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ON THE CONJECTURE OF BIRCH AND SWINNERTON-DYER
FOR AN ELLIPTIC CURVE OF RANK 3

Joe P. Buhler, Benedict H. Gross and Don B. Zagier

The object of this note is to verify the conjecture of
Birch and Swinnerton-Dyer numerically (to high accuracy) for the

elliptic curve

(1) E: y2 =z Hxs - 28x + 25.

The conductor of E is 5077, which is apparently the smallest
conductor for a curve of rank 3 over €. Since previous accurate
numerical verifications were done for modular curves of rank 0
~or 1, and these can now be confirmed theoretically [2], [41],

it seemed desirable to test a curve having a larger rank.

We assume some familiarity with the theory of elliptic curves;

good references are (3] and (5].

1. The canonical height function

One of the main ingredients in the Birch-Swinnerton-Dyer
formula is the regulator, i.e. the determinant of the matrix
expressing the canonical height pairing on E(Q)®R with respect
to a Z-basis of B(Q)/E(Q)tors . In this section we describe
how to calculate the canonical height of a point P2 €E(Q) .

We first recall the definition. The global minimal model
for - B has the form

(2) y2ey = x3-7x+6,

obtained by replacing y by 2y+1 in (1) and dividing by 4. 1If
PEE(Q) , then the naive height of P 1is defined as



3) B(P) = log max ( |a],b) , x(P)=f, b>0, (a,b) =1

‘there it does not matter whether we use model (1) or (2) for E,

‘a8 ‘the x-coordinates are the same); the canonical height is the

unique quadratic form ﬁ on E(Q)@ R such that R(P)-h(P) is

bounded, and the canonical height pairing is the associated
bilinear form <P,P'> = x(h(P+p")-R(P)-fi(P')) . The definition
of R ‘immediately implies the formula ﬁ(P) =1lim n-zh(nP) , but

new
this is not convenient for calculations. A formula which is usable is

(4) h(P) = logb + F(x(P)) ,

where b denotes the denominator of x(P) as in (3) and F(x)

is the real-valued function defined by

(5) F(x) = 1log |x]| + ) g1 log z_,
n=0
14 50 49 X2 +14x°-50x> +49
z =1+ ->3+-5, X;=X, X = I n n )
n xn xn xn 0 n+1 4x;;"28xr21+25x,1

Near x =0 the first two terms in (5) become infinite, but we

can combine them to obtain

(6) F(x) = %—log (x4 *14x2-—50x+49) + 3 47! logz .
n=1
a formula which now makes sense for all x . Note that the formula
relating X041 " to X, is the formula relating x(2P) to x(P)
for P€EE, so that xn=x(2nP) . In particular, )cHZe3 = 1.946...

for nz 1, where e, <e, <e, denote the roots of the polynomial
4x3-28x+25, so z, lies between 1 and 1.328... and 1log z,
between 0 and 0.284... . Therefore the series in (5) or (6)
converges very rapidly and we can calculate h(p) to any desired
degree of accuracy.

Formula (4) is the specialization to our case of a general

recipe of Tate [6]) for computing heights; indeed, F(x(P)) is

T&te's formula for the



infinite component of <P,P> while up(b) logp (p prime) gives
the p-component of the canonical height (even for the prime p=5077
of bad reduction, since the fibre of the Néron model at p is
irreducible). However, Tate's result, although quoted in the
literature, has not yet been published, so we give a direct proof
of (4) in our case. By virtue of the definition, it will suffice
to show that the expression on the right-hand side of (4) differs
by a bounded amount from h(P) and is multiplied by 4 if P 1is
replaced by 2P . By the formula already cited, replacing P by
2P . replaces x(P) =a/b by x(2P) =a*/b*, where

* 4 3 4

a* = a%+14a%p?-50ab> +49b? , b* = 4a? -28a%p2 +25ap3 .

We claim that b* is the exact denominator of x(2P) . Indeed,
an elementary célculation with g.c.d.'s shows that (a*,b*) =1

for any integers a ,b with (a,b) =1 unless a=92b (mod 5077),
in which case 5077|(a*,b*) . But this cannot happen here since

3-28x+25 = 4(x-92)2(x+184) +5077(20x-1227) would be divisible

4x
by 5077 but not by 50772 if x were =92 (mod 5077) and hence
could not be a square. (This is an elementary restatement of the

fact that the Néron model at 5077 has only one component.) On the

other hand, replacing P by 2P replaces X2 by el * Zne
in (5), so
F(x(2P)) = log|x(2p)| + § 4" 'logz_,.

n=0

log |x(2P)| + 4 (F(x) -log |x| -471 log z, )

( x = x(P) )
3

4 F(x) - log (4x? -28x3 +25)

4 (F(x(P)) +logb) - logb*,

proving the first assertion. As to the difference of h and ﬂ,



we can write (3) as h(P) =logb + log max ( L& T

b 1) sO

B(P) - h(P) = F(x) - logmax ( |x|, 1) (x=x(P)).

If x2ej=1.94... 1is in the right-hand component of E(R) , then
the same is true for all x (nz0) , so 1sz =1.328... for all

n in (5) and therefore

0sPF(x) ~logx s J 4" '10g(1.328...) = 0.0947... .
n=0

The other component e,sxze, of E(@R) is compact and we easily
find ‘the minimum and maximum of F(x) -logmax(|x|,1) there to be
0.4006... and 1.205... (obtained for x =e and x=-1,

1
respectively; see Figure 1) . Hence in all cases we have

(7) h(P) s h(P) s h(P) + 1.205... .

This completes the proof of (3). We remark that the difference
between the naive and canonical heights on elliptic curves has
been studied by several authors (cf. [7] and the literature cited
there) bﬁi that the inequality (7) is much sharper than the one
obtained by specializing their results, suggesting that some

improvements in the general case may still be possible.

Figure 1. The functions F(x) and log max ( |x|, 1)




2. The Mordell-Weil group and the requlator

Let Ap #5077) denote the cardinality of E(Z/pZ), i.e.

Np
1 plus the number of solutions of (2) in integers modulo p. Then
IE(Q)to;sl must divide N, for all p; since N, =5 and N,
it follows that E(Q) is free abelian. We claim that it is of

=7

rank 3, generated by the three points
Py = (0,2) , P, = (1,0) , P, = (2,0) .

It follows from equation (7) that these are the only points with
canonical height less than 1, since h(P) ship) s 1 implies

|la] se, bse and hence (since b is always a square) b=1,
a€{-2,-1,0,1,2} ; of these five candidates, only a=0,1,2 lead
to points with ﬁ}?) <1 . On the other hand, one sees by a
2-descent that Py, P,, P, generate E(Q) /2E(Q) , which is of
rank 3 over Z/2Z . These two facts and the fact that E(Q) is
torsion-free imply by the usual proof of the Mordell-Weil theorem
(cf. any text on elliptic curves) that E(Q) = ZPO +zP1 +ZP2 as

claimed. Using the algorithm of §1 we can calculate the entries

of the matrix

.9909... -.2365... =-.2764...

A = (<P, ,P.>) = -.2365... .6682... .0333...
17327 051,352

-.2764... .0333... .7670...

to any desired accuracy. The regulator is the determinant of

this matrix:
(8) R'= det A = .417143558758383969817119544618093... .

As an illustration, we have given the representations of P
as noPo-+niP1'+n2P2 and the naive and canonical heights of P for 18

integral points P €E(Q) in Table 1; the canonical heights can be



computed either by the algorithm of §1 or as (ngn,
One has of course also the negatives

with the same heights.

-pP =

(xl-y-1) = -nopo

171

t
nz) A (nonlnz) .

-n.P.-n, P

2

The large number of 36 integral points seems

2

to be typical of curves with a high rank relative to their conductor.

x Y n, n, n, fi(p) h(p)
-3 (] o -1 -1 1.501924%54 1.09861229
-2 3 (VRS | i 1.368572591 LHP314718
-1 3 -1 o -1 1.20508110 0. 0O0VO0OO0
V) 2 i w0 V] « FPOPVHTEI Q. 00000A00
1 O O 1 0 . 6HB20517 0. 00000000
2 Q [y v | . 7670V43TE 69314718
3 3 1 i O 1.188592770 1.0984681229
4 & -1 -1 -1 1.4464677348 1.38629436
8 21 1 -1 0 2.132229530 2.079441354
i1 35 -1 -1 1 2.43916362 2. 39789527
14 a1 (¢ 2 0 2.467282066 2. 63905733
2 S V) o -2 F.06817342 3.04452244
37 224 -2 o -1 J. 62493152 2.61091791
o2 374 1 -1 2 D.96137982 3.95124372
93 896 2 2 1 4.532836901 4. 53289949
342 6324 -2 Q 1 5.834640586 5.832481074
406 8180 Q 2 2 b6.00769815 4. 006I5T16
8146 23309 1 3 -1 6.7050853 6H.70441435
Table 1. Integral points on E
Y
61
Y +y =x" -7x +6 S+

Figure 2.

Integral points on E




3. The period
The group E(IR) has two connected components. Let

w = §%§I be a Neron differential on E over Z, and |w| the

associated measure on E(IR). Define the period & by

Q = lw] = lwl].

IE(]R) ? fE(]R)O

If we write (0.1) in the form y2 = H(x-el)(x—ez)(x-ea) with

e, < e_c e we may calculate this period integral using Gauss'

1l 2 3’
arithmetic-geometric mean. This is defined on two positive real

arguments x and y by M(x,y) = lim x = lim Yoo where

TIto0 N>
x_ty

xo z X, y0 Y5 X 4q T n2 n. Yool © /xnyn. We find (Gauss):

y z -
M(/e3 el,/e3 e2) M(2.22689...,0938503...)

Lo
"

- <]
" I dx _ 2w - 2T

(9) - €3
u.151687983086933049884175683507286...

4, The L-series

The L-series for E over € 1is given by an Euler product

which converges in the right half plane Re(s) > 3/2:

L(E,s) = (1+5077°5)"1 T Q-a p S+p?™ 2571 = [ anS
p#5077 p n=

where a_ (p#5077) equals p+1—Np with N as in §2. We have

P p

Als) = N’/z(zﬂ)'sr(s)L(E,s) = ]f(%) y$‘1 ay ,
0

where N=5077 and £(1) = ] a_¢’™®" (r€C, Im(x) >0). The
Weil-Taniyama conjecture asserts that £(r) is a cusp form of

weight 2 and level N =conductor of E. This could be checked

by a finite computation, but we have not carried it out (the space



of cusp forms of weight 2 and level 5077 has dimension over 400)

and wili s1mp1y assume its truthb(thus this note could more properly
be described as a simultaneous numerical verification of the Birch-
Swinnerton-Dyer and Weil-Taniyama conjectures). Then £(1) satisfies
the functional equation £f(-1/Nt) = erf(r) and the analytic

continuation and functional equation of L(E,s) follow:
| | s-1 1-
(100 Msd = [ (v5 -y "% ay = - a(2-8) .
1

In particular, the order of L(E,s) at s=1 is odd énd the rth

derivative (rz1 odd) is given by

Ay = 2 J f(;i%) (10g YT dy
1l
(11)
® e -
= 2 Z a J e 2mny/ /N (log y)r dy.
nzl MUy

If A(s) vanishes to order 2r at s = 1, then integrating

(11) once by parts gives

© a
(r) 2 , () _ n 2nn
{12 L (1) = A (1 = 2r! — G (——:— ’
) /N nzl noToR
where
‘ - 1 ® Xy r-1 dy (rz1) .
Gr(X)’ ol e a Y Jl e (log ¥) v

The series (12) is rapidly convercent, because G.(x) ~ x YTe™X as

X+o , 80 it can be used to compute L(r)(1) if we have a good
algorithm to compute Gy (x) . . .
The function Gl(x) is the familiar exponential integral

f; e XY %%, which can be calculated for small x (x<3) by the
power series

1l b (_1)n-1 n z Euler's constan@)
6 (x) =log T-Y + [ “Fpr— X \
n=1

and for large x (x>2) by the continued fraction expansion



1+l..

Taking 250 terms of the series in (12 ) gives L'(1)~0 to 13
decimal places. But this implies that L'(1) =0 exactly, since
the main result of [2] implies that L'(1) is a simple multiple of

the height of some rational point on E ("Heeagner point") and, as

we have seen, E contains no rational points of very small non-zero

height. 8Since L(s) has odd order, we have ords=1L(s)_;3 .
In general, the functions Gr(X) satisfy Go(x) = e %,

1
! s - =
Grﬁx) % Gr_l(x), so
© n-xr
G (x) = P_(log ) + ) £:%l——— X"
r r X n=l n n!

for some polynbmial Pr of degree r. To determine Pr’ we use

the integral representation:

ct+iw
I(s) ,-s ds any c¢ > 0.

13) e (0 = -é;lr-i—Jc_iw x
(To prove (13 ), we observe that the right hand side satisfies
the same recursive differential equations as Gr(X) and tends
to zero as x + ».) Shift the path of integration in (13 )
to the 1eft;f¥f?'residue at s = -n gives the term
-1"T%"/n"n!  and the residue at s = 0 gives Pr(log %).
Hence

m o

T
t -
= - where r(i+s) = Yy.s .
Pp(t) mzo [[\_m m! ngo



Since by Euler-Maclaurin

| T Dt
log T(1+s) = - ys + X —— c(n)sn >
n=2 n
we find, for r = 3, the expansion
2
- - 1 1 _ .43, 1n° 1 (3)
GB(X) = s(log 'Y) + 13 (log ;-‘Y) - ;3—
« n-1ln
A
nz=1 n n!

which converges for all x. Using this we find the value

a

.. L(E,s s n 2¥n
lim ~——4-%' = 2 — G ( )
s+1 (8-1) nzl n 3 V5077

(14)
& ]1,7318:599001193006897919750851

using the terms for n < 600 (the error made in breaking off the _
series here can be estimated using (12) and the formulas Gilx)~xTe™*
and la | sd(n)//f, where d(n) 1is the number of divisors of n ).

The results of the computations described in this section are

summarized in Table 2.

.. (2w 2mn 2 2mm B 27m

n 8}) G1 (T) G3 (7ﬁ-) 2;%“”01(w) Zz%Gf—&-)

1 1 1.93741992 2.26675143 3.87483985 4.53350286

2 -2 1.32687953 .98498602 1.22108079 2,56353082

3 -3 1.00056041 .54955613 -.78004003 1.46441856

4 2 .78875755 «34359041 .00871752 1.80800897

5 -4 .63840821 .22972608 -1.01273562 1.44044725

6 6 .52596620 . 16064962 .03919678 1.76174648

7 —4 .43894007 . 11604939 -.46244901 1.62911861

8 0 . .36992797 .08592813 -.46244901 1.62911861

9 6 © 231419941 .06487957 -.04351647 1.71562470

10 .8 .26856035 .04977090 .38618010 1.79525814

50 =22 .00231086 .00005681 -.00236637 1.73179489

100 22 .00001521 .00000013 .00001335 1.73185001

- 250 48 .00000000 .00000000 .00000000 1.73184990
Table 2. Computation of L'(1) and L"(1)



fecture of Birch and SWinnerton-Dyer‘predicts that
i@ Pank(E) = 3 and that

L{E,s) -
lim ==222. = Q «R +Card (]l])
8+l (s-l)3

is the(conjecturally finite) Tate-Shafarevich group

of @Z over. Q. Equations (8) and (9) givev
QeR = 1.731849300119300689791975085060154. ..

whioh acrees with the right-hand side of (14) withinthe accuracy of

our computations in §3. This strongly suggests that -the conjecture

is true and that lll = (1). We have checked, via a 2~descent (cf. [d1])

that the 2~primary component of ||| is trivial.
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