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Classically the vanishing of cohomology groups of
a compact complex Kihler manifold X with values in cer-
tain locally free sheaves M 1is proved by studying
positivity properties of the curvature form of a
differentiable connection on M compatible with the com—
plex structure of X (e.g. [7]1). If the Chern classes of
M are non trivial, the connection is neither holomorphic
nor integrable, Therefore, trying to replace the differen—
tiable connection with non trivial curvature by an inte-
grable holomorphic connection V , one has to choose a
"boundary divisoxr" D and to allow V to have poles along
D. We will always assume D to be a normal crossing divisor
and V to have at most logarithmic poles along D. Since ¥
is pon singular and integrable on U = ¥ - D, the positivity
properties have to be replaced by topological properties of
U tcgether with conditions on the boundary bshaviour of

(M,v).

This poinp of view is supported by a construction due
to J.L. Verdier and independently to the first author (and
probably to many others, too), describing the Atiyah class
and Chern classes of M in terms of the restriction of ¥
to the boundary D. For the reader's convenience we give the
exact statement and the proof in appendix B at the end of

this article.

Because of the restriction made on the poles ¢f V along

=]

D one has at disposal the theory ol P, Delic
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equations with regular singular points ([3]) and in fact his
Lecture Notes was the main source of inspiration of our

work:

Let V Dbe the local constant system on U defined by

g’ flat with respect to V and j:U & X
be the inclusion. (M,V) is equipped with it's logarithmic

sections of M}

De Rham complex DRDM = Q°<D> QOXM  which is over U
quasi-~isomorphic to V. If the monodromies of V around the
components of D do not have 1 as eigenvalue the complexes
j!V » Ri,V and DRDM are all quasi isomorphic and the
hypercohomology of DRDM is the same as the cohomology or
as the cohomology with compact support of U with values

in V. The spectral sequence 31(M} associated to the
"filtration b&te" of the logarithmic De Rham complex
describes the hypercohomology in terms of the cohomology

of the coherent OX ~ modules QP<D> ® M. If in addition the
spectral seguence degenerates in E1 ;, topological vanishing

theorems on U imply global coherent vanishing theorems on

X.

In general it is quite difficult to decide when the
spectrai sequence degenerates (see (2.6)). Using Deligne's
theory of mixed Hodge structures ([41), this is true however
for sheaves arising from finite covers of X, branchedalong
D. The main examples of sheaves arising by this construction
are invertible sheaves Lh1  where | 1is ample or more

generally related to integral parts of effective {~divisors



with support in D. If U = X - D 1is affine, the degenera-

tion of ET(L~1) implies immediately a general global

vanishing theorem containing as special cases:

- Kodaira—-Nakano's wvanishing theorem (2.10)

- Bogomolov-Sommese's vanishing theorem (2.11) and

- Grauvert-Riemenschneider's vanishing theorem as well as
its generalization due to Y. Kawamata and the second

author {{(2.12) and (2.13}).

If one drops the assumption on U , the degeneration
of E1(M} implies the vanishing of certain natural restric-
tion maps in cohomology.
Applied to the sheaves L”1 considered above one obtains
the vanishing of the restriction maps of twisted differential
forms in the cohomology ((3.2) and (3.3)). Especially one
gets aﬁ improvement of the Kollar-Tankeev vanishing theorems
(3.5) as a direct interpretation of the degeneration of the

spectral sequence.

In § 1 we recall properties of sheaves with logarithmic
connections and their De Rham complexes. The condition that
the monodromies of V do not have 1 as eigenvalue implies
that the minimal and the maximal extensions of ¥V coincide,
as we prove in (1.6).

This also follows from a much stronger statement proved in
appendix A to § 1. This result - superfluous for the

vanising theorems considered - says that the Verdier dual of



the complex DRDM is gquasi-isomorphic to

DRDiHomOX(M,OX) ] OX('Dred}). This duality is gqguite similar
to the corresponding duality for V-modules, which is one of
the key-points in the proof of the Riemann-Hilbert correspon-
dence for D-modules (Z. Mebkhout, M.Kashiwara, see for
example [2]). We hope that the appendix explains why (2.6)

is true and that it casts some light on the statements of

§ 2. We believe that the language of Ox—coherent logarithmic
D-modules is a guite adequate tool in algebraic geometry, and
we hope that the duality is useful for different purposes as

well.

In § 2 we give the cohomological interpretation of (1.6),
provided the spectral sequence E1{M) degenerates and U = X - D
is affine. We discuss examples where all three assumptions

hold and state and prove the vanishing theorems mentioned.

§ 3 contains the applications so the cohomology of
restriction maps, useful if U is not affine. The main
observation is that the conditions posed on the monodromy
of V imply that the residue maps obtained from V are
surjective on each component of D and éan be identified

with the natural restriction map.

After finishing a first version of this paper we learned
that our approach towards global vanishing theorems is close
in spirit to methods used by J. Kollar [10] and related to

results by M. Saito (see also (2.6)).
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§ 1 Logarithmic De Rham complexes and extensions of

local constant svstems

In this section we recall the basic properties of
sheaves with logarithmic connections, their monodromy and
the extensions Of the corresponding local constant systems,
as developed by Deligne in [3]. The reader mainly interested
in the proof of the global vanishing theorems is invited to

read just up to (1.5) and then to read § 2.

(1.1) Throughout this article X denotes either a proper
algebraic manifold over € or a compact complex analytic mani-
fold of dimension n. OX denotes the sheaf of algebraic
functions or the sheaf of analytic functions in the second

case. In § 1 - starting from (1.2) - and in appendix A we have

to restrict ourselves to the complex analytic case.

s
Let D =) v.,D. be an effective normal crossing divisor

. > 11
on X, i%;i an effective divisor whose components are non
singulaf and meet transversélly; We write 3J:U = X - Dred + X
for the opén embedding. We consider locally free sheaves M
of Ox - modules endowed with a holomorphic connection V

with logarithmic poles along D
Vil —> Ql<D> o M

as defined by Deligne ([3}, II § 3). Such a pair (M,V) will

be called a logarithmic connection along D. It induces




P o p+1
Vb.QX<D> e M — QX <D> o M
by the rule Vp(w ® m) = du o m + (—1)p - wAaVm . We assume
V to be integrable, i.e.: Vpo Vpeq = 0. The complex

Qi<D> @ M obtained is denoted by DRDM and called the

logarithmic De Rham complex of (M,V).

(1.2} From now on all sheaves are considered in the
classical topology and Ox denotes the sheaf of holomorphic

functions.

The Riemann-Hilbert correspondence, proved by Deligne [3]
says:
a) The complex DRDM[U is exact at P >0 and the flat sections
form a local constant system V = Ker V{U‘ ;n other words, the
inclusion V ~» DRDM{nis a quasi—isomorphism‘of complexes.
b} For any local constant system V on U denote M 0B @mv
C g 0 U . Then there exists a

locally free sheaf M on X and a connectlon Vil - n;

and Vy = a L id: M *QU oV = Q
<D>o M
with logarithmic poles, extending (MU,VU).

c) The extension (M,V) in Db) depends on the choice of the
logarithm of the monodromy: If one chooses Fi such that

exp (-2 « /~T . w+T;) = vy, is the monodromy of V around D,
and such that the real part of the eigenvalues of I'y lies

in {0,10, then (M,V) is uniquely determined and characterized
by Res; (V) = T,. Here resi:g§<n> ® M -~ oDi ® M is the
Poincaré residue and Resi£V) = res; oV is the residue of V
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along D.l (see [3], II; 5.3 and 5.4). In this case we

call (M,V) the canonical extension of V.

d) The canonical extension is compatible with covers in
the following sense:

For any cover T:X'=+X ramified only along D , with X'
smocth, the inverse image of the canonical extension is
contained in the canonical extension of T_1V.Moreover, if
(M1,V1) is any other extension of V  with thi$ property,

then the canonical extension M contains M1 .

e) V being uniquely determined by (M,V) we will omit
refering to V and talk about the monodromy of (M,V) and
will call (M,V) the canonical extension if it is the

canonical extension of Ker VIU'

(1.3) If (M,V) is a logarithmic connection along D and
B =
i B
for V implies that V induces a connection V of

) biDi any divisor supported in D , the Leibnitz rule
1

1 t~1ln

M(B) = M o, 0,(B) , logarithmic along D. The residues of the
X ,

connections along D, are related by

0

B .
Resi(V ) Resi (V) - b, . id .

i

Hence, if Resi(V) has no integer as eigenvalue, then Resi(VB)
can not have integers as eigenvalues either. Moreover, if B

is effective and if Resi(v) has no strictly positive integer
as eigenvalue, the same is true for Resi(VB). By [3], II; 3.13

and 3.14 the property that no strictly positive integer



1-4

occurs as eigenvalue of the residues of the connection V
implies that DRQM and Rj*(DRDﬂ}U) are quasi-isomorphic.

Therefore one obtains:

(1.4) Lemma. Let (M,V) be a logarithmic connection

along D and V = Xer (va)' Let B be any divisor supported

on D. Assume that one of the following conditions is satisfied:

a) (M,V) is the canonical extension {(or - more generally - for

all i , Resi(V) has no strictly positive integer as eigenvalue)

and B is effective.

b) For i =1 ...s, Res;(V) has no integers as eigenvalue.

Then DRDM v DRDM(B), Rj*(DRDM(U) and Rj .V are quasi-isomorphic.
As well known, (1.4) together with Serre's ¥anishing
theorem imply the topological vanishing theorem (needed in

g 2):

(1.5) Corollary. If U is an affine manifold of dimension

n and V a local constant system on U , then

#(w,v) = o for k> n.

If moreover the mondoromies Yy ©f V around D; (for i = 1...s)

do not have 1 as eigen value, then

BEX(U,v) = 0 for k+n.
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Proof: We may choose X to be a projective compactification
satisfying the assumptions made in (1.1), (M,V) +to be the
canonical extension of V and B to be a very ample effective
divisor supported in D. Replacing B by some multiple we may
assume that

Hq(X,Qi <D> @ M(B)) =0 for g>0.

Loocking at the spectral sequence associated to DRDM(B) with

the "filtration b&te" (see [31, 1.4) and converging to

Hk(U,V)

B (X,R3.V) = I{k(x,DRDM(B))
one obtains

¥ (u,v)

n
o

for k>n.

Assume now that the Yi do not have 1 as eigenvalue.
If one chooses B to be a sufficiently high multiple of an

ample divisor, we have

Hq(x,dp<n> e MV(B - D

X =0 for g>0.

red))

Here MY is the OX ~ module Homo (M,OX). By Serre-duality
X

one has

V)=

H(x,w, & (ﬂ§<n>a Wis -

X Dred))

= Hq(x,ﬂg‘P <D> ® M(-B)) = 0
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for g<n. By (1.4.6) the same spectral sequence as
considered above converges to Hk(U,V) and we obtain

Hkin,V) = 0 for k<n.

The second part of (1.5) is not surprising. We will
see below the assumptions made imply that Hk(X,Rj¥V} is
the same as the cohomology with compact support Hﬁ(U,V).
RjxV is "the maximal extension” of V to X and its
cochomology sheaf in degree zero, j,V, contains the "minimal
extension" j,V , i.e. the sheaf of abelian groups obtained
by extending V by zero. The functor jz is exact and

HS(U,V) = H(X,3,V).

{1.6) Lemma, Let V be a local constant system on U

such that the monodromies vy; of V around D; (for i=1...s)

do not have 1 as eigenvalue. Then jlv and Rj .V are

quasi~isomorphic., Especially 3,V = j,v and

R4,V =0 for g>o0.

Proof: Since we have a natural morphism 3!v + Rj,V , it is

enough to prove (1.6) locally.

Let W be a small neighbourhood of a point on D. We have
to show that RPy,viW) = BP(UNwW,v) = 0 for all p. If
0+V'+V2+V">0 is an exact sequence of local systems on

U and if V' and V" have no cohomology on UNW, the same

holds for V.



1=-7

Choosing W small enough we may assume that

k1] r n
W=T] A, and UNW = A¥ x T ] A, where A, is
j=1 i=1 3 gers+1 3

a small disk and A§ the punctured disk. Since the

monodromies <y. around the components of DANW commute

J
we can find a local subsystem V' of V stable by the yj
such that the cokernel isa local system of lower rank.

By induction on the rank of V we are reduced to the

case rkv = 1.

.y \ = "'1 "1 \ . - 9
We may write V o ’ﬁi’.l ® ... ® P, Vr where pj.vfaw **aj

is the j-th projection and V., the local constant system

J

on é% corresponding to the representation of Yj on a

one dimensional vector space L.

By the Kilnneth formula we just have to show that Hkiﬁg,vj3==ﬂ

for k=0 and k = 1. We may replace ag by its boundary
1 1 eZiw -t

s = aag and we parametrize S by s tER.,
Take U,= {ezlﬂ't , £ € 10,10} and
U,= (e2ims 5 ¢ 1 %, %{} as cover of §' .

Then U ,Uz and the two connected components W and

1
W of U, NU, are simply connected. The coordinate
change from U.f to Uﬁ is

WUW —> Wuw

e > s=/]t i tew
Ct-1 if tew

v
The Cech cohomology with values in vj is computed by the
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the cohomology of the complex

d
0> LU1x LUz _— Lw+x LW__ —> 0

However, if Yj ¢ 1, d 1is an isomorphism.

Lemma (1.6) gives the following improvement of (1.4, b)

(1.7) Corollary., Let (M,A) be a logarithmic connection

along D and V = Ker (VlU)' If Res, (V) has no integer as

eigenvalue (for i = 1...s) then DRD(M) P j!(DRD(M)[U)'

Rj,v and 3,V are quasi-isomorphic.

Remark: In Appendix A we will consider for any logarithmic

connection (M,V) the dual connection on MY = Homo (M,OX)
X

and the logarithmic connection (MV(—Dred): Vv). If D

denotes the Verdier-duality functor, we will see that

D (DR M )= DRDM"(-Dred) .

Since D(Rj, V) = j,VV, for V' = Hamm(v,m) , we obtain from
(1.4 a):

{1.8) If (M,V) 1is the canonical extension, then

v . - . R, 4
DRDM ("Dred) is guasi isomorphic to j!V .
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Moreover the duality together with (1.4, b) gives another
proof of (1.6). In fact, if V has no monodromy with 1
as eigenvalue, the same is true for VV. Hence

R s oV L v, . ,
Rj#V=DRM and RJsV =DR M (-D__,) and we obtain the

guasi-isomorphisms

. - - v ~ sV s
Rj& =DRpM =D DR M" (-D__4) = DRIV = j,V.



We keep the notations and assumptions introduced in
(1.1), except that X 1is a (not necessarily compact)
analytic manifold and — to simplify the notation - that D

is reduced.

(A.1) Let DS(X) be the derived category of bounded
complexes of @-sheaves with constructible cohomology. The

Verdier dual is given by the functor

b b
D: D (X) —> D_(X)
F* b—> D I(F") = R f!c&m(r (F ,mx) .
For an OX ~ module M we write MY = Homo {M,Ox) and .,
X
if (M,V) 1is a logarithmic connection along D , vV denotes

the dual connection. The main result of this appendix is:
(.2} Proposition. In Dﬁ(x) one has
DR_M = D (DR K (~D))
D D

The arguments needed to prove (A.2) are quite similar
to a proof of the corresponding statement for D, - modules,
due to J. Bernstein ([2], §5). We recall some notations from

the theory of D, - modules. Details can be found in {21:



(a.3) 0X denotes the sheaf of holomorphic differential

operators on X and U;<-D> the subalgebra of 70y

X
vectorfields preserving OX(-D).

generated by 0 and Tyg<-D> = (Q;(<D>)v the sheaf of

Locally we choose a parameter system of X such that D

is given by Xyveeet X = 0.

Let 31,...,3n be the vectorfields orthogonal to

KyreeosX and define
n

s = X e Bi for 18isr
+ ai for r + 1sisn .
dxi
é‘i is dual to = {(1gigsr) or dxi (r + 1sisn),
i
and T_<~-D> 1is generated by § [T

X 1)..., n

The logarithmic connection V on M gives M the structure

of a left DX<—D> module and for m € M ,

e

Vm = §,.m + d, " m dx,.

i=1 Y *i i=rs1 * *

{A.4) Claim. Let A and B be two left DX<-D>— modules.
Then

a) HOMDX<_D> (AIB) & Hompx<_n> (A (D) ,B(D))

b) One has an isomorphism

H0m9x<~n>(ofo°mox(A:3)) —> Hom (A,B)

DX<-D>



given by @ > 9(1).

Proof: a) If @:A + B is a morphism of DX<—D>

modules we define 9':A(D) ~ B(D) by

a 1 . . .
X L. } = -/ + @¢{a). This is clearly

o' ( -
r X1 L2 B 4 Xr

Gx—linear and we just have to verify the compatibility

with Gi.
. §.a
If isr then §, (-——7) = e a__.
17" Xr Xl -ssn r X1 .o Xr
§.a

and ' (8, =) = @' (=) - @' ()

1X1 L Y xr XT » o8 Xr X1 . e Xr

8
IS Al ea) . g ov(—2
Xq"eeo X, Xyt tXy i Xq%eeo X

The case i1>r is similar.

Conversely, if o' € Hom {(A(D) ,B(D)) we obtain

P<-D>
q:GHom9<_D>(A,B) by restriction.

b) As for connections the DX<-D> - module structure on
HomOX(A,B) is given by (GiW)(a) = 5i(?(a)) - W(éia) for
GXgA,B). The morphism (1) is OX ~ linear and
§;e(1) (a)) - w(1)(§;a) = (§;(w(1))(a) = (w(§;1))(a) = O.

Hence w{1) is DX<—D> linear. On the other hand, if

¥ € Hom

n € Hom {A,B) we define w € Hom

9X<~D> Dx<—D>
by (A} = A*n. In fact, ¢ is DX<—D> linear since
w(ﬁil)(a)= (6;2) - n(a) = éi(l'n(a)) - l'ﬁi(n(a)) =

=8, (0(A)(a)) - @(8;a) and @(1) = n.



OX has a locally free resolution as DX<-D>— module

by the Koszul complex

n dpr1 n-1 dp—2
0-*5&$ﬁm>zb A€%59D>-—~—9-Dx¢{h>®qx A Tk<4x>-———>
a' &
ser 3 P <-D> @, T<D> —> D <=D>~> 0
X OX X

where

P p§1 j=1 A

d (p® (8§, A...AS = {—1) p*8;, @ (8., AuvoAB.A wu AS

i lp+1)) 354 iy i, i lPVQ

(A.5) Claim.

DRM = R Homy . (0p,M) = Homvxf-D>(DX<—D> QOX AT <D M) =

_Homo <D (U <-D>® 0 AT <~ D>®0 (D) M(D))

Proof: The last quasi-isomorphism follows from (A.4. a)).
The Koszulcomplex is a locally free resolution and there-

fore one obtains the secondquasi-isomorphism. Since
b P
Hamvx<_D>(Dx<-D> L A TX<-D>,M) 2 QX<D> ®, M

we just have to verify that the differentials dp of the
third complex are the same as Vp. For simplicity we assume
p = 0.

Let m = w{1) for ¢ € Hom (DX<~D>,M).

vx<—D>



One has d.m = n — n, 4dx, for
LT B e

n; = (@ °d)(8;) = 0(s;) = §,0(1) = &;m . By definition

of the vx<~D>— module structure on M we have dom = Ym .
. v ..
(A.6) Claim. DRDM # R Hcmﬂx<~D>(M’0X)

Proof: By taking I +to be an injective resclution of
OX over Dx<~D> we obtain RHome<_D>(MlI-) = RHova<_D>(M,OX) and b
(A.4,b) this is guasi-isomorphic to

Hamvx<_0>(0x,ﬁomox(M,I‘)). Since M is locally free and

.

0, quasi-isomorphic to I' , Hom, (M,I") = M’ & I is an
X 0y Oy

injective resolution of M. In fact, MY ®, I° is locally
) X
a direct sum of copies of I° and

MY = Hama (M,OX) zRHamO {M,0 RHam0 {M,I'). Therefore
X X p.4

x) =
Hamvx<-n>(oxlﬁomox(M'I.)) i RH°m9x<—D§0x'H°m0x(M’I')) =

=RH°mvx<~D>(0X,Mv) and using (A.5) we are done.

(A.7) ~ There is a natural pairing, non degenerate over U

L v
DRDM op DRD H (~-D) ~C .

Proof: Again, let I" be an injective resolution of Ox
as vx<~n>— module. Using (A.5) and (A.6) we obtain the

pairing



L v
DRDM QE DRDM (~D)

Ly

Homﬂ <> Oy<D>o 0, A Ty<D> .aoXOX(D) MD)) & HompX <«p> (D) ,I7)

l

Ho 40, <-D> & A T,<-D> @, 0 (D) ,I7)
mDX<DX 0 " X 0, X

If
HomDX<_D>(DX<—D> ® OXA Txg—DD ® OXOX(D),OX)

The last sheaf is by scalar extension isomorphic to
H""‘D“ D<D> X<D>)®0AT<-D>®0 0(D), Oyl
In fact, if ¢ is a DX<—D> linear morphism

{D) — O

w:DX<~D> @OX A TX<—D> @0 X

one can extend the operation of 0,<-D> +to DX using the

X

Oy-linearity and writing 3; = gi for isr.
i

The inclusion A Ty —> ATX<-D>00 0(D) gives a morphism
X

Hom, (D, @ }&T<-D>e 0,Mo),0.)
”‘va 0y X 0, % Px

!

HOW%C(QXQDOX.M%POX)==R!Mmbx u%yox>==m .



As a corcllary we obtain:

(A.8) There is a natural morphism, isomorphic over U:

DR M 2 .p DR/, MY (-D) .

Proof of (A.2): If O =+ M' - M » M" = 0 is an exact

sequence of logarithmic connections along D and the
morphism in (A.8) an isomorphism for M' and M" , it is

an isomorphism for M as well.

Moreover the question whether ¢ is an isomorphism can

be answered locally.

As in [3], p. 83, one may assume that the coefficients of

the connection in a neighbourhood of a given point are constant

and that the connection matrix is triangular. We can find

a subconnection M' of M , being of lower rank. Therefore we can
argue by induction on the rank, and we may assume that the

rank cf M is one.

Choosing the neighbourhood small enough we may write

, - —_— )

(X,D) = (X1,D1}x (Xz,DZ) and M as M Eﬂ“q emngz where
Mi is a rark one connection on X logarithmic along

D; (See [3], p. 81). Then DRpM = pf DRD1M1 ® p} DRDZM2
and since the Verdier duality is also compatible with

products we are reduced to the case of curves:

Let X be a curve, D € X a point, given by X = 0, and

M a rank one bundle whose connection has constant coefficients.



If the residue Res Vof M at D is given by multiplication
D

with a , Res (V' ' ") of MY(-D) 1is given by multiplication

with (1 - a). Hence changing the role of M and MY (-p) if
necessary, we may assume that 1 - a ¢ N - {0} . By [3], II,

3.14, DRDMV(-D) = Rj*vV and D DRDMV(-D) = j!V where

V = Ker (V}U)' Therefore we just have to show that -a ¢ N

1

X<D> ® M > 0) 1is quasi-

implies that DRDM = (0 M->Q

isomorphic to 3j,v .

Since Res V:Me-MlD is given by multiplication with a#0 ,

Ker V ¢ M(-D). Similarly , since Res (VIM( is given

-%-D)
by multiplication with a + £ and is nontrivial for £ 2 0,

one obtains

Ker V< N M(-2.D)Nj, v =13V.
220 -7

On the other hand, if e is a generating section of M
dx

such that V(f-e) = ( x-3 + a) f-e —% and
! AR %
g-e-%x—=(§>\£'xz)'e%x— €Q;(<D>6M,then %mx
converges as well and
v( z Az £). = (z i§~ (% ¥ 21) ax . L .8
(zm x)ee) = Zary TeX ra.x "€ 9t} -

Hence V is surjective and the gquasi-isomorphism is

established.



§ 2 The E1{M) -degeneration, applications to global

vanishing theorems and examples

From now on we allow X to be algebraic over &
or -~ as in § 1 - analytic. We keep the assumptions made
in (1.1). Since we only deal with hypercohomology of
logarithmic De Rham complexes over compact manifolds we
can use GAGA theorems and switch from the algebraic case

to the analytic case whenever it is necessary.

(2.1) Cn the logarithmic De Rham complex DRDM one

considers the "filtration b8te"
.0 ->Q.§<D>@M +Q §+1<D>®M > »9§<D>@M
and the associated E1~spectral sequence
{E?q(ﬂ},dl) = (Hq(X,Q§<D>® M),Hq(V)), which converges to

Hp+q(X,DRDM) (see [4], 1.4).

By definition of a spectral sequence, the following

two conditions are equivalent:

a) aim W*(x,0R M) = ]  aim B (x,028<D>0 M)
pra=k -
B) The spectral sequence qu{M) degenerates at Ei’

If A and B hold, we say that (M,V) satisfies "the

ET{M) degeneration”.




{2.2) Main Lemma. Let (M,V) be a logarithmic connection

along D satisfying the E1(M) degeneration. Assume that U

U 1is affine. Then

1) if DRDM is quasi-isomorphic to Rj, V, one has

Hq(X,Q§<D>@M) =0 for p + q>n.

2) if DRDM is quasi-isomorphic to j!V, one has

Hq(X,Q§<D>® M) =0 for p+ g < n.

3) if for i =1 ... s the monodromy around Di does

not have 1 as eigenvalue, one has

Hq(X,Q§<D>®M) =0 for p + q #% n.

Remark: As we have seen in (1.4) the assumption in 1) is satis~
fied for the canonical extension or - more generally - if for
all i , Resi(V) has no strictly positive integer as eigen-
value. Correspondingly the assumption of 2) is satisfied if

(for all i) Resi(V) has no eigenvalue lying in - I .

Proof: One just writes

dim]Hk(X,DRDM) = ® dim #Y(x,0P<D>0 M).
p+a=k X

In case 1) or 3) (use (1.4,b)) this is nothing but
dim " (x,Rj_ V) = dim H*(U,V) and in case 2) this is

2n-k

dim B*(x,3,V) = dim HS(U,V) = dim B"7¥(U,vY) and the

Main Lemma follows from the “topological vanishing” (1.5).



(2.3} Remarks. a} In fact, by a small modification of
the arguments given, it is enough to assume that the
conditions in 1}, 2}, 3) are satisfied along encugh
components of D, such that the complement remains affine.

For example 3) could be replaced by

3') if for 1 = 1,...,r the monodromy around D,
x
does not have 1 as eigenvalue and X -~ U D, 1is
i=1

affine, then

Hq{X,Q§<D>® My = 0 for p+ g #n .

b) If U is not affine, we still have the following
result. Assume X to be a proper algebraic or compact
K&hler manifold and assume that there exists a morphism
g;U~W on a affine manifold W, such that the maximal
fibre dimension of g 1s r. Using the Leray spectral
sequence one obtains Hk{U,V) = 0 for k>n + r and

- under the additional assumption made in (2.2,3) one
has Hq{x,n§<n> e M) =0 for p+ g<n-1r or

P+ qg>n + r.

(2.4) Let Y be a normal manifold and w:¥ + X be
a Galois cover ramified only along the normal crossing
divisor D. Let 0¢:Z2 + Y be a desingularization of ¥
such that ¢ w 'D=A is a normal crossing divisor too.

Y has rational singularities (see [5]) and 7,0, is
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locally free. By [51, § 1, R{w OU)*Q§<A> = Q§<D>® 7,0

0,"*"y

The pull down of the Kdhler differential d:OZ - Q%<A>
induces a connection V' on 7,0, and

The Galois group G operates on 0Oy and m,0y. Let M

be a direct summand, invariant under G. Then V' induces
a logarithmic connection V on M and DRD(M) is a
summand of the complex DRD(“*OY)‘ Hence (M,V) satisfies
the ET(M) ~ degeneration, as (0;.,d) satisfies the

E1(OZ) - degeneration.

By Deligne's mixed Hodge theory for open varieties [3] this
is true if X (and hence 12Z) is algebraic or K&hler or -
more generally - if there exists a Kihler manifold X' and
a bimeromorphic map 71:X'+ X. In the last case we will say

that X 1is bimeromorphically dominated by a K&hler manifold.

By definition (M,V) 1is the canonical extension. The local
constant system V of flat (analytic) sections is given
by a representation of ﬂ1(U) on a vector space L factorizing

over G. The assumptionmade in (2.2,3) says that

(*) The ramification groups of a components D; of D

are mapped injectively to Aut(L). Alltogether we obtain:

(2.5) Corollary, Let (M,V) be the logarithmic connection

constructed above. Assume that X is a proper algebraic (or




compact ﬁoise%on) manifold and U is affine, then

Hq(X,Q§<D>@ M) = 0 for g + p>n. Moreover, if (V,M)

satisfies (*), then

Hq(x,ﬂ§<D>® M) = 0 for g + p#n.

{2.6) Remark:

Let V be a the local constant system on U given by
a unitary representation of ﬁq(U) and (M,V) Dbe the
canonical extension. P. Deligne told us that S. Zucker's
methods and results in [12] should extend to this case

and prove the E1(M)— degeneration. One has to regard V
as a polarized variation of Hodge structures of weight
(0,0). In fact Zuckér studied in [12] the case of arbitrary
variations of polarized Hodge structures, but he had to

assume D to be a smooth divisor.

Recently E. Cattani, A. Kaplan and W. Schmidt on one

side and M. Kashiwara on the other side generalized
Zucker's results to the case of a normal crossing divisor.
It seems that the extension considered by them is‘in the
case of weight (0,0) the same as the canonical extension

and that their results imply the E, (M) degeneration.

A "good" extension of variations of Hodge structures
together with the degeneration of the corresponding spectral
sequence might imply vanishing theorems for certain sub-

guotients of the variations of Hodge structure. Some more



precise guestions can also be found in J. Kollér's

paper [10], § 5.

(2.7) The simplest case of the covering construction
given in (2.4) is that of a cyclic cover.

s
Let L be an invertible sheaf on X and D = Z v;D; be an
effective normal crossing divisor, such that fgr1soma
N>1 one has (N=0,(D). Define for 0Sj<N - 1 the
sheaves L(j) = Lj(— {iﬁgl) where [ 1 denotes the integral

part of the @-divisor A2} (see [5] or{11]). Let L—+X and

N
N
LN + X be the line bundles corresponding to L and L
and n:L > N the map obtained by taking the N-th power.
N

Let s:X-»L be the section corresponding to D and ¥
the normalization of ,n"1((s(x)). The cover wm:Y¥ -+ X ob-
tained is a cyclic cover, ramified over D. It is the

came cover constructed in [5]or [11] as normalization of
Spec ( ? é t™3). one has .0, ?eg 137" .nd the sheaves
L(J}”

correspond to the different sheaves of eigen spaces.

3 _.1
By the construction of (2.4) the sheaves L(B} are

endowed with a natural logarithmic connection along D.

It can locally be described in the following way:

Vv,
If t 1 is a local generator of L and £ = 311 ~..,*3%r
a local equation for D, one has tN = £, A local generator, v
(5" j SFIEY -5
of 1 is given by cj =tJ . Xy Coess 0 Ry .
r ., r
One has V(o,) = o.- (355 - ¥ (d2¥ dxl)- os ) [llﬁig;axa
S O X3 jisa



The condition (*) of (2.4), saying that the monodromy of
(L(j},V} does not have 1 as eigenvalue means exactly that

3L§i ¢Z for i=1...s.

Rewriting (2.5) in this case one obtains:

{(2.8) Global wvanishing theore or integr arts of

f~divisors.

Let X be a proper algebraic (or compact Moiﬁezon) manifold

and U affine. Let L be an invertible sheaf and LN==OX(D).

Then
1) for 0£jsN -1 and p + g>n one has
1Y (x, 000> o LTy 2,
2) if moreover, for some j , 1$jJ<N - 1, and for all i,

i ey sy =1
one has fﬂfl ¢ &, then Hq(x,9§<D>@ L(j) Y} = 0 for

P+ qg*n .

{2.9) Remarks:

1) Let D' = ZDi , where the sum is taken over all

components D, with J3'Vi ¢ g . Then

; —4)~1
L(j)‘"nred) = N3 (~D'). Using Serre duality one
obtains in (2.8.1) the vanishing of
-1
19 (x,0%0> o LIV (p1)) for p ¢ g<n.

2) Using (2.3,a) it is in (2.8,2) again sufficient to
ask for the condition " iﬁﬁi ¢ 2" for “enough®



components of D. Moreover - as remarked in
(2.3,6) - one can weaken the condition "U affine"
and obtains still the vanishing of some cohomology

groups.

3) Replacing L by L3 and N by 3'N we may
always assume that the sheaf considered is of the

form L(1). Moreover, since L(1)

does not change

if we replace D by D - N - D, and L by L(-D;)
for some 1 with viz N, we can as well assume that
all 0<V; < N. In this case the assumption of (2.8,2))
is satisfied for the new divisor D, Héwever, if from

the beginning X°YJ £%Z , D g does not change.
N

At the end of this section we want to show how to obtain

from (2.8) several of the classical vanishing theorems.

(2.10) Kodaira-Nakano-vanishing theorem, (see for example [71])

Let X be a projective manifold and L be an invertible
1

ample sheaf. Then Hq(X,Q§ ® L

) =0 for p + g<n.
Proof: For some N>1 we can find a smooth very ample
divisor D such that LN=¥OX(D). One has an exact sequence
0~ ng+ Q%§D> > ng"1 + 0 and a long exact sequence

e B g, Be T 8T 0,87 0 1T >, B0 1) -

> Hq'('x',fi«zns o L™h o+ ...



By construction U = X~D is affine and (2.8.2) implies

red

Y

pd~1 (D,ng"1 o L™= Y (x,05 o L7
for g+ p<n {(or g+ p>n + 1).

The sheaf LeD is ample and - by induction on the dimension -

1

we may assume that I~Ic*{-1(113,$2g"1 L 'Yy =0 for p+ gsn.

(2.11} Bogomolov—-Sommese—-Vanighing theorem.
(see for example [11] )

Let X be a proper algebraic (or compact aoigegpn) manifold,
1

}=20

L an invertible sheaf with k(L) = n. Then HQ(X,Q§ o L~

for P<n.

Proof: The statement is compatible with blowing up. “There-
fore we may assume X to be projective. Since «k(L)=n we
can find N> 1, a very ample sheaf H and an effective
divisor B such that LH==H{B). Let o:X' - X be an
embedded desingularization of B and -E a relative ample
divisor, E supported in the exceptional locus of 0. Re-
placing N by v * N and H by HY we may assume that
H' = o*H(-E) 1is very ample and for L' = o*L we have an
effective normal crossing divisor B' = o*(B) + E with

L'K = H'(B'}). Hence we may assume that from the beginning
B was a normal crossing divisor. Of course, in order to
prove (2.11) we may replace L be a smaller sheaf and hence

we can also assume that the multiplicities of all components
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of B are strictly smaller than N. Let H be a general
divisor of H . Then D = H+ B is a normal crossing
divisor. As in (2.9} we have L(j) = L, Since H is very

ample U = X - D_ 4 is affine and (2.11) follows from {2.8.2).

(2.12) The vanishing tgeorem for gumericallg gffective shegves .

(see [8]lor [11]1).Let X be a proper algebraic (or compact

Moifezon) manifold , L a numerically effective invertible

sheaf {(i.e deg(l; ) 20 for all curves Cc X) and c¢ (L)n>-0.Then
— lc anc ¢y -Then

Hq(x,f."") = 0 for .g<n.

Proof: Again (2.12) is compatible with blowing up and we may
assume X to be projective. For 'numerically effective sheaves
the condition c1(L)n>»o is equivalent to k(L) = n (the
proof is quite éimple} see for example [11]1). As in the proof
of (2.11) we can find - after blowing up again - an ample

sheaf H and a normal crossing divisor B such that:
LN==H(B). Since L is numerically effective #Heo LV s

ample for all wv20. Replacing N by N + v , we may assume
that N is larger than the multiplicities of the components

of B anﬁn replacing NWN,L,H,B by p - N ,L”,H“,p-B - that #

is a very ample. Let H be a general divisor of H and
p=8+H Then tM =1, u=x-p_ = (x-H_, -B

red
is affine and (2.12) follows from {2.8.2).

(2.12) can be generalized to @~divisors. The most general

form is
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(2.13) Theoren., (see [8]1,[11]lor[5])

Let X be a proper algebraic {or compact Moiéezon) manifeld,

L an invertible sheaf and C an effective normal crossing

divisor such that for some N> 1 LN(—C) is numerically

effective. If for some j<N the "lL-dimension”

f(3-15E1 ) = n, then 9x, 17 LEM) =0 for gen.

The proof is similar to (2.12): If o0:X' » X 1is a blowing up,

[}

such that o¢*C
s
Ro, 0y ([45E 1)

C' is again a normal crossing divisor, then

i}

Gx€[i§§}). This follows from the fact that
the cover ¥ of X constructed in {(2.7) has at most
rational singularities, or from elementary local calculations
{(see [11]). Hence the statement of (2.13) is compatible with

blowing up.

If we allow “fractiongi powers of sheaves", one has
Lj(~fi§§] ) = (Neon™ s 0 % C - {iﬁgiil. Hence the
assumption says that’we can find {after replacing N by
some high multiple) a subdivisor €' of € such that
[2§§3 = {iiégigll} ‘and such that LN(-C + €') contains
an ample sheaf H. After blowing up we may assume that
Y- c- c'}) = H(B) where B + C 1is a normal ctrossing
divisor. Replacing H by He tV'¥ (-0 we can increase

N without changing the multiplicity of the components of
B. Alltogether we are reduced to the case that N=0()
where D=H+ B+ { C -~ C') 4is a normal crossing divisor,

H is ample and {iégl = {iéﬁh . Now (2.13) follows from (2.8,2).



B
1

12

(2.14) Remark: a) It seems surprising that the
vanishing theorems (2.11) for g = 0 and (2.12) for

p = 0 are more general than (2.10). However, it is well
known, that (2.10) is no longer true, if one replaces

the condition "L ample® by "k(L) = n and LH generated

by global sections for some p > 0". In this case one could
still choose a normal crossing divisor D with small
multiplicities, such that 1N-0(p) and such that U = X - D

is affine. One obtains the vanishing of H¥(x,0P<D>e ™

red

for g+ p #n , but the induction used in the proof of (2.10)
breaks down, since for some components Dy K{L!Di) night be
too small.

b) The proof of (2.12) and (2.13) in [11] used Hodge duality
to reduce the vanishing of cohomology of invertible sheaves

to the Bogomoclov-Sommese vanishing theorem. In the approach
described here, both follow from the same statement, the
E1-degeneration of the spectral sequence associated to the

Hodge filtration, and one does not use the Hodge duality.



We keep the notations and assumptions made in (1.1)
and (2.1). Whereas in § 2 we just considered the dimension
of qu (M) for a logarithmic connection M , we will

now regard the differentials dp of the spectral sequence.

(3.1) As usual [i] denotes the shift operator for
complexes. Hence Fpip} is the complex starting with
Q§<D> ® M in degree zero and - if F is any complex -

one has BHR{F} =2Ek+i(5{~i})-

The differential

ay B> o M)+ Hlx, 2 > o M) =1 (x,7 P2 p])
igs the connecting morphism of

0 » P2 01 PP ) + ab<o>e M -+ 0.
Hence d1 = 0 implies that JHq(X,Fp/Fp+2 {pl}a-Hq{X,Q§EB>m M)
is surjective and in this case d2 is the connecting morphism
of

0 » FPF2pPt3 1o 4 FP/EPY3 (o] & #P/ERYZ[p] » 0.

If ﬂz = 0 one gets a surjection



w3 (x, 7P /FP* 3 (p1) »5Y(x,0B<D>0 H)

and repeating this construction long enough one finds

the wellknown eguivalence of the following two conditions:

A} Por all p,qg the connecting morphisms

8,11, Bm>o M) S, a1l =8 %, 1) of

0 +Fp+1gp}~»ppfpg+g§<u>@ﬂ > 0

are zZero.

B) (M,V) satisfies E1(M) degeneration.

Of course GP is induced by ’n§<n> o M —Y> Fp+1[p+13 .

Under the additional condition that DRDM is
quasi-isomorphic to j!V , where V denotes as usual
the flat (analytic) sections of M, the E1{M) degeneration
can be interpretated in a more geometric way. In the
Lemma below part 1) and 3) use the whole vanishing of & ,

whereas 2) follows from the vanishing of 51’

(3.2) Main lLemmag: Let (M,V) be a logarithmic connection

satisfying E1(ﬂ3 degeneration. Assume that the monodromies

of (M,V) around the components Dy of D do not have 1

as an eilgenvalue.




. A . <
1) Then for any effective divisor B with Bred"Dred ’

and all g 20 , the morphism, induced by restriction of

M to B, Hq{RO):Hq(X,ﬁ) + Hq(B,M!B) is zero.

N P = -
2} Let C be a smooth subdivisor of Dred and D Dred C.

Then for all gz20 and pz0 the morphism, induced by

restriction of differentials,

BL(RP) ;5% (x,08<D*> o M) +u(c,05<p'n C> o M)

is zero. Especially, if D is smooth, the map

Hq(x,ﬂg & M) = Hq(D,Qg e M) is zexo:

3) Then for all gq20 and p=20 the morphism, induced by

the connection V ,

Hq(V)zaq(x,n§<a> ® M) +Hq(x,vm§<o>a M))
is zero.

Proof: 1) By (1.4,b)DR M and DR M(-B) are quasi-isomorphic.

By (3.1 A} the morphism 60:Hq(x,M)*ﬁﬁq(X,F1[13) is zero.

¢

Hence in the commutative diagram

qu(X,DRDH (-B) ) - HI(X,M(-B))
{8 Y

o
mq(x,nagm —> HBYx, M) .



B 1is an isomorphism and « surjective. Therefore vy

is also surjective.

2) By assumption ResC(V) can not have zero as eigenvalue

and this just means ([31, p. 78) that the composition

ResC{V):M Y Q;<D> e M L5855 OC @ M is surjective.
Hence one has
Q§<D'> ® M -V 5 Q§+1<D> s M

RP l Y l res

QIC’«:D'n C>e M —s Qg<n'nc> e M

(V) =0 implies that H9(y) and HF(RP) are both zero.
3} We have a quasi-isomorphism (1.7) 3,V =~ FO = DRDM

and therefore V(Q§<D> ® M) -~ pP*1 is a quasi-isomorphism
for pz0.. Hence 3) is just saying that 6p in (3.1,3)

is zero.

Applying (3.2 ,1 and 2) to invertible sheaves arising

from cyclic covers of X (2.7) we obtain:

{3.3) Relative vanishing theorem for integral parts of
g-divisors.

Let X be a proper algebraic manifold or a compact analytic

manifold which is™ bimeromorphically dominated by a Kdhler




manifold, Let L be an invertible sheaf on X, D be an
N

effective normal crossing divisor and L= = QX(D) for

some N>1, Let 1s3sN -~ 1,

1) Let B be an effective divisor supported in

supp {(j*D - N - {iégi). Then the maps

1

=1 -
g% :x¥x,. 3y > g%, I

)

are zero for all g z0.

2) Let C be a smooth subdivisor of

3 L 4 — - i:-?— 1 = — .
D .gfsupp (j - D~ N [ 5 1) and D D c

Then the maps

B @) i X, B> o ;,‘j’*",.,ﬁq(c,fgm,m,@ L1,

are zero for all pz20 and gz20.

(3.4) Remark: As described in (2.9,3) one may

rephrase (3.3) in the following way.

Agsume that for an effective normal crossing divisor D

one has, Y= 0(p) ; where N is larger than the multi-

plicities of the components of D, and let B be any

divisor supported in D ., . Then the maps ﬂq(X,L’1)~+Hq(B,L”1{B)

are zexo for all gz 0.
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If C 1is a smooth subdivisor of D__ 4 , then the maps

1 1

Hq(x,Q§<D'> o L7") » Hq(C,QIC):<D'ﬂ c> e L)

are zero for all p,gz 0.

{3.5) Corollary. (Xollar , {91, 2.2). Let X be as in

(3.3), L an invertible sheaf, such that some power of L

is generated by it's global sections, and B an effective

divisor, such that OX(B) is contained in a power of L .
1

Then the restriction maps Hq(X,L—1)-* Hq(B,L—

{B) are zero

for all gz 0.

Proof: We choose D' such that 0,(D' + B) = Lk,

In order to show that1 Hq(X,L—1(#B))->Hq(X,L~1) is surjective,
we may replace X be a blowing up and thereby we may assume

B + D' to be a normal crossing divisor. By assumptioﬁ1 LY

is generated by it‘é global sections for some v >> 0 and

one finds a smooth divisor D" such that D = B + D' + D"

is a normal crossing divisor. Choosing Vv large enough one

may assume that the multiplicities of the components of D

are smaller than N = p + v and obtains (3.5) from (3.3,1)

and (3.4,1).

In (3.2,2) and correspondingly in (3.3:2) one can
weaken the hypothesis "C smooth" to "C reduced". However,

in this case we just get that the natural map



2 (R) 1% (x,00<0'> o W) » H¥(C,0F B> o W)
c

ot

is zero, where € is the normalization of C and D the

pullback of the one by one intersections of D to c.

©f course the map we are really interested in is
HY(R) :83(x,08<D"> o M) > HY(C,0B<D >0 H).

The only cases where we know that HY(R) = 0 implies
HI(R) = 0 are the trivial one, g = 0 , or the case

p = 0 , handled in (3.2,1) by different methods.

In [6] 1.1 we proved (3.3,2) for g = 0 by
direct calcuation, and - similarly to the global case
{see (2.14,6)) - we used Hodge duality to obtain the p =0
case. Finally we used the strict compatiblity of the restriction
map with the Hodge and the weight filtration ([4], 8.2.7) to
show that for p = 0 HI(R) = 0 implies H'(R) = 0
(see [6], 1.86).

If one tries to consider more complicated restriction
maps, the picture is even worse and the interpretation of the
morphisms nearly impossible. Nevertheless, we will try in the
last part of this chapter to use (3.2,3) to obtain some
generalizations of (3.2,1) and (3.2,2).



We assume in the seqguel that D is reduced.

The idea of the constructions following is guite
simple. We try to find Oy-modules (or complexes) NP
and kP and an QX~1inear map y:Np + KP which fits

into a commutative diagram

v
Q§<D>@ M s V{Q§<D> e M) ©—> Qﬁ*q <pD> o M

o} | e

kP — KP
Y

of Ty sheaves. Then HI(V) = 0 implies Hqiy3 = 0,

(3.6}. The sheaves NP will be given by the weight
filtration (see [41]) W, of 9§<m> where

k o o , N
Wk(ﬁ§<5>) = QX<9>AQ§ K . we denote by ﬁﬁ the guotient
sheaf ﬁ§<m> ® Hfﬁk{ﬁ§<ﬁ>3 @ M and by kP the image of

p-1 in CP
Viax <D> o M) in Ck .

By the Leibnitz rule one has
<IN , SPET
Viwkiﬁxﬁﬁ> e M) < Wk*giﬁg <D>} o M ,
and V induces a map

.cP 4 P £ha P 1)
il v CEly such that Ky < Kex (V') .



In general V' is not OX—linear and Kﬁ is not an

Gx—module. Applying again the Leibnitz rule we obtain

an Ox—linear map

p-1 v P p
QX <D>}e M —> QX<D> oM —> Ck

p-1 .
Resk {V).Wk(
p-1 p
and Im(Resk {V}} < Kk .

[s]

{3.7) Denote by D the normalization of the s by
s 1intersections of the components Di of D and by
DS+1 the normal éressing divisor on D[Sj obtained by

pulling. back the (s+1) by (s+1) intersections of the
components of D. One has an inclusion

~k=-1 k+2

P s P <D > a M

k D[k+11

given locally at a point on D = zero set of Ky®eeotX, = 0

by

dxi1 dx; dax.
Aees A em p—> 0t A —23 om
®, Z. . X,
i i i€J lj
1 P {%xi,=0,2¢7,}

=1...T

where 1s:il< ...<i1)$r , and where the direct .sum is taken
over all subsets J < {1,...,r} or r - k - 1 elements, and

the signs are given by the usual rule.



res,
If Ti:M 5 Q;<D>®M —_— MlDi denotes the residue

of V along D; then, for example, Resi_1(v) maps

dxq dxy

X1 Aee oA Xy

Ape m to &ty A T (m) . Especially, if
the monodromies of (M,V) l;iound the components Di of
D do not have one as eigenvalue, then Fi is surjective
as well as Res§'1(V) at the general points of the
components of D{k+1]. Moreover Res (V) factors in

the following way

(Qp "> ) e M Wk(9§'1 <D>) o M/Wk—1(9§—1<D>)r® M =

PRt o - PR o jl> Pkl o Mes P
[k] 1 D[k+1] k °
D
Here Dk+1 is the normalization of Dk+1 and p 1is mapping

¢ e m to the alternating sum of the possible restrictions

Y o Pi(m).

By the E1(M) degeneration we obtain.
(3.8) claim: ¥ (resP™ (7)) :n¥(x,w (@87 <@>) o M) -

p-k~-1 k+2

~ g4 (X, QP [k+1]<D > e M)

is the zero map.

Of course, the Ox—linear map Resi—1(VJ depends on

the residues of the connection and the only case where

one can find an isomorphism o of Qp{§+}] <Dk 2>@ M



such that o - Res}izm‘l {¥) does not,is for k = 0.

In fact (3.2.3) implies a stronger statement:

q p-1 e | p-1 g P
(3.9) H (Resk {(V}):H (x,wk(ﬁx <D>) & M) - H (X,Kk)

+

; | S .cP p+1
is the zero map, where Kk-—Kek (V':Cp » Ck+1).

However, both sheaves, Ki and Cg are quite difficult

to describe.

For CE , at 1east,we have a reascnable filtration.

If wg denotes the image of WZ(Q§<D>) ® M in

P : . : = = cP
Ck , one obtains a filtration 0 = wkc:wk+1c:..s:wp Ck

= gP7E
such that W,/W, , QD{z] e M.

= p—- i | =
For k = p~1 , one obtains Cp_} OD{P}Q M. However,

= Cg+1 is given by the alternating

"
Vel e 7 M e
sum of the T,, considered as an isomorphism of M}D. .
i
Define YfP]:M{ (ol ™ M pl to be the automorphism given
plP Iplp

by T, oT Since V is

;% ... o T on M .
i, 04 i |D; n...nDy

2
integrable YEP} is independent1 of theP numbering of the

components. One obtains a commutative diagram

A R
"] > M el
l ,[p] lyip+11
4 el > M| (pe1]

P
€ id
® 4y



where ep

Y[p]

maps Kg_ to Ken (eP

1
Locally, if D

-1
Y[p} o Resp

P

Hence we obtain

(3.10) Claim. Xeeping the

is the usual map 0
D

is the zero set of

3-12

ipl - OD[p+1] . Hence

) o= Im(eP 1) o M.

r
s ot an

-1
ov..o I ___(m)]|
p—1 D1ﬂ..,ﬂDp_1f}Di

assumptions made in (3.2) and

the notations introduced above

the map

[p1~

1
9 P .9
H? (Y ° ResP__1 (v)):H

> Hq(x,Ken

is zero.

For p = 1
p

p-—
course, we can apply (3.10) to

-1
p>1 the map y{p] o Res

(x,szg'1 <D> @ M)

(eP) o M)

and D = B this is the same as (3.2,1). For

(V) depends on V ., Of

1
the situation of invertible

sheaves coming from cyclic covers (as in (3.3)). In this

case, one can give a more exp

morphism considered.

licite description of the



Let (M,V) be a connection on a proper algebraic

or compact analytic manifold X with logarithmic poles

along a normal crossing divisor D.

As we have seen in § 2 the classical positivity conditions
on a € curvature matrix of a differentiable connection
on M can be replaced by conditions on the residues of ¥
along the components of D, if one is interested in vanishing

theorems of RKodaira-Nakano type.

In this appendix we want to show how to define the Chern

classes of M wusing the logarithmic connection V .

This is asecond example indicating that both, the theory of
c”~connections without singularities but with non trivial
curvature matrix and the theory of holomorphic integrable
connections with logarithmic singularities can be applied in

a quite similar way in algebraic geometry.

The computation of the Chern classes and the Atiyah class
described here was done independently by J.L. Verdier and the

first author about one year ago.

Let D be the normalization of D and

1

Res:9x<D>@ M > 03 & M be the Poincaré residue. The element



I'=Res o V € Homo (M;M‘5 is mapped under the connecting
X

morphism of the exact sequence

O+Q;«8AQ+SQ<D>G>M~+0DQDM-+0

to an element vy € E:ctg (M,Q; ® M ).
X
(B.1) Proposition. -y 1s the Atiyah class of M.

Proof: The Ativah class is constructed in the following

way (see [1]): Let J be the ideal sheaf of the diagonal

X~ X x X, The differentials are 91 = J/J2 and the first

X
order jets of OX are given by p! = OX /J2. So P1 is
xX
endowed with a left Ox-module structure, for which the

exact sequence

1 1

0~ QX > P > OX + 0

splits. However, P1 carries also a right module structure,

and one uses it to define P1(M) = P1 ®) M . Then P1(M) is
X

endowed with a left module structure, as well as its sub~

1
module QX QOXM .

The sequence

0&9;%;4 > P (M) » M+ 0

defines a class YAe:Exté (M,Q; ® , M) , the Atiyah class.
X

X



One has the map of first order principle parts

VM2 M) with '@ = (1 & 1) & m.

Similarly to the construction of the jet bundle we define
the sheaf of logarithmic jets as the (right and left)

0X~suhmodu1e of the sheaf of rational functions of (X:cX)/32 ’

which is generated by p! and Q;<D>. In other woxds, PT

D
is obtained from P1 by adding locally Xi ® %— and
, i
;L-w ¥, + where % is a local equation of D, .
i .
We define in the same way Q;<D> e M, P;(M) and the
exact sequence of left 0X~modules
0> olD>am>p ) » 0.
X 3]
Define s:M -~ P;(M) by s{m) = jT(m) - ¥(m). s is a
Oy-splitting ([31, p.2).
Consider the diagram
0 0
\ !
0 & ——> Q;@M . P1(M) — M — 0
0 ———>s‘21<D>\aM — P1%M) —> M —>
X PSS
res 1n
v
,, l




Since j1(m) € P1(M) one has moes = - = Res o V € Homo (M,Mlﬁ).
X
Since the exact sequence in the middle of the diagram splits,

the image of ~T in Exté (M,Q; ® M) is the Atiyah class

X
and Y= “Yp-

Atiyah himself explained how to use the Atiyah class
to compute the Chern classes (i.e.: the symmetric functions

of the Chern roots).

Usually one gives the formula for the Newton classes Np
(i.e. the sum over the p-th powers of the Chern roots) and

obtains the Chern classes by the interchange formulas.

(B.2) . Corollary. ([1], Prop. 13) Let T, = Res; o V EIHomO(M,MlD )
I T X i
and {Di] the class of Di in H1(X,Q;). Then
P P d1 Og %4 S
N, (M) = (=1) ¥ () Tr (T,0 e ... o T 5): [Dg] "+...-ID] .

[ =
%4 ag=P s

Especially C1(M) = Nl(M) = - 151 Tr(Ti) . (Di}.
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