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ON THE CONJECTURE OF BIRCH AND SWINNERTON~DYER

rOR AN ELLIPTIC CURVE OF RANK 3

Joe P. Buh~er, Benedict H. Gross and Don B. Zagier

The object cf this note is to verify the conjecture cf

Birch and Swinnerton-Dyer numerically (tc high accuracy) for the

elliptic curve

( 1) E: 2 3
Y = 4x - 28x + 25.

The conductor cf E is 5077, which is apparently the smallest

conductor for a curve of rank 3 ever ~. Since previous accurate

numerical verificatiens were done for modular curves cf rank 0

er 1, and these can now be confirmed theoretically [2], [4],

i t seerned desirable to test a curve havinq a larger rank.

We assurne same familiarity with' the theory of elliptic curves;

good' references are [3] and [5].

1. The canonical height function

One of the main ingredients in the Birch-Swinnerton-Dyer

formula is the regulator, i.e. the determinant of the matrix

expressing the ;canonical height pairing on E(~)~~ with respect

to a ~-basis of E(m)/E(~)
'lfol 'ii tors · In this section we describe

how to calculate the canonical height of a point P € E (10) •

We first recall the definition. The global minimal model

for E has the form

( 2 ) 2 3
Y + Y = x - 7x + 6 ,

obtained by replacing y by 2y+1 in (1) and dividing by 4. If

PF.E(~) " then the naive height of P is defined as
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( 3 ) h (p) = log max ( Ial , b ) x (P) a b > 0, (a,b) =1=0'

(here it does not matter whether we use model ( 1 ) ot ( 2) for E ,

as the x-coordinates are the same) ; the canon1cal he1qht 1s the

" 'h(P)-h(P)unique quadratic form h on E(~)~JR such that 1s

bounded, and the canonical height pairing is the associated

bilinear form <p,pl> = ~(h(p+p')-h(P)-h(P'». The definition

of h imrnediately implies the formula h(P) =lim n- 2h(nP) , but

this is not convenient for ca1culations. A formula which 1s usable is

( 4 )
A
h(P) = log b + F(x(P»

where b denotes the denominator of x(P) as in (3) and F(x)

is the real-valued function defined by

(5) F(X) = log lxi + I
n=O

4-n - 1 log z
n

14 50 49
zn = 1 + XT - XT + V '

n n n

Near x =0 the first two terms in (5) become infinite, but we

can combine them to ebtain

( 6 ) 1 4 2 \' 4 -n-1F(x) = '410g (x +14x -50x+49) + L logz,
n=1 n

a formula which now makes sense for all x. Note that the formula

relating xn + 1 to

for P € E, so that

x is the formula relating x(2P) to
n

x =x (2
np). In particular, x ii::: e =

n n 3

x{P)

1.946~ ••

for n.G: 1 , where e 1 < e
2

< e
3

denete the reets of the polynornial

4x
3-28x+25, so z lies between

n 1 and 1 . 328 ... and log z
n

between 0 and 0.284 ... Therefore the 5eries in (5) or (6)

converges very rapidly and we can calculate

degree of accuracy.

""h(P) to any desired

Formula (4) is the specialization to our case of a general

recipe of Tate [6] for computing heightsi indeed, F(x(P» 1s

Tateis formula for the
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infinite component cf (P ,P> while V (b) log P p prime) gives·p

the p-component of the canoni~al height (even for the prime p=5077

of bad reduction, since the fibre of the Neron model at p ·is

irreducible). However, Tate's result, although quoted in the

literature, has not yet been published, so we give a direct proof

of (4) in our case. By virtue of the definition, it will suffice

to show that the expression on the right-hand side of (4) differs

by a bounded amount from h(P) and is multiplied by 4 if P is

replaced by 2P. By the formula already cited, replacing P by

2P replaces x (P) = alb by x (2P) = a *Ib*, where

a* = 422 3= 4a - 28a b + 25ab

We claim that b* is the exact denominater of x(2P). Indeed,

an elementary calculation wi th g. c. d. I s shows tha t (a *,b *) = 1

for any integers a, b with (a,b) = 1 unless a 592b (mod 5077) ,

1 **in which case 5077 (a ,b ) .

3 24x -28x+25 = 4(x-92) (x+184)

2by 5077 hut not by 5077 if

But this cannot happen here since

+ 5077(20x-1227) would be divisible

x were 592 (mod 5077) and hence

could not be a square. (This is an elementary restatement of the

fact that the Neron model at 5077 has only one component.) On the

ether hand, replacing

in (5), so

P by 2P replaces x
n

F(x(2P) ) = log Ix (2P) I +
cu

'. 4-n - 1
I. 10gzn +1n=O

= log Ix(2P) I -1
+ 4 (F (x) - log Ix I - 4 log z 1 )

( x = x(P) )

= 4 F (x) - log ( 4x
4

- 28x 3
+ 25 )

= 4 (F (x (P» + log b )
1:- log b ,

i th " fi t ti As to the difference of hand "h,prov n9 e rs asser on.
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we can write .(3) as h(P) = log b + log max (1~1 ·,1) , so

'"h (P) - h ( P ) = F (x) -. log max ( Ix I , 1 ) '( x =x (P) ) •

If x 2; e
3

=1 .94. • • is in the right-hand component of E (IR) , then

the same is true for all

n in (5) and therefore

x (n~O), so
n

1:iiz :i1.328 •.•n
for all

\' -n-1o ~ F(x) - 10gX::i L 4 10g(1.328 ••• )
n=O

= 0.0947 ....

The other componente
1

::i x S e 2 cf E OR) is compact and we easily

find the minimum and maximum of F (x) - log max ( 1x I ,1) there to be

0.4006. •• and 1.205... (obtained for x =e
1

and x =-1,

•respectively; see Figure 1). Hence in all cases we have

( 7 ) "h{P) S h(P} S h(P) + 1.205 •••

This completes the proof cf :3). We remark that the difference

between the naive and canonical heights on el11ptic curves has

been studied by several authors (cf. [7] and the literature cited

there) but that the inequality (7) 15 much shaiper than the one

obtained by specializing the1r results,. suggesti'ng that same

improvements in the general ease may still b~ possible.

e J
' .. ' ..

-3' -2 -1 o

e
2

e a

::.~

: .....::/
.' I

I
I

1 2' 3 4

Figure 1. The functions F(x) and log max ( Ix I. 1 )



- 5 -

2. The Mordell-Weil grouE and the regulator

Let N (p .,. 5077) denote the cardinality cf E (X/p7L) , i.e.p

1 plus the number of solutions of ( 2) in integers modulo p • Then

IE(!D)tors l roust divide Np for all p since N =5 and N =7
2 3

it follows that E(qJ) 1s free abelian. We claim that it 1s of

rank 3 , genera ted by the three points

Po = (0,2) P 1 = (1,0), P2 = (2,0)

It follows from equation (7) that these are the only points with

canonical height less than 1, since
Ä

h{P) ~h(P) ~1 implies

Ia I :s e, b:iii e and hence (since b i5 always a square) b= 1 ,

aE{-2,-1,O,1,2}; of these five candidates, only a=0,1,2 lead
A

to points wi th h (P) < 1 . On the other hand, one sees by a

2-descent that PO' P" P2 generate E(lD) /2E(q}) , which 1s cf

rank 3 over 'll/2'lL These two facts and the fact that E(qJ) 1s

torsion-free imply by the usual proof cf the Mordell-Weil theorem

(cf. any text on elliptic curves) that E(O) = 7lP
O

+'llP, +:l P 2 as

claimed. Using the algorithm of §1 we can calculate the entries

cf the matrix

.9909 ... -.2365 ... -.2764 ...

A = (P. ,P.»)
1 ] 0:iiii,jS2

= -.2365 •..

-.2764 ...

.6682 ...

.0333 .•.

.0333 ...

.7670 ...

to any desired accuracy. The regulator is the determinant of

this matrix:

(8) R = det A = .417143558758383969817119544618093 ...

As an illustration, we have given the repre5entations of P

as nOPO + n 1P 1 + n 2P2 and the naive and canonical heights of P for 18

integral points P E E (0) in Table 1; the canonical heights can be
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computed eithe~ by the algorithm o~ §1 or as

One has of course also the negatives -P = (x,-y-1) =.-nOPO-n,P,-n 2P 2

with the same heights. The large number of 36 integral" poi~ts seerns

·to be typical of curves with a high rank relative to their conductor.

x y n
O

n
1

n 2 h{P) h{P)

...;, Ü t) --1 -1 1 501924:-j4 1 • t)986122c}'
-.

~.:;. I:' -1 1 L 36;357251 67314718..:. .
-1 ..::~ -1 (I -1 1 2050811ü o. OOOt)OOOO

Ü 2 1 Ü I) • <:i9(J9ü633 0.0000(1000
1 (I (I 1 (I .66820517 0.(>00(10000
2 (I I) ,) 1 .7h71)4336 .6'7'314718
3 3 1 1 0 1 18592770 1 .09861229
-4 6 -1 -·1 '-1 1 466778·l13 1 •.38629436
8 21 1 -1 (J "":> 13229530 2.07944154..:. .

1 1 "':"" I;' -1 --1 1 2.43916362 .... 39789527.,.)...J ..:~ .
14 51 (I ..... 0 2.67282066 "j 63905733..;;. ..:. .
21 95 I) l) ~"-2 :::::. ütJ81 7342 3.1)4452244
,~, I 224 ··,2 0 ..- 1 3.62493152 -:t' 610'7'179.1."':...
<:.".-, 374 1 -1 2 3.96137-:j152 95124372...J"::" ..:,." .
9.~, 896 2 ~,

1 4.538:36901 4 . 53259949..::.
:342 6.324 -2 I) .l 5. 83641)586 t.-:' 03 1181074•.J •

406 8180 (I 2 ~.! 6. 0076981.5 6. c)06::::.5316
816 23309 1 "7 - L 6. 705005::,1 6. 70441435'-'

Table 1. Integral points on E

-p -p, 2

-3 -2 -1 0 :3 4
X

P,+Pz -1

-2'
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3 • The per iod

The group E(JR) has two· connected components. Let

dx be a Neron differential on E 'E., and Iwl thew = over2y+l

associated mea5ure on E(TIn. Define the period n by

n = fE(]R) \wl = 2 f \wl·
E( IR'P

If we write (0.1) in the form 2
Y = 4(x-e )(x-e )(x-e )

123
with

e l < e 2 < e
3

, we may calculate this period integral u5ing Gauss'

arithmet~c-geometricmean. This is defined on two positive real

where

We find (Gauss)

= lim Y
n

,
11-+00

lim x
J)+oo n

l1(x,y) =
x +y

n n ~

2 ,yn+ 1 = Y xny n .

byand y

y, xn+l =X o = x, YO =

arguments x

(9 )

n = 2 1T = 2 TT

M( 2 • 22689 ••• ,0.938503••• )

= 4.151687983086933049884175683507286 ...

4. The L-series

The L-series for E over ~ is given by an Euler'product

which converges in the right half plane Re(s) > 3/2:.

L( E, 5)

ro

\' -s
L a nnn=l

where a
p

(p~5077) equals p+1-N with N as in §2.p p We have

A (s) := ::::
5-1Y dy

eo
t 27Tintwhere N::::5077 and f(t) = L a e

n::.1 n

\'leil-Taniyama conjecture a5serts tha t

Im ( T) > 0 ). The

i5 a cusp form of

weight 2 and level N =conductor of E. 'Ilhis could be checked

by a finite computation, hut we have not carried it out (the space
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of cusp forrns, of weight 2 and level 5077 has 'dimension over 400)

and will simply assurne its truth (thus this note could more properly

be described as a simultaneous numerical verification of the Birch-

Swinnerton-Oyer and Weil-Taniyama conjectures). Then f(T) satisfi€s

the functional equation f(-l/NT) = NT 2f(t) and the analytic

continuation and functional equation of L(E,s) follow:

,

.\
( 10)

In particular, the order of L(E,s) at 5=1 is odd and the r th

derivative ( r '= 1 odd) is given by

ACr)(l) 1: f(M)
r

= 2 (10 g y) dy

( 11 )
00

C - 2TT ny / IN
L

r
= 2 a e (log y) dy.

n=1 n

If A(s) vanishes to order ~r at 5 = 1 , then integrating

( 11 ) once by par"t s gives

L(r)C!) 2TT 11.(1')(1)
00 a

(21TD),(1'2 ) = 2r! I n G=
IN n=l n r iN

where

G Cx)
1 I: -xy r-l ~ ( r ~ 1 )= e (log y) .

r (1'-1) ! Y

The series ( 1:Z) is rapid).y convet"0ent, because Gr (x) ~
-r -xx e as

x .... 00, so it can be used to compute L (r) (1) if we have "cl good
algorithm to cornpute Gr(x).

The function G1(x) is the familiar exponential integral

f~
-xy ~ which can be calculated for 5mall x (x< 3) by thee ,

y

power series

1
O? (_1)n-1

G (x) = log + L
n er = Euler's con5tant)--y x

1 .. x n-n!
n=1

and for large x (x>2) by the continued fraction expansion
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=
x +

1 +

-xe
1

x +
1 +

1
2

x +

2
3

1 +

Taking 250 terms of the series in (12 gives LI (1) RS 0 to 13

decimal places. But this implies that L' (1) =0 exactly, since

the main result of [2] implies that LI (1) is a simple multiple of

the height of some rational point on E ("Heeqner pointlI) and, as

we have seen, E contains no rational points of very 5mall non-zero
height. Slnce L(s) has odd order, we have ord s =1 L(s) '=; 3 •

In general, the functions Gr(x) satisfy GO(x) = e- x ,

1
G'(x) = - G lex), sor x r-

G (x)
r =

,
P (log :'.) +

r y.

co

I
n=l

(_l)n-r
r

n n!

nx

for same pa1ynomia1 P of degree r.
r

Ta determine p ,
r

we use

the integral representation:

( 13 ) G (x ) =' ~ Je + ico r ( s 2.. x- S d s
r 2~1 c-ioo sr

any c > o.

(T 0 prove (13 ), we observe that the right hand side satisfies

P (log 1.:).
r xgives

gives the term

s = 0

the same recursive differential equations as G (x) and tends
r

the path of integration 1n (13 )to zero as x ~ co,) Shift
then

to the left;kthe residue at s = -n

(_l)n-rxn/nrn ! and the residue at

Hence

p (t)
r

= whcre 1'(1+5) =
00

L y sn
n=O n
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Since by Euler-Maclaurin

log r(l+s) = - -ys + L
n=2

(_l)n n
--- r;: (n)s );

n

we find, for r = 3 , the expansion

1 1 3 2 1
~G

3
(x) TI (log= 6( log - - y) +12 - - y) -x x

co (_l)n-lxn
+ L 3

0=1 n n!

which converges for all, x. Using this we find the value

lim L(E,s)
3

s+l (s-l)
= 2

co

I
n=l

a
n G ( 2n n _)
n 3 /5077

( 14 )
N 1.7318 1;99001193006897919750851

using the terms for n ~ 600 (the error made in breaking off the
series here can be estimated using (12) and the formulas G3(x) ...... x-3 e-X

and Ian I ~ d (n) / In, where d (n)' is the number of divisors of n).

The resu1ts of the computations described in this section are

summarized in Table 2.

n a G (21Tn) G (21Tn) 2f~G(21Tm) 2f~Gi2~m)n 1"/N 3 IN 1 m 1 IN

1 1 1.93741992 2.26675143 3.87483985 4.53350286
2 -2 1.32687953 .98498602 1.22108079 2.56353082
3 -3 1.00056041 ,54955613 -.78004003 1.46441856
4 2 .78875755 .34359041 ,00871752 1.80800897
5 -4 .63840821 .22972608 -1.01273562 1.4!; 0I. 4725
6 6 .52596620 . 16064962 .03919678 1.76174648
7 -4 .43894007 .11604939 -,46244901 1.62911861
8 0 .36992797 .08592813 -.4624l,901 1.62911861
9 6 .31419941 .06487957 -.04351647 1.71562470

10 8 .26856035 .04977090 ,38618010 1.79525814
50 -22 .00231086 .00005681 -.00236637 1.73179489

100 22 .00001521 .00000013 .00001335 1.73185001
250 48 .00000000 ,00000000 .00000000 1.73184990

Table 2 . Computation of LI (1 ) and V" (1)
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5. The conjecture

The conjecture of Birch and Swinnerton-Dyer predicts that

ords=lL(E,s) = rank(E) = 3 and that

lim hih~
s+l (s-1)3

:: n · R • Card (ill)

where 111 is the(conjecturally finite) Tate-Shafarevicry group

of E aver lQ. Equations (R) ond (9) give

n · R :: 1.731849900119300689791975085060154 •••

which agrees with the right-hand side of (14) withinthe accuracy of

our computations in §3. This strongly suggests that the conjecture

is true and that 111:: (1). We have checked, via a 2-descent {cf. [\1

that the 2-primary component 0.1." 111 is trivial.
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