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Abstract. This is the second of two papers in which we prove that a
cell model of the moduli space of curves with marked points and tan-
gent vectors at the marked points acts on the Hochschild co–chains of
a Frobenius algebra. We also prove that a there is dg–PROP action
of a version of Sullivan Chord diagrams which acts on the normalized
Hochschild co-chains of a Frobenius algebra. These actions lift to op-
eradic correlation functions on the co–cycles. In particular, the PROP
action gives an action on the homology of a loop space of a compact
simply–connected manifold.

In this second part, we discretize the operadic and PROPic structures
of the first part. We also introduce the notion of operadic correlation
functions and use them in conjunction with operadic maps from the cell
level to the discretized objects to define the relevant actions.
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Introduction

The subject of this sequence of two papers are actions on the Hochschild
complex of an associative or more restrictively a Frobenius algebra induced
by operadic structures on moduli spaces of curves. Our approach is from
the point of view of combinatorial field theory which relies on a graph de-
scription of moduli space that also allows for a natural compactification
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which was given by Penner; see [KS2, Co] for different approaches. One
upshot of our treatment is that the role of the Frobenius condition be-
comes clear, thus allowing us to separate when this additional assumption
is needed and when one can get by with just an associative algebra. Ac-
tions of a cell model of the open moduli space are expected on the grounds
of D–brane considerations [KR, KLi1, KLi2]1, while a subspace of moduli
space given by certain graphs is supposed to act by the considerations of
string topology [CS, V2, CJ, C, CG, Ch, Me1, S1, S2]. The archetype
of these actions was established with the proofs of Deligne’s conjecture
[Ko3, T, MS1, MS2, MS3, V, KS1, MS2, BF, K2] and its generalizations
to the A∞ [KS1, KSch] and to the cyclic case [K3]. The essential role of
the topological operad in this “classical” case was clearly assigned to the
little discs and the framed little discs operads. In the present setup the first
objective is to establish the existence of the topological and cellular operads
needed to make the above expectations into provable statements. This task
was completed in the first part [K5]. For instance one of the results of [K5]
is that there is a rational operad structure on the chains of the moduli space

M1n+1

g,n+1 of genus g curves with n punctures and a tangent vector at each of
these punctures which induces a chain level operad. This result can be seen
as a presentation of a combinatorial version of conformal field theory (CFT)
in terms of foliations [KP]. As explained in [K5], in our setup the operad
structure for the moduli space on the topological level cannot be expected
to be strict, since it is only well defined almost everywhere. This is captured
by the notion “rational”. Likewise, in [K5], we showed that there are topo-
logical and chain level operads/PROPs for the subspaces of Sullivan–Chord
diagrams which are at the heart of string-topology like operations. Here for
the PROP structure we need a weakening to a “quasi”–PROP, which means
that the associativity only needs to hold up to homotopy. An important re-
sult of the first part [K5] is that these weaker structures nevertheless induce
the strict operad/PROP structures on the cell level.

In the present second part, we establish that the cell level structures
indeed act on the Hochschild co–chains. Our main tool is the notion of
operadic correlation functions, which should be understood as a suitable
definition of a dg–algebra (A, d) over a cyclic operad. Another way to phrase
this is that these correlation functions reflect the fact that OPEs in physics
are actually only defined within correlators and only on BRST closed fields.

In particular, using the results of [K5], we prove the following theorem
announced in loc. cit.

Theorem A. The moduli space M 1n+1

g,n+1 of genus g curves with n punctures
and a tangent vector at each of these punctures has the structure of a rational
cyclic operad. This structure induces a cyclic dg operad structure on a cell

model computing the cohomology of M 1n+1

g,n+1.

1A more extensive discussion of these links is given in §6.
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Furthermore the cell level operad operates on the Hochschild co–chains of a
Frobenius algebra. It also yields correlation functions on the tensor algebra
of the co-cycles of a differential algebra (A, d) with a cyclically invariant
trace

∫
: A → k which satisfies

∫
da = 0 and whose induced pairing on

H = H(A, d) turns H into a Frobenius algebra.

As stipulated in [K5] there is also a PROPic version of this action involv-
ing (a partial compactification of) a subspace. The corresponding theorem
pertaining to string topology type operations is again proved in this second
part.

Theorem B. There is a rational topological quasi–PROP which is homo-
topic to a CW complex whose cellular chains are isomorphic as a free Abelian
group to a certain type of Sullivan Chord diagrams. These chains form a
dg–PROP and hence induce this structure on the Chord diagrams. Further-
more if H is a Frobenius algebra there is a PROPic action on the Hochschild
co–chains of H that is a dg–action. This dg-action of a dg-PROP on the
dg–algebra of Hochschild co-chains naturally descends to an action of the
homology of the CW-complex on the Hochschild cohomology of a Frobenius
algebra.

Moreover for (A, d,
∫
,H) as in Theorem A the action on H is induced by

correlation functions on the tensor algebra of A that yield operadic correla-
tion functions on the tensor algebra of the co–cycles of A for any (A, d) as
above.

Finally, the BV operator, which is given by the action of the sub–PROP
equivalent to the framed little discs operad, acts as in [K3]. Thus the BV
operator for the action on the Hochschild cohomology of H is identified with
Connes operator B under the identification of the Hochschild cohomology of
a Frobenius algebra with its cyclic cohomology of H.

The application to the homology of the loop space of a simply connected
manifold then comes as an immediate consequence using Jones’ [J] cyclic
description of the free loop space.

Corollary. When taking field coefficients, the above action gives a dg–
action of a dg–PROP of Sullivan Chord diagrams on the E1–term of a spec-
tral sequence converging to H∗(LM), that is the homology of the loop space
of a simply connected compact manifold, and hence induces operations on
the homology of the loop space.

If we are not dealing with an algebra A, but only with a dg–vector space
(V, d) that has a pairing 〈 , 〉 which is symmetric and satisfies ∀v, w ∈ V :
〈dv,w〉+〈v, dw〉 = 0, such that H = H(V, d) is finite and the induced pairing
on it is non–degenerate, there is a still an action.

Theorem C. The operads and PROPs above also act on the tensor algebra
TV of a triple (V, d, 〈 , 〉) as specified above and yield operadic correlation
functions for the co-cycles of TV .
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This action is different from the algebra case of Theorems A and B, mak-
ing the result interesting in its own right. It seems to be that there are two
basic strategies to obtain correlators from graphs on surfaces, a “multiplica-
tive” action for an algebra and an “additive” action for a vector-space. One
added feature of this action “descends” to an action of the stabilized arc
operad, which forms a spectrum [K6].

As mentioned above, the proof of these facts consists mainly of two steps.
First defining the respective topological objects and then defining their ac-
tions. The first step is contained in [K5] and the second one is the content
of this article, in which we define the actions of the various objects. The
definition of the action itself again breaks down into two parts.

The first part of this paper is the very definition of the operations. In this
aspect the paper is completely self–contained. The approach we use is to first
introduce discretized versions of the topological operads and PROPs of [K5]
and then to let these operate via correlation functions. In this completely
cyclic setting it is more natural to define multilinear maps to k rather than
maps in Hom(V ⊗n, V ). The problem with this approach is that maps to k
are not easily composed which is why we introduce the notion of operadic
correlation functions. The approach of using correlation functions also mixes
well with the ideas of physics where these objects are fundamental. Taking a
physics perspective, anything which does not change a correlation function
is not physical; or in other word OPEs live only inside correlators. In one of
our main examples, namely that of a quasi–Frobenius algebra, this means
that we can lift the constructions from the cohomology to the co–cycle level.

The second part is to show that this action has the desired operadic or
PROPic properties. For this we use the operadic correlation functions to
get the results on the discretized level. The last step, which is the one that
requires the results of [K5] is to relate the operadic/PROPic structure of
the discretized/graph level to the cell level operations of the chain model
operads whose theory is developed in [K5]. The relevant facts are reviewed in
the first paragraph. The language we use is that of arc–graphs on surfaces.
This ties in with the description of the arc–operad Arc of [KLP]. In the
special case of quasi–filling arcs, that is the subspace Arc0# of Arc which

corresponds to the moduli space M 1n+1

g,n+1, there are actually two formalisms
which one can use: The arc graphs and their dual ribbon graphs. We write
out the details in both of these pictures, so that the reader more familiar
with ribbon graphs can more easily understand the constructions. They
are however different from the usual known constructions and they do not
generalize to the boundary, that is to the more general, non–quasi–filling
case, which is needed to define the String–Topology type operations.

When dealing with the operadic/PROPic properties, one has to be very
careful about the operations on the side of the endomorphism operad Hom
of the relevant linear spaces. This is a subtlety which is know from Deligne’s
conjecture. When being precise about the signs, one actually does not prove
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that one has an algebra over the relevant operad, but rather an operadic
morphism to the operad Brace which is formed by subspaces of the endo-
morphism operad, but has different sign rules and hence a twisted operad
structure. When dealing with our actions, a similar situation arises which
is slightly more complicated. We again obtain an operadic morphism to an
operad which is formed by subspaces of the endomorphism operad. These
spaces have a grading and the induced sub-operad structure respects the as-
sociated filtration, but not the grading. Projecting to the associated graded
operad structure and correcting the sign according to the grading, we obtain
operadic actions as operadic morphisms to these “twisted” endomorphism
sub–operads.

The paper is organized as follows: In the first paragraph, we review the
necessary facts we need from [K5] and then define the “discretized” versions
of the spaces we will consider. These “discretized” versions are free Abelian
groups of graphs on surfaces, so–called partitioned arc graphs. We then
define operad and PROP structures on these graphs and go on to show that
partitioning an arc–graph, which by [K5] (also see below) can be thought of
as indexing a cell of an operadic cell complex, is an operadic morphism. This
is actually quite subtle, since different types of graphs require different types
of cell operads. The principal choices are filtered or graded versions. There is
an intricate interplay between the discrete data associated to the graphs and
the geometry they realize. In §3 we define the notion of operadic correlation
functions and give several examples. The next paragraph §4 is dedicated to
defining correlation functions, aka. correlators, for an all encompassing class
of graphs, the angle marked partitioned arc graphs. These correlators are
actually defined on the tensor algebra of a quasi–Frobenius algebra. In §5
we show that the correlators become operadic in several different settings.

Notably for Arc
i↔o

and for Arc0#, see [K5] and §1.1.3 below. In the latter
case, we have to be careful about the operadic structure of the spaces the
operations take values in. The relevant subset of the Hom operad is graded
and hence filtered. As mentioned above, the correlators define an operadic
map to the associated graded of this filtration. A priori the operadic compo-
sitions in the Hom operad and the discretized graphs only agree up to lower
order terms in the associated filtration. A posteriori these terms agree for

the action of Arc
i↔o

. The last paragraph §6 contains concluding remarks
about the link to D–branes and future research directions.
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Conventions

We fix k to be a field of arbitrary characteristic. Also in this part of the
paper we always assume that the number of punctures is zero. That is s = 0
for all operads and suboperads.

1. Discretizing the Arc operad and its cousins

1.1. Brief review. Without going into the details, which are contained in
[K5], we wish to point out the basic definitions of the graphs underlying
the various versions and generalizations of the Arc operad. On a proper
subset of Arc, the quasi-filling arc–families Arc0# there are two pictures,
one in terms of arc graphs and one in terms of the dual ribbon graphs.
Although this subset is not big enough, even for our purposes —for instance
to define the string topology type operations— we include both pictures,
since ribbon graphs are commonly used to describe moduli spaces and are
hence predominant in the literature.

1.1.1. Graphs. A graph is a tuple Γ = (V (Γ), F (Γ), ıΓ, ∂G) where V (Γ)
is a set whose elements are called the vertices, F (Γ) is a set whose elements
are called the flags or “half edges”, ıΓ : F (Γ) → FΓ) pairs the “half edges”
to edges and ∂Γ : F (Γ) → V (Γ) gives the vertex of a flag. An edge in this
setting is an orbit of ı that is a set of flags {f, ı(f)}. An oriented edge is a
pair of flags (f, ı(f)). The set of flags incident to a vertex v is called Fv(Γ).

Recall that a ribbon graph is a graph with a cyclic order of each of the
sets of flags incident to a fixed vertex. Such a ribbon graph has natural
bijections yv: Fv → Fv where yv (f) is the next flag in the cyclic order.
Since F = qFv one obtains a map y: F → F . The orbits of the map
N :=y ◦ı are called the cycles or the boundaries of the graph. These sets
have the induced cyclic order. Due to the cyclic order a ribbon graph also
can be “fattened” to a surface with boundary, by realizing the graph as
a CW complex and then thickening the edges to bands. In this fashion
one obtains a surface whose boundary components correspond to the cycles.
The genus of such a graph is given by the genus of this surfaces. Explicitly,
2 − 2g(Γ) = |V (Γ)| − |E(Γ)| + #cycles. An S marking of a ribbon graph Γ
is a bijection {cycles(Γ)} → S.

An angle is a pair of flags (f,y (f)), we denote the set of angles by ∠Γ. It
is clear that f 7→ (f,y (f)) yields a bijection between FΓ and ∠Γ . An angle
marking by a set T is a map mk∠ : ∠Γ → T . We will call a (not–necessarily
connected) ribbon graph with an angle marking by Z/2Z simply an angle
marked ribbon graph.
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1.1.2. Arc graphs. Fix an oriented surface F = F s
g,r of genus g, with

s punctures and r labelled boundary components that each contain one
marked point. We usually label the boundaries from 0 to r − 1. An arc
graph on F is a class of graphs on F . It can be thought of as the orbit of a
graph whose vertices coincide with the marked points on the boundary under
the action of the pure mapping class group which fixes the marked points
on the boundary and the punctures pointwise. The edges of the graphs
which comprise the orbit are embedded arcs considered up to homotopy.
We frequently call these edges “arcs”. There are certain conditions on the
graphs whose orbits we consider

i) at least one arc.
ii) no parallel arcs (by homotopy fixing the endpoints)
iii) no arcs parallel to a boundary component (again using a homotopy

fixing the endpoint)

We wish to point out that the underlying abstract graph of an arc graph
which is given by the collection of vertices and edges together with their inci-
dence relations and the set of complementary regions of the arcs is invariant
(or better equivariant) under the action of the mapping class group. When
we depict arc graphs, we choose a particular representative. The class of all
of the graphs is called G. Since a vertex of the arc graph corresponds to a
boundary component, the vertices are labelled. We frequently write vi for
the vertex labelled by i, that is the unique vertex lying on the boundary i of
the surface. Strictly speaking an arc graph is a triple (F,Γ, [i]) of a surface
F , a ribbon graph Γ and an orbit of a homotopy class of embeddings of the
graph into the surface [i]. The full details are contained in [K5].

An arc graph is called exhaustive if there are no vertices with valence 0
and quasi-filling if the complementary regions of the arcs are at most once-
punctured polygons. The former class of arcs is called G

e
and the latter class

of arc graphs is called G#. An arc–graph becomes a (possibly disconnected)
ribbon graph by using the orientation on the surface. It moreover even has
a linear order of all the flags at a vertex due to the induced orientation on
the boundaries of the surface and hence a total order on all flags, by first
enumerating the flags according to their labelled boundary components and
then according to their linear order at that component.

An arc graph is called twisted at the boundary i if the first and last arc
incident to i are homotopic in F , when one allows homotopies that move
the endpoint on the boundary component i.

To each quasi-filling arc graph there is dual graph which is a marked rib-
bon graph. To simplify say the graph is on a surface F 0

g,r, viz. no internal
punctures. The dual graph is then defined as follows: Choose a represen-
tative γ, decompose the surface into the complementary regions that is the
components of F \ γ. Now associate a vertex to each complementary region
and an edge to each arc. The edge is fixed to connect the vertices (or vertex)
representing the regions on the two sides of the arc. This graph is again a



8 RALPH M. KAUFMANN

ribbon graph, by using the orientation of the arc graph to give the arcs bor-
dering a polygonal complementary region a cyclic structure. Each cycle of
this dual ribbon graph corresponds to a boundary component of the surface
and hence has a linear order. That is for each cycle there is a distinguished
flag which is the first in this cycle.

Vice–versa, we can “fatten” the dual ribbon graph to a surface and con-
sider the graph as the spine of this surface. Applying a dual graph construc-
tion in this setting produces an inverse to the construction of the dual graph
of an arc graph (see [K5] for full details). This explains the terminology
“dual graph”; the case with no punctures is all we will use in the following
considerations. The case with punctures is treated in [K5]. The map Loop
of [KLP] gives a generalization of the dual graph to the non-quasi-filling
case.

In an arc graph, not all the angles are on an equal footing. The last and
first flag at a vertex form a distinguished angle which is called the outside
angle at that vertex. All angles beside the outside angles are called inner
angles.

We will also consider arc graphs in which the set of boundaries of the
surface is partitioned into the sets In and Out. This partitioning is encoded
in a map i/o : V (Γ) → Z/2Z, where the value 1 stands for “in” and 0 stands
for “out”. Recall that the set of vertices of the arc graph can naturally be
identified with the boundary components of the surface.

In the dual ribbon graph picture, we accordingly have a labelling of the
cycles by Z/2Z indicating “in” and “out”.

1.1.3. Spaces of graphs. We obtain the space of a given class of graphs,
by looking at the set of projective metrics, that is equivalence classes of maps
wΓ : E(Γ) → R>0 under the action of R>0 by a global re-scaling; that is
the action given by λ ∈ R>0 : (λw)(e) = λw(e). The set of all graphs of a
given class with projective metric basically gets a topology by identifying the
limit in which w(e) → 0 for some edge with the graph in which e is deleted
(see [K5] for details). We usually call elements of these spaces projectively
weighted arc-families in keeping with [KLP] and the work of Penner.

The most important spaces are:

– Arc0# the space defined by quasi–filling graphs. This space is iso-

morphic to M 1n+1

g,n+1, the moduli of curves of genus g with n marked
points and one tangent vector at each of these points.

– Arc
i↔o

the space of arc graphs with a projective metric, together
with a partitioning i/o into In and Out which satisfy the conditions
(1) only arcs between “in” and “out” and (2) each “in” boundary
vertex has valence at least 1. This space plays the role of Sullivan
Chord diagrams.

A reference list of the spaces that will make an appearance are:
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– A the space of all arc graphs with a projective metric. This is a CW
complex whose cells are indexed by the arc graphs.

– Arc the sub–space of all exhaustive arc graphs with a projective
metric.

– A∠ the space of all elements of A with an additional angle marking.
– Arc∠ the space of all the exhaustive arc graphs together with a

projective metric and an angle marking by Z/2Z. We will consider
Arc as a subspace of Arc∠ by choosing the constant marking mk∠ ≡
1.

– Ai/o the space of arc–graphs with projective metric which have an
additional marking i/o of the boundaries distinguishing inputs and
outputs. We will consider this space again as a subspace of A∠, by
marking all outside angles and all inner angles of the In boundaries
by 1 while marking all marking inner angles of the Out boundaries
by 0.

– Ai↔o the sub-space of Ai/o which is comprised of the arc graphs
with a projective metric, that additionally satisfy the condition that
there are only arcs between In boundaries and the Out boundaries.

– Arci↔o the subspace whose underlying arc graphs are exhaustive and
all of whose arcs only run from In boundaries to Out boundaries.

– Arc
i↔o

the subspace of Ai↔o whose underlying arc graphs hit all
the In boundaries.

The spaces above naturally come as disjoint union over the number of
boundary components, which we usually think of as labelled by {0, . . . , n}.

In the case of Ai/o we first label the boundaries and In and Out and then
label these boundaries separately, say, by {1, . . . , n} and {1, . . . ,m}. There
are natural actions of the permutation groups on these labels. In [K5] we
showed that essentially that A∠ and its subspaces are operads and that

Arc
i↔o

is a quasi–PROP. Actually some of these spaces, notably Arc0# are
only rational operads, viz. defined on an open dense set. The full details are
quite elaborate and make up the bulk of [K5].

1.1.4. Operads/PROPs of arc graphs. Each of these spaces has an
associated graph–complex–cell–model given by considering the free Abelian
groups generated the underlying graphs. The natural differential is given by
restricting the differential of the CW complex A. This differential applied
to a graph is the sum of the arc–graphs obtained by removing one arc with
the appropriate sign. The differential for the open cells of a subspace is
defined to be the sum over only those graphs which correspond to elements
in the subspace. In other words these complexes are the relative complexes
of the subspaces in A. These complexes inherit algebraic operad and/or
PROP structures by treating the graphs as “open cells”. Here an open cell
is constituted by elements corresponding to the possible projective metrics
of a fixed arc graph and we label the generator corresponding to an open
cell by the respective graph. Then there are induced gluing operations from
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the topological level on the “open cells”, see [K5] for details. These cells are
graded by their dimension, which is the number of edges of the graph minus
one. We note for later, that the number of edges is also twice the number
of flags which coincides with the number of angles. The gluing operations
respect the filtration induced by the grading and accordingly we obtain
two versions of cell operads on the graph–complex. The first is the induced
structure on the “open cells” which we denote by C∗

o (.) and second one is the
one induced by the first structure on the associated graded of the filtration
by dimension. The latter is again of course additively isomorphic to the
former and both are isomorphic to the graph complex. The operations differ
however. To make this distinction clear we denote the graph–complexes with
the operations corresponding to the associated graded by GrC∗

o (.). On the
cell level possibly after passing to the associated graded, we always obtain
the honest structure, that is not the up to homotopy or a rational version.
Most importantly:

– The associated graded cell complex GrC∗
o(Arc0#) is a dg operad

and GrC∗
o (Arc0#) calculates the cohomology of M 1n+1

g,n+1. By using

the angle marking mk∠ ≡ 1 the operad GrC∗
o (Arc0#) embeds into

GrC∗
o (Arc∠).

– The cell complex C∗
o(Arc

i↔o
) is a PROP and GrC∗

o (Arc
i↔o

) isomor-

phic to the cellular chains CC∗(Arc
i↔o
1 ) of a CW-complex Arc

i↔o
1

and these chains have the structure of a dg–PROP. This PROP can
be thought of as the PROP of Sullivan–Chord diagrams.

The details are quite involved, and they are carefully written out in [K5].

1.2. Partitioned Ribbon graphs.

1.2.1. Inserting Points into edges. To define the operations on the
Hochschild co-chains, we will systematically deal with unstable graphs i.e.
graphs which have vertices of valence two. For this we will need the operation
of inserting vertices valence 2 into edges and also the reverse operation of
removing them.

First, we recall the notion of a marked ribbon graph, viz. the type of
stable graphs we consider.

Definition 1.1. A marked ribbon graph is a ribbon graph together with a
map mk : {cycles} → FΓ satisfying the conditions

i) For every cycle c the directed edge mk(c) belongs to the cycle.
ii) All vertices of valence two are in the image ofmk, that is ∀v, val(v) =

2 implies v ∈ Im(∂ ◦mk).

We called the set and the Abelian group generated by these graphs Rib.
It is naturally the disjoint union over the graphs Rib(n) which have n cycles.
We showed in [K5] that if we think of Rib as labelled graphs, they form an
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operad by inducing said structure via the isomorphism Rib ∼= GrC∗
o(Arc0#)

induced by the dual graph construction.

Definition 1.2. Given a graph Γ and an edge e = {f1, f2} ∈ Γ we let Γ(e′)
be the graph whose vertices are VΓ q {v2} with flags FΓ q {n1, n2} with
∂(ni) = v2 and ı(fi) = ni. We say Γ(e′) is obtained from Γ by inserting a
vertex into e. Notice that this insertion does no disturb the cycles, that is
there is a canonical identification of the cycles before and after the insertions.
If Γ has a marking on its cycles this marking will simply be retained.

Vice-versa, if v2 is a vertex of valence 2 with flags n1, n2 with ı(ni) = fi

then we let Γ/v2 be the graph whose vertices are VΓ \ {v2}, whose flags
are FΓ \ {n1, n2} and whose new relation for ı is ıΓ/v2

(f1) = f2. In case

ni = mk(c) for the cycle c it lies on, we set mkΓ\v2
= (n ◦ ı)−1

Γ (ni).
We write Γ′ . Γ if Γ is obtained from Γ by repeatedly inserting vertices,

i.e. if there is a sequence Γ0, . . . ,Γn, Γi = Γ′i−1(e) for some e ∈ EΓi−1 , and
Γ′ = Γn,Γ = Γ0.

Definition 1.3. A partitioned marked ribbon graph is a ribbon graph to-
gether with a map mk : {cycles} → FΓ which satisfies the condition that
for every cycle c the flag mk(c) belongs to that cycle.

We let V2(Γ) = {v ∈ VΓ, val(v) = 2} be the vertices of valence two and
set Vpart = V2 \ Im(∂ ◦mk) to be the partitioning vertices.

Notation 1.4. Let Ribpart be the set of all partitioned marked ribbon
graphs. To avoid cluttered notation, as we have done in [K5], we abuse no-
tation and denote by Ribpart the set of graphs, the Abelian group generated
by it, as well as the collection {Ribpart(n)} where Ribpart(n) is the Abelian
group generated by the subset of Ribpart of graphs which have n + 1 cy-
cles that are labelled by {0, . . . , n} together with the Sn+1 action permuting
these labels. The various meanings will always be clear from the context.

For a marked ribbon graph Γ we will consider P : Rib→ Ribpart

(1.1) P(Γ) =
∑
Γ′.Γ

±Γ′

and call it the partitioning of Γ. The right hand side is infinite, but it is
graded by the number of partitioning vertices |Vpart|. The fastidious reader
hence may take the P(Γ) to lie in Ribpart[[t]], where t is a variable whose
power corresponds the number of partitioning vertices. The sign is explained
in §1.3.4.

Remark 1.5. This construction can be seen as the generalization of the
foliage operator of [K2, K3] from the setting of treelike ribbon graphs to the
setting of general ribbon graphs.

1.3. Discretizing the Arc operad. Given a tuple α = (F,Γ, [i]), we will
consider a series of embedded graphs which are obtained by drawing parallel
arcs.
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Notation 1.6. Let p = (n1, . . . , nk) be an ordered partition of n ∈ N with
each ni > 0 and denote the set of all these partitions by P (n, k).

Let α ∈ G
e
. Recall that all edges E(α) = EΓ(α) are linearly ordered by

enumerating the flags in the following order, first according to their bound-
ary and then according to the linear order at that boundary component
induced by the orientation of the surface. Let k = |E(α)| and p ∈ P (n, k).

We define αp to be the embedded graph obtained from(F,Γ, [i]) by inserting
ni − 1 parallel edges to the i-th edge ei and embedding them parallel to ei.
We call the result of this operation a partitioned arc graph and denote the
set of these by PG

e
. And again we use the conventions explained in §1.4.

1.3.1. Drawing arc–graphs. An example of such a graph is given in
Figure 1. In this figure and in all other figures, we have taken the liberty
to depict the arc–graphs in a more suitable way. By definition, all edges of
a graph are incident to the vertices, which would clutter the pictures. We
therefore move the endpoints along the boundary component that they are
incident slightly apart. This is done in such a fashion, that they (1) all are
distinct and distinct from the original vertex, and (2) their linear order along
the boundary component starting at the original vertex coincides with their
original linear order. We could have even defined the arc graphs in this
manner; see e.g. [KLP] for all topologically equivalent ways to define the
space A. We will therefore henceforth use both pictures: the one with the
edges apart as in Figure 1 and the true graph picture, where all the edges
are incident to their vertices. The advantage of the latter lies in the more
direct definition and the advantage of the former is twofold, first one obtains
nicer pictures and secondly, the boundaries of the complementary regions
are 2k–gons whose sides alternatingly correspond to boundary components
and arcs. This last observation will make the definition of the action of these
graphs on the Hochschild co–chains more transparent.

We define

(1.2) P(α) =
∑
n≥k

∑
p∈P (n,k)

±αp

As always when dealing with this type of object, one can use, a formal vari-
able t to keep track of the total number of edges and consider the expression
of equation (1.2) as a formal power series in PRib[[t]]. The sign is explained
in §1.3.4.

1.3.2. The underlying arc graph. Given a partitioned arc graph γ ∈
PG it is possible to recover a unique α ∈ G such that γ is a summand on
P(α). Namely, for γ ∈ PG, we define the underlying arc graph U(γ) to be
the graph obtained by gathering all parallel edges into one edge. Formally
we introduce an equivalence relation on E(γ) where e1 ∼ e2 if e1 and e2 are
parallel —as arcs in the surface via a homotopy fixing the endpoints– and
then take the quotient by this relation. This is well defined since if e1 ∼ e2
then ∂(e1) = ∂(e2).
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Figure 1. A partitioned arc graph for the partition (4, 5, 3, 3)

We call a partitioned arc graph quasi–filling if the complementary regions
are either polygons or once–punctured polygons. Notice that a partitioned
arc graph is quasi–filling if and only if its underlying arc graph is quasi–
filling.

1.3.3. Grading. Let PG
e
(n)k be the set of those graphs whose underly-

ing arc graph has k+1–edges which “live” on surfaces with n+1 boundaries
labelled from {0, . . . , n}. We let PG

e
(n) :=

⊕
k PG

e
(n)k. This space is then

graded by k and hence filtered by the elements of degree ≤ k.

Remark 1.7. We can view PG
e

as a discretized version of Arc in the
following two ways: P(α) can be thought of as either (A) as a sampling by
the numbers i

k of the boundary considered as the interval defined by the
window on the boundary (see [KLP, KP] for the formalism of windowed
surfaces) or equivalently (B) as a cosimplicial realization of the arc graph α.
We wish to pursue the latter point of view elsewhere (see also the comments
§6 below).

1.3.4. Signs. In this paragraph, we wish to fix our sign conventions once
and for all. As in [K2], we do this by using tensor products indexed by
sets in the spirit of [KS1] which makes all signs completely natural. We
will henceforth not bother with them again. For other different explicit sign
fixing schemes for operations of cell operads, we refer to [K2].

First notice that for any arc graph partitioned or not, there is a natural
linear order on all the flags and hence on all the edges. So we can use these
linear orders to fix the signs. In general one can do this quite nicely by
considering the tensor product over Z of the generator given by the graphs
α with copies of a “line of degree 1” that is a freely generated Abelian group
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generated by an element of degree 1. Thus we replace α with the expressions
α ⊗ L⊗S where S is an indexing set. In the cyclic operad setting we will
use S = E′(Γ) that is the set of edges without the last edge in the linear
order. This gives a universal way to fix the signs. It also assigns the correct
degree to α if α is thought of as an element of the various cellular chain
complexes introduced in [K5]. For the expression above this results in the

sign obtained from the shuffle L⊗E′(α) ⊗ L⊗n to L⊗E′(αp) for the summand
indexed by p ∈ P (n, k).

In the PROP setting the natural indexing set will be S = ∠in
inner(Γ) the

set of inner angles on the inputs. This again corresponds to the dimension

of the cells when we consider the CW complex Arc
i↔o

.
Of course one of the two sign conventions can be obtained from the other

by shifting the complexes. Alternatively, one could grade by shifting by
the dimension of the corresponding spaces to get rid of the signs for top
dimensional cells, as was done to obtain the Hopf algebra of Connes and
Kreimer in [K2]. Or, one could shift by the number of all the boundaries.
In this vein, we can consider the use of E ′ as the shift from the grading of
DArc by a line associated to the operadically distinguished boundary 0.

1.4. Compatibility of the two constructions in the quasi-filling case.
Recall that for a quasi-filling arc graph Γ we defined a dual ribbon graph
Γ̂ in [K5] as outlined in §1.1. This construction easily generalizes to quasi-

filling Γ ∈ PG
e
. Moreover, since we are simply inserting parallel edges, on

can see that Γ ∈ PG
e

is quasi-filling if and only if Γ is a summand of P(Γ′)
for some quasi-filling arc graph Γ′.

Lemma 1.8. Denoting the dual ribbon graph of a quasi–filling (partitioned)

arc graph α by Γ̂(α) and extending this construction linearly to give a map
of the respective Abelian groups, the following equality holds.

Γ̂(P(α)) = P(Γ̂(α))

Proof. The insertion of parallel edges corresponds to adding rectangles into
the set of complementary regions and this corresponds to inserting vertices
into the edges of the dual ribbon graph. �

For an example of a partitioned graph and its dual see Figure 2.

1.4.1. The operad structure. The set of Abelian groups generated by
the PG(n) has a natural cyclic operad structure, where the Sn+1 action is
given by permutation of the boundary labels.

Given two elements α ∈ PG(m) and β ∈ PG(n), we will call them matched
at the boundaries i and 0, if the number of arcs incident to α at the boundary
i is equal to the number of arcs incident to β at the boundary 0. In case
α and β are matched at the boundaries i and 0, we define α ◦i β to be the
graph obtained by gluing the edges of α incident to i to those of β incident
to 0 matching them according to their linear order. As usual this means that
we reverse the linear order at i, that is read off last to first, and match this
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Figure 2. A quasi–filling partitioned arc graph and it dual
partitioned marked Ribbon graph

order with the linear order on 0. If there is no matching at the boundaries,
we set α ◦i β = 0. There are two final steps,

(1) if both α and β are twisted at their boundaries 0 and i, we set their
composition to zero, and

(2) if there are any closed loops, that is embedded arcs that do not touch
any boundary, as edges, we set the product to zero.

If we omit step (1) we also call the gluing the algebraic gluing and contrast
call the gluing with both steps (1) and (2) the geometric gluing, see §1.19
for comments.

It is clear that this gives an operad structure and that the subset PG
e
(n) ⊂

PG(n) of exhaustive graphs is a suboperad.

Lemma 1.9. The map P is an operadic morphism; that is we have the fol-
lowing formula for the compatibility between the partitioning of arc families
and the operad compositions. For α, β ∈ G, then

(1.3) P(α ◦i β) = ±P(α) ◦i P(β)

where the sign is the sign discussed §1.3.4.

Proof. This is simply the observation that first discretizing and then gluing
corresponds to the same combinatorics as first gluing and then discretizing.
This fact becomes clear if one cuts the graphs occurring on the right hand
side along the simple separating curve which corresponds to the image of
the two glued boundary. If there are no closed loops and there is not both
boundaries are twisted, the result is immediate. If both the boundaries are
twisted this would yield 0 in the open cell cellular chains of A and hence on G
by definition. We see, however, that we could also not set them to zero and
discretize them. This would again result in the gluing of discretized twisted
arc–graphs, so that the condition of being twisted in the partitioned case and
the non–partitioned case agree and in both cases the relevant contributions
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are set to zero. The same reasoning applies when we erase closed loops. See
§2.3 of [K5] for the definition of the open cell gluing. �

1.4.2. Self–gluing, Modular Operads and PROPs. In the above
procedures for gluing partitioned arc graphs, we do not have to assume
that the two boundaries we glue actually lie on the same surface.

Proposition 1.10. Allowing self–gluing, the gluing operations of §1.4.1 turn
PG(n) into a modular operad. Here the additional modular grading variable
“g” is given by the genus g.2

1.4.3. Partitioned graphs with In and Out markings. Just like for
arc graphs, we can look at partitioned arc graphs together with a Z/2Z

marking of their boundaries; viz. a partitioning of their cycles into In and
Out.

Notation 1.11. To avoid introducing yet other symbols for the classes of
graphs indexing the cells of the different sub–spaces of A, we simply denote

the partitioned graphs by using the prefix P, e.g. PArc
i↔o

, PArci=i and
PArc0#.

Proposition 1.12. Restricting the modular operad structure and iterating
it by gluing all In boundaries to all Out boundaries of two collections of
elements of PAi/o imbue a PROP structure on PAi/o.

Also, similarly, there is a PROP structure —which we call the algebraic
PROP structure– imbued on PAi/o which is obtained from the definition of
the gluing §1.4.1 by omitting the final step (1).3.

Finally, the map P is operadic or in the PROP case is PROPic.

Proof. The conditions of associativity are again straightforward if one cuts
the glued surface in two different ways. The operadic properties are verified
as above. �

1.4.4. Partitioning Angles, grading and the Preservation of the
Filtration. An angle is a partitioning angle, if its two edges —that is e1 =
{f, ı(f)} and e2 = {y (f), ı(y (f)}— are parallel. In the opposite case we
call it non–partitioning.

With this definition, we can rewrite the grading of PG as given graded
by half the number of non–partitioning angles minus one. The number of
non–partitioning angles is precisely the number of edges of the underlying
arc–graph.

Furthermore, it is clear that the degree in the composition in PG
e

goes
down by one each time two non–partitioning angles (other that the outside
angles) are glued, as this will decrease the number of non–partitioning angles
by two. In all the other cases —gluing partitioning to partitioning and non–
partitioning to partitioning— the number of partitioning angles is preserved.

2We do not enforce the stability condition 3g − 3 + n ≥ 0.
3The situation of Step (2) actually never occurs
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Lastly, erasing closed loops also only decreases the number of partitioning
angles.

Therefore:

Lemma 1.13. The filtration given by the degree ≤ k graded components on
PG

e
is respected by the gluings ◦i. Moreover, the filtration is respected for all

gluings in PG which do not glue an empty boundary to an empty boundary.

�

1.4.5. Graded Version. We also have the same type of statement as in
Lemma 1.9 in the graded case. Recall that we have a grading on PG

e
and

one on G
e
, the latter is graded by the dimension of the cells which is the

number of edges -1. This grading is of course respected by P. Also, in both
cases the induced filtration is respected, so we get an operad structures on
the associated graded.

Corollary 1.14. The map P of 1.9 induces an operadic morphism of the
associated graded objects P : GrC∗

o (Arc) → GrPG
e
. Moreover, the same

holds true for all sub–operads di-operads or PROPs whose compositions do
not include a glueing of an empty boundary to an empty boundary.

�

Remark 1.15. Notice that in this graded version, all the contributions from
the gluing, which involve deleting closed loops are set to zero. This is true
for both sides as deleting a closed loop decreases the grading. Moreover in
if the condition of step (1) is met, that is if both boundaries are twisted,
the gluing procedure of the algebraic gluing also decreases the grading, so
that the associated graded of the topological gluing and the algebraic gluing
agree.

1.4.6. Angle Marked Partitioned Graphs. We will also consider the
constructions of the last paragraphs in the case of angle marked graphs. An
angle marked partitioned arc graph is a partitioned arc graph with an angle
marking.

We let P∠G(n)k be the angle marked partitioned arc graphs on a surface
with n+1 boundaries labelled by {0, . . . , n} whose underlying graph has k+1
edges and let P∠G(n) =

⊕
k P

∠G(n)k. Then Sn+1 acts by permutation on

the labels, and we call the collection of Sn+1 modules P∠G simply P∠G.
Again, we use the same notation for the set and the free Abelian group
generated by it. Also keeping the standard notational conventions, we call
the subset/sub-group of exhaustive partitioned arc graphs P∠G

e
. Also these

spaces have a grading by k and hence an induced filtration by elements of
degree ≤ k.

Analogously to P there is a partitioning operator for angle marked arc
graphs. Keeping the notation ap for a particularly partitioned graph as in
§1.3 set:
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(1.4) P(α,mk∠) =
∑

±(ap,mk∠
αp)

where (mk∠)p is the angle marking which marks every new partitioning
angle by 1 and keeps the other markings of α.

If α ∈ C∗
o (Ai/o), where we identify the cell with the arc graph, then α has

a standard angle marking [K5] defined by marking all outside angles and all
angles at the boundaries In by one and the rest, that is the inner angles
at the boundaries Out, by 0. Likewise there is a standard marking for arc
graphs α ∈ G = CC∗(A) which was simply the constant marking by 1. For
an α of one of the two types above, we denote α together with its standard

angle marking by α∠ ∈ G
∠
, and define

(1.5) P∠(α) := P(α∠)

Using the rationale of [K5], we identify a relative cell α ∈ C∗
o (Arci/o) with

the angle marked arc graph α∠ that labels a cell of A∠, the CW-complex of
angle marked arc graphs.

Notation 1.16. Extending the Notation 1.11 we denote the embedding

a class of partitioned graphs into P∠G by the prefix P∠, viz. P∠Arc
i↔o

,
P∠Arci=i and P∠Arc0#.

For the gluing we will need a new matching condition. Given an angle
marking, we partition the set of flags F = F (v) at a given boundary into
subsets F = F1 q · · · q Fk+1 where k is the number of markings by 1 by
collecting together all the flags between which the angle marking is zero.
Notice that F has a linear order and we also think of the subsets as linearly
ordered.

Definition 1.17. For two angle marked partitioned arc graphs (αp,mk∠)

and (α′p,mk∠′
) are angle matched at the boundaries i and i′ if the number

of angles with an angle marking 1 agree for these two boundaries. We say
that an angle marked partitioned arc graph is twisted at the boundary i if the
underlying arc graph has this property and the each of the two edges forming
the outer angle in the underlying graph has at least one more parallel edge.

In case two angle marked arc graphs are angle matched at the boundaries
i and i′ there are equally many sets, say k, in the partitions of F (vi) and
F (vi′). We say that the graphs are perfectly angle matched if |F (vi)| > 1
implies |F (vi′)k−i| = 1 and |F (vi′)| > 1 implies |F (vi)k−i| = 1.

We will give the rigorous combinatorial definition of the gluing below.
Geometrically, we move the edges on the boundaries slightly apart, if the
angle marking between them is 1. Now the number of endpoints of these
edges on the boundaries which are to be glued will coincide precisely if they
are angle matched. In this case, we want to identify these vertices. The
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condition of perfect matching ensures that at any given vertex there is at
most one side which has more than one vertex.

Definition 1.18. For angle marked arc families (αp,mk∠) and (αp′,mk∠′
)

which are perfectly angle matched at the boundaries i and 0, we define

(αp,mk∠) ◦i (α′p,mk∠′
) as follows. Let Fv0

(αp) and Fvi
(αp′) be the sets of

flags at these boundaries. Add new vertices to all the flags and identify two
vertices if two flags make up an angle with angle marking 0. Now each of
the sets of vertices obtained form Fv0

(αp) and Fvi
(αp′) comes in a linear

order by which we enumerate them, where we actually enumerate the new
vertices obtained from Fv0

(αp) in the inverse order, that is last to first. Now
we identify all the vertices with the same number from the enumeration. We
call the flags of Fv0

(αp) and Fvi
(αp′) flags from different sides, since they lie

on opposite sides of the separating curve that is the image of the two glued
boundaries. Notice that since we are in the perfectly matched case, there
are equally many vertices and if such a vertex has more than two flags, only
one side has more than two flags. If there are only two flags {f1, f2} at a
vertex, we delete the vertex and glue the edges, by deleting the two flags
{f1, f2} and setting ı(ıαp(f1)) := ıαp′(f2). In the case that there are more
flags, say f on one side and (f1, . . . fl) on the other side enumerated in their
linear order, then we duplicate the flag f (l− 1)–times and glue the l copies
to the fi in the obvious linear order. In this way, we obtain new angles,
namely the angles between the various copies of f . We mark all these angles
by 0. We furthermore forget all the angle markings at vi and v0 and retain
all other markings.

Again, there are two more steps:

(1) if the arc graphs are twisted at the respective boundaries, we set the
composition to zero.

(2) if the gluing results in closed loops, that is embedded arcs that do
not touch any boundary, as edges, set the contribution to zero.

As above we call this gluing the topological gluing and call the gluing,
which omits step (1) the algebraic gluing.

Self–gluing. The conditions of two boundaries being perfectly matched
translate in a straightforward fashion to the case of two boundaries of the
same partitioned arc graphs. We define the self–gluing by the same proce-
dure.

An example of such a gluing is given in Figure 3.

Remark 1.19. The second condition is needed in order to stay inside the
current framework. It is interesting to remark what these closed loops cor-
respond to in a different settings. In the geometric setup they can be under-
stood in terms of general foliations, see e.g. [KP]. In the Hochschild setting,
see §4.2.2 each closed loops contributes a factor that equals the dimension
of the algebra as the trace over the Casimir element.
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Figure 3. An example of a gluing in the perfectly matched case

The first and second conditions are natural from the topological point of
view, and are necessary if we wish to have an operadic map from G

e
to PG

e
.

Also, see §6 for more comments.

Proposition 1.20. The gluings defined above turn P∠G bi–graded by the
number of boundaries minus one (as the operadic degree) and the genus (as
the genus degree) into an partial modular operad.

Moreover, this partial modular operad structure augmented by setting to
zero any thus far not defined gluing is an operad structure when restricted

to P∠G
e

and a di–operad structure on P∠Arc
i↔o

if one restricts the gluings
to gluing only inputs to outputs. Finally, using consecutive self–gluings on

P∠Arc
i↔o

to glue all “ins” to all “outs” of collections of arc graphs, the
partial modular operad structure induces a PROP structure.

Also, similarly, there is a PROP structure —which we call the algebraic

PROP structure— imbued on C∗
oArc

i↔o
which is obtained from the Defini-

tion 1.18 by omitting the final step (1).4.

Proof. The equivariance with respect to the symmetric group actions is im-
mediate. The associativity of the partial operations is also straightforward.
Now in both the special cases the condition of perfect matching is built in
and does not change under gluing. In the first case perfect matching reduces

to matching, since all the angles are marked by 1. In the case of P∠Arc
i↔o

all the boundaries which are to be glued are also perfectly matched if they
are angle matched since the In boundaries are again all marked by 1. This
condition does not change under gluing, so the result follows by a straight-
forward calculation. �

Remark 1.21. We only defined the gluing in the non–degenerate case.
The general case can be treated in several ways. One is to use the shuffle
combinatorics, like in the definition of gluing for Arc [KLP, K5]. Here
one can either average over the occurring combinatorial types — or not.
Another possibility is to go outside the present framework and allow arcs
running to punctures, in which case, one simply identifies the vertices and

4Notice that the situation of step (2) actually never occurs
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Figure 4. An example of the gluing in P∠Arc
i↔o

if their valence is more than two one leaves them in the surface as new
punctures. This is reminiscent of the procedure for open gluing in [KP]. We
shall not need these considerations in the following, but an extension of the
gluing is of general interest and deserves further study.

Lemma 1.22. Let α, β ∈ Arc
i↔o

then

(1.6) P∠(α) ◦i P
∠(β) = ±P∠(α ◦i β)

and this map is Sn equivariant. Thus P∠ is an operadic map, if we use the

operadic composition in GrC∗
o(Arc

i↔o
) ∼= CC∗(Arc

i↔o
1 ) on the right hand

side.

Proof. Since in the standard marking, all the angles on the inputs are la-
belled by one, while the outputs are labelled by zero, we have the following
cases. Two partitioning angles are glued. This does not change the num-
ber of non-partitioning angles. An input non-partitioning angle is glued
to an output partitioning angle. In this case the new edges form an non-
partitioning angle. Lastly an output non-partitioning angle is glued to a
doubled incoming edge which again results in a non-partitioning angle. So
we see that the number of non–partitioning angles is additive. (see Figure
4 for an example). This means that only the graphs of top–degree appear.
On the other hand it is clear that all possible partitioned graphs of α ◦ β
with the maximal number of non-partitioning angles appear. That is, we
obtain exactly the graphs of P∠(α ◦i β). �

1.5. Graded version for angle marked graphs.

Proposition 1.23. P∠ is an operadic map between GrArc0# —under the

embedding given by marking all angles by one— and its image GrP∠Arc0#
in GrPG. In other words let α, β ∈ GrArc0# then equation (1.6) also holds

true if we define the left hand operation to lie inside GrPG.
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Proof. Notice that for this embedding of the angle marked graphs there are
no restrictions for the partial gluings. In both cases the boundaries are
perfectly angle matched as soon as they are angle matched. In the graded
partitioned gluing, we retain the summands that correspond to the highest
possible number of non-partitioning angles. These in turn correspond to the
angles of the non-partitioned graphs, and thus the conditions imposed on
the gluing correspond to one and another under the map P∠. �

2. The action on a tensor algebra

2.1. Actions on the tensor algebra of a vector space. As a simpler
example than the Hochschild co-chains, we will consider the action of the
various algebraic structures on a tensor algebra as a warm up in the tradition
of [G]. This type of action is interesting in its own right. Moreover it
is related to the actions on the simplicial co-chain complexes regarded in
[MS3].

Example 2.1. Let V be a vector space and let TV =
⊕

n≥0 V
⊗n be its

tensor algebra. Let TV =
⊕

n≥1 V
⊗n be the reduced tensor algebra. We

will now define an action of Arci↔o on the tensor algebra.
For each element α ∈ C∗

o(Arci↔o(k, l)) we consider p = (n1, . . . , nk) ∈
P (n, k) and consider the summand αp where the notation is as in §1.3.

We let αp act on Hom(TV
⊗k
, TV

⊗l
) as follows. The operation is defined

to be non–zero for a ∈ TV
⊗k

only if a ∈
⊗k

i=1 V
⊗ni ⊂ TV

⊗k
and zero

else. Assume that a =
⊗k

i=1(ai1 ⊗ · · · ⊗ αini
), we define αp(a) as follows:

first decorate the n In–boundaries by the given element of TV
⊗n

using the
enumeration of the boundaries to associate one tensor power of TV to each
boundary and then associate elements af ∈ A to each flag f of the arc graph
of αp whose vertex lies on the boundary j by setting af := ai,|f | where |f |
is the position of the flag f in the linear order at the boundary i. Now
the map ı on the level of graphs allows us to associate to a an element

in TV
⊗m

by reading off the elements from the Out boundaries as follows:
First for the “out” boundary j set αp(a)j := aı(fj1) ⊗ · · · ⊗ aı(fjmj

) where

fj1, . . . , fjmj
are the flags at the boundary j in their linear order. Then set

αp(a) =
⊗

j α
p(a)j ∈ TV

⊗m
.

It is clear that the action α(a) := P(α)(a) is operadic. Moreover embed-

ding the open cell complex of C∗
o(Arci↔o) into C∗

o (Arc
i↔o

) and using the

algebraic PROP structure on Arc
i↔o

this action becomes a PROP action.

Proposition 2.2. TV is an algebra over the PROP C∗
o(Arci↔o) ⊂ C∗

o (Arc
i↔o

)
endowed with the algebraic PROP structure. Moreover this action extends

to an action of C∗
o (Arc

i↔o
) on TV .

Proof. The first statement is straightforward. In the non-exhaustive case,
we decorate the empty boundary components by elements of k = V 0 that



MODULI SPACE ACTIONS ON HOCHSCHILD CO-CHAINS II 23

is after using the imposed multilinear properties we simply insert 1 ∈ k in
the above calculations. The effect is that the empty boundaries are simply
ignored using the isomorphism V ⊗k k ∼= V . �

Remark 2.3. Notice that this action involves only the boundary data and
thus only the ribbon graph and not its specific embedding. Thus the action
actually factors though the map Loop of [KLP] and will give an example of
an action of the stabilized Arc operad [K6].

2.2. The graded version.

2.2.1. The sub–operad CS of Hom(TV ). Let V be a vector space and
let Hom(TV )(n) := Hom(TV ⊗n, TV ) be the endomorphism operad of TV .
It is well known that TV is an algebra for the multiplication µ⊗ := ⊗
and a co-algebra for the co-multiplication ∆ : TV → TV ⊗ TV given by
a1 ⊗ · · · ⊗ an 7→

∑
i(a1 ⊗ · · · ⊗ ai) ⊗ (ai+1 ⊗ · · · ⊗ an). Also, we have the

Sn action on TV ⊗n permuting the factors of TV . These three basic sets
of operations generate a suboperad of Hom(TV ) which we would like to
call CS. It can be thought of as something like the brace algebra which
is a natural subalgebra of operations on the Hochschild co–chains on an
associative algebra given by the natural operations in that setting. In this
spirit CS are the natural operations on a tensor algebra.

Notation 2.4. We will use the following notation: ∆l : TV → TV ⊗l+1 is
the iteration of ∆ given by (∆ ⊗ id⊗l) ◦ (∆ ⊗ id⊗l−1) ◦ · · · ◦ (∆ ⊗ id) ◦ ∆.

We wish to point out that any element in CS can be uniquely written

as a sum of elements of the type µ
⊗

P

ni+(n−1)
⊗ ◦ σ ◦

⊗
i ∆

ni where one first
uses the coproduct ni times on the i-th factor of TV in the product TV ⊗n,
then one uses a permutation σ on the resulting factors of TV and finally
one multiplies them all together.

CS is graded by
∑

i(ni + 1) − 1. The composition does not respect this
grading, but it does respect the induced filtration, and hence we get an in-
duced operad structure on the associated graded GrCS. The same type con-
siderations mutatis mutandis hold true for the PROP Hom(TV ⊗n, TV ⊗m)
and we use CS(n,m) to be the appropriate sub–PROP.

The PROP action by C∗
o(Arc

i↔o
)(n,m) is then contained in CS(n,m) and

it is actually easy to see that the image is precisely CS(n,m) by using the
normal form above. The grading then corresponds to the number of angles
on the inputs minus one which is the number of edges minus one that is the

dimension of the cell considered in Arc
i↔o
1 , so we see that these two gradings

are compatible.

Proposition 2.5. The PROP action of C∗
o(Arc

i↔o
1 ) on TV has its image

in CS and passes to the associated graded GrCS, so that there is an operadic

(PROPic) map from GrC∗
o (Arc

i↔o
) ' CC∗(Arc

i↔o
1 ) → GrCS.

�
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Remark 2.6. The condition of genus zero also has a nice algebraic coun-
terpart in this setting and that is the condition that the permutation is only
a shuffle.

Example 2.7. An example where the grading is not respected occurs when
one considers ∆◦µ⊗ : TV ⊗TV → TV ⊗TV . The generic number of shuffles
will be 1, but there will be a summand corresponding to id⊗ id which will
require no shuffle.

This example is very instructive, since it is this sort of behavior which is
not Frobenius that is very characteristic for our actions and their associated
graded ones.

We can decompose

(2.1) ∆ ◦ µ⊗ = (id⊗ µ⊗) ◦ (∆ ⊗ id) + id⊗ id+ (µ⊗ ⊗ id) ◦ (id⊗ ∆)

As well known this means that TV as an algebra and co–algebra is not
Frobenius but rather has the operations usually forming the other side of
the Frobenius equation as summands of the operation ∆ ◦ µ⊗; plus there is
one more summand of lower degree, namely id⊗ id. The associated graded
will project out this term.

In order to go beyond the PROPic setting of Arci↔o and Arc
i↔o

in the
setting of the example of Proposition 2.2, we will need a pairing. The exact
axiomatic setup for this is given in the next section.

3. Operadic Correlation Functions

In this section, we introduce operadic correlation functions, which can
be thought of as the generalization of an algebra over a cyclic operad to
the dg–setting. In order to get to the main definition, we first set up some
notation.

Given a pair (A,C) whereA is a vector space and C =
∑
c(1)⊗c(2) ∈ A⊗A

we define the following operations

(3.1) ◦i : Hom(A⊗n+1, k) ⊗Hom(A⊗m+1, k) → Hom(A⊗n+m, k)

where for φ ∈ Hom(A⊗n+1, k) and ψ ∈ Hom(A⊗m+1, k)

(3.2) φ ◦i ψ(a1 ⊗ · · · ⊗ an+m) =∑
φ(a1 ⊗· · ·⊗ai−1⊗ c

(1) ⊗ai+m ⊗· · ·⊗am+n)ψ(c(2) ⊗ai ⊗· · ·⊗ai+m−1)

Definition 3.1. A set of operadic correlation function for a cyclic linear
operad O is a tuple (A,C, {Yn}) where A is a vector space, C =

∑
c(1) ⊗

c(2) ∈ A⊗ A is a fixed element and Yn+1 : O(n) → Hom(A⊗n+1, k) is a set
of multi–linear maps. The maps {Yn} should be Sn+1 equivariant and for
opn ∈ O(n), opm ∈ O(m)

(3.3) Yn+m(opn ◦i opm) = Yn+1(opn) ◦i Ym+1(opm)
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where the ◦i on the left is the multiplication of equation (3.1) for the pair
(A,C).

We call the data (A, {Yn}) of an algebra and the Sn+1 equivariant maps
correlation functions or simply correlators for O.

3.1. Correlators for algebras over cyclic operads. An example is given
by an algebra over a cyclic operad. Recall that this a triple (A, 〈 , 〉, {ρn})
where A is a vector space, 〈 , 〉 is a non–degenerate bi–linear pairing and
ρn : O(n) → Hom(A⊗n, A) are multilinear maps also called correlators that
satisfy

i) ρ(opn ◦i opm) = ρ(opn) ◦i ρ(opm) where ◦i is the substitution in the
i-th variable.

ii) The induced maps Yn+1 : O(n) → Hom(A⊗n+1, k) given by

(3.4) Yn+1(opn)(a0 ⊗ · · · ⊗ an) := 〈a0, ρ(opn)(a1 ⊗ · · · ⊗ an)〉

are Sn+1 equivariant.

Notation 3.2. Given a finite dimensional vector space A with a non-
degenerate pairing 〈 , 〉 = η ∈ Ǎ ⊗ Ǎ, let C ∈ A ⊗ A be dual to η un-
der the isomorphism induced by the pairing and call it the Casimir ele-
ment. It has the following explicit expression: Let ei be a basis of V , let
ηij := 〈ei, ej〉 be the matrix of the metric and let ηij be the inverse matrix.
Then C =

∑
ij eiη

ij ⊗ ej .

Lemma 3.3. The assignment (A, 〈 , 〉, {ρn}) 7→ (A,C, {Yn}) where the
Yn are defined as in equation (3.4) gives a 1–1 correspondence between the
algebra structure over a cyclic operad and operadic correlation functions,
which is functorial.

Proof. We have defined the map in one direction. To give the inverse map,
we set

(3.5) ρn(a1 ⊗ · · · ⊗ an) :=
∑

Yn+1(c
(1), a1 ⊗ · · · ⊗ an)c(2)

A direct calculation verifies that these assignments are inverse to each other.
The compatibility of the Sn+1 operations is manifest. Finally, it is clear
that this construction is functorial for maps of cyclic operads and maps of
algebras with a non–degenerate pairing. �

Example 3.4. We can now generalize the example of Proposition 2.2. For
this fix a non-degenerate symmetric pairing 〈 , 〉 on V . Then this pairing
induces a symmetric non-degenerate pairing on TV , so that we can consider
TV (and TV ) as a candidate of an algebra over a cyclic operad. We give this
structure via operadic correlations functions in analogy to the operations of
§2.1.

Let α ∈ (G
e
)k(n) and let p ∈ P (m, k). We define an Y (αp) : TV

⊗n
→ k

as follows. Let ni := #{flags at the boundary i} of the arc graph of αp.

If a /∈
⊗k

i=1 V
⊗ni ⊂ TV

⊗n
, we set αp(a) = 0. And if a =

⊗k
i=1(ai1 ⊗

· · · ⊗ αini
) then we associate to each of the flags f of the arc graph of αp
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incident to the boundary i the element af := ai,|f |, where again |f | is the
position of the vertex in its linear order. Let E be the set of edges of the
arc graph of αp then we define Y (αp)(a) :=

∏
e={f,ı(f)}∈E〈f, ı(f)〉. Now

it is again straightforward to check that this defines operadic correlation
functions for PG

e
with the algebraic gluings and in the case that the final

step (2) of §1.4.1 is not applicable. One can then extend to operations of
PG and hence G on TV by again using the isomorphisms V ⊗k k ' V to
“decorate” the empty boundaries with copies of k.

3.2. Operadic correlations functions with values in a twisted Hom
operad.

Definition 3.5. Let (A, 〈 , 〉, {Yn}) be as above. And let H = {H(n)} with
H(n) ⊂ Hom(A⊗n, A) as k–modules be an operad where the Sn action is the
usual action, but the operad structure is not necessarily the induced operad
structure. Furthermore assume that ρYn+1

∈ H(n). We say that the {Yn})
are operadic correlation functions for O with values in H if the maps ρ are
operadic maps from O to H. We will also say that we get an action of O
with values in H.

3.2.1. Signs. As in the case of the Deligne conjecture one twist which
we have to use is dictated by picking sign rules. In the case of Deligne’s
conjecture this could be done by mapping to the brace operad Brace (see
e.g. [K2]) or by twisting the operad Hom by lines of degree 1 as in §1.3.4
(see e.g. [KS1]). In what follows, our actions will take values on operads
that are naturally graded and moreover we will identify the grading with
the geometric grading by e.g. the number of edges or the number of angles
etc.. The signs will then automatically match up, if we use the procedure of
§1.3.4 at the same time for both the graph side and the Hom side, i.e. for the
operad H. In fact, this approach unifies the two sign conventions mentioned
above on the subspace of operations corresponding to LTreecp.

3.3. Actions on the tensor algebra of a vector space. Assume now
that (V, 〈 , 〉) is a finite dimensional vector space with a non–degenerate
pairing.

Definition 3.6. We let CM(n) ⊂ Hom(TV )(n) be the image of all the
operations of PG(n), by considering 0 as “out”.

Notation 3.7. We write ηm for the map V ⊗2m → k, η(a1 ⊗ · · · ⊗ a2m) =∏m
i=1 η(ai, a2m−i).

Proposition 3.8. After dualizing to obtain elements in Hom(TV ⊗n+1, k)
any element in CM(n) can be written uniquely as

(3.6)

1

2

P

i(ni+1)⊗
j=1

ηmj ◦ σ ◦

n⊗
i=0

∆ni
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where σ is a permutation of the
∑

i(ni + 1)–factors of TV , and we used the

Notation 2.4. Set l = 1
2

∑
i(ni + 1) − 1 then CM is graded by l. Moreover

the composition in CM respects the induced filtration of elements of degree
≤ l. Lastly, the decomposition identifies CM with the subspace of Hom(TV )
obtained by dualization for the subspace generated by the coproduct, per-
mutations and η in

⊕
nHom(TV ⊗n+1, k). That is we obtain correlation

functions with values in CM.

Proof. The first statement is clear by the definition of CM as the image.
The last statement is also straightforward, by arranging the operation in
the specified order. On the other hand it is easy to give the arc graph in
PG(n) by drawing one arc for each factor of η with the incidence relations
given by σ. This identifies the two subspaces. In this identification there
is one factor of ∆ for each non-partitioning inner angle. The last claim,
that the operations respect the filtrations is clear after identifying k with
the dimension of the cell, that is the number of edges minus one, of the
underlying graph for the operation. The mentioned equality follows from
the combinatorial identity |∠inner| + |∠outer| = |Flags| = 2|edges|. �

Proposition 3.9. For any vector space V with a non-degenerate pairing,
TV is an algebra over the algebraic PROP PArci=i. Moreover this action
passes to the associated graded and gives an action of CC∗(A) with values
in GrCM.

Proof. We extend the definition of correlators above to correlators for A on
TV as in §2.2 above. We use the Casimir element to dualize and thus we
only have to show that the resulting structure is that of an algebra over a
cyclic operad. Again the Sn+1 equivariance is manifest. After dualizing the
gluing on the flags in the operadic composition turns into the identity map
id : A → A so that indeed the gluing ◦i on PArci=i maps to insertion at
the i-th place in Hom(TV ). Dealing with the extra steps (1) and (2), we
see that on the side of Hom(TV ) they would not yield zero. In PArci=i

closed loops cannot appear hence step (2) is avoided. Using the algebraic
gluing, we get agreement for the two operations. In the graded case, the
contributions of (1) and (2) are projected away on the side of CM as is
the case in CC∗(A) where these contributions come from lower degree cells,
which are again projected out. Moreover as mentioned above the grading in
both cases is by the number of arcs of the underlying graphs -1. �

3.4. Correlators for dg–algebras. Let (V, d) be a complex whose homol-
ogy algebra H := H(V, d) has a non–degenerate pairing 〈 , 〉. Let C be
the Casimir element of 〈 , 〉. Let Z = ker(d) and let s be a section of the
projection Z → H.

Definition 3.10. If (V, d) is a complex, we call a set of correlation func-
tions for V operadic chain level correlation functions if they are operadic
correlation functions for Z(A) = ker(d).
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Proposition 3.11. Let O := {O(n)} be a cyclic operad, and let (V, d, 〈 , 〉)
and s be as above. Let Z = ker(d) and let Yn+1 : O(n) → Hom(V ⊗n+1, k)
be a collection of Sn+1 equivariant maps whose values only depend on the
classes in H, that is if [ai] = [bi] ∈ H where a 7→ [a] is the projection map
Z → H, then Yn(a1⊗· · ·⊗an) = Yn(b1⊗· · ·⊗bn). Furthermore assume that
the induced maps Y n+1 : O(n) → Hom(H⊗n+1, k) are operadic correlation
functions for the cyclic operad, then for any section s of the projection map
Z → H the collection {Yn} is a set of operadic correlation functions for
(Z, (s⊗ s)(C)).

Proof. Straightforward. �

An example is given by adapting Example 3.4 to the current setting.

Theorem 3.12. For a complex (V, d) over k with a pairing 〈 , 〉 which
satisfies

i) ∀ v, w ∈ V : 〈dv,w〉 = −〈w, dv〉 and
ii) the induced pairing on H = H(V, d) is non–degenerate,

the formulas of Example 3.4extended as in Proposition 3.9 yield correlation
functions on the tensor algebra TV which are operadic on TZ that is operadic
chain level correlation functions.

�

Definition 3.13. A quasi–Frobenius algebra is a triple (A, d, 〈 , 〉) where
(A, d) is a unital dg–algebra whose homology algebra H := H(A, d) is finite
dimensional and has a non–degenerate pairing 〈 , 〉 and is a Frobenius
algebra for this pairing. A quasi–Frobenius algebra with an integral is a
triple (A, d,

∫
) where

∫
: A→ k is a linear map such that

i) ∀a ∈ A :
∫
da = 0

ii) (A, d, 〈 , 〉) is a quasi–Frobenius algebra,where 〈a, b〉 :=
∫
ab. The

cocycles of a quasi–Frobenius algebra with an integral are the sub-
algebra Z = ker(d) ⊂ A of the algebra above.

A natural example of a quasi–Frobenius algebra with an integral is A =
C∗(M), the co-chains of a compact manifold M .

Example 3.14. Let Cyc := Assoc[1] be the cyclic operad obtained by
shifting the associative operad Assoc by 1 that is Cyc(n) is the permutation
representation Sn+1 on {0, . . . , n} with Sn acting on {1, . . . , n}.

Let (A, d) be an associative dg–algebra with an integral, i.e. a function∫
: A → k which satisfies

∫
ab = (−1)deg(a) deg(b)

∫
ba and Set 〈a, b〉 =

∫
ab

and assume 〈 , 〉 is non–degenerate on H = H(A, d).
For σn ∈ Sn viewed as a generator of Cyc(n− 1) we define

(3.7) Yn+1(σn)(a0 ⊗ · · · ⊗ an−1) := ±

∫
aσ(0) · · · aσ(n−1)

where ± is the sign of the permutation of the elements ai. Then by the
proposition above this is a set of operadic correlation functions.
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Fixing a section s of the map Z → H, a 7→ [a] the operations

(3.8) ρn(idn+1)(a1 ⊗ · · · ⊗ an) = ±s([a1] . . . [an])

yield operadic correlation functions.
In the case that A = C∗(M) we see that we recover the cup product up

to homotopy. This is enough to characterize the cup product of two closed
co-chains inside any integral.

3.5. Polygon correlation functions. Other examples of operadic corre-
lation functions come from operads of polygons. It is this type of example
which we generalize to obtain the correlators for PArc∠.

Let pn be the regular n-gon and denote its sides by sides(pn). We
let Poly(n) = the free Abelian group generated by {Lab : sides(pn) →
{0, . . . , n − 1}. Similarly, let P2n be the regular 2n-gon with a fixed choice
of a preferred set of n non-intersecting sides, which we call Sides(P2n).
Then Poly2(n) = the free Abelian group generated by {Lab : Sides(P2n) →
{0, . . . , n− 1}}. The operad structure ◦i on Poly(n) is given by gluing the
polygons along the sides marked by 0 and i, respectively, and deleting the
image of the glued side, which is diagonal in the glued object. In Poly2(n)
we also merge the two pairs of non–labelled sides on the two sides of the
deleted diagonal. The Sn+1 action is given by permuting the labels on the
labelled sides.

Remark 3.15. These operads are different incarnations of the operad Cyc.
The map from Poly to trees is just given by marking the center of the
polygon and the middle of the sides by a vertex, connecting the vertices of
the sides to the center vertex and carrying over the labelling. This yields
an isomorphism to the usual pictorial way of defining Cyc in terms of planar
corollas (see e.g. [K4]). An isomorphism from Poly to Poly2 is given by
blowing up the vertices of pn to sides and choosing the original sides to be
the preferred set of n sides of P2n. The inverse is given by contracting the
non-preferred sides.

Let (A, d,
∫

) be a quasi–Frobenius algebra with an integral. We define
correlation functions as

Y (Lab : sides(pn)) → {0, . . . , n− 1})(aLab−1(0) ⊗ · · · ⊗ aLab−1(n−1))

=

∫
aLab−1(0) · · · aLab−1(n−1)(3.9)

Y (Lab : Sides(P2n))(aLab−1(0) ⊗ · · · ⊗ aLab−1(n−1))

=

∫
aLab−1(0) · · · aLab−1(n−1)(3.10)

here and in the following we will frequently drop the subscripts on the Yn

since they can be deduced from the expression.
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Lemma 3.16. Given a quasi–Frobenius algebra with an integral (A, d,
∫

),
the equations above define operadic correlation functions for Poly and Poly2.

Proof. This follows either directly by Proposition 3.11 or by Remark 3.15
and the Example 3.14. �

3.5.1. A∞-algebras and polygons with diagonals. Another example
of operadic correlation functions comes from A∞ algebras. Let A be an
A∞–algebra with multiplications µn : A⊗n → A and set d = µ1.

Define Poly∞, the operad of polygons with diagonals, as follows: Poly∞(n)
is the operad generated by the free Sn+1 module generated by the set
{diag(pn+1)} := {polygonal decompositions of the abstract planar n+1-gon
whose sides are cyclically labelled {0, . . . , n}}. Sn+1 acts by permutations on
the labels. We call this set diag since the decomposition amounts to choos-
ing several non-intersecting diagonals. The operad structure on Poly∞ is
given by gluing the polygons along the indicated sides and keeping the image
of the glued sides as a diagonal in the glued polygon. There is a natural dg–
structure on this operad whose differential is the sum of elements obtained
by inserting different diagonals with the appropriate sign. The sign is de-
termined considering L⊗{polygonal regions} as described in §1.3.4. It is clear
that as a collection of Sn+1-modules Poly∞ is generated by the elements on

where on is the cyclically labelled abstract n+ 1-gon with no diagonals.

Remark 3.17. Again this operad is just a re-writing of an old, familiar
operad. This time it is Stasheff’s A∞ operad in its tree description, see
e.g. [MSS]. The isomorphism is given by considering the dual tree of the
polygonal decomposition. This tree has one vertex for each polygonal regions
and one for each of the labelled sides. The edges are given by connecting
two vertices if they have a common diagonal or if the labelled side is a side
of the polygonal region. The vertices corresponding to the labelled sides are
exactly the vertices of valence one and are naturally labelled. This graph is
easily seen to be a tree and the cyclic order induced by the cyclic order on the
sides of the polygonal regions induced by the orientation of the plane makes
this tree into a planar tree. Fixing the root to be the vertex corresponding to
the side labelled by zero, we obtain a planar planted tree whose leaves (viz.
non–root vertices of valence one) are labelled. The image of the differential
under this correspondence will contract edges.

Assume that A is finite dimensional and has an pairing non–degenerate
〈 , 〉 and let C be the Casimir element of the pairing, then set

(3.11) Y (on)(a0 ⊗ · · · ⊗ an) = 〈a0, µn(a1 · · · an)〉

Lemma 3.18. Given an A∞-algebra A over k with an a non–degenerate
pairing 〈 , 〉 such that the correlation functions (3.11) above are Sn+1 equi-
variant, extend the definition of Y operadically, by using the equation (3.3)
recursively as a definition. Then this extension gives operadic correlation
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functions for the cyclic operad Poly∞. These correlation functions are even
compatible with the A∞ differential.

Proof. The fact that we obtain operadic correlation functions is true by
construction. The fact that they are compatible with the A∞–differential
then follows from the fact that in standard tree depiction of the A∞–algebra
(see e.g. [MSS]) the differential adds edges, which dually corresponds to
inserting a diagonal as explained in the remark above. �

4. Correlators for P∠A on the Hochschild co–chains of a

Frobenius algebra

The natural operations on the tensor algebra TA of an algebra A are the
ones generated by the multiplication and co–multiplication µ⊗ and ∆ of TA
as well as the permutations and the multiplication µA : A⊗A→ A. In order
to incorporate the later operations into the picture, we will have to modify
the correlators of 3.4 a little and introduce operations which act “internally”,
that is operations which are associated to complementary regions or dually
in the case of Arc0# at the vertices of the dual graph.

4.1. Graph correlation functions aka. Feynman rules.

Example 4.1. We will recall how to define correlation functions for ribbon
graphs, (see e.g. [Ko3, KM]), by using so-called Feynman rules. Although
our action will be slightly different, the underlying principle is similar and
this easier example will be instructive.

Let Γ be a ribbon graph with vertices of valence at least 3. Let A be
an algebra with a non-degenerate pairing, which gives an isomorphism of A
with its dual Ǎ. Let C be the Casimir element. Let φ : VΓ → Hom(A,A)
be a map which

i) preserves degree, i.e. φ(v) ∈ Hom(A,A)(val(v−1)) ' Hom(A⊗val(v) , k).
ii) has a cyclic image, i.e.

∀vf ∈ VΓ : φ(v)(a0 ⊗ · · · ⊗ an) = ±φ(v)(a1 ⊗ · · · ⊗ an ⊗ a0)

where ± is the permutation super-sign.

Set

(4.1) Y (Γ)(φ) := (
⊗

v∈VΓ(τ)

φ(v))(
⊗
e∈EΓ

C) ∈ k

Remark 4.2. Let G be a class of graphs, e.g. the set of all planar trees or
ribbon graphs. Functions of the type φ : G → Hom(A,A) are sometimes
called Feynman rules if the map φ is expressible in local data of the graph,
that is in terms of the flags at each vertex and the edges.

Graphs, which have external vertices, that is vertices with only one ad-
jacent flag, are treated in one of the following ways. One can either par-
tition the external vertices into a set In and a set Out say of cardinalities
p and q and view Y (Γ)p,q ∈ Hom(A⊗p, A⊗q) or view all vertices as inputs
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Y (Γ) ∈ Hom(A⊗p+q, k). An example is given by associating elements of A
to the flags of the external vertices of a ribbon graph with tails and plugging
in copies of C into the operations by decorating the internal edges and then
contracting like in (4.1)

Example 4.3. An important example for Feynman rules φ for ribbon graphs
Γ is given by using an A∞–algebra [Ko3]. Here φ(v) = φ(val(v)) = µn where
now µn : A⊗n → A is one of the structure maps of the A∞–algebra.

Example 4.4. In [K3] we also used Feynman rules for trees with external
vertices. They are related to the operations which we describe below, by
moving to the dual graph and then to the intersection graph. They are
hence decidedly different for the Example 4.3 above, which directly deals
with ribbon graphs.

4.2. Arc∠ correlation functions. The idea of how to obtain the correla-
tion functions for the tensor algebra is very nice in the Arc picture where
it is based on the polygon picture. This polygon picture can be thought of
as an IRF (interaction ’round a face) picture for a grid on a surface which
is dual to the ribbon picture. For this we would modify the arc graph by
moving the arcs a little bit apart as described in §1.3.1. Then the com-
plementary regions of partitioned quasi–filling arc–graphs PG# are 2k-gons
whose sides alternatingly correspond to arcs and pieces of the boundary.
The pieces of the boundary correspond to the angles of the graph and of
course any polygonal region corresponds to a cycle of the arc graph. If the
graph αp has an angle marking, then the sides of the polygons corresponding
to the boundaries will also be marked. We fix the following notation. For an
angle marked partitioned arc graph αp ∈ P∠G# let Poly(αp) be the set of
polygons given by the complementary regions of αp when treated as above.
For π ∈ Poly(αp), let Sides′ be the sides corresponding to the angles which
are marked by 1 and Sides′(αp) be the union of all of these sides. If we
denote ∠+(Γ) = (mk∠)−1(1) there is a natural bijection between ∠+(αp)
and Sides′(αp).

4.2.1. Correlation functions on the tensor algebra of an algebra.
Fix an algebra A with a cyclic trace, i.e. a map

∫
: A → k which satisfies∫

a1 . . . an = ±
∫
ana1 . . . an−1 where ± is the standard sign.

Now for π ∈ Poly(αp) set

(4.2) Y (π)(
⊗

s∈Sides′(π)

as) =

∫ ∏
s∈Sides′(π)

as

Notice that we only have a cyclic order for the sides of the polygon, but∫
is (super)-invariant under cyclic permutations, so that if we think of the

tensor product and the product as indexed by sets (4.2) it is well defined.
For an angle marked partitioned arc family αp set
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(4.3) Y (αp)(
⊗

s∈(mk∠)−1(1)

as) =
⊗

π∈Poly(αp)

Y (π)(
⊗

s∈Sides′(π)

as)

where we used the identification of the set Sides′(αp) = qπ∈Poly(αp)Sides
′(π)

with ∠+(αp). Since for each αp ∈ P∠G
e
(n) the set of all flags has a linear

order, we can think of Y (αp) as a map A⊗|F (αp)| =
⊗n

i=1A
⊗|F (vi)| → k and

furthermore as a map to TA⊗n → k by letting it be equal to equation (4.3)

as a map from
⊗n

i=1A
⊗|F (vi)| ⊂ TA⊗n and setting it to zero outside of this

subspace.
Extending linearly, for an angle marked arc family α ∈ Arc∠, we finally

define

(4.4) Y (α) := Y (P(α))

4.2.2. Correlators for the Hochschild co-chains of a Frobenius
algebra. Let A be an algebra and let Cn(A,A) = Hom(A⊗n, A) be the
Hochschild cochain complex of A. We denote the cyclic cochain complex
by CCn(A, k) = Hom(A⊗n+1, k). Then one has a canonical isomorphism
of CC∗(A) ∼= C∗(A, Ǎ) as complexes and hence also HC∗(A) ∼= H∗(A,A)
where HC is Connes’ cyclic cohomology and H is the Hochschild cohomol-
ogy.

Lemma 4.5. For any Frobenius algebra (A, 〈 , 〉), we have canonical iso-
morphisms CC∗(A) ∼= C∗(A, Ǎ) ∼= C∗(A,A) and HC∗(A) ∼= H∗(A,A) ∼=
H∗(A, Ǎ) induced by the isomorphism of A and Ǎ which is defined by the
non-degenerate pairing of A.

Proof. The only statement to prove is the last isomorphism. As mentioned
the map on the chain level is induced by the isomorphism of A and Ǎ
defined by the non-degenerate pairing of A. The fact that the complexes
are isomorphic follows from the well known fact that the invariance of the
pairing 〈ab, c〉 = 〈a, bc〉 implies that the isomorphism between A and Ǎ is an
isomorphism of A bi–modules, where the bi–module structure of functions
f ∈ Ǎ is given by a′fa′′(c) = f(a′′ca′), see e.g. [L]. �

For any f ∈ Cn(A,A) let f̃ ∈ Ǎ⊗n be its image under the isomorphism
of Ǎ with A defined by the Frobenius structure of A.

Given pure tensors fi = f0i ⊗ f1i ⊗ · · · ⊗ fini
∈ Cni(A,A), i ∈ {0, . . . , n}

we write f̃i = f0i ⊗ · · · ⊗ fini
for their image in CCni(A). Fix α ∈ Arc∠(n).

Now decorate the sides s ∈ Sides′(α) := (mk∠)−1(1) of the complementary
regions, which correspond to pieces of the boundary, by elements of A as
follows: for a side s ∈ Sides′ let j its position in its cycle ci counting only
the sides of ci in Sides′ starting at the side corresponding to the unique
outside angle at the boundary given by the cycle. If the number of such
sides at the boundary i is ni + 1 then set fs := fij.
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Figure 5. A partitioned arc graph with decorations by
elements of A and one of its decorated polygons. The bold
line corresponds to the bold edges.

Now we set

(4.5) Y (α)(f1, . . . , fn) := Y (P(α))(
⊗

s∈∠+(αp)

fs)

We extend this definition by linearity if fi ∈ Cni(A,A), i ∈ n̄. If the condi-
tion that ni + 1 equals the number of Sides′ at the boundary i is not met,
we set Y (α)(f0, . . . , fn) = 0. An example of a decorated partitioned surface
and its polygons is given in Figure 5.

4.3. Ribbon correlation functions. In this section, we give a dual and
equivalent picture for the quasi–filling arc graphs in terms of ribbon graphs.
Whether in the quasi–filling case one wishes to use ribbon graphs or surfaces
is basically a matter of taste. Ribbon graphs seem to be more established,
but actually the surfaces seem to be the better geometric fit especially if
one wants to extend the operations “to the boundary” as explained in the
next section. Since CFT is, however, usually associated with ribbon graphs
rather than arc graphs, we give the details of the construction for this dual
picture. We stress, however, that this duality only exists for quasi–filling arc
graphs indexing cells of Arc∠# and that furthermore our correlation function

are completely different from those in [Ko3] where basically a CFT is defined
from an A∞–algebra. What we define are morally actually the correlation
functions of the closed string states viewed as deformations of the category
of open strings evaluated on a cell of the open moduli space, see §6.

4.3.1. Vertex correlation functions. Fix an angle marked ribbon graph
(Γ,mk∠). Let v ∈ VΓ be a vertex of Γ. Let ∠+(v) be the subsets of angles

of ∠+(Γ) whose flags are also incident to v and define Y (v) : A⊗∠+(v) → k
by:
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(4.6) Y (v)(
⊗

α∈∠+(v)

aα) =

∫ ∏
α∈∠+(v)

aα

again just as for equation (4.2) this is well defined as a function on the tensor
product indexed by sets.

4.3.2. Correlators defined by an angle marked ribbon graph. Let
Γ′ be a partitioned marked ribbon graph with an angle marking.

(4.7) Y (Γ′)(
⊗

α∈∠+(Γ)

aα) =
⊗
v∈VΓ

Y (v)(
⊗

β∈∠+(v)

aβ)

Let {ci}, i = 0, . . . , n − 1 be the set of cycles labelled by {0, . . . , n − 1}.
Let ∠+(ci) be the angles corresponding to the flags of the cycle ci which are
marked by 1. Since the ribbon graph is marked, we have an enumeration of
all flags and hence all the angles, hence we can think of the equation (4.7)

as a map as defined on the subspace
⊗n

i=1A
|∠+(ci)| ⊂ TA⊗n and extend it

by zero outside of this subspace.
Finally for an angle marked, marked ribbon graph, we define

(4.8) Y (Γ) := Y (P(Γ))

by extending linearly.

4.3.3. Correlators for the Hochschild complex, the ribbon ver-
sion. As above for any f ∈ Cn(A,A) let f̃ ∈ Ǎ⊗n be its image under the
isomorphism of Ǎ and A defined by the Frobenius structure of A.

Fix Γ ∈ Rib∠(n), and let ci be the cycles of the underlying ribbon graph
also denoted by Γ. Set ni = |∠+(ci)|. Now for fi ∈ Cni−1(A,A), i ∈

{0, . . . , n} which are pure tensors f̃i = f1i⊗· · ·⊗f1ni
. Recall that each cycle

has a linear order, since the graph was marked. Now decorate the angles of
the graph by elements of A as follows: for an angle α let f be the flag of α
and j its position in its cycle ci starting at the flag preceding the marked
flag counting only the elements of ∠+(Γ), then set fα = fij.

(4.9) Y (Γ)(f1, . . . , fn) := (
⊗

α∈∠+(Γ)

fα)

We extend this definition by linearity if fi ∈ Cni−1(A,A) and ni = |∠+(ci)|,
otherwise, if the condition is not met, we set Y (Γ)(f1, . . . , fn) = 0.

5. Extension to the boundary and dg properties

Before we start the discussion of the dg-properties, we wish to point out
the following. Let A be a Frobenius algebra and let φ : A→ Ǎ be the isomor-
phism defined by the metric. If µ† is the adjoint of µ then φµ†φ−1 = µ̌ := ∆,
i.e. the natural coproduct on Ǎ, . Moreover φ induces an isomorphism
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ψ : TA → T Ǎ. Notice however, this is not an isomorphism of dg-algebras,
since φµφ−1 is the induced multiplication on Ǎ whereas the natural differ-
ential comes from its co-simplicial structure given by ∆. We will elaborate
on this a little.

As we have discussed for a Frobenius algebra there are canonical iso-
morphism TA ' T Ǎ ' C∗(A, Ǎ) ' C∗(A,A) ' HC∗(A) where we use
HC to indicate the cyclic cochains. Furthermore the dg structures of the
middle two are compatible if A is a Frobenius algebra yielding isomor-
phisms: HH∗(A,A) ' HH∗(A, Ǎ) So we can work with T Ǎ or TA to define
the correlators. In the same vain also the spaces Hom(TA⊗n, TA⊗m) and
Hom(TA⊗n⊗ ŤA⊗m, k) are isomorphic. Thus we can also work in the cyclic
setting for defining the correlators.

A slight complication arises, when we would like to check the dg–properties
of the operadic of PROPic actions defined by dualizing say m factors of TA
as above. The complication is that although the spaces Hom(TA⊗n, TA⊗m)
and Hom(TA⊗n ⊗ TA⊗m, k) are isomorphic, if A is Frobenius, they have
different dg–structures when they are endowed with the natural Hom differ-
entials. In the first case ∂Hom(f) = f ◦ ∂TAn ∓ ∂TǍm ◦ f while in the second

case we get ∂Hom(f̃) = f ◦∂TAn+m where f̃ the image of f under the isomor-
phism induced by φ. As discussed above, these differentials are different. So
to get a structure of a dg algebra over a dg–PROP, we have to additionally a
priori declare some boundaries inputs and other outputs. Now on the other
hand, in the geometric models we are considering, say Arci/o, the differential
is a topological differential, which is independent of the discrete structure
labelling the boundary. This independence of the boundary being labelled
“in” or “out” will be the case for all topological models of surfaces, since
these structures are naturally cyclic and the same type of argument applies.
So we will have to be careful about the type of statements we can make. We
can only expect a compatibility of the dg-structure of the topological chains
with the algebraic model if the discrete data of In and Out is canonical.
When such a canonical operadically closed choice of In and Out is present,
we indeed find the compatibility of the dg structures.

There is yet another caveat, though. An algebraic complex like the
Hochschild complex does not “see” the moduli space structure in the sense
that it does not naturally distinguish any differentials (say in the co-simplicial
setup). In the moduli space case or the case of an open subset of A of A∠,
however, certain differentials are set to zero, since we are dealing with rela-
tive chains. In these situations, the Hochschild differential, will force us to
go to the boundary. This type of problem is present for higher genus and
for several “ins” and “outs”. In genus zero with only one output it does not
appear which explains the naturality of the operations of [K2, K1] that is
in the case of Deligne’s conjecture and the cyclic Deligne conjecture. In the
general case, we have to grade the subspaces of Hom(TA) and pass to the
associated graded, to obtain the desired operations.
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5.1. Dg properties of the PROP action.

5.1.1. The tree level operads. If we fix one output boundary and chose

the natural embedding of T reecp into Arc
i↔o

, then we are in the case of
[K2, K3] and the action is indeed the dg action discussed for LTreecp and
T reecp, respectively5.

5.1.2. The Sullivan-Chord diagram case. In the case ofGrC∗
o(Arci↔o)

with the conventions of [K5] reviewed in the Introduction, we can again put
ourselves into the setting of a dg-action of a dg–PROP on a dg–algebra, but
we need to extend the action to the boundary. Generalizing the arguments
of [K2, K3] we will show that the differential on the Hochschild side corre-

sponds to the differential of A restricted to Arc
i↔o

. If one removes an arc
from a graph indexing a cell in GrC∗

o(Arci↔o), it is not true in general, that
we still obtain a graph indexing a cell of GrC∗

o(Arci↔o). This does not hold
even if the genus is zero, so we will have to extend the action to the graded

cells of Arc
i↔o

. Fortunately there is a CW-complex which models which

naturally allows us to do this, that is CC∗(Arc
i↔o
1 ) ∼= GrC∗

o (Arc
i↔o

).
We will see that in order to achieve a well defined action, we will need

some additional assumptions. These are satisfied if we restrict our attention
to a commutative Frobenius algebra A.

Assumption: For the rest of the discussion of this subsection let A be a
commutative Frobenius algebra.

5.1.3. Extending to the boundary. The definition of this extension
is dictated by the dg condition. This means that we will have to consider
elements in Arc which are in the limit of elements of Arc0#. Removing an arc
corresponds to gluing together two polygons, and so we have to deal with not
only polygons, but also with cylinders and so forth. For a cylinder C(n,m)
with two boundaries given by polygons p1 ∈ Poly(n) and p2 ∈ Poly(m),
and a choice of cut indices (i, j), see Figure 6 for an example, we define

(5.1) Y (C(n,m), (i, j))(a1 , . . . , an, b1, . . . , bm) :=∫ ∑
a1 . . . a

(1)
i bj . . . bmb1 . . . bj−1a

(2)
i . . . an

where ∆(ai) =
∑
a(1)⊗a(2) is the co-product of ai using Sweedler’s notation.

This definition is forced on us, if we wish to ensure compatibility with the
Hochschild differentials.

Remark 5.1. In order to ensure that equation (5.1) is independent of the
choice of cutting edge that is the indices i and j in equation (5.1) we assumed
commutativity.

5see [K5] for the definitions of these subsets.
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Figure 6. A cylinder with boundary components labelled
by elements of A and an indicated cut.

Lemma 5.2. If A is a commutative Frobenius algebra then the r.h.s. of
equation (5.1) is independent of the choice of i and j and coincides with

(5.2) Y (n,m) =

∫
a1 . . . anb1 . . . bme

where e = µ ◦ ∆(1) is the Euler element.

Proof. If A is commutative, then we have

Y (C(n,m))(a1, . . . , an, b1, . . . , bn) :=

∫
a1 . . . ai−1(µ◦∆)(ai)ai+1 . . . anb1 . . . bm

but in any commutative Frobenius algebra one has∫
(µ ◦ ∆)(a)bc = 〈(µ ◦ ∆)(a), bc〉

= 〈a, (µ ◦ ∆)(bc)〉 = 〈a, b(µ ◦ ∆)(c)〉 =

∫
ab(µ ◦ ∆)(c)

fixing a = ai, b =
∏

k 6=i ai
∏
bj and c = 1 shows the claim. �

5.2. Correlators for A∠. In general we extend the action as follows. No-
tice that given an arc graph α each complementary region S ∈ Comp(G) has
the following structure: it is a surface of some genus g with r ≥ 1 boundary
components whose boundaries are identified with a 2k-gons. Alternating
sides belong to arcs and boundaries as above and the sides come marked
with 1 or 0 by identifying them with the angles of the underling arc graph.
Now let Sides′(S) be the sides which have an angle marking by 1 and let χ
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be the Euler characteristic of S. We set

(5.3) Y (S)(
⊗

s∈Sides′(S)

a) :=

∫
(

∏
s∈Sides′(S)

as)e
−χ+1

where e := µ(∆(1)) is the Euler element. For an angle marked partitioned
arc graph αp we set

(5.4) Y (αp)(
⊗

S∈Comp(αi)

(
⊗

s∈Sides′(S)

as)) =
⊗

S∈Comp(αi)

Y (S)(
⊗

s∈Sides′(S)

as)

Again, for α ∈ CC∗(A
∠) we simply set

(5.5) Y (α) = Y (P(α)).

5.2.1. The Hochschild differential. Consider the operation Y (αp) for
α ∈ GrC∗

o(Arci↔o
# ). The Hom differential on this viewed as an element in

Hom(CHIn(A, Ǎ), CHOut(A, Ǎ) is given by ∂Hom(Y )(fi) = Y (∂Cyc(fi)) ∓
∂CycY (fi). Here we indexed the tensor products by the sets In and Out and
denoted the differential of the cyclic bar complex by ∂Cyc.

We can consider Y ∈ Hom(CHIn(A, Ǎ) ⊗ (CHOut(A, Ǎ)∨, k), by deco-
rating the In boundaries with the elements fi and the Out boundaries by
elements ai ∈ A. That is Y (f0, . . . , fn)(

⊗
ai). Then the first term in the

differential is given by applying ∆ = µ̌ cyclically to each element fi in the
left hand side viewed as an element in T Ǎ decorating the In boundaries.
The second term in the differential is given by the sum obtained by deco-
rating exactly one of the angles of the Out boundaries with the product of
two variables aiai+1. These summands will cancel with summands from the
first term essentially due to the Frobenius condition

(5.6) 〈fij, akak+1〉 = 〈∆(f j
i ), ak ⊗ ak+1〉

where we wrote fij using the notation of 4.2.2. Hence, we are left with the
summands of the first term that are not cancelled. These correspond to
angles on the Out boundaries marked by 0.

More precisely consider decorating two neighboring angles at an In bound-
ary by say ∆(fij) where the common edge e belongs to an angle marked by
0 on the Out boundary. There are two cases. Either the edge is separat-
ing, that is it separates two different complementary regions or it is non-
separating, that is the same region lies on both sides of the edge, see also
Figure 7.

First let’s consider the angle markings all given by 1. Let P1 and P2 be
the two complementary regions on the two sides of the edge e. And fix the
notation a1, . . . , an for the elements decorating the sides of the polygon P1

and b1, . . . , bm for the elements decorating the sides of P2 where in both

cases the enumeration is compatible with the cyclic order. Also set ∆(f j
i ) =∑

a(1) ⊗ b(2) in Sweedler’s notation. Say that a(1) = a1 and b1 = b(2); see
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Figure 7. In the separating case applying the Hochschild differential before
applying Y , we obtain a contribution of the type

(5.7)
∑∫

a(1)a2 . . . an ·

∫
b(2)b2 . . . bm =

∫
f j

i b2 . . . bm−1(bma2)a3 . . . an

which is the contribution obtained by gluing the two polygons along the

common edge and decorating one of the two joined sides by f j
i and the

other by bma2.
In the non-separating case, we only have one complementary region P1,

let a1, . . . , am be the elements decorating the sides. Also again use ∆(f j
i ) =∑

a(1) ⊗ a(2) and let a1 = a(1) and say ai := a(2) the contribution reads

(5.8)

±

∫
a(1)a2 . . . ai−1a

(2)
i ai+1 . . . an =

∫
(µ ◦ ∆)(f j

i )a2 . . . ai−1ai+1 . . . an

=

∫
f j

i a3 . . . ai−1ai+1 . . . (ana2)e

where e = µ ◦ ∆(1).
First if both polygons are quadrangles with all markings 1 then the term

in equation (5.7) cancels with the Hochschild differential on Y as discussed

above. In all other cases, if α is an quasi-filling element of Arc
i↔o

endowed
with the standard angle markings then one of the elements bm, a2 is one in
equation (5.7), so that we indeed obtain the contribution to the correlation
function associated to the surface in which the arc has been removed. In
the same situation but with a separating arc in equation (5.8) either a2 or
am is equal to one and we again obtain the contribution to the correlation
function associated to the surface in which the arc has been removed — now
basically by definition.

This calculation generalizes to arbitrary Y (αp) for α ∈ GrC∗
o(Arc

i↔o
).
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Proposition 5.3. The dg–structures of CC∗(Arc
i↔o
1 ) and Hom(C(A,A)

are respected by Y . Or in other words: The equation (5.3) and hence the
equation (5.4) are the operations corresponding to the summands of the Hom
differential of Y (αp) and furthermore these summands correspond to the
respective boundary components of α.

Proof. In the case of splitting angles, we see by the considerations above
that there are two terms in the Hom differential which cancel. In fact
all of the terms ∂ ◦ Y cancel in this way. On the other hand generalizing
the formalism explained above, we see that when two neighboring angles
which are not parallel are assigned the coproduct of an element ai, the
resulting operation is the operation associated to the arc graph in which the
arc corresponding to the common edge is removed. This either causes two
bordering complementary regions to be joined or self–glues a complementary
region to itself. In both cases the resulting function is the product of integrals
over all the boundaries of the joined surface. In the case of self–gluing this
yields a term µ(∆(ai)). As in Lemma 5.2, we can “transfer” the µ ◦ ∆ to
an inserted unit. Now iterating this process, we have to remove −χ + 1
edges to obtain a complementary region S with genus g and r boundary
components. This accounts for the tensor power of e. Also iterating the
argument of the “transferring” the µ ◦ ∆ from the elements ai to 1 one
obtains the independence of the exact incidences of the removed edges. I.e. if
the surface S can obtained by removing other edges, the resulting operation
will be the same. This means that such an expression in the differential is
well defined. �

Collecting the results, we find:

Theorem 5.4. The Y (α) defined in equation (5.5) give operadic correla-

tion functions for CC∗(Arc
i↔o
1 ) and induce a dg–action of the dg-PROP

CC∗(Arc
i↔o
1 ) on the dg–algebra CH

∗
(A,A) of reduced Hochschild co-chains

for a commutative Frobenius algebra A.
The Y (α) also yield correlation functions on the tensor algebra of the co-

cycles of a differential algebra (A, d) over k with a cyclically invariant trace∫
: A→ k that satisfies

∫
da = 0 and whose induced pairing on H = H(A, d)

turns H into a Frobenius algebra. These correlations functions are operadic
chain level correlation functions.

Proof. We have shown in [K5] that the CC∗(Arc
i↔o
1 ) form a dg–PROP that

is isomorphic to the dg–PROP GrC∗
o(Arc

i↔o
) and we have that the map P∠

is operadic/PROPic. Now the gluing for the correlation functions coincides
with the algebraic one used to define the PROP structure of Proposition
1.20. On the Hochschild side, we simply plug in elements. On the graph
side, we correspondingly plug in angles marked with 1 to angles marked
with 1. The first thing, we have to make sure is that the steps (1) and (2)
in Definition 1.18 are respected on the Hochschild side. By [K1] the double
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twisted case of step (1) corresponds to applying the Connes’ operator B
to both sides, that is applying B2, and hence yields zero. The case of (2)
cannot occur since the arcs are only running from In to Out. Therefore the
gluing actually corresponds to the “twisted” gluing. Lastly, in the gluing for

P∠Arc
i↔o

there are no terms of lower degree, since one never glues separat-
ing to separating angles, since these are labelled by 0 on the Out boundaries
and by 1 on the In boundaries. So the gluing on the Hochschild side corre-
sponds to the gluing in the associated graded for the non–partitioned graphs
before applying P∠.

The last statement follows from Proposition 3.11 �

Remark 5.5. Seemingly related results have been obtained by [TZ] in a
different setting. Their definition of Sullivan Chord diagrams is, however,
different from ours and, as far as we can see, also the definition of the
action also differs. It is therefore not possible to relate their calculations to
the present ones or those of [K3, K2] directly. It would be interesting to
know how if it is possible to compare the two actions despite their different
settings.

Corollary 5.6. The operadic correlation functions descend to give a PROP

action of H∗(Arc
i↔o
1 ) on H∗(A) for a commutative Frobenius algebra A.

5.3. Co-simplicial properties of the action of moduli space.

5.3.1. The operation of LArc
i↔o

. We recall from [K5] that LArc
i↔o

is the subspace of Arc
i↔o

whose underlying arc graphs are not twisted at
the In boundaries. Using the constant marking mk∠ ≡ 1 this space is a
subspace of A∠.

Proposition 5.7. The correlation functions (5.5) are operadic correlation

functions for the PROP C∗
o (LArc

i↔o
), the tensor algebra on the co–cycles

Z(A) of a quasi–Frobenius algebra. That is they give chain level correlators.

Proof. The algebraic operadic composition on the level of partitioned angle
marked arc graphs corresponds to the insertion on the Hom(TZ(A)) side.
The conditions for the twisted gluing needed to make P∠ operadic never
occur. There are never any double twisting and also never any closed loops.

�

5.3.2. The tree level: T ree. As we have previously discussed, one can-
not expect that the cyclic operad will go over to the dg setting. We, however,
have the following interesting observation.

Lemma 5.8. Using the isomorphism C(A,A) ' TA for a Frobenius al-
gebra, the operations defined by the cells of T ree embedded into Arc∠

# by

the constant marking mk∠ ≡ 1 yields the operations t and � of [MS3]. In

particular, the operation of LArc
i↔o

induces the Ξ2 operation of [MS3].
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Figure 8. Examples of the angle marked partitioned fam-
ilies yielding ∪, t, ◦i and �i

Proof. This is a straightforward verification. The relevant arc families are
depicted in Figure 8. �

Remark 5.9. In other words using the language of [MS3], our operations
allow us to recover the operation of the functor operad given by the Kan
extension of the operad of sequences with differentials up to complexity
2. This action corresponds to the genus–0–LTree operad embedded by
the marking mk∠ ≡ 1. In general, even going to the boundary as in the
last paragraph, we cannot expect to get actions of the higher Ξn. This is
commensurate with Deligne’s conjecture. Since in the differential structure
of the sequences of higher complexity, one does not retain the topological
information of the underlying surface when moving to the boundary, one
would, in contrast to the last paragraph, have to identify the surfaces S
again with polygons, which is not true in Arc, but can be done in StArc,
the stabilization of the arc operad.

Two questions arise in this setting. What are the conditions to get the
higher differentials and is there a co-simplicial type of setup for Arc0

# or

Arc0,∠
# . The first question will be addressed in [K6] where we will deal with

the stabilization of the arc operad and its loop structure.

5.4. New Monoidal structures on the Hochschild co-chains. In order
to match the geometric grading by non-partitioning angles on the algebraic
side, we will introduce a new monoidal structure of A–bi–modules, where A
is an associative ring. This structure will allow us to define a natural grading
on a subcomplex of the Hochschild–complex whose associated graded is the
correct receptacle of our correlation functions.

Definition 5.10. Let A be an associative ring and let M and N be A–bi–
modules. We define M �N to be M ⊗A⊗N with the obvious structure of
A–bi–module.

5.4.1. A new co-product. Now if we study the basic operations on the
Hochschild co-chains, which are a generalization of the operations of CS
to the brace sub–operad Brace, we see that they naturally correspond to
slightly different operations induced by the new monoidal structure.
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We will first treat the operad corresponding to CS. For this we notice that
with the monoidal structure � on TA the product is a map � : TA�TA→
TA and dually the co-product is a map ♦ : TA 7→ TA� TA. Here the first
map is given by (a1 ⊗ · · · ⊗ an) ⊗ b⊗ (c1 ⊗ · · · ⊗ cm) 7→ a1 ⊗ · · · ⊗ an ⊗ b⊗
c1 ⊗ · · · ⊗ cm, that is it “raises degree by one”; and the second map is given
by a1 ⊗ · · · ⊗ an 7→

∑
i ±(a1 ⊗ ai−1) ⊗ ai ⊗ (ai+1 ⊗ · · · ⊗ an).

Now the multiplication ∪ in CH∗(A,A) was given by the multiplication
⊗ in the tensor algebra T Ǎ, and the multiplication µ of the algebra A.

(5.9) ∪ : A⊗ Ǎ⊗n ⊗A⊗ Ǎ⊗m ⊗◦σ
→ A⊗A⊗ Ǎ⊗n+m µ

→ A⊗ Ǎ⊗n+m

here σ is just the permutation of the tensor factors and f∪g(a1, . . . an, b1, . . . bm) =
f(a1, . . . , an)g(b1, . . . , bm).

Using the new monoidal structure for the same canonical maps we obtain
a new multiplication

(5.10) t : (A⊗Ǎ⊗n)�(A⊗Ǎ⊗m)
�◦σ
→ A⊗A⊗(Ǎ⊗n�Ǎ⊗m)

µ
→ A⊗Ǎ⊗n+1+m

here σ is again just the permutation of the tensor factors and

(5.11) f t g(a1, . . . an, b, c1, . . . cm) = f(a1, . . . , an)bg(c1, . . . , cm)

This is exactly the operation induced by the co-simplicial structure used
in [MS3], which we recover using the embedding mk∠ ≡ 1.

In the setting of operadic correlation functions, we are using the coproduct
to separate the different tensor factors of Ǎ at the different boundaries before
integrating over them.

This means that in the current setting, we should again use the co-product
♦. Now each time we use the new co-product ♦ this has the effect of in-
serting a tensor factor of A. So that for instance the usual ◦i operations of
CH∗(A,A) which use two co-products become operations �i where

(5.12) �i(f, g)(a1, . . . , an+m+2) =

f(a1, . . . , ai−1, aig(ai+1, . . . aim)ai+m+1, ai+m+2, . . . , an+m+2).

This is again the operation obtained by [MS3].

5.5. Graded correlators. Now in general from the correlators of αp whose
underlying arc graph α is in C∗

o(Arc#(F )) we obtain maps

(5.13) Y (αp) : TA⊗n →
n⊗

i=1

A�ni+1 → k

Notation 5.11. If k = |E(α)|, and p ∈ P (n, k), we will use the following
notation: ♦l : TA → TA�l+1 is the iteration of ♦ given by (♦ ⊗ (idA ⊗
idTA)⊗l) ◦ ♦ ⊗ (idA ⊗ idTA)⊗l−1) ◦ · · · ◦ (♦ ⊗ idA ⊗ idTA) ◦ ♦.
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(5.14) Y (ap) = (
⊗

π∈Comp(αp)

YPoly2
(π) ⊗

k⊗
i=1

ηni−1) ◦ σ ◦

n⊗
i=0

♦ni

where the we think of the complementary regions Comp(α) as a subset of
the complementary regions of αp and YPoly2

are the polygon correlation
functions defined in equation 3.9. Here σ permutes the factors of TA and
the factors of A corresponding to

⊗n
i=1 TA

�ni+1 and we used Notation 3.7
and Notation 5.11.

Definition 5.12. We let MCS(n) ⊂ Hom(TA)(n) be the image of all the
operations of P∠Arc#(n), by considering 0 as “out”.

We get an analogous statement to the Proposition 3.8.

Proposition 5.13. After dualizing to obtain elements in Hom(TA⊗n+1, k)
any element in MCS(n) can be written uniquely as in equation (5.14). Set
l = 1

2

∑
i(ni + 1) − 1 then MCS is graded by l. Moreover the composition

in MCS respects the induced filtration of elements of degree ≤ l. Lastly, the
decomposition identifies MCS with the subspace of Hom(TA) obtained by
dualization for the subspace generated by the coproduct ♦, permutations of
the factors A and TA, and η in

⊕
nHom(TA⊗n+1, k).

Proof. Completely analogous to the proof of 3.8. The first statement is again
clear by the definition of MCS as the image. Likewise, the last statement is
also again straightforward, by arranging the operation in the specified order.

On the other hand it is easy to give the arc graph in PArc0,∠
# (n) by drawing

one arc for each factor of η with the incidence relations given by σ. One
quick way is to dually draw the partitioned ribbon graphs which one vertex
per complementary region. This identifies the two subspaces. In this identi-
fication there is one factor of ♦ for each inner angle which is not partitioning.
The last claim, that the operations respect the filtrations is clear after iden-
tifying k with the dimension of the cell, that is the number of edges minus
one, of the underlying graph for the operation. The mentioned equality fol-
lows from the combinatorial identity |∠inner|+ |∠outer| = |Flags| = 2|edges|
which still holds true. �

Proposition 5.14. For any Frobenius algebra A the correlations functions
of equation (5.14) define operadic correlation functions for GrP∠Arc# with
values in the associated graded GrMCS of MCS ⊂ Hom(TA). By regarding
α→ Y (P∠α) the same statement hold also for GrC∗

o (Arc∠).

Proof. Using the Casimir element to dualize, we only have to show that
the resulting structure is that of an algebra over a cyclic operad. Again
the Sn+1 equivariance is manifest. After dualizing the gluing on the flags
in the operadic composition turns into the identity map id : A → A, so
that indeed the gluing ◦i on P∠Arc# maps to insertion at the i-th place
in Hom(TA). Dealing with the extra steps (1) and (2) in the definition of
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the gluing in P∠Arc#, we see that on the side of Hom(TA) they would not
yield zero. However in GrMCS both these cases are projected out, since
they correspond to operations of lower degree. The same is true for both

GrP∠Arc0,∠
# and GrC∗

oArc
0,∠
# . by definition. �

Defining the action on the Hochschild complex trough the tensor algebra
as in §4.2.2, we obtain:

Theorem 5.15. Let A be a Frobenius algebra and let C(A,A) be the Hochschild
complex of the Frobenius algebra, then the cyclic chain operad of the open
cells of Arc∠ act on C(A,A) via correlation functions. Hence so do all
the suboperads, sub-dioperads and PROPs of [K5] mentioned in the intro-

duction. In particular the graph complex of M 1n+1

g,n+1, the Moduli space of
pointed curves with fixed tangent vectors at each point act on CH(A,A) by

its two embeddings into Arc0,∠
# . Furthermore, on P∠Arc0# the correlation

functions are operadic correlation functions with values in GrCM. More-
over, the operations of the suboperad T reecp correspond to the operations t
and �i induced by Ξ2 as defined in [MS3].

The same formula equation (5.14) also yields operadic correlation func-
tions for the tensor algebra of the co-cycles of a differential algebra (A, d)
over k with a cyclically invariant trace

∫
: A → k which satisfies

∫
da = 0

and whose induced pairing on H = H(A, d) turns H into a Frobenius al-
gebra, i.e. they are chain level operadic correlation functions with values in
GrCM.

Proof. We use operadic correlation function Y above to give maps CH p1 ⊗
· · · ⊗ CHpn+1 ' Ǎ⊗p1+1 ⊗ · · · ⊗ Ǎpn+1 → k. All the necessary properties
follow from Proposition 5.8 and Proposition 5.14. The last statement again
follows from Proposition 3.11. �

5.6. Application to String-topology. LetM be a simply connected com-
pact manifold M and denote the free loop space by LM and let C∗(M) and
C∗(M) be the singular chains and (co)-chains of M . We know from [J, CJ]
that C∗(LM) = C∗(C∗(M,C∗(M)) and H∗(LM) ' H∗(C∗(M), C∗(M)).
Moreover C∗(M) is an associative dg algebra with unit, differential d and
an integral (M was taken to be a compact manifold)

∫
: C∗(M) → k such

that
∫
dω = 0. By using the spectral sequence and taking field coefficients

we obtain operadic correlation functions Y for T ree on E1 = C∗(H,H)
which converges to H∗(C∗(M)) and which induces an operadic action on
the level of (co)-homology. Except for the last remark, this was established
in [K3].

Theorem 5.16. When taking field coefficients, the above action gives a
dg action of a dg–PROP of Sullivan Chord diagrams on the E1–term of a
spectral sequence converging to H∗(LM), that is the homology of the loop
space a simply connected compact manifold and hence induces operations on
this loop space.
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Proof. Recall from [CJ] the isomorphism C∗(LM) = C∗(C∗(M,C∗(M))
comes from dualizing the isomorphism C∗(LM) = C∗(C

∗(M))[J]. Calcu-
lating the latter with the usual bi-complex [L] then we see that the E1-term
is given by CH∗(H

∗(M)) and dualizing the corresponding E1 spectral se-
quence, we get CH∗(H∗(M),H∗(M)), so we get an operation of the E1 level.
Since the operation of T ree was dg, it is compatible with the E1 differential
and hence gives an action on the convergent spectral sequence computing
H∗(LM) and hence on its abutment. �

6. Concluding remarks

In this paper and its first part [K5] we have systematically used the Arc
operad and its cousins to give operations on the Hochschild co-chains of a
Frobenius algebra, by extending and building on our results of [K2, K3]. In
particular, we have given correlation functions for Arc#. In physics terms
this could be expected by using the logic of [KR] as follows. If the closed
string states are thought of as deformations of the open string states and the
open string states are represented by a category of D-branes, then the closed
strings should be elements of the Hochschild co–chains of the endomorphism
algebra of this category. Now thinking on the worldsheet, we can insert
closed string states. That is for a world sheet, we should get a correlator
by inserting, say n closed string states. This is what we have done, if one
simplifies to a space filling D-brane and twists to a TCFT.

For string topology, we have given operations using the spectral sequence,
so the question remains, if we loose any information by passing to the asso-
ciated graded. This is indeed an interesting question. It seems though that
since all the operations of string topology preserve the grading and not just
the filtrations, we have not lost any information. A question that one could
ask is how different possible lifts from the associated graded to the filtered
complex are related. It is conceivable that an interesting “up to homotopy”
structure is lurking which may possibly be related to Frobenius manifold
structures found e.g. in [Me2]. An interesting observation in this respect
is that the operadic correlation functions allow one to lift to at least the
co–cycle level in the tensor algebra setting. Perhaps this gives enough infor-
mation to compare the two sets of operations. It seems that comparing to
[CJ] the operations should even be the same. Although a priori they might
differ, the operation of [CJ] do not only respect the filtration, but they act
with a definite bi–degree in the bi–grading and hence a posteriori seem to
have no lower order contributions in the filtration.

It seems that the combinatorial version of the moduli space of [P2, KLP]
is particularly suited for these applications. One amazing coincidence is that
the Hochschild differential forces one to consider Penner’s compactification.

That is it forces to move from Arci↔o to Arc
i↔o

. Another interesting re-
mark is that the grading by the number of arcs on the Hochschild side is
reminiscent of the operation of open strings rather than closed strings in the
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framework set up in [KP]. Here we have the additional restriction that there
is exactly one arc per window in the terminology of [KP], and the D-brane
label corresponds to dualizing the respective element labelling the marked
point to live in A. This observation could be a “shadow” of the open/closed
duality.

The interplay between algebra and geometry is astonishing, the algebra
side for instance demands the insertion of degeneracies in order to obtain
the BV –operator B. This manifests itself in the restriction to the PROP
Arci↔o and the preservation of the algebraic dg–structure on the geometric

side then forces one to move to the boundary, viz. Arc
i↔o

or the Sullivan–
Chord diagrams.

This leads us to interesting aspect which we have left untreated is the co–
simplicial setup for the Arc complex. That is reverse engineering the Arc–
complex, by starting with a cosimplicial model coming from partitioned arc
graphs. For the subset of LTree this is essentially what has been done in
[MS3]. Hence one could expect that the totalization of the arising complex
operates on the totalization of the relevant Hochschild complex. If this is
possible one would have the hope of “dg compatibility” after passing to the
totalization. One of the difficulties, however, is that there is more than one
“output”, so that one cannot directly use a co–simplicial structure since
this relies on the category of maps, viz. several inputs, but only one output.
In order to accommodate this one either has to break the cyclic setting of
the cyclic operad or one has to construct a suitable category of sets with
correspondences.

Of course a generalization to the A∞ case would be very useful. The
example of polygon correlators for A∞–algebras shows a possible path. The
tree level version will be worked out along these lines in [KSch]. A further
area which deserves study are the implications for the operations on the
cyclic co–chains and the associated S1 equivariant theories, e.g. in the spirit
of [W].

Lastly, we wish to point out that at several points we had to avoid closed
loops. On the topological side this basically comes from the cell decompo-
sition of moduli space, which does not have any graphs with closed loops.
On the Hochschild side this was not as natural. We avoided the occurrence,
by either restricting the type of graph or passing to the associated graded.
In the setting of partially measured foliations however these closed leaves
are very natural. So one cannot help but wonder if there is yet another
generalization of this whole story to foliations as outlined in the Appendix
of [KP].
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