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One of the fundamental problems in the study of a concrete (closed) subscheme of a
given (smooth) scheme X is the computation of its fundamental dass in terms of given
generators of the Chow ring of X.

The decisive role in the method described in the present paper plays the diagonal of the
ambient scheme 01', more prccisely, its class in the corresponding Chow group of a fibre
product. 2 As a matter offact the dass of a diagonal has already been used in intersection
theory to the computation of fundamental classes ([F2]). In the situation of loc.cit., there
is a vector bundle on the product of Flag bundles endowed with a section vanishing
precisely on the diagonal. The top Chern class of this bundle is represented by the so
called "top double Schubert polynomial" in the Chern roots of tautological vcctor bundles
on thc two Flag bundles. By applying divided differences to this polynomial, the author
gets in loc.cit. polynomials representing the dasses of other (Le. higher dimensional)
degeneracy loci in the product of Rag bundles. (This generalizes a dassical procedure
discovered in the beginning of the seventies independcntly by Bernstein-Gelfand-Gelfand
and Demazure: starting from the dass of the point and applying divided differences oue
gets the dass of a curve, then - the dass of a surface etc.)

The procedure given below is of different nature. By using a desingularization of the
subscheme whose class we want to cornpute and the diagonal of the ambient scheme,
we replace the original problcrll by the one of computing thc image of the class of the
diagonal under an appropriate Gysin map. Moreover, since not always the diagonal is
represented as the scheme of zeros of a section of a vector bundle (this seems to happen,
e.g., for Flag bundles for other dassical groups than SLn ), we give a recipe allowing to
calculate the dass of the diagonal of the fihre product with the help of Gysin maps.

Wc illustrate a uselfulness of thc latter result on the example of Lagrangian and
orthogonal Grassmannian and Flag bundlesj the so obtained formulas are erucial für our
study of the classes of degeneracy loei in [P-R] .

Thc results of this preprint will appeal' as parts of two separate publications. Proposi
tion 1 and Theorem 2 will be published in Section 5 of the paper: P. Pragacz, Symmetrie
polynornials and divided differences in formulas of interseetion theorYj to appear in "Pa
rameter Spaces", Banach Center Publications 36 (1996). Theorems 6 and 8 will be

1The results of this paper havc been obtained by the author during his recent stay at the Max
Planck-Institut für Mathematik. The author gratefully thanks the MPIf1vI for a gencrous hospitality.

2 A discovery of this method is inspired by the construetion used in thc proof of thc main formula in
thc paper by G. Kcmpf and D. Laksov {K-LJ.
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published in the paper: P. Pr~gacz and J. Ratajski, Fonnulas for Lagrangian and or
thogonal degeneracy locij the Q - polynomials approachj to appear in Compositio Math.
(1996).

T~e author thanks A. Lascoux and J.-Y. Thibon for valuable COlnments about Q'
and Q-polynomials.

We start wi th some rccollection on intersection theory (see [F 1] for details). Recall
that if D c X is a (closed) subscheme then [D] E A* (X) is thc class of the fundamental
cycle associated with D, i.e., if D = D I U ... U D n is a minimal decomposition into
irreducible cOlnponents then

where OD,Di is the local ring of D along D j • Recall also that if f : X --t Y is a proper
Inorphism then it induces a morphism of abelian groups f* : A* (X) -t A* (Y) such
that f* [V] = deg(fl v)[f(V)] if dirn f(V) = dirn V and 0 - otherwise. In particular,
if f establishes abirational isomorphism of V and f(V) then f* [11] = [f(V)]. If X
and Y are nonsingular then a morphism f : X -t Y induces a ring homomorphism
f* : A*(Y) -t A*(X).

Let S be a smooth scheme (over a field) and let 7f : X -t S be a SIllooth morphislll of
schemes. Suppose that D C X is a (c1osed) subscheme whose class is to be computed.
Let P : Z --t S be a proper smooth lllorphism and 0' : Z --+ D - a proper birational map
of S-schemes. Consider a commutative diagram:

D '-t

x xsZ

X

(J'

f--- Z
--+

P2

Here PI and P2 are the projections, thc section a (of P2) cquals i d x S 0' and 6.. is the
diagonal in the fibre product X X S X.

Proposition 1. Suppose that the dass 0/ the diagonal 6.. in A*(X Xs X) is [6..] =
Lpr;(xd . pr~(yJ) where pri : X Xs X --+ X are the projections and Xi,Yi E A*(X).
Then, in A*(X),

[D] = LXi' (7f* P* O'*(yä)).
i

Proof. By the assumption [D] = O'*([Z]). Since 0' = PI oa, wc have Q*([Z]) = (PI )*[a(Z)].
Now, the key observation is that, in the schelllc-theoretic sense, oue has the equality
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a(Z) = (1 x a)-l(ß). Since ß ~ X is smooth, this implies [a(Z)] = (1 x 0:)* ([ß]) (see
Lemma 9 in [K-L]). We then have:

[D] = (Pl)*([a(Z)]) = (Pl)*((1 x 0:)*([6]))

= (Pl)*((l x o:)*(~pr;(xd' pr;(yd))
I

= (Pl)* ((~pi (xd . p~(o:*(Yd) )
I

= LXi' ((pd* p~ a*(Yd)
i

= LXi' Crr* P* a*(Yd),
I

where the last equality follows from the above fibre product diagraul and [F1, Proposition
1.7]. 0

The next result shows how one can compute the fundamental dass of the diagonal
[6] E A*(X Xs X).

TheorelD 2. Let S be as above and 1r : X ---10. S be a proper smooth morphism such that
1r* makes A *(X) a free A*(S)-mooule; A*(X) = EBoEAA*(S)'aa, where a o E A na (X) and
A *(X) = EBßEAA* (S) . bß, where bß E A m,8 (X). Suppose that for any a there is a unique
ß = a' such that nn+mof = dim X -dim Sand 1r*(aa·ba') "# 0 (assume 1r*(aa ·bal ) = 1).
MoreoverJ denoting by pr i : X x s X ---10. X (i = 1, 2) the projections, suppos e that the
homomorphism A*(X) <8) A.(S) A*(X) ---t A*(X X s X)J defined by 9 &; h Ho pr;(g)' pr2(h),
is an isomorphism. Then

(i) The dass of the diagonal ~ in X X s X equals [6] = 2:o,ß daßaa &; bß, where,
for any 0:, ßJ daß = Paß( {1r. (aK. b,\)}) for some polynomial Paß E Z[{xK'\}]'

(ii) The following conditions are cquivalent:

a) One has 1r*(aa . bß
, ) = oa,ß, the Kronecker delta.

b) The dass of the diagonal ~ C X x s X equals [6] = 2:0 aa (9 bai.

Proof. Denote by 8 : X ---t X X s X, 8' : X ---10. X X K X (the Cartesian product) the
diagonal elnbeddings and by , the lnorphism 1r X s 1r : X X s X ---t S. For g, h E A*(X)
we have

1r*(g. h) = 1r. ((8')*(g X h)) = 1r* (o*(g 0 h)) = ,.0* (o*(g &; h)) =",* ([~]. (g 0 h)),

where all the equalities follow from the theory in [Fl, Chap.8], taking into account, for
the second one, the commutative diagram

X xsX

X

XxX
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and, for the third one, the equality 1r = f 0 8. Hence, writing [~] = I: dJJlJbJJ 0 alJ , we
get

(*)
1r*(aa' bp) = f*([~]' (aa 0 bß) = (1r* 0 1r*)(CL dJJlJbJJ (9 alJ ) . (aa ® bp ))

=L dJJIJ 1r*(b,t . an) . 1r*(a lJ . bp).
JJ,IJ

(**)

(i) By the assumption and (*) we get

daß = 1r*(ba, . aß') - L dJJIJ 1r*(aJJ · ba,) . 1r* (b lJ . aß')'
JJ=f;a,lJ=f;p

where the degree of dJtlJ E A * (S) such that 1r* (a,t' ba,) . 1r* (b lJ . aß') #- 0 and IJ #- 0: 01'

V #- ß, is smaller than the degree of daß. The assertion now follows by induction on the
degree of daß'

(ii) a) :::} b) : By virtue of a), Equation (**) now reads 1r*(ba,· ap') = daß and
illllllediately implies b).

b) =} a) : Withont loss of generality we cau assume that A is endowed with a linear
ordering -< compatible with codirnension, i.e. n al < nn2 =} 0:1 -< 0:2, mpl < mp2 :::}

ßl -< ß2 and such that 0:1 -< 0:2 =} o:~ -< o:~. The rows and columns of the matrices below
are ordered using the ordering -<. \;Yri te x Q ß = 1r* (an . bP). By virtue of b), Equation
(*) gives us the following system of equations:

xaß = L:'t xo/tX Jt 'ß,

where o:,ß E A. Note that the antidiagonal of the matrix M := (xoP)oIßEA is indexed
by {(o:,o:')lo: E A}. The assumption implies that this antidiagonal consists of units.
:Nloreover, because of dimension reasons and the assumption again, we know that the
entries above the diagonal are zero. Let P be the permutation matrix corresponding to
the bijection 0: f---t a' of A. The above system of equations is rewritten in the matrix
form as:

lvIP = lvIP· MP.

Then M P as a (lower) triangular matrix with the units on the diagonal, must be the
identity matrix. Hence M = p-1 and this implies a). D

Relnark 3. A standard situation when the theorem can be applied is when 1r : X -+ S
is a Zariski locally trivial fibration and {an}, {bp} restriet to bases of the Chow ring of
a fiber F which are dual under the Poincare duality map : (a, b) f---t JFa' b.

Exanlple 4. a) Let 1r : Q = eq(E) -+ X be the Grassmannian bundle parametrizing
q-quotients of of a vector bundle E of rank n on X. Write r = n - q. Let

o-+ R -+ Ea -+ Q -+ 0

be the tautological exact sequence of vector bundles on 9. It is easy to see the diagonal in
91 Xx ~h , where Ql = (h = Q, is given (in the scheme-theoretic sense) by the vanishing
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of the entries of a matrix of the homomorphism R'h --+ E01 = E g'2 --+ Qg';}.. Hence, by
the theorem anel a formula for the top Chern dass of the tensor produet (see [L)), we
have that 1r* (s/(Q). sJ(RV

)) = (h,l for partitions I, J C (r)q 3, where J is the partition
whose Ferrers' diagram complements the one of J'" in the reetangle (q)r.4 Equivalently,
1r*(s [(Q) . S( r)q / J ( - R)) = 0I,J. This is coherent with a well-known deseription of the
Gysin map associated with 1r.

b) Let now T : Fl(E) --+ X be the Flag bundle parametrizing the complete flags of
(sub)bundles of E. In a similar way, using the calculation of the dass of the diagonal
from (F2, Proposition 7.5] via the top ehern dass of a suitable vector bundle, one reproves
the following equality from [L-8]. For permutations J-l, v E Sn,

T* (6 1l (A) .6vw ( -an, -an-I, ... ,-al)) = OJi,V'

where 6 1l (A) is the Schubert polynomial (see loc.cit. where this polynomial is denoted
by X J.l ( A)) associated with the permutation J-l and the sequence of the Chern roots
A = (al, ... ,an) of E.

Vve pass now to the situation where the diagonal seems not to be the zero subscheme
of a section of a vector bundlej we will investigate Lagrangian Grassmannian- and Flag
bundles paralnetrizing respectively top clilnensional Lagrangian subspaces and flags of
Lagrangian subbundles of suceessive ranks 1,2, ... ,n of a veetor bundle V of rank 2n
endowed with a nondegenerate symplectic form. For what eoneerns the notation and
elementary properties of these sehernes, we refer the reader to (P-R].

We need also from loc.eit. the Q-polynomials - a falnily of sYlnlnetric polynomials
invented and studied in loe.cit.. Let us recall briefly their 2efinition and give a Pieri
type theorem for them. For lnore about the properties of Q-polynomials, we refer the
reader to loc.cit ..

Let X = (Xl, XZ, ... ) be a sequenee of independent variables. Denote by X n the sub
sequenee (Xl,'" ,Xn). \Ve set Qi(Xn) to be the i-th elementary symmetrie polynomial
ei("Yn ) in X n . Given two nonnegative integers i,j we define

J

Qi,j(Xn) = Qi(Xn)Qj(Xn) + 22:(-l)PQi+p(Xn)Qj-p(Xn ).

p=l

Finally, for any (i.e. not necessary strict) partition I = (i l ;;::: i 2 ;;::: ••• ;;::: ik ;;::: 0),
wi th cven k (by put ting i k = 0 if necessary), we set Q/(Xn) to be the Pfaffian of the
antisyn1metric lnatrix with Qip,iq(Xn ) on the (p, q)-plaee, 1 ~ P < q ~ k.

Invoking the raising operators Rij ([NIcd, 1.1]) the above definition is rewritten

3 All the notions (as weIl as thc notation) concerning partitions follow here (P-RJ.
4 G iven a vector hundle Fand a partition I = (il ;;::: ... ;;::: i k ;;::: 0), wc denote by 81 (F) the Schur

polynomial equni 1,0 Det [8 i _ p+ q (F)] 1 & & k I Where si (F) is thc i- th com pletc symmetrie polynomial
P '-':;p,q .....

applied 1,0 the ehern roots of F.
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where el(Xn ) is the produet of the elementary symmetrie polynomials in X n associated
wi th the parts of I.

Lelnnla 5. Let I = (i 1 , ..• , i k ) be a strict partition of length k. Then

whcre the sum is over all partitions (i. e. not necessary strict) J :> I s7J,ch that IJI = 1II+r
and J/ I is a horizontal strip. Moreover, m(/, r; J) = card{l ::; p ::; kl jp+1 < i p < jp}
orJ equiualently, it is cxpressed as the number of connected components 0/ the strip J / I
not meeting the first column.

Proof. Let after [L-L-T], Q](Xn ; q) denote the Hall-Littlewood polynornial QI(Y; q) (see
[Mcd, In]) where the alphabet Y is equal to X n /(1 - q) (in the sense of ""-rings). Using
raising operators Rij ([Mcd, LI]), we have

Q](Xn ; q) = rr (1 - qRij )-1 SI(Xn ).

i<j

Specialize q = -1 and invoke the weIl known Jacobi-Trudi fonnula (see, e.g., [Med, 1.3]):

SJ(Xn ) = rr (1 - Rij )hI(Xn ),

i<j

where h1(Xn ) is the product of complete homogeneous polynomials in X n associated
with the parts of I. We have

f ) rr 1 - R ij ( )QI(Xn ;-1 = R hIXn .
1 + .""<. 1)1 )

Therefore, denoting by w the Young duality-involution we get QI(Xn) = w (Q](Xn ; -1)).
The required assertion now follows by an appropriate specialization of the Pieri-type

formula for Hall-Littlewood polynornials ([Mcd, 111.3.(3.8)]). 0

We now state the following "orthogonality" theorern. Given a vector bundle E and a
partition I, we clenote by QIE the polynomial QJ(Xn ) with ei(Xn ) replaced by ci(E).

Theorem 6. For 7r : LGnV -+ X and any strict partitions I, J (C Pn)J

Here J R is the tautological (s7tb)bundle on LGn V and 0", is the Kronecker delta.

Proof. Let X n = (Xl, ... , Xn ) be a sequence ofvariables. We know, after [P-R, Proposition
5.8]5 that 1r* is induced by the operator "l = 8Cn,n-I, ... ,1) : Z[Xn ] -+ Z[Xn ].

5 A correction: the ehern roots ql, . .. ,qn of nV should be replaced, in the formula of the proposition,
by the ones of R.
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Vve show that the operator 'V satisfies the following formula for any strict partitions
1, J (C Pn):

'V(QI(X~). QJ(X~)) = OI,Pn,J.

Observe that for the degree reasons 'V(QI' QJ) = 0 for 111 + lJI < n(n + 1)/2 (here and

in the rest of the proof, QJ = QJ(X:i )). Also, because of the universality of the formula
for 1T* (see [loc.cit., Theorem 5.10]), we know by [loc.cit., Lemma 2.3] and Theorem 2
that for 111 + IJI = n(n + 1)/2, 'V(Q]. QJ) = 0 unlcss J = pn ,,1, when \J(QI' QJ) = l.

So it reluains to show that for 111 + IJI > n(n + 1) /2, \J (Q I . QJ) = O. The proof is by
double induction whose first parameter is l(l) and the second one is i l where l = 1(1)
(i.e. the shortest part of 1).

Assullle first that 1 = (i) and use a Pieri-type formula from Lemma 5. A general
partition J' indexing the R.H.S of the formula in Lemma 5 sterns from J by adding a
horizontal strip of length i. Since IJI + i > n(n + 1)/2, thc only possibility for getting

'V (QJl) i- 0 is the following one (use [loc.cit., Theorem 5.10]): there exist two equal

parts P in J' such that after factorizing Qp,p from QJ' ([loc.cit., Proposition 4.3]) we

obtain QPn (recall that Qp,p is a scalar w.r.t. \J). But l(JI) ::; l(J) + 1 ::; n + 1, so after
factorization the length of the so-obtained partition is not greater than n - 1, Le. this
partition is not pn.

To perform the induction step write l' = (iI, ... , i l - 1 ) and T = i l where we assume
that I = l(l) 2: 2. Using the Pieri-type fonllula again, we have:

QrQ J = (QI,·Qr ).(jJ-(L 2m(I'17';M)QM ).QJ = QI' ·(QJ·Qr)-(L 2m (I',r;M)QM ).QJ

M M

=Ql' . (2: 2m (J1r;N)QN) - (2: 2m (l',r;M)QA1) . QJ.

N M

Here !vI runs over all partitions different from 1 which contain l' with A;J/ l' being
a horizontal strip of length T. Observe that either l(M) < 1(1) 01' l(M) = 1(1) but
ml < i l = r, so we can apply the induction assumption to M. The partitions M and N
can have equal parts; if so, using the factorization property, we write:

QM = Qpl,Pl ..... Qp"p, . QM1 and QN = Qql,ql ..... Qqt ,qt . ONl ,

where MI, NI are strict partitions and PI > ... > P!ll qI > ... > qt are positive integers.
Using the induction assuluption 01' because of the degree rcasons we see that the only
possibility to get in the first SUfi a summand (corresponding to N) which is not anihilated
by \J is: after adding to J a horizontal strip of length l' and factorizing all pairs of equal
rows, we obtain the partition NI = pn ,,1' . Sirnilarly, the only possibility to get in the
second sum a sluumand (corresponding to M) which is not anihilated by \J is: after
adding to l' a horizontal strip of length rand factorizing all pairs of equal rows, we
obtain the partition MI = pn " J.

Thcrefore to conclude the proof it is sufficient to define, for a fixed pair of strict
partitions 1', J and fixed positive integers T and p,,: Pl > ... > Ps, a bijection between
the sets of partitions:
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N = { lV IN:> J; N / J is a horizontal strip of length r; N has exactly sparts occuring
bvice, equal to p.; after subtraction from N the parts p. one obtains pn '" I'}

and

M = { MIM:> I'; M / I' is a horizontal strip of length r; M has exactly sparts occuring
twice, equal to p.; after subtraction from M the parts p. oue obtains pn '" J}

which preservcs the cardinality of the connected components of the strip, not lneeting
thc first column (comparc the Pieri-typc formula uscd).

In order to define the bijection q. : Ar --+ M we first invoke the diagrarnatic presen
tation of the Pn-complementary partition from [P]: for exeunple n = 9, I = (9,6,3,2),
P9 '" I = (8, 7, 5, 4, 1),

Fig.l

•
• •

• • •
• • • •

o • • • •

o 0 0 0 • •

o 0 0 0 0 • •

000 0 0 0 0 •

000 0 0 0 0 0 •

(the collection of "." givcs the shifted diagram of I (appropriately placed); the collection
of "0" gives the shifted diagram of P9 ......... I). The map q. : N --+ M is elefined as
follows. Having an element N E N, i.e. a strict partition J with an aclded horizontal
strip of length r, e.g. J = (9,6,3,2), r = 5, N = (9,8,3,3,2), s = 1, p. : 3 (and
I' = (7,6,5,4,3,1) ):

Fig.2

®®

• • ®
• • •
• ••••• ® ®

• • • • • • • • •
we remove thc s bottom rows in all pairs of equal rows (in the example, the thirel row)
anel place the shift of the so-obtained diagram as in Fig.l to get the eliagram N, say. In
our cxample we get the diagrarn in Fig.3

Fig.3

•
• •

• • •
® • • •

® ® • •
• •
• •
® •
@ •

Fig.4

•
• •

• • •
® •••

o @ 0 ••
o 0 0 0 • •

00000 • •

0000000·

ooooooo®.
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(We know, by the definition of N, that if we would also remove from N the remaining
parts of lengths p. then the resulting partition will bc Pn '- 1'. We preserve these parts,
however, because we need them for the construction of ~(N).) Then we construct the
complement of thc so-obtained diagram in pn. In our example, using "0" to visualize
the complementary cliagram we get the diagram in Fig.4. By reshifting the so-obtained
cornplementary diagram plus the same horizontal strip (now added to this complernentary
diagram) - call it ~(N)o, and inserting 8 rows of lengths p., we get the needed partition
~(N). Observe that :

1) Since at the last stage we have inserted rows of lengths p., ~(N) consists of the
diagram l' with an added horizontal strip of length r.

2) ~(N) has exactly 8 parts occuring twice, equal to p. (apart fronl the parts inserted at
the last stage, the remaining 8 parts are the rows whose the rightmost boxes are precisely
the lowest boxes of the rows of length p. in N).
3) After removing from ~(N) the 28 parts equal to p., we get pn '- J (this is the same
as the removing from 4t(N)o the 8 parts equal to p. - hut ~(N)o lninus 8 parts equal to
p. complements precisely J in Pn)'

Therefore ~ (N) E M. Also, the cardinali ty of thc connccted corllponcnts of the strip
not meeting the first column is preserved by ~. In our exarnple, we obtain

®
o ® ®
000

o 0 0 0

Fig.5 0 0 0 0 0

oooooo®
ooooooo@

1.e. ~(N) = (8, 7, 5,4,3,3,1).

Let HS now define, by reversing thc roles of J and 1', the rnap W : M -+ Ar. If wc
define, by a complete analogy to the above, the partitions Ai and w(M)o, then we have

N = w(M)o and ~(lV)o = Mj and clearly W0 ~ = idN and ~ 0 W= idM .

This proves thc orthogonality theorem. 0

The theorem, combined with Theorem 2, gives a transparent proof of the key Propo
sition 2.5 in (P-RJ.

Corollary 7. Let T : LFl(V) --+ X be the flag bundle parametrizing flags 0/ isotropie
subbundles 0/ V 0/ suecessiue ranks 1,2, ... ,n. Let A = (al, ... ,an) be the sequence 0/
the ehern roots 0/ the tautologieal flag on LFl(V). Then /or strict partitions I, J C pn
and /-l, v E Sn} one ha8

Proof. The assertion follows from Theorem 6, thc following factorization:

T: LFl(V)~ LGnV~ X,
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where w is the Flag bundle Fl(R) -+ LGn V parametrizing complete flags of the tauto
logical bundle R on LGn 11 , and Example 4 b). 0

Similar results (and thcir proofs) hold for vcctor bundles endowed with orthogonal
forms. Set P1(E) := 2-1(J)QI(E) for a vector bundle E and a partition I. Denote by
7r : OGn V -+ X (resp. OG~V -+ X and OG~V -+ X) the Grasslnannians parametrizing
isotropie subbundles of rank n of a bundle V of rank 212 + 1 (resp. 2n) endowed with a
nondegenerate orthogonal form. 6 One has the following result.

Theorenl 8. (i) Por 7r : OGn V -+ X (dirnV = 2n + 1) and any strict partitions
I, J (C Pn),

(ii) For 7r : OG~V -+ X (resp. OG~V -+ X), a1ld any stnct partitiolls I, J (C Pn-l),

Here, R is the tautological (sub)bundle on the corresponding orthogonal Grassmannian
and J.,. is the Kronecker delta.

An obvious analog of Corollary 7 is left, in this case, to the interested reader.
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