D. We will always assume D to be a normal crossing divisor 

and V to have at most logarithmic poles along D. Since 

is non singular and integrable on U· X - D, 

properties have to be replaced by topological p:ropertiCls 

U together with conditions on the boundnry b~.;hQw:iour lOf 

(M,V) • 

This point of view is supported by a construction due 

to J.L. ,Verdier and independently to the first author (and 

probably to many others, too), describing the Atiyah class 

and Chern classes of M in terms of the restriction of V 

to t~e boundary D. For the readerts convenience we give the 

exact statement and the proof in appendix B at. the end 

this article. 

Because of the restriction made on the poles 

D one has at dispo~al the 



0-2 

equations with regular singular points ([3]) and in fact his 

Lecture Notes was the main source of inspiration of our 

work: 

Let V be the local constant system on U defined by 

sections of Mlu ' flat with respect to ~ and j:U ~ X 

be the inclusion. (M,~) is equipped with itls logarithmic 

De Rham complex DRDM = O"<D> 0 0 M I which is over U 
X 

quasi-isomorphic to V. If the monodromies of V around the 

components of D do not have 1 as eigenvalue the complexes 

j! V , Rj*V and D~M are all quasi isomorphic and the 

hyper cohomology of D~M is the same as the cohomology or 

as the cohomology with compact support of U with values 

in V. The spectral sequence ~1(M) associated to the 

"filtration b~tell of the logarithmic De Rham complex 

describes the hypercohomology in terms of the cohomology 

of the coherent Ox - modules nP<D> 0 M. If in addition the 

spectral sequence degenerates in E1 ' topological vanishing 

theorems on U imply global coherent vanishing theorems on 

x. 

In general it is quite difficult to decide when the 

spectral sequence degenerates {see (2.6». Using Deligne's 

theory of mixed Hodge structures ([4]), this is true however 

for sheaves arising from finite covers of X, branched along 

D. The main examples of sheaves arising by this construction 

are invertible sheaves L-1 , where L is ample or more 

generally related to integral parts of effective m-divisors 
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with support in D. If U = X - D is affine, the degenera­

tion of E1 (L- 1 ) implies immediately a general global 

vanishing theorem containing as special cases: 

- Kodaira-Na'kano I s vanishing theorem (2.10) 

- Bogomolov-Sommese ',S vanishing theorem (2.11) and 

- Grauert-Riemenschneider1s vanishing theorem as well as 

its generalization due to Y. Kawamata and the second 

author « 2 . 1 2 ) and ( 2 . 1 3) ) . 

If one drops the assumption on U, the degeneration 

of E1 (M) implies the vanishing of certain natural restric­

tion maps in cohomology. 

Applied to the sheaves L-1 considered above one obtains 

the vanishing of the restriction maps of twisted differential 

forms in the cohomology «3.2) and (3.3). Especially one 

gets an improvement of the Kollar-Tankeev vanishing theorems 

(3.5) as a direct interpretation of the degeneration of the 

spectral sequence. 

In § 1 we recall properties of sheaves with logarithmic 

connections and their De Rham complexes. The condition that 

the monodromies of V do not have 1 as eigenvalue implies 

that, the minimal and the maximal extensions of V coincide, 

as we prove in (1.6). 

This also follows from a much stronger statement proved in 

appendix A to § 1. This result - superfluous for the 

vanisingtheorems considered - says that the Verdier dual of 
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the complex DRuM is quasi-isomorphic to 

DRDtHomOX(M,OX} 0 0x(-Dred». This duality is quite similar 

to the corresponding duality for V-modules, which is one of 

the key-points in the proof of the Riemann-Hilbert correspon­

dence for V-modules (Z. Mebkhout, M.Kashiwara, see for 

example (2)). We hope that the appendix explains why (2.6) 

is true and that it casts some light on the statements of 

§ 2. We believe that the language of Ox-coherent logarithmic 

V-modules is a quite adequate tool in algebraic geometry, and 

we hope that the duality is useful for different purposes as 

well. 

In § 2 we give 'the cohomological interpretation of (1.6), 

provided the spectral sequence E1 (M} degenerates and U = X - D 

is affine. We discuss examples where all three assumptions 

hold and state and prove the vanishing theorems mentioned. 

§ 3 contains the applications so the cohomology of 

res~riction maps, useful if U is not affine. The main 

observation is that the conditions posed on the monodromy 

of V imply that the residue maps obtained from V are 

surjective on each component of D and can be identified 

with the natural restriction map. 

After finishing a first version of this paper we learned 

that our appro~ch towards global vanishing theorems is close 

in spirit to methods used by J. Kollar [10] and related to 

results by M. Saito (see also (2.6)). 
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g 1 Logarithmic De Rham complexes and extensions of 

local constant systems 

In this section we recall the basic properties of 

sheaves with logarithmic connections, their monodromy and 

the extensions of the corresponding local constant systems, 

as developed by Oeligne in [3]. The reader mainly interested 

in the proof of the global vanishing theorems is invited to 

read just up to (1.5) and then to read § 2. 

(1. 1 ) Throughout this article X denotes either a proper 

algebraic manifold over ~ or a compact complex analytic mani­

fold of dimension n. Ox denotes the sheaf of algebraic 

functions or the sheaf of analytic functions in the second 

case. In § 1 - starting from (1.2) - and in appendix A we have 

to restrict ourselves to the complex analytic case. 

s 
Let D = I 

i=1 
v.O. 

J. J. 
be an effective normal crossing divisor 

on X, i.e. an effective divisor whose components are non 

singular and meet transversally. We write j:U = X - Dred + X 

for the open embedding. We consider locally free sheaves M 

of Ox - modules endowed with a holomorphic connection V 

with logarithmic poles along 0 

as defined by Deligne ([3}, II § 3). Such a pair (M,V) will 

be called a logarithmic connection along D. It induces 
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by the rule 
p 

V'p (U) ® m) = dw ® m + (-1) • W A V'm • We assume 

'iI to be integrable, i.e.: Vp 0 'ilP+1 = O. The complex 

obtained is denoted by DRoM and called the 

logarithmic De Rham complex of (M,'iI). 

(1. 2) From now on all sheaves are considered in the 

classical topology and Ox denotes the sheaf of holomorphic 

functions. 

The Riemann-Hilbert correspondence, proved by Deligne [3) 

says: 

a) The complex DRDM I u is exact at P > 0 and the flat sections 

form a local constant system V = Ker VIU. In other words, the 

inclusion V + DRDM\Uis a quasi-isomorphism of complexes. 

b) For any local constant system V on U denote Mu = 0u ~~v 

and V'u = d ®~ id:Mu +~ ®~v = o~ .0 Mu • Then there exists a 
X 

locally free sheaf M on X and a connection V :1.(' + O~<D> ® M 

with logarithmic poles, extending (Mu'Vu). 

c) The extension (M,V) in b) depends on the choice of the 

logarithm of the monodromy: If one chooses fi such that 

exp (-2· r-T . 11'. r i) = 'Y i is the monodromy of V around Di 

and such that the real part of the eigenvalues of r i lies 

in [0,1[, then (M,V') is uniquely determined and characterized 

by Resi(V') = f 1 • Here res1 : ~<D> • M + 0D lID M is the 
1 

Poincare residue and Resie'l) = resi o V' 1s the residue of 'V 
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(see [3], II; 5.3 and 5.4). In this case we 

call (M,V) the canonical extension of V. 

d) The canonical extension is compatible with covers in 

the following sense: 

For any cover l :X' -+ X ramified only along D , with X, 

smooth, the inverse image of the canonical extension is 

contained in the canonical extension of T-
1V.Moreover, if 

(M 1 ,V1 ) is any other extension of V with this property, 

then the canonical extension M contains M, • 

e) V being uniquely determined by (M,V) we will omit 

refering to V and talk about the monodromy of (M,V) and 

will call (M,V) the canonical extension if it is the 

canonical extension of 

(1 .3) 
s 

B = l. 
i=1 

for V 

If (M,V) is a logarithmic connection along D and 

b.D. any divisor supported in D , the Leibnitz rule 
~ ~ 

implies that V induces a connection VB of 

M(B) = M 00 0x{B) , logarithmic along D. The residues of the 
·x 

connections along Di are related by 

Hence, if Resi(V) has no integer as eigenvalue, then Resi(VB ) 

can not have integers as eigenvalues either. Moreover, if B 

is effective and if Resi(V) has no strictly positive integer 

B as eigenvalue, the same is true for Resi(V). By [3], IIi 3.13 

and 3.14 the property that no strictly positive integer 



1-4 

occurs as eigenvalue of the residues of the connection V 

implies that DRoM and Rj*(DRtfIU} are quasi-isomorphic. 

Therefore one obtains: 

(1. 4) Lemma. ~ (M,V) be a logarithmic connection 

along D and B be any. divisor supported 

on D. Assume that one of the following conditions is satisfied: 

a) (M,V) is the canonical extension (or - more generally - for 

all i, Resi(V) has no strictly positive integer as eigenvalue) 

and B is effective. 

b) For i = 1 '" s, Resi(V) has no integers as eigenvalue. 

Then DRoM , DRDM(B), Rj*{DRDM ju) and Rj*V are quasi-isomorphic. 

As well known, (1.4) together with Serre's vanishing 

theorem imply the topological vanishing th~orem (needed in 

§ 2): 

(1. 5) 90ro&lgry. If U is an affine manifold of dimension 

n and V a local constant system on U, then 

k H (U,V) = 0 for k> n. -

If moreover the mondoromies Yi of V around Di (for i = 1 ••• s) 

do not have 1 as eigen value, then 

k H (U,V) = 0 for k'" n. 
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Proof: We may choose X to be a projective compactification 

satisfying the assumptions made in (1.1), (M,V) to be the 

canonical extension of V and B to be a very ample effective 

divisor supported in D. Replacing B by some multiple we may 

assume that 

for q> O. 

Looking at the spectral sequence associated to DRDM{B) with 

the "filtration b~te" (see [3], 1.4) and converging to 

one obtains 

for k> n. 

Assume now that the Yi do not have 1 as eigenvalue. 

If one chooses B to be a sufficiently high multiple of an 

ample divisor, we have 

Here MV is the, Ox - module 

one has 

for q> O. 

Homo (M,OX)' By Serre-duality 
X 

Hq(X,WX 0 (~<0>0 MV{B - 0red»V) = 

= Hq(X/Q~-P <0> 0 M(-B» = 0 
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for q < n. By (1.4.-6) the same spectral sequence as 

conside~ed above converges to Hk(U,V) and we obtain 

a k 
(U , V) = 0 for k < n. 

The second part of (1.5) is not surpris ing. We will 

see below the assumptions made imply that Hk(X,Rj*V) is 

the same as the cohomology with compact support H~(U,V). 

Rj*V is "the maximal extension" of V to X and its 

cohomology sheaf in degree zero, j*V, contains the "minimal 

extension" j!V , i.e. the sheaf of abelian groups obtained 

by extending V by zero. The functor j! is exact and 

H~(U,V) = ak(X,j!V}. 

(1.6) l&rnma, Let V be a local constant system on U 

such that the monodromies Yi of V around Di (for i= 1 ••• ~ 

do not have 1 as ei2envalue. Then j!V ~ Rj*V ~ 

guasi-isomorphic. Especially and -

q> O. 

Proof: Since we have a natural morphism jfV ~ Rj*V I it is 

enough to prove (1.6) locally. 

Let W be a small neighbourhood of a point on D. We have 

to show that RPj*V(W) I: aP(UOW,V) ::::: 0 for all p. If 

o ~ V· -+ V -+ V" ... 0 is an exact sequence of local systems on 

U and if VI and V" have no cohomology on 00 W, the same 

holds for V. 
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Choosing W small enough we may assume that 
n r n 

W = TT 1::." 
j=1 J 

and UOW = n A~xn 
j=1 J j=r+1 

Aj where Aj is 

a small disk and A~ 
J 

the punctured disk. Since the 

monodromies Yj around the components of DOW commute 

we can find a local subsystem V' of V stable by the 

such that the cokernel is a local system of lower rank .. 

By induction on the rank of V we are reduced to the 

case rkV = 1. 

Yj 

-1 We may write V = P1 V1 0 ••• 0 where p . : U n W -+ A ~ 
J J 

is the j-th projection and Vj the local constant system 

on I::.j corresponding to the representation of Yj on a 

one dimensional vector space L. 

By the Kiinneth formula we just have to show that ak(Aj ,Vj , :::: 0 

for k = 0 and k = 1 • We may replace Aj by its boundary 

s1 = iM.* j and we parametrize S' by e 2i1T ·t t € 3R .. t 

Take U = 1 
{e2i1Tot 

I t € }O,1 D and 

u2= { 2i n· s s € 1 1 of 8' e I 1-2"2'[} as cover .. 

Then u1 ,U2 and the two connected components w+ and 

W- of U, n U2 are simply connected.. The coordinate 

chan ga from U, to U2 is 

t 

v 

t 

t-1 
if 
if .. 

The eech cohomology with values in Vj is computed by the 
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the cOhomology of the complex 

However, if y " '" ) 
1 , d is an isomorphism. 

Lemma (1.6) gives the following improvement of (1.4, b) 

(1. 7) Corollary. Let (M,6) be a logarithmic connection 

along D and V ~ Ker (Vlu}. If Resi(V) has no integer as 

eigenvalue (for i = 1 ••• s) then DRD(M) I j! (DRD(M) lu>' 
R j *V and j ! V are quasi-isomorphic. 

Remark: In Appendix A we will consider for any logarithmic 

connection (M,V) the dual connection on MV = HomO (M,Ox) 
X 

and the logarithmic connection ( I1v( D ) n
V). If D 

M - red I v 

denotes the Verdier-duality functor, we will see that 

Since D (Rj* V) ~ J" VV for ! I 
VV = Hom~(Vlre) , we obtain from 

(1.4,a): 

(1.8 ) If (M,V) is the canonical extension, then 
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Moreover the duality together with (1.4, b) gives another 

proof of (1.6). In fact, if V has no monodromy with 1 

as eigenvalue, the same is true for Vv. Hence 

R j*V = DRDM and R j*Vv = DRnMV (-Dred) and we obtain the 

quasi-isomorphisms 



A-l 

ARpendix At Dyalitx for logarithmic pe ¥bamgomplex@s 

We keep the notations and assumptions introduced in 

(1.1), except that X is a (not necessarily compact) 

analytic manifold and - to simplify the notation - that D 

is reduced. 

(A. 1) Let Db(X) be the derived category of bounded 
c 

complexes of a-sheaves with constructible cohomology. The 

Verdier dual is given by the functor 

D : D~(X) -+ 

f· f---.,.. 

D~(X) 
D (FO) = R Homa: (FO ,aX) ° 

For an Ox - module' M we write MV = HomO (M,Ox) and, 
X 

if (M,V) is a logarithmic connection along D I VV denotes 

the dual connection. The main result of this appendix is: 

(A. 2) Proposition. In D~(X) one has 

The arguments needed to prove (A.2) are quite similar 

to a proof of the corresponding statement for Dx - modules, 

due to J. Bernstein «(2], §5). We recall some notations from 

the theory of Vx - modules. Details can be found in [2]: 
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(A.3) Vx denotes the sheaf of holomorphic differential 

operators on X and VX<-D> the subalgebra of Vx 

generated by Ox and Tx<-D> = W 1 <D>} v the sheaf of X 

vectorfields preserving °X(-D). 

Locally we choose a parameter system of X such that D 

is given by x1• •••• xr = o. 

Let d1 , ••• ,dn be the vectorfields orthogonal to 

x 1"",xn and define 

ri 
. di for 1 ~ i ~ r 

O. = 
~ 

°i for r + 1 ~ i ~ n . 

°i is dual to 
dXi 
xi 

(1~i~r) or dXi (r + 1 S i ~ n) , 

and TX<-D> is generated by 15 1"" 'Jon' 

The logarithmic connection 'V on M gives M the structure 

of a left Vx<-D> module and for m E M , 
r Q.xi u 

'\lm =: L 0i. m -- + L °i 
. m dxio 

i=1 xi i=r+1 

(A. 4) Claim. Let A and B be two left Vx<-D>- modules. 

Then 

a) HomV <-D> (A I B) ;= HomV <_D>(A(D),B(D» 
X X 

b) One has an isomoq~hism 
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given by 

Proof: a) If cp:A + B is a morphism of vX<-n> 

mod ules we define cp':A{O) + B(O) by 

Wl{ a ) = 1 w(a}. This is clearly 
x1 ·····xr x1 ·····xr 

o -linear and we just have to verify the compatibility x 

with 0i' 

If i::;r 

and 

then (
a _ 

0; X' .x) ..... 1 ••• r 

a .a 
~ a 

tn' (0. a ) 
't' .. x· 'X .... 1 ••• r 

a.a = tn' ( ~ ) _ tn' ( __ • ..:;;;a __ _ 
't' X. 'X 't' X 'X 1 ••• r 1 .,. r 

= xl'· .. ·Xr 

The case i > r is similar" 

Conversely, if wt E Homp<_o>(A(O),B(O» we obtain 

WE Homp<_o> (A,B) by restriction. 

b) As for connections the Vx<-O> - module structure on 

HomO (A,B) is given by (Oi'¥) (a) = ai('¥(a» 'Y(oia) for 
X -

'¥ E HomOx~A,B}. The morphism cptl) is Ox - linear and 

0i (W(1) (a)} - cp(l) (oial = (oi (cpt1») (al = (CP(oi 1)) (a) = O. 

Hence cp(1} is Vx<-O> linear. On the other hand, if 

n t HomV <_o>(A,B) we define cp € HomV <_o>(Ox,HomO (A,B») 
X X X 

by CP{A) = A"n. In fact, cP is Vx<-O> linear since 

CP(oiA} (a)= (oiA) • neal = 0i(A"n(a}) - A"oi(n(a)) = 
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Ox has a locally free resolution as VX<-D>- module 

by the Koszul complex 

n ~-1 n-1 n-2 
o + VX<-D> 00 A TX<-D> ) VX<-D> 00 A TX<-D> ~ 

X X 

where 

p p+1 . 1 A 
d (p ° (0. A ••• 1\0.1 »)= L (-1)J- p'O. t» to. I\ ••• AO.I\ ••• 1\0. ) 

J. 1 l:p+1 j=1 J. j J. 1 J. j J.pr1 

(A.5) Claim. 

r=Hom
V 

D (V <-D>®O AT.X<-D>~O 0X(D) ,M(D» 
x<- >' X X X 

Proof: The last quasi-isomorphism follows from (A.4. a». 

The Koszulcomplex is a locally free resolution and there-

fore one obtains the secondquasi-isomorphism. Since 

we just have to verify that the differentials dp of the 

third complex are the same as Vp' For simplicity we assume 

p = O. 
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r dXi n 
One has dam = I ni + L ni dxi for x. i=1 ~ i=r+1 

n. = (<p 0 d ) (0 i) = <P(oi} = °i<P(1) = eim . By definition 
~ 

of the VX<-D>- module structure on M we have dam = \lm 

(A.6) Claim. 

Proof: By taking I" to be an injective resolution of 

Ox over 

(A.4,b) 

VX<-D> w~ obtain RHomV <_D>(M,I") 
X 

this is quasi-isomorphic to 

HomV <_D>(Ox,HomO (M,IO)}. Since M is locally free and 
X X 

. 

Ox quasi-isomorphic to I' I HomO (M,IO) ~ MV 

X 
injective resolution of MV. In fact, MV ~O I" 

X 

o ° IO is an 
X 

is locally 

a direct sum of copies of IO and 
v M = HomO (M, OX) ~ RHomO (M, OX) ;:a RHomO (M II' ). Therefore 

X X X 
HamV <_D>(Ox,HomO (M,IO» = RHomV <_D~Ox,HomO (M,I"» = 

X X X X 

=RHomvx<_D> (Ox,Mv ) and using (A.5) we are done. 

(a.7) There is a natural Eairing, non degenerate over U 

Proof: Again, let I" be an injective resolution of Ox 

as VX<-D>- module. Using (A.S) and (A.6) we obtain the 

pairing 



A-6 

1 
" 

Homp <_D~VX<-D> 0 0 A TX~-D> 0 0 0X(D),I") 
x x x 

If 
" 

The last sheaf is by scalar extension isomorphic to 

In fact~ if ~ is a VX<-D> linear morphism 

one can extend the operation of using the 

OX-linearity and writing 3 i = 

The inclusion gives a morphism 
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As a corollary we obtain: 

(A.8) There is a natural morphism, isomorphic over U: 

Proof of (A.2): If 0 -+- M' -+- M -+- Mil -+- 0 is an exact 

sequence of logarithmic connections along 0 and the 

morphism in (A.8) an isomorphism for M' and Mil , it is 

an isomorphism for M as well. 

Moreover the question whether ~ is an isomorphism can 

be answered locally. 

As in [3], p. 83, one may assume that the coefficients of 

the connection in a neighbourhoodofa given point are constant 

and that the connection matrix is triangular. We can find 

a sUbconnection M' of M I being of lo\"er rank. Therefore we can 

argue by induction on the rank, and we may assume that the 

rank of M is one. 

Choosing the neighbourhood small enough we may write 

(X (0) ;l (X1 ,°1) x (X2 ,D2) and M as M = ~M1 lB .. PiM2 where 

Mi is a rank one connection on Xi ' logarithmic along 

0i (See [3J, p. 81). Then ORoM = pt OR
01

M1 IB P2 0~2M2 
and since the Verdier duality is also compatible with 

products we are reduced to the case of curves: 

Let X be a curve, 0 € X a point, given by x = 0, and 

M a rank one bundle whose connection bas constant coefficients. 
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If the residue Res ~ of M at D is given by multiplication 

with a , Res (~v,-D) of MV(-D) is given by multiplication 

with (1 - a). Hence changing the role of M and MV(-D) if 

necessary, we may assume that 1 - a ¢~ - {oJ • By [3], II, 

3.14, D~Mv(-n) - Rj*Vv and ID DRDMvC-D) = j!V where 

V = Ker (Vlo). Therefore we just have to show that -a ~~ 

implies that DRnM = (0 + M + n~<n> 0 M + 0) is quasi­

isomorphic to j!V 0 

Since Res ~: M + MID is given by multiplication with a * 0 I 

Ker ~ c M(-D). Similarly, since Res (VIM(-~.n) is given 

by multiplication with a + ~ and is nontrivial for ~ ~ 0, 

one obtains 

Ker ~ c n M(-~oD) n j*V = j!V 
~~o 

On the other hand, if e is a generating section of M 

such that ~(foe) == ( x.a + a) foe dx and 
x 

goe· dx == ( L Allof) 
X J/, N 

e dx
x 

E o}-<O> 0 M, then ~ A~ 9. 
-J{ i a+~ x 

converges as well and 

~ x ) -e) 

Hence ~ is surjective and the quasi-isomorphism is 

established. 
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§ 2 The E1 tM) -degeneration, applications to global 

vanishing theorems and examples 

From now on we allow X to be algebraic over ~ 

or - as in § 1 - analytic. We keep the assumptions made 

in [1.1). Since we only deal with hypercohomology of 

logarithmic De Rham complexes over compact manifolds we 

can use GAGA theorems and switch from the algebraic case 

to the analytic case whenever it is necessary. 

(2.1 ) On the logarithmic De Rham complex DRDM one 

considers the IIfiltration b~te" 

~O nP p+1 cfl 11 .I:!"":O -+ .'X<D>0M -+ 0 X <D>0M -+ ••• -+ ."X<D>0m 

and the associated E,-spectral sequence 

(E~g(M) ,d
1

) = (Hq(X,~<D>0 M),Hq(V}), which converges to 

EP+q(XID~M) (see [4J, 1.4). 

By definition of a spectral sequence, the following 

two conditions are equivalent: 

A) ~ 
p+q=k 

B) The spectral seguence degenerates at E1" 

If A and B hold, we sax that (Id,V) satisfies lithe 

El (M) degeneration". 
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(2.2) Main Lemma. Let (M,~) be a logarithmic connection 

along 0 satisfying the E1 (M) degeneration. Assume that U 

U is affine. Then 

1) if ORoM is quasi-isomorphic to Rj * V I one has 

Hq (x,nP <o>0M) = 0 for p + q> n. 
X 

2} if DRoM is quasi-isomorphic to j!V, one has 

p + q < n. 

3} if for i = 1 .•• s the monodromy around 0i does 

not have 1 as eigenvalue, one has 

for p + q * n. 

Remark: As we have seen in (1.4) the assumption in 1) is satis-

fied for the canonical extension or - more generally - if for 

all i, Resi(~) has no strictly positive integer as eigen­

value. Correspondingly the assumption of 2} is satisfied if 

(for all i) Resi(~) has no eigenvalue lying in -~ . 

Proof: One just writes 

dim mk(X,ORDM) = Ea 
p+q=k 

In case 1) or 3) (use (1.4,b» this is nothing but 

dimmk(X,Rj V) = dim ak(u,v) and in case 2) this is 
* 

dimmk(X,j,V) = dim Hk(U/V) = dim H2n- k (U,Vv) and the . c 

Main Lemma follows from the "topological vanishing ll (1.5). 
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(2.3) Remarks. a) In fact, by a small modification of 

the arguments given , it is enough to assume that the 

conditions in 1),2),3) are satisfied along enough 

components of D, such that the complement remains affine. 

For example 3} could be replaced by 

3'} if for i:::: 1, .•. ,r the monodromy around 0i 
r 

does not have 1 as eigenvalue and X - u 0i is 
i=1 

affine, then 

for p + q * n . 

b} If U is not affine, we still have the following 

result. Assume X to be a proper algebraic or compact 

Kahler manifold and assume that there exists a morphism 

g:U + W on a affine manifold W, such that th;e maximal 

fibre dimension of g is r. Using the Leray spectral 

sequence one obtains ak (U , V) :::: 0 for k > n + rand 

- under the additional assumption made in (2.2,3) one 

has ag(x nP<D> 0 M) == 0 , X for p + q < n - r or 

P + q > n + r. 

(2.4) Let Y be a normal manifold and TI:Y + X be 

a Galois cover ramified only along the normal crossing 

divisor 0. Let a:Z + Y be a desingularization of Y 

such that (;t\-1 0 == A is a normal crossing divisor too. 

Y has rational singularities (see [5]) and ~*OY is 
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locally free. By [5], § 1, R(~ ou)*Q%<A> = Q~<D>0 0 n*Oy' 
X 

The pull down of the Kahler differential 

induces a connection VI on n*Oy and 

R{ n oa)* DRll (Oz) = DRD(n*Oy). 

The Galois group G operates on Oy and n*Oy. Let M 

be a direct summand, invariant under G. Then VI induces 

a logarithmic connection V on M and DRD(M) is a 

summand of the complex DRD(n*Oy)' Hence (M,V) satisfies 

the E1 (M) - degeneration, as (Oz,d) satisfies the 

El (Oz) - degeneration. 

By Deligne's mixed Hodge theory for open varieties [3J this 

is true if X (and hence Z) is algebraic or Ka~ler or -

more generally - if there exists a Kahler manifold XI and 

a bimeromorphic map 'l:XI+ X. In the last case we will say 

that X is bimeromorphically dominated by a Kahler m~nifold. 

By definition (M,V) is the canonical extension. The local 

constant system V of flat (analytic) sections is given 

by a representation of ~1 (U) on a vector space L factorizing 

over G. The assumption made in (2.2,3) says that 

(*) The ramification groups of a components Di of D 

are mapped injectively to Aut(L). Alltogether we obtain: 

(2.5) 

constructed above. Assume that x 

be the logarithmic connection 

is a proper algebraic (or 
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compact Moise~on) manifold and U is affine, then 

Hq(Xln~<D>0 M) = 0 for q + p> n. Moreover, if (V,M) 

satisfies (*), then 

(2.6) Remark: 

Let V be a the local constant system on U given by 

a unitary representation of ~1 {U} and (M,V) be the 

canonical extension. P. Deligne told us that S. Zucker's 

methods and results in [12] should extend to this case 

and prove the El (M)- degeneration. One has to regard V 

as a polarized variation of Hodge structures of weight 

(O/O). In fact Zucker studied in [12J the case of arbitrary 

variations of polarized Hodge structures, but ,he had to 

assume 0 to be a smooth divisor. 

Recently E. Cattani, A. Kaplan and W. Schmidt on one 

side and M. Kashiwara on the other side generalized 

Zucker's results to the case of a normal crossing divisor. 

It seems that the extension considered by them is in the 

case of weight (O,O) the same as the canonical extension 

and that their results imply the E1 (M) degeneration. 

A II good il extension of variations of Hod9~ structures 

together with the degeneration of the corresponding spectral 

sequence might imply vanishing theorems for certain sub­

quotients of the variations of Hodge structure. Some more 
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precise questions can also be found in J. Kollar's 

paper [10], § 5. 

(2.7) The simplest case of the covering construction 

given in (2.4) is that of a cyclic cover. 

s 
Let L be an invertible sheaf on X and D = I viDi 

i=1 
he an 

effective normal crossing divisor, such that for some 

N > 1 one has L N := OX (D) 0 Define for a ~ j ~ N - 1 the 

sheaves L{j):= Lj(- [joD}) where [] denotes the integral 
N 

part of the <II-divisor j~D (see [5] or [11])" Let L-+ X and 

LN -+ X be the line bundles corresponding to Land LN 

and n:L -+ LN the map obtained by taking the N-th power. 

Let S:X-+LN be the section corresponding to D and Y 

the normalization of n-1 {(s(X). The cover ff:Y -+ X ob-

tained is a cyclic cover, ramified over D. It is the 

came cover constructed in [5] or [11] as normalization pf 

Spee ( ~!ri L-j). One has ~*Oz :=~~6 L(j)-1 and the sheaves 

L
(j)-1 

correspond to the different sheaves of eigen spaces. 

By the construction of (2.4) the sheaves are 

endowed with a natural logarithmic connection along D. 

It can locally be described in the following way: 

If -1 
t is a local generator of L and 

v, "r 
f - X· .. x _., .. ,. r 

a local equation for D, one has 

of L
(J,)-1 . 

is given by a j = t J .. x1 

t N := f. A local generator. " 
_[J~] 

-rjNovl J N 
• ...... • xr 

One has V(a
J
,):= a .. (j~ - I [~l 

j t i=1 N 
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The condition (*) of (2.4), saying that the monodromy of 

(L(j) TV) does not have 1 as eigenvalue means exactly that 

~ N ~ Z for i = 1 ••• s. 

Rewriting (2.S) in this case one obtains: 

(2.8) GloBal vanishing th§orem for integra± parts of 

<ll-divisors. 

Let x '<I be a proper algebraic (or compact Moisezon) manifold 

and U affine. Let L be an invertible sheaf and 

Then 

1 ) for 0 $ j ~ N - 1 and p + q:> n one has 

Hq(X,gP<o:> 0 L(j)-1) = o. 
x 

2) if moreover, for some j , 1 ~ j ~ N - 1, and for all i, 
. ( . )-1 

one has 1~Vj ~ Z, then HQ(X'nk<0>0 L J ) = 0 for 

P + q * n • 

(2.9) Remarks: 

1} Let 0' = EDi ' where the sum is taken over all 

. j.Vi components D. w1th ____ E ~. Then 
1 N 

( . ) (N- . )-1 
L J (-0 ) = L J (-0 1

). Using Serre duality one red 

obtains in (2.8.1) the vanishing of 
. -1 

aq (X,nP<D> 0 L (N-J) (-D'» for P + q < n. 
··-X 

2) Using (2.3,a) it is in (2.8,2) again sufficient to 

ask for the condition n i,vj f/. ZIt for "Anough" 
N 
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components of D. Moreover - as remarked in 

(2.3,6) - one can weaken the condition "u affine" 

and obtains still the vanishing of some cohomology 

groups. 

3) Replacing L by Lj and N by j oN we may 

always assume that the sheaf considered is of the 

form L{l). Moreover, since t(l) does not change 

if we replace D by D - N • D. 
l. 

and L by 

for some i with "'i;:: N I we can as well assume that 

all 0< "'. < N. In this case the assumption of (2.8,2)) 
l. 

is satisfied for the new divisor D. However, if from 

the beginning i. Vj ~ 7t: , Dred does not change. 
N 

At the end of this section we want to show how to obtain 

from (2 •. 8) several of the classical vanishing theorems. 

(2.10) 

Let X be a'projective manifold and L be an invertible 

ample sheaf. Then Hq (XIQ~ " L-1) = 0 for p + q < n. 

Proof: For some N>l we can find a smooth very ample 

divisor D such that LN=O (0). 
X One has an exact sequence 

o -+ op + OP~D> -+ p-1 -+ 0 and a long exact sequence X n. On 

_..a-1 _0 -1 _..0-1 oP-1 -1 _..a _0 -1 
••• + .ti. (X,,'X <D>QP L ) +.ti.. (0,."0 • L ) -+ t1·(X/~' xQII L )-+ 
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By construction u = x-o red is affine and (2.8.2) implies 

for q + p < n (or q + p > n + 1). 

The sheaf LID is ample and - by induction on the dimension -

we may assume that aq- 1 (D In~-1 CIt L -1) = 0 for p + q ~ n. 

(2.11) Bggomglgv-Somffi§se-YAnishipg theorym. 

(see for example [11] ) 

Let X be a proper algebraic (or compact Moi~e~on) manifold. 

L an invertible sheaf with K (L) = n. ~ aO (X,ni CIt L -1) = 0 

!2E p < n. 

Proof: The statement is compatible with blo'\tling up. ':J.1here­

fore we may assume X to be projective. Since K(L}= n we 

can find N> 1, a very ample sheaf H and an effective 

divisor B such that LN = N(B). Let o;x' or X be an 

embedded desingularization of Band -E a relative ample 

divisor, E supported in the exceptional locus of o. Re­

placing N by V' Nand N by HV we may assume that 

H' = o*H{-E) is very ample and for L'· a*L we have an 

effective normal crossing divisor B' = o*(B) + E with 
N L • := H t (B'). Hence We may assume that from the beginning 

B was a normal crossing divisor. Of course, in order to 

prove (2.11) we may replace L be a smaller sheaf and hence 

we can also assume that the multiplicities of all components 
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of B are strictly smaller than N. Let H be a general 

divisor of II. Then D;::; H + B is a normal crossing 

divisor. As in (2.9) we have L(1) = L. Since H is very 

ample U;::; X - Dred is affine and (2.11) follows from (2.8.2). 

(2.12) The vanishing theorem for numerically effective sheayes • 

(see [8] or [11 ]) .Let X be a proper algebraic (or compact 

Moi~ezon) manifold I L a numerically effective invertible 

sheaf (i.e deg(L 1c ) ~ 0 for all curves c c:: X) and -
Hq (X I L -1) ;::; 0 f <: -2E. . q n. 

Proof: Again (2.12) is compatible with blowing up and we may 

assume X to be projective. For 'numerically effective sheaves 

the condition c 1 (L)n> 0 is equivalent to K(L);::; n (the 

proof is quite simple, see for example [11]). As in the proof 

of (2.11) we can find - after blowing up again - an ample 

sheaf II and a normal crossing divisor B such· that' 

L N ;::; H (B). Since L is numerically effective tI ~ L \I is 

ample for all \I ~ o. Replacing N by N + \I , we may assume 

that N is larger than the multiplicities of the components 

of B and- replacing N,L,tI,B by ~. N ,L~,H~/~'B - that tI 

is a very ample. Let H be a general divisor of Hand 

D = B + H. Then L(1) ;::; L, u;::; X - Dred :; (X - Hred) - Bred 

is affine and (2.12) follows from (2.8.2). 

(2.12) can be generalized to W-divisors. The most general 

form is 
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(2.13 ) Theorem. (see [8J,[11Jor[5]) 

Let X be a proper algebraic (or compact Moi~ezon) manifold, 

L an invertible sheaf and C an effective normal crossing 

divisor such that for some N> 1 LN (-e) is numerically 

effective. If for some j < N the If L-dimension" 

The proof is similar to (2.12): If cr:X' + X is a blowing up, 

such that a*C = C' is again a normal crossing divisor, then 
joe· j·e Ro*OX' ([ N ]) = 0X([ N J}. This follows from the fact that 

the cover Y of X constructed in (2.7) has at most 

rational singularities, or from elementary local calculations 

(see [11J). Hence the statement of (2.13) is compatible with 

blowing up. 

If we allow "fractional powers of sheaves", one has 

L j (- I j ~ c] ) = ( L N (- en N 0 0 ( ~ C - [ j ~ e ] ). Hence the 

assumption says that we can find (after replacing N by 

some high multiple) a subdivisor C· 

[joc] = [j'(C-C
f
)] and such that 

N N 

of. C such that 

L N (-c + C·) contains 

an ample sheaf H. After blowing up we may assume that 

L N (- (C- C'» = tl (B) where B + C is a normal crossing 

divisor. Replacing tl by H 0 L v·N (-C) we can increase 

N without changing the multiplicity of the components of 

B. All together we are reduced to the case that L N ::: 0 (D) 

where D::: H + B + ( C - C') is a normal crossing divisor, 

H is ample and [j~D] ::: [j~ C] • Now (2.13) follows from (2.8,2). 
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(2. 14) Remark: a} It seems surprising that the 

vanishing theorems (2.11) for q = 0 and (2.12) for 

p = 0 are more general than (2.10). However, it is well 

known, that (2.10) is no longer true, if one replaces 

the condition ilL ample" by "K(L) = nand LJ..I. generated 

by global sections for some J..I. > On. In this case one could 

still choose a normal crossing divisor D with small 

multiplicities, such that LN = 0 (D) and such that U = x - Dred 
is affine. One obtains the vanishing of Hq (X,Qi<D>0 L-1) 

for q + P * n I but the induction used in the proof of (2. 10) 

breaks down, since for some components Di I K(L 1D .) might be 
~ 

too small. 

b) The proof of (2.12) and (2.13) in [11] used Hodge duality 

to reduce the vanishing of cohomology of invertible sheaves 

to the Bogomolov-Sommese vanishing theorem. In the approach 

described here, both follow from the same statement, the 

E1-degeneration of the spectral sequence associated tQ the 

Hodge filtration, and one does not use the Hodge duality. 
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0& mor;ppisms 

We keep the notations and assumptions made in (1.1) 

and (2.1). Whereas in § 2 we just considered the dimension 

of for a logarithmic connection M, we will 

now regard the differentials d of the spectral sequence. p 

(3.1) As usual [i] denotes the shift operator for 

complexes. Hence FP[p] is the complex starting with 

ni<D> ~ M in degree zero and - if F is any complex -

one has ]Hk(F) = mk+i{F[_i]). 

The differential 

is the connecting morphism of 

Hence d
1 

= 0 implies that mQ(X,FP/FP+2 [pJ) +HQ(X,g~<D>~ M) 

is surjective and in this case d 2 is the connecting morphism 

of 

If d 2 = 0 one gets a surjection 
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and repeating this construction long enough one finds 

the we11known equivalence of the following two conditions: 

A) For all p,q the connecting morphisms 

o -+ p:>+1 Cp]-+ FPcp]-+ 0 ~ < D> ® M -+ 0 

are zero. 

B) (M, V)· satisfies E1 (M) degeneration. 

Of course op is induced by 'O~<D> ~ M ~ pP+1[p+1] • 

Under the additional condition that DRDM is 

quasi-isomorphic to j!V I where V denotes as usual 

the flat (analytic) sections of M, the E1 (M) degeneration 

can be interpretated in a more geometric way. In the 

Lemma below part 1) and 3) use the whole vanishing of d, 

whereas 2) follows from the vanishing of d,. 

(3.2) Main Lemma: Let (M,V) be a logarithmic connection 

satisfying E1 (M) degeneration. Assume that the monodromies 

of (U,V) around the components Di 2! 0 do not have 1 

as an eigenvalue. 
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1) Then for any effective divisor B with B <D 
red - red ' 

and all g;;;:. ° , the morphism, induced by restriction of 

M to BI Hg(RO) :Hg(X,M) ~ Hq(B,MIB) is zero. 

2) Let C be a smooth subdivisor of Dred and DJ = 0red - C. 

Then for all q ~ ° and p ~ ° the morphism, induced bv 

restriction of differentials, 

is zero. Especially, if D is smooth, the maE 

Hg(X,n~ 0 M) ~ Hq{D,n~ ~ M) is zero: 

3) Then for all q ~ 0 ~ p ~ 0 the morphism, induced by 

the connection V, 

is zero. 

Proof: 1) By (1.4,b)DRoM and DRDM(-B) are quasi-isomorphic. 

By (3.1 I A) the morphism 0o:Hq (X,M)+m
q

(X,F1
[11) is zero. 

Hence in the commutative diagram 

EgCX'0RoM(-B» ~ Hq(X,M(-B)} 

+S tY 
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a is an isomorphism and a surjective. Therefore y 

is also surjective. 

2) By assumption Resc(V) can not have zero as eigenvalue 

and this just means ([3], p. 78) that the composition 

Resc(V):M ~ ni<D> 0 M 

Hence one has 

nP<D'> o M 

res) 0 0 M 
c is surjective. 

V ;;. nP+1<D> ~ M 
X 

~ 
X 

#1 1 res 

nP<D'n C> o M nP<D' n c > o M c 
;;. 

c 

3) We have a quasi-isomorphism (1. 7) j ! V -+ F
O = DRDM 

and therefore V wP<D> 0 M) '7 FP+1 is a quasi-isomorphism x 
for p ~ 0,. Hence 3) is just saying that <5 in (3.1 , A) 

p 

is zero. 

Applying (3.2,1 and 2) to invertible sheaves arising 

from cyclic covers of X (2.7) we obtain: 

(3.3) Relative vanishing theorem for integral parts of 

(I)-divisors. 

Let X be a proper algebraic manifold or a compact analytic 

manifold which' is' binieromorpliically dominated by a Kahler 



manifold. Let L be an invertible sheaf on X t D be an 

effective normal crossing divisor and 

some N > 1. Let 1:i j :i N - 1. 

1) Let n be an effective divisor supported in 

supp (jon 'D - N • [~l). Then the maps 

HO(RO):HQ (X,L{j)-1) + 
-1 

Hg(n L(j) ) 
I In 

are zero for all g ~ O. 

2) Let C be a smooth subdivisor of 

Dred n supp (j • D - N • [ j~D ] ) and 0' = 0red - c. 

Then the maps 

are zero for all p ~ 0 and Q ~ o. 

(3.4) Remark: As described in (2.9,3) one may 

rephrase (3.3) in the following way. 

Assume that for an effective normal crossing divisor 0 

one has, LN = 0 (D) I!!!~ N is larger than the multi­

Elicities of the components of 0 f and let B be any 

divisor supported in 0red. ~hen the mal2~ a<;{(X,L-') +HQ(B,t-
1 In) 

are zero for all q ~ O. 
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If C is a smooth subdivisor of 0red' then the maps 

are zero for all p,q ~ o. 

(3.5) Corollary. (Kollar, [9], 2.2). Let X be as in 

(3.3), L an invertible sheaf, such that some power of L 

is generated by it's global sections, and B an effective 

divisor, such that °X(B) is contained in a Eower of L 

Then the restriction maps HQ (X,L- 1)+ 
q -1 

H (B,L IB) are zero 

for all q;;: O. 

Proof: We choose 0' such that 0X(D' + B) :::: L~. 

In order to show that HQ (X,L-1 <-B)) +HQ (X,L- 1 ) is surjective, 

we may replace X be a blowing up and thereby we may assume 

B + D' to be a normal crossing divisor. Byassumption LV 

is generated by it's global sections for some v» 0 and 

one finds a smooth divisor Dn such that 0:::: B + D' + DII 

is a normal crossing divisor. Choosing v large enough one 

may assume that the multiplicities of the components of D 

are smaller than N = ~ + v and obtains (3.5) from (3.3,1) 

and ( 3 • 4, 1 ) • 

In (3.2,2) and correspondingly in (3.3~2) one can 

weaken the hypothesis "C smooth" to "C reduced". However, 

in this case we just get that the natural map 
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Hq(R):Hq(X,O~<D'> e M) + Hq(C,O: <D> 0 M) 
c 

is zero, where 
,.., 
C is the normalization of c apd 

'" pullback of the one by one intersections of D to C. 

Of course the map we are really interested in is 

The only cases where we know that Hq(R) = 0 implies 

Hq(R) = 0 are the trivial one, q = 0 , or the case 

p = 0 , handled in (3.2 , 1) by different methods. 

In [6J 1.1 we proved (3.3 , 2) for q = 0 by 

direct calcuation, and - similarly to the global case 

the 

(see (2.14,6» - we used Hodge duality to obtain the p = 0 

case. Finally we used the strict compatiblity of the restriction 

map with the Hodge and the weight filtration ([41', B.2.7) to 

show that for p = 0 Hq(R) = 0 implies H1 (R) = 0 

(see [6], 1. 6) • 

If one tries to consider more complicated restriction 

maps, the picture is even worse and the interpretation of the 

morphisms nearly impossible. Nevertheless, we will try in the 

last part of this chapter to use (3.2,3) to obtain some 

generalizations of (3.2,1) and (3.2,2). 
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We assume in the sequel that 0 is reduced. 

The idea of the constructions following is quite 

simple. We try to find Ox-modules (or complexes) NP 

and KP and an Ox-linear map y:NP + KP which fits 

into a commutative diagram 

~~<D>0 
V 

V(~~<D> 0 ~ nP+1 M ~ M) <0> 0 M x 
a i J B 

KP -+ KP 
Y 

of O!X sheaves. Then Hq(V) == 0 implies Hq(y) == O. 

(3.6). The sheaves NP will be given by the weight 

filtration (see [4]) Wk of n~<D> where 

W (~p<o» == ~k<O>AnP-k • We denote by cP the Nuotient 
k X X X k ":l 

sheaf ~i<o> 0 M/Wk(~~<D» 0 M and by KE the image of 

in Cp 
k .. 

By the Leibnitz rule one has 

and V induces a map 
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In general VI is not Ox-linear and Ki is not an 

Ox-module. Applying. again the Leibnitz rule we obtain 

an Ox-linear map 

and p-1 P Im(Resk (V») c Kk . 

cP 
k 

(3',. 7) Denote by D[sJ the normalization of the s by 

5 intersections of the components 

Ds +1 the normal crossing divisor on 

D. of 
~ 

D[s] 

D and by 

obtained by 

pulling. back the (5+1) by (s+1) intersections of the 

components of D. One has an inclusion 

p-k-1 
n

D
£k+11 

given locally at a point on 

by 

dx' ~p 
A ••• I\-x· 

~p 

D == zero set of 

~ m l--iJIo-) $± A 
i€J 

= 0 

{Xi!=O,t~J,} 
Jr.=1 ••• r 

where 1 ~ i1 < ••• < ip ~ r , and where the direct . ..sum is taken 

over all subsets J:: {1, ••• ,r} or r - k - 1 elements, and 

the signs are given by the usual rule. 



If 

of 'il aleng D. 
~ 

dX1 dXk 
x1 

/\ ... /\ X /\ ql0 
k 

the menedremies of 

res. 
~ ) 
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MID. denotes the residue 
~ 

then, fer example, Res~-1 ('il) maps 

m to. EB±(j)A f i (m) . Especially, if 
i>k 

(M I 'il) around the components D. ef 
~ 

D de net have ene as eigenvalue, then fi is surjective 
p-1 as well as Resk ('il) at the general peints ef the 

cempenents of D(k+1]. Moreever Res~-1 ('il) facto.rs in 

the fellewing way 

-+ p-k-1 

~ 
cp 

k 

dDk+1 Here is the nermalizatien ef and p is mapping 

(j) 0 m to. the alternating sum ef the pessible restrictiens 

(j) 0 r i (m) • 

By the E1 (M) degeneratien vie ebtain. 

(3.8) 

-+ Hq(X np-k-1 <Dk+2> 0 M) 
,~, [k+1] . 

D 

is the zero map. 

Of course, the Ox-linear map 
p-1 Resk ('il)depends en 

the residues ef the connectien and the enly case where 

ene can find an isomerphism a of p-k-1 
S'2

D
[k+1] 

<pk+2>0 M 
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such that p-1 a. • Resk {\1} does not/is for k = O. 

In fact (3.2.3) implies a stronger statement: 

(3.9) 

is the zero map, where P P+1 
(\11:Ck -+ Ck+1)· 

However, both sheaves, Kk and Ci are quite difficult 

to describe. 

For Ck' at least/we have a reasonable filtration. 

If W~ denotes the image of W~(Q~<D» ~ M in 

Ck ' one obtains a filtration 0 = Wk e Wk +1 e ••• eWp = Ck 
such that 

For k = p-l , one obtains C~_l = 0D[p]0 M. However, 

\1
1 :M1n[p] ~ M'\n[p+1] = C~+l is given by the alternating 

sum of the r i , considered as an isomorphism of 

Define to be the automorphism given 

by fi 0 f. 0 ••• 
1 3. 2 

integrable y[pl 

• Since is 

numbering of the 

components. One obtains a commutative diagram 

MID[p] 
\/1 

> M I D[P+ll 

! yEp] J y(p+ll 

M1D[p] > MI
D
[p+ll 

e:P e idjl 
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where sP is the usual map 0 n[p] 
+ 0 D[p+1] • Hence 

y[pJ maps KP to Ke.f(. (e;p) 0M= Im(e;p-1) o M. p-1 
Locally, if D is the zero set of x· .... ,. 1 ••• J"'r , 

[ }-1 
y p 0 Res~_1 (V) maps to 

o ••• 0 

Hence we obtain 

(3.10) Claim. Keeping the assumptions made in (3.2) and 

the notations introduced above the map 

is zero. 

For p = 1 and o = B this is the same as. (3.2,1) • For 

p> 1 the map Y 
[p]-1 

o Res~_1 (V) depends on V • Of 

course, we can apply (3.10) to the situation of invertible 

sheaves coming from cyclic covers (as in (3.3». In this 

case, one can give.a more explicite description of the 

morphism considered. 
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Appendix B Chnrn class$Ts and losgp;:,;i. thm~c connections 

Let (M,V) be a connection on a proper algebraic 

or compact analytic manifold X with logarithmic poles 

along a normal crossing divisor D. 

As we have seen in § 2 the classical positivity conditions 

C
Q(; • 

on a curvature matrix of a differentiable connect~on 

on M can be replaced by conditions on the residues of V 

along the components of D, if one is interested in vanishing 

theorems of Kodaira-Nakano type. 

In this appendix we want to show how to define the Chern 

classes of M using the logarithmic connection V. 

This is a second example indicating that both., the theory of 
(Xl 

C -connections without singularities but with non trivial 

curvature matrix and the theory of holomorphic integrable 

connections with logarithmic singularities can be applied in 

a quite similar way'in algebraic geometry. 

The computation of the Chern classes and the Atiyah class 

described here was done independently by J.L. Verdier and the 

first author about one year ago. 

Let D be the normalization of D and 

be the Poincare residue. The element 
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r = Res 0 II E. Homox (M iM II» is mapped under the connecting 

morphism of the exact sequence 

to an element 1 1 
y E Ext 0 (M ,Ox 0 M ). 

X 

(B. 1 ) Proposition. -y is the Atiyah class of M. 

Proof: The Ativah class is constructed in the fo·llowing 

way (see [1]): Let J be the ideal sheaf of the diagonal 

X~ X x X. The differentials are 

order jets of Ox are given by 

01 = J/J 2 and the first 
X 

1 2 1 
P = 0XxX/J • So P is 

endowed with a left Ox-module structure, for which the 

exact sequence 

splits. However, p1 carries also a right module structure, 

and one uses 'it to define p1(M) = p1 0 0 M • Then p1(M) is 
X 

endowed with a left module structure, as well as its sub-

module 0 1 
0 0 M • 

X X 

The sequence 

defines a class 1 1 YA e ExtO (M,nx 0 ° M) t the Atiyah class. 
X X 
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One has the map of first order principle parts 

j1:M + p1 (M) with jl (m) = (1 0 1) ~ m. 

Similarly to the construction of the jet bundle we define 

the sheaf of logarithmic jets as the (right and left) 

0x-submodule of the sheaf of rational functions of (X x X) I J2 I 

which is generated by 

is obtained from p1 

p1 and n~<D>. In other words, 

1 by adding locally ~. 0 X- and 
]. i 

1 
- <.9 4. t where Xi is a local equation of D i • 
xi ]. 
We define in the same way n~<D> 0 M t P~(M) and the 

exact sequence of left Ox-modUles 

pl 
D 

De'fine s: M + P~ (M) by s (m) = j 1 (m) - V (m) • 

Ox-splitting ([3], p.2). 

s is a 

Consider the diagram 

0 0 

J J 
o '--;" n~0 M P 

1 0.0 --7>- M --;... 

1 J J 
0 --+ "X<D> & M ---+ P6 lM ) ~ M --+ +-s 

Jres Jl£ 
0 ..... " M D 

0 ...... M 
D 

J J 
0 0 

0 
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Since j1{m} E p1(M) one has nos = -r = Res 0 V E HomO (M,M\I5)' 
X 

Since the exact sequence in the middle of the diagram splits, 

the image of -r in is the Atiyah class 

and Y=-YA" 

Atiyah himself explained how to use the Atiyah class 

to compute the Chern classes (i.e.: the symmetric functions 

of the Chern roots). 

Usually one gives the formula for the Newton classes Np 

(i.e. the sum over the p-th powers of the Chern roots) and 

obtains the Chern classes by the interchange formulas. 

(B. 2) Corollary. ([ 1], Prop. 13) Let r i = Res i 
0 \l E HomOi M, MID i) 

1 1 and [Di ) the class of 0. in . H (X, Ox). Then 
~ a a a 1 as 

Np(M) = (-1)P r (p) Tr (r 1 0 0 r s) ~ [01] •••• ·[Os] 
a 1+···+as =p a 1 s 

s 
ESEeciall,Y C1 (M) == N1 (M) == - E Tr (r i) . [Oil. 

i=1 
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