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hence the lower row of (5.16.1) is exact.

It i8 clear from the diagram that the composition

1
B(K,G) — ® H'(K_,G) — (Mp),

is zero. Now let £, = € x £ €®H(K_,G), where ¢_ € T T B'(K_,G),
' ]

€ QrHl(Kv,G) - Suppose that u(£,) =0.Let h, betheimageof {, in
f
® Hallb(Kv’G) - Then the image of h, in (Ml‘)t org 18 zero, hence h, is the image of

some element h € Hib(K,G) . Consider the element
hx £ €Hy (K,G)x T THYK ,G).Itis clear that h x £_ is contained in the fiber
[14)

product over T | Hzlxb(K +G) - By Theorem 5.12 h x §, comes from HI(K,G) . The
@

theorem is proved.
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o
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f
1 . s
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Introduction

Let G be a connected reductive group over a field K of characteristic 0. The aim

of this paper is to "abelianize" the first Galois cohomology set lH1(K,G).

Let G denote the derived group of G.Let G® denote the universal covering of
the semisimple group GBS the group G5 is simply connected. Consider the canonical

homomorphism

p:Gsc——-’Gss—-oG .
Deligne ([De], 2.0.2) noticed that the quotient set p(G*(K))\G(K) has a natural
structure of an abelian group. We regard this abelian group as the abelianized

0-dimensional €alois cohomology HO(K,G)abld of G.

Inspired by the results of Kottwitz [Ko2], [Ko3], we try to abelianize the

1—dimensional Galois cohomology. Consider the abelianized cohomology set



B'(k,G)*PM = o, Bk, 6%\ B (K,G) .

This expression makes sense: we use twisting to define a certain equivalence relation on
HI(K,G). We will show that HI(K,G)abld can be canonically embedded into some
abelian group H;b(K,G), the first abeltian Galois cohomology group.
Moreover, if K is a local field or a number field, then this embedding turns out to be a
bijection; thus the set H'(K,G)*"' has in this case a natural structure of an abelian
group. Following Kottwitz [Ko2], [Ko3], we compute this abelian group in the local case.
We use these results to investigate and in a sense compute Hl(K,G) when K is a number

field.

Let K be an algebraic closure of K. We write G for Gy In Section 1 we define
the algebraic fundamental group Tl(G) as follows. Let T C G be a maximal
torus defined over K. We write T(sc) for p_l(T) and set

xl(c.) = x*(T)/p*X*(T(SC))

where X denotes the cocharacter group. The group rl(G) is a finitely generated
abelian group endowed with a Gal(K/K)—action. If K = € then ,(G) is just the usual
topological fundamental group rioP(G(C)). For any K our algebraic fundamental group
is connected with the invariant Z(é) of Kottwitz [Ko2], where G is a connected dual
Langlands group for G and Z(é) is its center. Namely, xl(G) is the character group of
the C—group Z(é).

In Section 2 we define the abelian falois cohomology groups



B (K,0) =HEKI®) 1) (2-1).

Here li[l denotes the Galois hypercohomology of the complex

-1 0
0—T (Bc)——DT——DO

of tori, where —1 and 0 above the letters denote the degrees. We show that the abelian

groups H;b(K,G) depend only on =,(G). A short exact sequence
1——}G1————bG2——bG3——Dl
of (connected) reductive K—groups gives rise to the short exact sequence
0— 7,(G)) — (Gy) — rl(Ga) — 0
and the long cohomology exact sequence
0 — H_L(K,G,) — H_(K,G,) — H_+(K,G,) — HY, (K,G,) —
ab\" 1 ab\ 2 ab\"™ ™3 ab\™ 1

Thus «, isin a sense an exact functor and (H;b)i>—1 is in a sense a cohomological

functor.

In the third section we construct the abelianization map

1_ ., 1. 41 1
ab = abg : H(K,G) — Hy, (K,G)



with kernel p*Hl(K,Gsc). This map defines an embedding of the abelianized Galois
cohomology E[l(K,G)abld into H;b(K,G). Observe that in the case of a semisimple group
G we have

G = G5¢/ker Ps I':I1 K,G) = H2 K ker p
ab

(where ker p is a finite abelian group), and abl is in this case the connecting
homomorphism Hl(K,G) — HZ(K,ker p). We generalize the construction of Kottwitz
[Ko3], who constructs ab! in the case of a local field K. We also construct a

homomorphism
0. 0
ab" : G(K) — Hab(K’G)

with kernel p(G¥°(K)); in the case of a local field K this map was constructed by
Langlands [Lal] (see also [Bo], 10.2).

In Section 4 we compute explicitely the groups H;b(K,G) for a local field K in
terms of x,(G). We write ' for Gal(K/K) and M for x,(G). Then

FrM) if K=R
1
B, (K,G)=

(MF)tors if K is non—archimedian,

where (MI‘)tors denotes the torsion subgroup of the group of coinvariants M. We then
write an exact sequence connecting the groups H;b(K,G) (i 21) for a number field K

and for its completions K. In particular, we compute H;b(K,G) for i 2 3 and compute
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it in a sense for i = 2. For i =1 we compute the group
1 — 1 1
L] b(K,G) = ker[Hab(K,G) — T ] Hab(Kv’G)]
v

in terms of tl(G). All these results are of an abelian nature and generalize the
Tate—Nakayama duality theory for tori. The results concerning the case i =1 are
essentially due to Kottwitz.

- In Section 5 we prove that if K is a local or a number field, then the abelianization
map abl ig surjective. For local fields this is very close to a result of Kottwitz [Ko3]. This
surjectivity means, in particular, that for a local non—archimedian field K

1
H'(K,G) ~ (Ml")tors

([Ko2], 6.4.1). In this case abcl; is not only surjective but also injective.

We use the surjectivity of a.b1 over local and number fields to investigate the usual,
non—abelian Galois cohomology Hl(K,G), where K is a number field.

Theorem 5.11. For any finite subset = C MI(K,G) there exists a K—torus
. = gl
j: TS G such that =Cj H(K,T)

In other words, for a number field K all the Hl(K,G) comes from tori.

Further, we compute Hl(K,G) in terms Hib(K,G) and the real cohomology:



1 . 1 1
Theorem 5.12. H (K,G) is the fiber product of Hab(K'G) and ]:[H (K,.G)

over | | H;b(Kv,G),where o denotes the set of infinite places of K.
®

This result generalizes a theorem of the beautiful paper [Sa] of Sansuc (and is inspired by

Sansuc’s result).
From Theorem 5.12 we obtain

Theorem 5.13. The restriction of abl to the Shafarevich—Tate kernel defines a

bijection | |]%(K,6) — ||| (K,G).

Thus we see again after Voskresenskii [Vo].. , Sansuc [Sa] and Kottwitz [Ko2), that
1L1(G) has a natural structure of an abeli;.n group. Combining this bijection with the
results of Section 4 we can compute | | |(G) in terms of ,(G). The obtained formula is
equivalent to a formula of Kottwitz {Ko2).

Remark 0.1. The results of this paper can be easily adapted to the case of any, not
necessarily reductive, connected K—group. Let G" denote the unipotent radical of G. We
set G4 = G/G"; this is a reductive group. We set

tl(c-) = Tl(Gred)r Hib(K:G) = Hib(K:Gred)

and so on. With this notation almost all the results of the paper remain true for all

connected K—groups.



Remark 0.2. In the case of a semisimple group G all the results of this paper were
already known (cf. [Sa]). On the other hand for local fields our results are just a more
functorial reformulation of results of Kottwitz [Ko2], [Ko3]. The contribution of the present
paper is that we construct the abelian Galois cohomology and the abelianisation map for
any reductive group over an ari bt trary field of characteristic 0. This enables us to
obtain new results concerning usual, non—abelian Galois cohomology of reductive groups

over number fields.

Remark 0.3. Most of the results of this paper are relative, they describe the Galois
cohomology of G modulo the Galois cohomology of G®¢. Thus our computations in
Section 5 of Galois cohomology of reductive groups over number fields are based on the
fundamental results on Galois cohomology of semisimple groups due to Kneser [Knl1), [Kn2]

and Harder [Hal], [Ha2].

Remark 0.4. Our algebraic fundamental group rl(G), abelianization map abé and
80 on, are functorial with respect to any homomorphism ¢ : G — G’ of reductive
K—groups. Kottwitz [Ko2], [Ko3] computes everything in terms of the center Z(é) ofa
connected Langlands group é The group é is functorial only with respect to normal
homomorphisms ¢ : G — G’,i.e. such that p(G) is normal in G. Therefore the
corresponding groups and maps of the papers [Ko2] and [Ko3] are functorial only with
respect to normal homomorphisms; 8o his results look less functorial than ours. It should
however be mentioned that the methods and constructions of [Ko2] and [Ko3] are
completely functorial. It suffices just to substitute Hom( r(C),C*) for Z(é) to make all
the statements and proofs of the corresponding results of Kottwitz completely functorial

with respect to all homomorphisms G — G’.
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Notation

K is a field of characteristic 0, K is an algebraic closure of K . We write T for
Gal(K/K) . For an algebraic variety X over K we write X for Xg .

When K is a number field, let ¥'= ¥K), ¥, and ¥} denote the set of all
places, the set of infinite (archimedian) places and the set of finite (non—archimedian)
places of K, respectively. We often write just o for Y, If ve ¥, welet K denote
the completion of K at v.

We denote by 4, the group or roots of unity of order dividing n , and set

a

I(1) = limp_ .

—_—

G is a reductive K—group. By a reductive K—group we always mean a connected
reductive K—group. Let G® denote the derived group of G . We set GT = ¢ / G% . we
denote by Z(G) the center of G and set gdd = G/Z(G) . Let G® denote the universal

covering of the semisimple group G®® . We have the canonical homomorphism
p:G¥ —G6¥ 4G .

Let S be a K—group of multiplicative type, e.g. a torus. We let X*(S) denote the
character group Hom(S,Gm) and let X4(S) denote the cocharacter group Hom(Gm,S) ,
where G_ is the multiplicative group. We usually consider X*(S) and X(5) .

For a reductive K—group G and a split maximal K—torus T welet R(G,T) denote
the root system of G with respect to T . We denote by R' (G,T) the system of coroots.
By definition R(G,T) C X (T) and R'(G,T) C X4(T).

Let L be a torsion free abelian group. We write L' for Hom(L,Z) .

Let M be an abelian group. We let M denote the torsion subgroup of M . We

tors

set M, = M/Mt org + this i8 the maximal torsion free quotient of M .
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Let A beagroup and M a A—module. We say that M is a finitely generated (resp.
torsion free) A—module if M is finitely generated (resp. torsion free) as an abelian group.
Let M be a finitely generated A—module. By a short torsion free resolution of M we

mean an exact sequence

- M -0

of finitely generated A-~modules such that Ll and L0 are torsion free. We write L" for

1——1L0—-bO.

the complex 0 — L™

Let M be a A—module. We write MA and M A to denote the subgroup of invari-
ants and the group of coinvariants of M , respectively. We often consider the functors
(Mp)iorg and (My)ys- |

Let G be an algebraic group. As usual, we write H'(K,G) to denote the Galois
cohomology Hi(I‘,G(K)) (where T = Gal(K/K) ). We denote by Zi(K,G) the set of
i—cocycles and by Bi(K,G) the set of i—cobords.

For any T—module M we write H\(K,M) for H\(T',M) . Similarly if F/K isa
Galois extension with the Galois group A and if M is a A—module, we write Hi(F/ K,M)
for Hi(A,M) and f[i(F/ K,M) for ]::{i(A,M) , where H' are the Tate cohomology groups.

If K is a number field, we use the the notation loc to denote the localization maps

loc, : H'(K,G) — H'(K_,G)

loc_:HY(K,G) — T T HYK_G)
® vE Vm v

and so on.



-11 —

1. The algebraic fundamental group of a reductive group

In this section we define the algebraic fundamental group x,(Gy) of a reductive
group G defined over a field K of characteristic 0.

1.1. Let G be a (connected) reductive K—group. First suppose that G is split.
Choose a maximal split torus T C G . Consider the canonical morphism p : ¢ G,

We write T(¢) for p~}(T) C G*°. Set
n(GT) = Xu(T)/pXu(T0) .
It is a finitely generated abelian group.

Lemma 1.2. For two split maximal tori T,T” C G, the groups 7,(G,T) and
7o(G,T") are canonically isomorphic.

Proof. Choose an element g € G(K) such that T’ = ng_1 . The isomorphism
int(g) : T— T’ induces an isomorphism gy : 7,(G,T) — 7,(G,T”) . We will show
that gy does not depend on the choice of g .

Let N denote the normalizer of T in G . It suffices to show that if g € N(K) then
the automorphism g of 7;(G,T) is trivial. The group N(K) actson T and on
7,(G,T) through its quotient group W := N(K)/T(K) . One knows that the Weyl group
W is generated by the reflections r a corresponding to the roots a € R(G,T) . It remains
to show that for a € R(G,T) the reflection r_ acts on x,(G,T) trivially.

We have

1, (X)= X—(a,X)a"
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for X € X4(T) , where a' is the corresponding coroot. Since all the coroots come from

X*(T(sc)) , we see that
ra(x) =X mod peX4(T%) ,
thus r_actson X«(T)/ p,.X*(T(sc)) trivially. The lemma is proved.

Definition 1.3. Let G be a split reductive K—group. Let T C G be a split maximal
K—torus. We set TI(G) = wI(G,T) and call this abelian group the algebraic fundamental
groupof G.

By Lemma 1.2 this definition is correct.

1.4. Nowlet G be any (not necessarily split) reductive K—group. By the algebraic
fundamental group of G we mean x,(G) (recall that G = Gg ).

The Galois group I' = Gal(K/K) actson G and thus on ,(G) . This action can
be described as follows.

Choose a maximal torus T/ CG . For ¢ €T choose an element g € G(K) such

that g - oT’ - g;I = T’ . Then o acts on rl(G',T’ ) as the composition

7 (G,T') i—t 7,(GoT’) M 7(G,T)

In particular, if T C G is a maximal torus defined over K, then the action of I' on
7,(G) is the action on =, (T)/ p*X*(T(sc)) induced from X,(T).
Our algebraic fundamental group is a functor from the category of reductive

K—groups and K-homomorphisms to the category of finitely generated I'-modules. The
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following lemma shows that this functor is in a sense exact.

Lemma 1.5. Let 1 y G

1 } G2 - G3 —— 1 be an exact sequence of

connected reductive K—groups. Then the sequence
0— Tl(cl) — 71(G2) - 71(33) —0
is exact.
Proof. Left to the reader as an easy exercise.

1.6. Examples. (1) For a K—torus T we have x,(T) = X«(T) .

(2) Suppose G5 to be simply connected. Then the canonical homomorphism
7(G)— rl(Gtor) is an isomorphism, thus = (G) = X*(Gtor) :

(3) Let G be a semisimple group. Then G = Gsc/ker p , where ker p is a finite
abelian K—group. Let T C G be a maximal torus defined over K . Then
T = 7(8¢) /ker p . One can easily show that x,(G) = (ker p)(-1) := Hom(i(l),ker p) -
Note that rl(C') and ker p areisomorphic as abelian groups, but are in general
non—isomorphic as '-modules. E.g. if G =PGL_,then ker p=p_ but ,(G)=1I/nl.

Corollary 1.7. For any reductive K—group G we have an exact sequence

0 — (ker p)(~1) — 7, (@) — Xu(GE™) —0 .

, G'1'.01:

Proof. We consider the canonical exact sequence 1 — G5 y G —1

and apply Lemma 1.5 and the statements 1.6 (1,3).
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Now let z € ZI(K,Gad) be a cocycle. Consider the twisted form G of G . By

" z _ z ) |
definition ("G)g = Gy, but o € Gal(K/K) actson ("G)g by g——z, 08z, ,
where gw~—— og is theactionof o on Gg.

Lemma 1.8. Let z € Zl(K,Gad) be a cocycle. Then the map
7 (Gg) — rl((zG)K) , induced by the canonical isomorphism Gpr — (ZG)K , 18 an
isomorphism of Galois modules.

Proof. The assertion follows from the description 1.4 of the Galois action on z-l(G') .

In the remaining part of this section we prove some comparison results, which will

not be used later.

1.9. Consider the functor Z(é) of Kottwitz. Here G is a connected Langlands dual
group for G, and Z(é) is the center of G (cf. [Ko2]). By definition G is a connected
reductive C—group endowed with an algebraic action of T = Gal(K/K) . The group Z(é)
is an algebraic {—group of multiplicative type; I' acts on Z(é) algebraically. The
character group X*(Z(G)) is a finitely generated I'—module.

£ -
Proposition 1.10. The I'-modules x,(G) and X (Z(G)) are canonically

isomorphic.

Proof. By definition (cf. [Ko2]) there is a maximal torus TCG such that
X*('i‘) = X«(Tg) , where T is a maximal torus of G defined over K . Moreover
R(G,T) = R' (G, Tg) , where R and R' denote the system of roots and the system of
coroots, respectively. We have Z(é) =nker[a' : T —s G ¢l where e’ runs through
R(é,'i‘) =R' (Gg,Tg) - Hence
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X' (2(G)) = X (T)/{R(G,T)) = Xy(Tg)/(R")

where we write R' for R'(G,T) and weuse { ) to denote the subgroup of X+(Tg)
generated by the set in brackets.
All the coroots a' € R' C X(T) come from X*(T(Bc)) ; moreover the set
R' C p*X*(T(SC)) generates p*X*(T(sc)) (cf. [St2], Lemma 25). Thus
X (2(G)) = X+(T)/ p+Xs(T%)) = 7,(T) , which was to be proved.

Remark 1.9.1. Let ¢: G1 — G, be a homomorphism of reductive K—groups. First
suppose that ¢ is normal, i.e. <p(G1) is normal in G, . Then one can define a
homomorphism (,o* : é2 — él (cf. [Bo], [Ko2]). But if ¢ is not normal, then we
cannot define (p* . In other words, é is functorial with respect to normal homomorphisms
only. Proposition 1.9 shows, however, that the center Z(Gj of G is functorial with

respect to all homomorphisms.

Remark 1.9.2. (of personal nature). For me the fact that x,(G) is the character
group of Z(é) i8 not at all surprising. When defining x,(G) I wanted to define more
functorially the functor Z(E}) of Kottwitz. On the contrary, I was surprised by the
following result:

Proposition 1.10. Let K be € andlet K beeither R or €. For a connected

reductive K—group G there is a canonical isomorphism
x,(G) < Bom(x} °P(€,,(0)), 7;°P(G(€)))

where :ri°p is the usual topological fundamental group.
For brevity we write ,(G(C)) for T;OP(G(C)) and 7,(G(C))(-1) for
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Hom(r:°P(G_(C)), x{°P(G(C))).

We recall that in the case K =R the Galois group I' = Gal(C/R) acts on
7,(G(C)) and (non—trivially) on x,(G_(C)) . Since x(G_(C)) isisomorphicto Z asa
group, but not as a I'—module, we see that ,(G(€)) and =,(G(C))(-1) are isomorphic
as groups, but in general not as '—modules.

In the case K = C wehave I'=1, and x,(G(C))(-1) is isomorphic to =, (G(C)) .
To fix this isomorphism it suffices to fix an isomorphism rl(Cx) =z (or a square root
of -1 in C).

Proposition 1.10 justifies the term "algebraic fundamental group". The proposition
means that xl(C') is "the topological fundamental group, defined algebraically".

Proof. First we consider the case of a torus. Let T, T’ be two K—tori. There is a

canonical map
Hom(T¢,T¢) — Hom(x (T'(C)), x,T(C))

This map is I'—equivariant, and one can easily see that it is an isomorphism of groups.

Taking & for T’ we obtain the required isomorphism
7,(T) = Xo(Tg) — 7y (G(O)(-1) -

In the general case we define the map 7,(G) — 7,(G(€))(~1) as follows. Choose a
maximal torus T C G defined over K ; then 7,(G) = X«(T)/ pxX«(T¢) . We consider

the composition

aq  Xu(T) — my(T(O)(1) — 7, (GO)(-1) -
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One can easily check that aT(p*(X*(TSC))) =0, hence a; induces an homomorphism
(ap)s : 7,(T) — 7, (G(O)) (1)
It is not hard to check that (ag)s does not depend on the choice of T .
Now we have the commutative diagram
(1.10.3) 0 —— 7,(C**) —— 7,(0) (T 0

l | 1

0 — 7, (G (O))-1) — 7 (G(L))(-1) — rl(Gtor () (-1) — 0

The upper row is exact by Proposition 1.5. The lower row comes from the exact sequence of
the fiber bundle G(C) over Gtor(t) .

We have already shown that the right vertical row in (1.10.3) is an isomorphism. The
proposition 1.10 is well known for semisimple groups (cf.e.g. [V—0]), hence the left
vertical arrow is an isomorphism. We conclude that the middle vertical arrow is an

isomorphism. q.e.d.

1.11. Our definition of xl(G') uses explicitely the group structure of G . We are
now going to show how to define xl(G') in a more "algebraic—geometrical" way. We make
no further use of this construction here.

Let again K be any field of characteristic 0. Consider the algebraic—geometrical
fundamental éroup xcfr(G) defined by Grothendieck [Grl] (see also [Mil]) (we take
1 € G(K) as the base point). Set r?r(G)(—l) = Hom(ﬁ(l),ar?r(c)) . Note that
ﬁ(l) = 7;(G i) - To any regural map m : G — Gy such that m(1) =1
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we associate its class m, = CL(m) € 1r I(G)(-1) = (Hom ’1 (GmK (GK) Let
rcl;r(G')(—l) alg denote the subset of such algebraic classes in r?r(’G)(—l).

Proposition 1.12. (i) z-(l;r(C)(—l)a.lg is a subgroup of the abelian group
G
(@) ().
(ii) The map m —— CE(M) induces an isomorphism of '-modules
G
(@) —”—* 7$T(@) (~1)alg .
(iii) 7y (G)(—l) i8 isomorphic (as a I—module) to the completion of ,(G) with
respect to the topology defined by the subgroups of finite index.
We omit the proof.

Remark 1.13. Let H be a connected K—subgroup of G . Consider the homogeneous
space X = H\G . It has a canonical base point, namely the image of the neutral element of
G . In this case one can similarly define the algebraic fundamental group rl(X) as the set

of algebraic classes in

7T(R)(1) = Hom(x$ (G g, 77 (X))

One can show that I?I(X) is an abelian group and that rl(X) = '1 T(X)(~1)alg is a
subgroup. In the case K = € we have = (X) :riOP(X(C))(*I) .
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2. Abelian Galois cohomology

2.1. Let K be a field of Characteristic 0. We write T' for Cal(K/K). Let G bea
(connected) reductive K—group. Choose a maximal torus T C G (defined over K). We

consider the complex of tori
T = (1(¢) £, 1)

where T isin degree 0 and T(Sc) is in degree —1. We define the abelian falois

cohomologyof G as follows:
Definition 2.2. H.,(K,G) = H'(K,T").

Here H' means that Galois hypercohomology of the complex T(sc)(K) — T(K) of
Gal(K/K)—modules. We may regard H,,(K,G) as the hypercohomology of the double
complex

221)  0— T(R) cl(r,1(R)) c(r,T(R)) — ...

T I

0 TR —  clrr®) — ATy — .

where C' are the usual groups of non—homogeneous continuous cochains. Note that the

bidegree of T*Y(K) is (—1,0).

We see that the groups H;b(K,G) do not depend of the choice of the algebraic
closure K of K. We are going to show in this section that they neither depend on the

choice of T. Moreover, they depend only on 11('G').
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2.3. Short torsion free resolutions.
Let A be a finite group and M a finitely generated A—module.
Definition 2.3.1. A short torsion free resolution of M is an exact sequence
0—L =10 M —0
of A modules such that L™ and L are finitely generated and torsion free (over Z).

We write L° for the complex (L"1 — LO). For brevity we shall speak of resolutions

of M meaning short torsion free resolutions.

Let L; —M and L, — M be two resolutions. We say that the resolution L
dominates Lé if there exists a surjective morphism Li —_ Lé of resolutions, i.e. a

commutative diagram

such that the homomorphisms Li1 — L; are surjective for i =-1, 0.
Lemma 2.3.2. (i) For any finitely generated A—module M there exists a short

torsion free resolution L — M.

M

(ii) For any two resolutions Li — M and Lé — M there exist a resolution L,
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L
.

dominating both Li and L2

Proof (i). There exists an epimorphism E[A]k — M, where k is a natural number.
weset L0 = Il[A]k, L7 = ker [L0 — M].
(i) We take for L™ the fiber product of L, and L, over M. This means that

0_ 10 _ -0 ;=1 _ - —1g -1
L_LI;ILZ,L =L ®L,.

Lemma 2.3.3. Let u: M1 — M2 be a morphism of A—modules.

(i) There exists a short torsion free reduction of 4, i.e. a commutative diagram

where Li and Lé are resolutions of M1 and M2 , respectively. Moreover, if u is
surjective, we can choose Li — Lé to be an epimorphism of complexes.
(ii) For any two resolutions of x there exists a third one dominating both (in the above

sense).

Proof. (i) Let L, — M, bea resolution of M, andlet L™ — M, be a resolution
of M,. We take for L 1 the fiber product of L™ and Lé over M,
(ii) We construct the third resolution of x as the fiber product over # of the first and the

gsecond ones.

Lemma 2.3.4. Let
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(M) 0— M, A My £ My —0

be a short exact sequence of A—modules.

(i) There exist a short torsion free resolution of (M), i.e. a commutative diagram

00— Li——» Lé_—" L:;——-——} 0
0— Ml —#Mz M3——-.+0

with exact rows, where Li — M, is a resolution of M, for i =1,23.

(ii) For any two such resolutions of (M) there exists a third one that dominates both (in

the obvious sense).

Proof. (i) By Lemma 2.3.3 there exists a resolution (L2 — L:;) — (My — My) of
4, such Lé — L;; is an epimorphism of complexes. We set Li = ker[Lé — L:;].

(ii) We use the fiber product construction.

Now let D be any A—module. Choose a short torsion free resolution L° —s M. We

consider the complex

L"eD=(L"'eDp—1eD)
1

Definition 2.4. J¥'(A,M,D) = H(A,L ® D).
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To prove the correctness of Definition 2.4 we have to prove that Hi(A,L " ®D) does

not depend on the choice of the short torsion free resolution L™ of M.

First note that if a resolution Li — M dominated a resolution Lé —+ M, then the

commutative diagram

P
Lé/

defines a quasi—isomorphism a: L 1 — Lé of complexes. Since torsion free Z—modules are

acyclic under the tensor product functor gD, the morphism

¢®D:L, ®D—L,®D
is again a quasi—isomorphism. Any quasi-isomorphism Ci — Cé of complexes of

A—modules induces an isomorphism Hi(A,Ci) -, [Hj(A,Cé) on the hypercohomology.

Thus in our case we have a canonical isomorphism
a, : H(4,L; D) — H(A,L, ®D)

Nowlet L; — M and L, — M be two resolutions. Applying Lemma 2.3.2 (ii) we

obtain that there is an isomorphism

B'(A,L; ® D) - E'(A,L, @ D).
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Applying Lemma 2.3.2 (ii) once more, we see that this isomorphism is canonical. Thus

Definition 2.4 is correct.

2.5. Let x:M; — M, be a morphism of A—modules. Using Lemma 2.3.3 one can

uniquely define the morphism
iy : H(AM,,D) — H'(8,M,,D).
Let
0—M, —M,—M,—0

1 2 3

be an exact sequence of A—modules. Using Lemma 2.3.4 one can uniquely define a family of

connecting homomorphisms
§': #'(8,My,D) — s (a,M,,D)
such that the sequence
(25.1) — H\(4,M,,D) — #1(4,M,,D) — #'(8,M,,D) £+ #H1(a,M D) — ..
is exact.

We see that & (A,M,D) is a cohomological functor of M. Note that
H(AM,D) =0 for i <-2.

Remark 2.5.2. In the language of derived categories we have just
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X'(A,M,D) = H(AM % D),

L

where 2 denotes the left derived functor of the tensor product.

Remark 2.5.3. We can also define the "Tate groups"

#'(AMD) = H(AL oM) (€),

where L' — M is a short torsion free resolution. Here ﬁ denotes the
hypercohomology of the double complex Hom(P",L"), where P° isa complete
resolution for A (see e.g. [A—W]).

Proposition 2.6. Let L' — M be a short torsion free resolution of M, and let D be

a A—module. Then there is an exact sequence

(2.6.1) 0— & 1(a,M,0) - B L 'eDp) —~E'A,10 @ D)
‘#%a,MD) —E(A LT @D) > ..

Proof. We consider the short exact sequence of complexes
0—(0—1L'8D) L @D —(L'®D—0)—0

and write down the corresponding long =~ hypercohomology exact sequence
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2.7.1f A is a finite group and U is a normal subgroup of A, then we have inflation

homomorphisms
x(8/u MY pV) — #'(aM,D)

Now let I' be a pro—finite group and M a finitely generated (over 7) discrete
I'—module. Let D be a discrete I'=-module. We set

#(T,MD) = lim #'(r/uMY, DY),
U

where U runs over the open normal subgroup of T

Let L — M be a short torsion free resolution of M, i.e. an exact sequence

1

0—=L 2t 510 M —0

1

of discrete '—modules, where L~ and L0 are finitely generated torsion free abelian

groups. Let HY(T,L°,D) denote the hypercohomology of the double complex..

0— cr,L% D) —— clr,L% D)—>c}r,L'® D) — ...

I T

0— crrlep)—clrrlep)—>c¥rLlep)—..

where Ci(I‘, -) denotes the group of continuous non—homogeneous cochains. Since

MY =M for sufficiently small U, we have
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#(IM,D) = H(T,L’ ® D)

2.8. Let I' again denote the Galois group Gal(K/K). Let M be a discrete finitely
generated F—module. We are interested in the groups JS’i(Gal(K/K),M;R'x) ; for brevity
we write just J?i(K,M,Kx) .

Let L' — M be a short torsion free resolution. Consider the complex T"l — T0

of K~tori such that L” = (™" — L) is the complex X (Tg") — X (Tg) of

cocharacter groups of these tori. By definition
FEKMEXY) =H(KL @K — L0ek*) = H(K T — 10
Thus #'(K,M,K*) is the Galois hypercohomology of a complex of tori.

2.9 Examples. (1) If M is torsion free, then weset L' =0, L0 = M, X, (%) = M.
Thus # (K,M,K)” = H(X,T).

(2) Suppose that M is finite. Choose a resolution L. — M and define the complex

T" =T 1 — T a3 above. Then the homomorphism T_I(K) — TO(K) is surjective. Set

B= ker[’I‘_1 — TO]; it is a finite abelian K—group. Then the homomorphism

(B(K) — 0) — (TX(K) — T%(K))

of complexes i8 a quasi—isomorphism. Hence
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KK ME") := H(K,T 1K) — TK)) = H(K,B(R) — 0) = B 1(X,B).
Now let G be a connected reductive K—group.
Proposition 2.10. H., (K,G) = = #'(K,r,(G)K")
Proof. Let T C G be a maximal torus (defined over K). Set L0 = X (Tg)s
L lox *(T(sc))_ Then by definition of xl(.G‘), (L_1 — LO) ——» rl(G") is a resolution of
7,(G). Hence, as it was shown in n°2.7, (K, 7,(G)K") = Bk, 7(%) _, 1). By

definition E(K,1(°9) — T) = B (K,G). This proves the proposition.

We see from Proposition 2.10 that the groups H., (K,G) depend only on the Galois
module ,(G).

Corollary 2.11. Let z € HI(K,Ga'd) be a cocycle. There are canonical isomorphisms
H,, (K,"G) — H; (K,G) .

Proof. The assertion follows from Lemma 1.8 and Proposition 2.10.

Proposition 2.12. Let 1 — G1 — G2 — G3 —+ 1 be an exact sequence of

connected reductive K—groups. Then there is a long abelian cohomology exact sequence
-1 -1 -1 0
(212.1) 0— H;(K,G;) — H;(K,G,) — H ; (K,G3) — H'(K,G{) — ...

Proof. The assertion follows from Lemma 1.5 and the results of n°2.5 (cf.2.5.1)),
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The exact sequence (2.12.1) can be defined more explicitly as follows. Let T, CG,
be a maximal torus. Let T, be the image of Ty in G3, and let T, be the inverse image

of T2 in Gl' We have the short exact sequence
8C 8C 8C
0— (169 1) — (1) — 1) — (1) - 15) — 0

of complexes of tori. Then (2.12.1) is the corresponding long hypercohomology exact

sequence.

2.13 Examples. (1) G is a torus. Then (T(3¢) —T) = (1 — G), and
H., (K,G) = H/(K,G).

(2) Suppose that G is simply connected. By 1.6(2) the homomorphism
7(G) = xl(wa) is an isomorphism, hence H;b(K,G) = Hi(K,GtOI).

(3) Let G be a semisimple group, G = G°C/ker p. Then ker(T(sc) — T) = ker p,
and by 2.9 (2) H1 (K,G) = B'* (K ker p) . Recall that ker p is a finite abelian
K—group.

(4) For any G we have H;,[l)(K,G) = (ker p)(K) . This follows from the definition
(the reader should look at the double complex (2.2.1)).

Proposition 2.14. Let G be a connected reductive K—group. Let TC G bea

maximal K—torus. Then there are exact sequences
(2.14.1)... — BHI(K ker p) — HL, (K,G) — B'(K,G"T) — B 2(K ker p) — ...
(2142) .— H(K1)) - HEKT) - B (K,6) — BFI(KTED) -

Proof. Consider the short exact sequence
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1——»G38—4G—-§Gt°r——rl

Applying Proposition 2.12 and calculations 2.13 (1,3), we obtain (2.14.1). We obtain
(2.14.2) from Proposition 2.10 and Proposition 2.6.
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3. The abelianization map
In this section we construct the abelianization maps

ab’ : G(K) = B(K,G) — B, (K,G)
ab! : H'(K,G) — HL,(K,G)

for a reductive group G over a field K of characteristic 0. We follow closely the

construction of Kottwitz [Ko3].

3.1. For any K—torus T we have canonical isomorphisms

(3.1.1) HI(K,T) ~— H! (K,T) .

These isomorphisms are isomorphisms of functors T =——s Hi(K,T) and

T+— H;b(K,T) from the category J of K—tori to (the category of) abelian groups.
We consider the category § of connected reductive K—groups G and (all) their

K~homomorphisms. Let ¥ 0 denote the full subcategory of % whose objects are
reductive K—groups G such that G is simply connected.

Theorem 3.2. The isomorphisms (3.1.1) for i = 0,1 can be uniquely prolonged to

morphisms of functors
0. _ g0 0
ab” : G(K) = H'(K,G) — Hab(K’G)

(from ¥ to abelian groups) and



ab! : HY(K,G) — H, (K,G)

(from ¥ to sets).

We prove Theorem 3.2 in Subsections 3.3—3.5.

3.3. First we extend (3.1.1) (for i=0,1)to ¥ - Let G bea K—group such that

G® i simply connected. The diagram

H (K, G) LEY (K, Gt o)
i i .
labG ~laa..bGt0r (i=0,1)
B (K,G) —=—H}, (K,G)""

is commutative, and we are forced to define abé (i=0,1) as the composition
B'(K,G) — H'(X,G'") = B! (K,G)

The map abg is a homomorphism of groups. Since G —— G'T is a functor (in our
case from ¥, to J ), we see that ab? and ab! are morphisms of functors.

To extend ab? and ab! to ¥ weneed z—eziensions. The notion of a
z—extension was introduced by Langlands [Lal], [La2] and extensively used by Kottwitz.
We collect in this section definitions and lemmas from a number of papers ([Kol],

[M-Sh], [Ko2], [Ko3]).
3.4. z—Extensions

Definition 3.4.1. Let G be a connected reductive K—group. A central extension
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1—Z—H—1G—1

of G is called a z—extension if H®® is simply connected and Z is a product of tori of the
form Ry /KGm for finite extensions F/K.

Consider the canonical covering p’ = G%¢ x Z(G)° —— G , where Z(G)° is the
connected component of the center Z(G) of G, and the map p’ is defined by
(g,2) — p(g)-z for g € G*¢, 2 € Z(G)°. Set A = ker p’ ; it is a finite abelian group.

Lemma 3.4.2. Let F/K be a finite Galois extension such that Gal(F/F) acts on
*
X (A) trivially. Then there exists a z—extenson H —— G with kernel Z such that

7~ (RF /KGm)n for some natural n .

Remark 3.4.2.1. This result was proved by Milne and Shih [M—Sh] with the
additional hypothesis that F splits G .

Proof of Lemma 3.4.2. Set A = Gal(F/K) . There exists a surjective homomorphism
s:L— X*(A) of A—modules, where L is a I[A]—free module. Set Z be a K—torus
*
such that X (Z) =L ; it is a torus of the form (Rp /KGm)n . Since s is surjective, the

*
induced homomorphism s : A — Z is injective. We set
H = (G x 2(G)° x Z)/A

and define ag:H— G = (G5€ x Z(G)°)/A to be the epimorphism induced by the
projection

G x 2(G)° x 2 — G%¢ x Z(G)° .
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Then ker ag =7 (because A — G5 x Z(G)° is injective) and H®® ~ G5 (because
A = 7 isinjective). The lemma is proved.

We need a special kind of z—extensions, namely, {—lifting z—eztensions .

Definition 3.4.3. Let ¢ € H(K,G) (i = 0,1). A z—extension a:H—— G is called
a ¢-lifting s—extension if ¢ comes from H'(K,H) .
We observe that in the case i = 0 any z—extension is ¢-lifting for any

¢ € BY(K,G) = G(K) . In the case i = 1 there is

Lemma 3.4.4 (Kottwitz [Ko3]). Let F/K be finite Galois extension such that

Resy /p: H(X,G) —— HY(F,G) takes ¢ tol Let Z =— H—— G bea
z—extension whose kernel Z is of the form (RF /KGm)n . Then H— G is a ¢-lifting

extension.
Proof. Comnsider the commutative diagram

BY(K,H) — H(K,G) — B4(K,Z)

| | l

HY(F,H) —— HY{(F,G) —— HY(F,2)

with exact rows. Since Z = (Rp /KGm)n , the restriction homomorphism
H2(K,Z) — H2(F,Z) is injective. We see from the diagram that the image of ¢ in
H2(K,Z) is trivial. Hence ¢ comes from HI(K,Z) , which was to be proved.

By definition any element £ € HI(K,G) comes from Hl(F/K,G) for some finite
Galois extension F/K . Then Resy /F‘f = 1. Thus we get



Corollary 3.4.5 (Kottwitz [Ko3]). Forany ¢ € HI(K,G) there exists a £-lifting
z—extension H — G .
The corollary follows from Lemma 3.4.2 and Lemma 3.4.4.

3.5. Now we can extend the maps abo and a.b1 from ¥ o to B

35.1. Let ¢ € H(K,G) (i = 0,1) . Choose a ¢lifting z—extension

7 — H—2 5 G and consider the commutative diagram

Hi(K,2) =———8I(K, Z)

Hi (K H)i—;ﬁi (K, H)

’ ab ]

(2 §% . aab

Hi(K G)—Ebé——:Hi (K,G)
) ab ]

The element § € HI(K,G) is the image of some element 7 € Hl(K,H) . We are forced to
set abé(f) = aab(ablii(”)) . Recall that the map a.b:] has been defined before (because
H®® ig simply connected). |

In the case i =1 we have Hi(K,Z) =0, hence 7 is unique and abé( £) is defined
uniquely. In the case i = 0 the lifting n of ¢ is not unique, but one can easily see from
the diagram that aab(abg(q)) does not depend on the choice of # . It is clear that abg

is a group homomorphism.

3.5.2. We have to prove that the above defined element abé(f) does not depend on

the choice of the z—extension H— G .

Let a;: H1 — G and @ : H2 —— G be two z—extensions. We say that @
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dominates ay if there exists a surjective morphism of z—extensions

Lemma 353, Let ¢ € B'(K,G)(i=01).Let a,:H — G, and a,: Hy— G
be two {-lifting z—extensions. Then there exists a third one a: H — G, dominating

both.

Proof. Weset H=H, x5 H, (fiber product). Then a: H—— G is surjective and
ker a = ker a x ker a,, . We see that a is a z—extension. In the case i =1 the set of
cocycles Z'(K,H) is the fiber product of Z'(K,H,) and Z'(K,H,) . Since a, and a,
are {-lifting extensions, we conclude that a is also a ¢-lifting extension. In the case i=0

any z—extension is {-lifting. The lemma is proved.

3.5.4. We prove that the construction of abé(f) does not depend on the choice of
z~extension H— G . Let a; : H —— G and a,:Hy —— G be two £-lifting

z—extensions. First suppose that ay dominates a, . Then we have commutative diagrams

i b
B(K,H,) ——H. (K, H,)
B ) 1‘Bab
H A Hi(K, B )Lﬁi (K,H,)
1 A Hy ab(X, Hy
a) a, @o* IGZab
A

G H'(K,G) H, (K,G)
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Let 7, € Hi(K,Hl) be an element such that a,4(n;) = £ . Set
no = Be(n) € Hi(K,H2) . Then ay4(my) = £ . Since abl isa morphism of functors on
fo , the rectangle in the diagram of cohomology above is commutative, and therefore
ab(n,) = By (abl(n,)) . We conclude that ay,,(abl(n))) = @y, (abh(7,)) . Thus in
this case a, : H; — G and a,: Hy, — G gives us the same element abé({) .

Now let a, and a, be any two §-lifting z—extensions. Using Lemma 3.5.1 we
reduce the assertion to be proved to the already considered case when a, dominates a, .
Thus we have proved that the definition of abci;(f) does not depend on the choice of the

z—extension H — G .

3.5.5. We have defined the map ab(i-; : Hi(K,G) — H;b(K,G) . One can easily
check that abg is a homomorphism of groups. We must now prove that a.b(i} isa

morphism of functors. To do it we need

Lemma 3.5.6 [Ko3]. Let f: Gy —— G, be a homomorphism of connected
reductive K—groups. Let ¢ 1 € HI(K,H) . Then there exists a £ l—lifting z—extension of 3,

i.e. a commutative diagram

(3.5.6.1) H

1 2
i a4
B :
1 2

such that a, isa fl—lifting z—extension and a, is a z—extension.

Proof. Set §y = B 1 Let a:H— G1 be any ¢ l—lj{ting z—extension and let

a, : Hy — G2 be any 52—1ifting z—extension. Let H1 be the fiber product of H and

H2 over G2 . We have canonical homomorphisms a H1 _— G1 and
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ﬂH tH) —— H, . One can easily see that @, i8 a z—extension with kernel
ker a x ker a,, . Since Zl(K,Hl) is the fiber product of ZI(K,H) and ZI(K,H2) over
Zl(K,G2) , we see that a; is a {;-lifting extension.

We will need later the following version of Lemma 3.5.6.

Lemma 3.5.7. Let 8 be a surjective homomorphism of connected reductive
K—groups. Let §, € HI(K,Gz) . Then there exists a z—extension (3.5.6.1) of 8 such that
BH is surjective and a, i8 3 52—]jfting extension.

Proof. Let a,: Hy — G be a fz—lifting z—extension. Let a: H— G; be any

z—extension. We set H =H x G 2

We prove that ab! (i=10,1) is a morphism of functors. We consider the case i =1
the case i = 0 can be proved similarily. Let G G H,, H,, {1, 1_‘2 be as in Lemma

3.5.6. We have the commutative diagram

H'(K,G,)«—H'(K,H,) — H_; (KH,) —— H,, (K,G,)
A | | P 1 [#a
. ; . ;

H'(K,G,)«—H(K,H,) —— H_, (K,H,) —— H_, (K,G,)

where the commutativity of the central rectangle follows from the already proved

functoriality of abj on ¥, .Let n, € H(KH,) bea lfting of £, ; then

(Bg)+(m) € HI(K,Hz) is a lifting of ¢, (because the left rectangle is commutative). Now

from the commutativity of the other two rectangles we see that

Bupabg (£9) = abg, (6

q.ed.



Theorem 3.2 is proved. In the remaining part of this section we prove three

propositions that complete Theorem 3.2.
Proposition 3.6 [Ko3]. Ker ably = p,H/(K,G*) (i = 0,1).

Proof. First suppose that G s simply connected. Then ab(i;l is just the map
H!(K,G) — H'(K,G'*") induced by the canonical homomorphism G — G'°" . In this

case the assertion follows from the exact cohomology sequence

N p . .
... — HY(K,G®) =, H'(K,G) — Hl(K,Gtor) e
In the general case we have the diagram

B'(K,G*) —— B (K,G*) =0

p*l l

B'(K,G) ——— H. (K,G)

which is commutative because abl is a morphism of functors. From this diagram it is clear
that p*Hl(K,Gsc) C ker abé )
Now let £ € ker abci; . Choose a ¢-lifting 2—extension Z =—— H -2 G . We have

the commutative diagram
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. ¥ ablif[ . l’
1 1
H (K , H) —_— Hab(K’H)
ax . 1
¥ ab ! :

B'(K,G) —2— H, (K,G)

with exact columns. Let 7 € Hi(K,H) be an element such that a4(n) = £ . In the case
i=1 we have Hl(K,Z) = 0, hence # is unique and ab%[(n) =0.Inthecase i=0 we
may choose 5 such that abg(n) = 0. In both cases # € ker a'b]%I , hence 5 comes from
Hi(K,Hss) = Hi(K,Hsc) . Taking in account the commutative diagram

GE¢_2 ¢

we conclude that ¢ comes from H'(K,G%) , which was to be proved.

3.7. By Theorem 3.2 the map ab0 is a group homomorphism. We want to show that
the map ab1 has also a certain multiplicativity property.

Let z € Z1(K,G) . We consider the twisted form G of G . Let

t, : BY(K,’G) — B'(K,G)

denote the canonical map defined by C(z’)~—— C(z’z) for z’ € Hl(K,zG) , where
Cf denotes the cohomological class. Note that if G is abelian, then %G can be identified
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with G and in this case t_ is {—— { + CLl(z).

Proposition 3.8. Let z € Hl(K,G) . Then the diagram

(3.8.1) 1l(x,%G) 2 - HL, (K,G)

n |

Bl (K,?G)=H! (k,6) =—*a(2), g! (k,q)

commutes, where a(z) = a.bG(CP,(z)) and we 1dent1fy the abelian groups H b(K %G) and
ab(K G) using Corollary 2.11.

Proof. Let f: G— G’ be a homomorphism of connected reductive K—groups.

For z € 2(K,G) set 2’ = fhz € Z(K,G’) . Tt is clear that the diagram

(3.8.2) (X, ?G) Y, H(X,G)

|

BY(K,? G’)—2-H'(X,G')

commutes.

Now suppose that G is simply connected, and take Gtor for G’ . Then
BY(K,G) = B (K,G'") = B}, (K,G), t,/ = (x+—— x+CL(z’)) and the diagram
(3.8.2) becomes the diagram (3.8.1). This proves the proposition for G € ¥ 0"

To treat the general case we need

Lemma 3.8.3. Let z € Z}(K,G) and ¢ € HY(K,%G) . Then there exists a

z—extension a: H— G, a cocycle w € ZI(K,H) such that a,w =2z ,and a



—42 —

cohomology class 7 € Hl(K,wH) such that (Va)yp = £.

Proof. Choose a Galois extension F/K trivialising both CL(z) € HI(K,G) and
€ Hl(K,zG) . By Lemma 3.4.2 there exists a z—extension a: H — G whose kernel Z
is isomorphic to (Rp /KGm)n . By Lemma 3.4.4 a is a CL(z)-lifting extension. Moreover,
gince a is surjective, any cobord b € Bl(K,G) can be lifted to Bl(K,H) . Using twisting,
we obtain that z is the image of some cocycle w € ZI(K,H) .

Consider the twisted homomorphism “a: ¥H — %G . It is clear that e isa
z—extension with kernel Z = (Rp /KGm)n . By Lemma 3.4.4 Ya is a £{-lifting extension.
Thus Lemma 3.8.3 is proved.

We prove Proposition 3.8 in the general case. Let a: H— G, w and z be asin

Lemma 3.8.3. Since the diagram

t
al(x,¥o) —¥ . HY(X,H)

(Wa)*l lat
t

Bl(K,?6) —2 - HY(K,G)

commutes and aab(ab%[(CQ(w))) = a.bé(CP.(z)) , the assertion to be proved is reduced to
the already proved assertion concerning H, w and 5. The proposition is proved.

Using Proposition 3.8 we can compute the fibers of the map abé .

Corollary 3.9. For z € ZY(K,G) set ¢ = CR(z). Let %p: %G’ —— %G denote
the twist of p : G —— G . Then

(ab?) (@bl () = ¢, (%pB' (K,7G%)) .
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The corollary follows from Proposition 3.8 and Proposition 3.6.

Remark 3.9.1. We see that any fiber of abé is the image of the Galois cohomology

of some twisted form of G5¢.

Remark 3.9.2. Corollary 3.9 shows that the map abl : HI(K,G) — H:.b(K’G)

induces the embedding
B'(K,G)** = p,B'(K,G™)\B'(K,6) —— Hy(K,G)
mentioned in the Introduction.

The following proposition shows that the maps a,bi define morphisms of cohomology
g

exact sequences.
Proposition 3.10. (i) [Ko3]. Let

1 y G

1 G2 - G3 —1
be an exact sequence of connected reductive K—groups. Then the diagram

0— G (K) — Gy(K) — G4(K) — H'(K,G,)~ H'(K,G,) — H'(K,G,)

[ R Y R

0 0 0 1 1 1
0—H), (K, G 0B, (K, Go)oH,\ (K, Gy)-H,  (K,G))—Hy, (K, Go)—H,,(K,Gj)

commutes.
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(ii) If moreover G, is a torus, then the diagram
1 1 2
H'(K,G,) —H(K,G,) — H(K,G,)
gl (k,G,) —HL (X,G, — HY(K,G,)
ab' ™2 ab*" ™3 ™1
commutes.

Proof. First suppose that Gl’Gz'G3 € 70 . The morphism

-1

1 —;Gl :G2 - G

| | |

] G}or___' G;or__* G;t”or___'1

3

of short exact sequences defines a morphism of cohomology exact sequences, which proves
the assertion in this case.

To treat the general case we need

Lemma 3.10.1. Let

(G) 1 »G; — G

be a short exact sequence, and let £3 € HI(K,G3) be a cohomology class. Then there

exists a {5-lifting z—extension of (G) , i.e. a morphism of short exact sequences
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(3.10.1.1) 1— 111 :“I[Q ) 1113 3y 1
1— G1 :‘-G;2 » G3 y 1

such that Hf, — Gf, is a z—extension for £ = 1,2,3 , and moreover H3 —_— G3 is a

¢ 3—lifting z—extension.

Proof. Choose a z—extension H — G, and a §3—lifting z—extension Hp — G,.

We set ]EI2 =H xG3H3 . Let H1 be the kernel of H2 _ H3 . We obtain the

commutative diagram

1-—4H1——1H2——§H3——#1

I

1——lG1——lG2—DG3——bl .

Since H, — G, is surjective, the homomorphism H, — G1 i also surjective. Since
H1 is a normal subgroup of H2, % is simply connected. Since
ker[H; — G] =ker[H — G,] , we conclude that H; — G, is a z—extension. The
lemma is proved.

We prove Proposition 3.10 in the general case. To prove assertions (i) and (ii) it

suffices to prove the commutativity of the diagrams

B(K,G,) -4 — E'(XG) BY(K,G4) 24— BYK,G)

| | l l

0 6 1 1 6 2
B), (K,Gy) 2 H1,(KG)) HL (K,Gg) -2 B2 (KG))
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respectively. Let £, € B(K,Gg) , where i =0 or 1.By Lemma 3.10.1 there exists a
morphism (3.10.1.1) of exact sequences such that Hy — 'Gz are z—extensions for .
£ =1,2,3 and that ¢ can belifted to an element 7 € Hi(K,Hs) . Thus the assertion is
reduced to the already considered case of a short exact sequencein ¥ 0" Proposition 3.10
is proved.

We observe that the maps abg and abé are isomorphisms for tori and are well

known for groups G such that G s simply connected. The following remark shows that

these maps are also well known for semisimple groups.

Remark 3.11. Let G be a semisimple group, G = Gsc/ker p . Then for i = 0,1 the

diagram
(3.11.1) ri(k,q) —0 BT (K ker p)
B I
H(K,G) —20  HL, (K,G)

commutes. Here & is the connecting homomorphism and the right vertical arrow is the
isomorphism of Example 2.13 (3). We omit the proof (cf. [Ko2] Remark 6.5, [Ko3]
Lemma 1.8).
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4. Computation of abelian Galois cohomology

In Section 3 we have defined the abelianisation map abl HI(K,G) — H:.b(K’G)'
By Proposition 2.10 H;b(K’G) = K 1(K,M,K“). In this section we try to calculate
Jb’l(K,M,Kx) for i 2 1. We compute % 1(K,M,K") for local fields. For a number field
K we compute ¥ 1(K,M,Kx) for i 2 2. For i =1 we compute the kernel and the
cokernel of the localization map &' (K,MK") —® #'(K_MK>).

All this stuff is a kind of Tate—Nakayama theory. The results in the most interesting

case i = 1 are essentially due to Kottwitz.

4.1. In this section K is a local or global field of characteristic 0,
I' = Gal(K/K), M is a finitely generated '—module .

Proposition 4.1. Let K be a non—archimedean local field. There are canonical

isomorphisms:

. . 1 X ~

(i) 3, - FHEME) 5 (Mp), g
(ii) HAKME™) = (Mp)y 8 Q/T
(iii) HF(KMEK*) =0 for i) 3.

4.1.1. We prove (iii). Let L~ — M be a short torsion free resolution, where

L = (L_1 — LO). In the exact sequence (2.6.1)
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. HELIOR) — HEKME)— BT KL ek — ..
)

we have HI(K,LO®K*) =0, BT} (KL L ®K*) =0 for i > 3 (cf. e.g. [Mi], 1.11). Hence
# (K, M,K™) = 0, which proves (iii).

4.1.2. We begin proving (i) and (ii). Let L~ — M be short torsion free resolution.

We consider the dual complex
L' = Hom(L',7) = 1% — 1Y)
(recall that v denotes Hom - Z ). Here L% isin degree 0 and L™ isin degree +1.
We have by definition
HF(K,ME*) = B(K,L ®K").
The cup product pairing
E(KL ®K*)®Ri(K,L"") — BYKK") = Br(K)
defines canonical homomorphisms

(4.1.2.1) H(KME*) = B2(K,L )8,

where B denotes Hom( -,Br(K)).
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Lemma 4.1.3. Homomorphisms (4.1.2.1) are isomorphisms for i > 1.

Proof. If M is torsion free then this is the Tate—~Nakayama duality theorem. In the
general case we can write down the exact sequence (2.6.1) and the corresponding
commutative diagram. Applying the five-lemma we obtain the desired result.

4.1.4. We compute HO(K,L'")B. By definition

BOK,L™")P = ker(L?) — @ 71))P = cokerf( 7" )'B — (10Y)'By
We have

(L®")F = Homp(L%,7) = Hom(L2,Z) = Bom((LR) pT) = (L)} ¢

Hence (L0') 1B = (L{l)tfg Br(K) = L] ® Bi(K),
Similarly
—-1v\I'B _ ;-1
(L) 7 =L~ @Br(K)

I' g

Further

r
= coker[Ly — L] ® Br(K) = Mp ® Bi(K) = (Mp); © Be(K)

coker[(L1')TB — (L9")'B) = coker[L ® Bi(K) — L0 ® Br(K))
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There is a canonical isomorphism Br(K) — Q/Z. Now 4.1 (ii) follows from Lemma 4.1.3.

4.1.5. We compute E[l(K,L " )B. Following an idea of Kottwitz [Ko2], we consider

the short exact sequence

-V

0L -1 2Q-—9L'v go/zz_;o

which gives rise to the hypercohmology exact sequence
KL 0Q — (KL " @I —H (KL "')—0
(because L' @ Q is a complex of injective [—modules).
We observe that
LY ®Q=Hom(L',Q), L' ®(Q/Z) = Hom(L ,Q/T).

Since Q and Q/Z are I—-injective, the sequences

0 — Hom(M,Q) — Hom(L?,Q) — Hom(L1,Q) — 0

0 — Hom(M,Q/Z) — Hom(L°,Q/Z) — Hom(L™,/Z) — 0

are exact. Thus
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HO(K,L" " 8Q) = E)(K,Hom(L",Q)) = E'(K,Hom(M,q)) = Homp(M,Q) =
Hom(MP,Q) = Hom((Mp)th)

and similarly

HO(K.L" ® Q/2) = Homp(M,0/1) = Fom(Mp,¢/1)

We see that
H'(K,L"") = coker[Hom(Mp), Q) — Hom(M,Q/T)] =
= coker[Hom((Mp);Q/Z) — Hom(M,Q/T)] =
Hom(ker[Mp — (M), 4, Q/T) = Hom((M), . ..Q/T)
Using the canonical isomorphism Br(K) —— Q/I , we conclude that
B

H'(K,L"" )" = Bom((Bom(Mp), /1), Br(K)) & (Mp); . »

Now 4.1 (i) follows from Lemma 4.1.3.
Proposition 4.1 is proved.
The exposition in the remaining part of the section is somewhat sketchy.

Proposition 4.2. For K = R there are canonical isomorphisms
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dgt K RMC) "L E2RM) for i21.
In particular
HYRM) if i is odd
d?i([R,M,Cx) o
AOR,M) if i is even (i > 0).

Proof. Similar to that of Proposition 4.1.

4.3. Now let K be a number field. Set A= A ® K, where A is the adéle ring of
K

K. Weset T=A"/K".

Let M be a finitely generated I'~module. Let L* — M be a short torsion free

resolution. We consider the short exact sequences

1 =R SR —T—1

0—=L @R  SL' @K 4L 8T —0
and the corresponding long exact sequence
(4.3.1) o — HYEME) — #UKME) — XK MT)— ...

We would like to compute this exact sequence.
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Proposition 4.4. There are canonical isomorphisms
. . al ~
(1) A * % (K!M)C) I (Mp)tors
(i) H#°(K,M,T) - (Mp), @ /T
(i) HF(KMT) =0 for i 23.
Proof. The same as that of Proposition 4.1.

Lemma 4.5. There is a canonical isomorphism

loc : ¥'(K,M,E) ® H(K MK for i21.
veEYV

Proof. The embedding ®(K, ® K) &A™ induces the homomorphism
K
. « .
® #'(K ®K)") — & (KM,HA).
By Shapiro’s lemma
i x i x
H(KM,(K 8 K)) = #'(K, MK}
Thus we obtain a homomorphism
i x i x
® X (K,M,Kv) — K (K,MA).

We must prove that it is an isomorphism. Using the exact sequence (2.6.1) we reduce the
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assertion to the well known . - - case of a torsion free module M. The

lemma is proved.

Corollary 4.6. Forany h € a'o’i(K,M,Kx) (i20) there exists a finite set S C #{K)
such that loc_(h) € H'(K_,MK’) is zero for v £ :

Proof. It follows from the proof of Proposition 4.5 that for any ¢ € X' (K,M,K")
there exits a finite set S C ¥ such that ¢ comes from J#'(K, M, ®(K_® K)™). This
S 'K

implies the proposition.
Corollary 4.7. For i 2 3 the localization map

(4.7.1) loc_ : #'(K,M,K") — TmT #'(K MEK?)

is an isomorphism (where we write  for ¥_(K)).

Proof. This follows from the exact sequence (4.3.1) and Propositions 4.1(iii) and
4.4(iii).

Corollary 4.8. (Tate—Poitou). If i =2 and M is finite then (4.7.1) is an

isomorphism.

Proof. This follows from the exact sequence (4.3.1) and Propositions 4.1 (ii) and 4.4

(i).
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Proposition 4.9. The canonical isomorphisms
2 x 2 x
H, : F(KMK) 2 H(KM;®K")
2 X 2 X
loc_: #(K,M,K )——;'[:[ X (KV,M,K‘;)

define an isomorphism of %2(K,M,Kx) onto the fiber product of H2(K,Mtf® X) and
x 2 X
]mj HA(K MK over 1:r B(K M, ®K").

Let Ty, be the K—torus such that X (T) = M, We have computed
%2(K,M,Kx) in terms of the Galois cohomology H2(K,TM) of this torus and of the real
cohomology groups 4?2(K,M,K:) o~ ﬁO(KV,M). Observe that the homomorphism

loc_ : HA(K,M, @ K") — T BA(K_,Ty)
is surjective, but the homomorphism
thy: T;T HAK MK) — T:I' BY(K ,Ty)
in general is not surjective.
Proof. Consider the canonical short exact sequence
tf

i
O—AMtors——)M——bMtf——-oO

and the corresponding commutative diagram
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i #f
BY(K,Ty) 2 BYKM, (1) = #EKME") —F— »~ HY(K,T
llocm 110ccu llocm llocCIJ

i tf
T TH(K Ty T TR (K M0y (1)) T TH(CME) =TT BTy

M)

with exact rows. It is clear that

2 2 2
tf, x loc_: H(K,MK") — H(K,Ty) x 1:r F(K ,MEK)

define a homomorphism j from 32(K,M,Kx) into the fiber product over
2
']:]' H (Kv’TM)'

We prove that j is injective. Suppose ¢ € ker j. Then § € ker tf_, hence { =i «(7)
for some 5 € H3(K,M(1)). Now, since ¢ € ker loc_, i, (loc (7)) =0, hence
1 .
loc () = 6(¢) for some (€ |m| H'(K,Mr). Since the map

1, 41 1
loc :H (K,MT) — ]:[ H (Kv’MT)
i surjective ([Ha],IT,A.1.2, see also [Sa], 1.8), there exists ¢ € Hl(K,TM) such that

(= loc (¢). We see that loc_(6(()) = loc_(7). By Corollary 4.7 the map
3 e
loc® : B3R M, _(1)) — T T H(K,Myorg(1)) s bijective, hence 6(¢) = 7. By

construction £ =1i_(n). We conclude that ¢ = 0. This proves the injectivity of j.

The proof of the surjectivity of j is left to the reader.



— 57 —

We are going to consider ' which is the most interesting case.

410. We write B '(K,M) for (Mp), . and,if v € ¥}, write B (K ,M) for

(Mp )t org' For v € ¥} we have obvious corestriction homomorphisms
v

-1 -1
cor, : H (K M) = (M — (Mp), o5 = B (K,M)

r )tors
v
For v € v, we also have corestriction homomorphisms

cor, : BH(K /K,M) & (M Jiors = (M)yorg = (K, M).

Proposition 4.11. The following diagram commutes

(K MK S HUKMT)
| v

-1 ECOI -1
® H (I M) ———— H (KM)
vE YV

where the vertical arrows Av and A are the isomorphisms of Propositions 4.1, 4.2 and

44.

Idea of proof. We reduce the assertion to the case of torsion free M. For such M the
assertion is well known (as the compatibility the local and the global Tate—Nakayama
dualities for tori).
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Corollary 4.12. The localization map
loc_: H(KME*)—TT &K MK
o * b ? © v) ) v
i8 surjective.

Idea of proof: We consider the exact sequence similar to the exact sequence 4.3.1, but
for a sufficiently large finite Galois extension F/K. This exact sequence is partly
computed, see Proposition 4.11. We obtain the desired assertion by applying Chebotarev’s
density theorem.

We can as well choose a short torsion free resolution L™ — M and reduce the

assertion to the case of torsion free M .

4.13. Let F/K be a finite Galois extension such that Gal K(F) acts on M
trivially. We set A = Gal(F/K). Then M is a A—module. Consider the cokernel

3 cor

¢,(F/K.M) = coker[? H,(A M) = H,(AM)]

where cor, is the corestriction map, and Av is a decomposition group of v in F. One
can show that ¢,(F/K,M) does not depend on the choice of F. We write ¢, (K,M) for
¢;(F/K,M). We set

LLL 5 (K, M) = kerfloc : (K, MK*) —o #' (K MK,
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Proposition 4.14. There i8 a canonical isomorphism
1
¢, (K,M) == | | | 5(K,M)
Idea of proof. One can show that j_L]_:?(K,M) is canonically isomorphic to

LLL (/R M) = kee[ #L(F/K,M,F¥) — avl(F/K,M,(Ag )],

where F/K is a8 in 4.13. We write A for Gal(F/K) . This kernel is the cokernel of

X O(A,M,(Ag F)*) — & 0(a,M,(A®F)*/F") .

(see Remark 2.5.3 for the definitions of the groups x1 ). Then we compute these groups
and the homomorphism by methods of the proof of Propositions 4.1, 4.4 and Lemma 4.5.

We show that this homomorphism is

Yeor

1
® H, (A M) =— H (4,M).

This proves the assertion.
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5. Galois cohomology over local and number fields

In this section we apply the results of Sections 3 and 4 to the study of the usual
(non—abelian) Galois cohomology of connected reductive groups over local and (especially)
number fields.

5.0. We shall need the following fundamental results on Galois cohomology over local
and global fields.

Theorem 5.0.1. ([Knl], [Kn3]). Let G be a simply connected group over a
non—archimedean local field K . Then HY(K,G) =1.

Another proof of this result appeared in [Br—T].

5.0.2. Let K be a number field. A K—group is said to satisfy the Hasse principle, if

1L1(G) := ker[H}(K,G) — tryﬂl(Kv,G)] =0 .

Theorem 5.0.3 (Kneser—Harder—Chernousov). For any semisimple simply connected

group G over a number field K, the map

BY(K,G) — T TH(K,,G)

is bijective.
In particular, the Hasse principle is valid for such a group.
The classical groups were treated by Kneser (cf. [Kn2], [Kn3]), and the exceptional
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ones, excepting E. , by Harder [Hal]. The proof in the most difficult case E, , initiated
8 8

by Harder [Hal], has recently been completed by Chernousov [Ch].

We begin with proving that the maps ab? and abl are in some cases surjective.

Proposition 5.1. Let K be a non—archimedean local field. Then for any connected
reductive group G the homomorphism abl : G(K) — Hgb(K,G) is surjective.

Proof. First suppose that G is simply connected. Then in the exact cohomology

' sequence
G¥(K) — G(K) — GYI(K) — B(K,G")
we have HI(K,GSC) =0 by Theorem 5.0.1. Thus in this case the map
0. tor _ 0
ab” : G(K) — G (K) = H,, (K,G)
is surjective.
In the general case choose a z—extension Z «— H — G . We have the
commutative diagram
H(K) —— G(K) —— H(K,2)
0 0
labH labG 1
0 0 1

with exact rows. Since abg is surjective and HI(K,Z) = 0, we conclude that abg i8

also surjective. q.ed.
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Remark 5.1.1. For K =R the homomorphism ab? is in general non—surjective.
For example let 2 denote the algebra of the Hamilton quaternions over R. Set G = D/ :

then G®® is simply connected and Gtor - Gm . Hence
ab?: GR) — BY, (R,G) = G_(R) = R”
) ab\™ m

is the reduced norm

X

NmQI/IR A — R
We see that
. 0 0
im abg = |R_T_ #R™ = H , (R,G) .

Corollary 5.2. If K is a non—archimedian local field, then
0
B, (K,G) = G(K)/p(G*(K)) .

To prove the surjectivity of abl for local and global fields we need the notion of a

fundamental torus.

5.3. Fundamental tori (a survey). Let K be alocal field and let G be a connected

reductive K—group.

Definition 5.3.1 [Ko3]. A fundamental torus T C G is a maximal torus of minimal
K-rank.

There is a one—to—one correspondence between the maximal K—~tori of G and
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maximal K—tori of G5¢:

T € G —— 1(8) ¢ g5¢
T’ C G +— p(T’) - %G)°

where Z(G)° is the connected component of the center of G . We see that a maximal

torus T C G is fundamental in G if and only if T(ac) is fundamenal in G*¢.

Proposition 5.3.2 ([Knl1], II, p. 271). If T C G is a fundamental torus of a
semisimple group over a non—archimedian field, then T is anisotropic.

In other words, in this case G contains anisotropic maximal tori.

Lemma 5.3.3 [Ko3]. Let T be a fundamental torus of a simply connected
semisimple group G over a local field K . Then H2(K,T) =0.

Proof. If K is non—archimedian, then T is anisotropic, and by Tate—Nakayama
duality H2(K,T) = 0. Now suppose K =R . Then T isisomorphic to a product of a
compact torus and a torus of the form (RC /IRGm)n (cf. e.g. [Ko3], Lemma 10.4), hence

HXR,T)=0.

Lemma 5.3.4 ([Ko3], 10.1, see also [Brvl]). Let T C G be a fundamental torus of
a reductive R—group. Then the map Hl([R,T) — Hl([R,G) is surjective.

Theorem 5.4. If K is a local field, then the map abg; : H'(K,G) — H,,(K,G) is
surjective.

This result is essentially due to Kottwitz [Ko3].
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Proof. It suffices to find a maximal torus T C G such that the map
BY(k,T) — BL, (K,6) = BY(K,TC) — 1)

is surjective. Let T be a fundamental torus of G ; then T(sc) is a fundamental torus of

G . From the exact sequence (2.14.2)
HY(K,T) — Y, (K,G) — BX(K,10%)) |

where H2(K,T(sc)) = (0 by Lemma 5.3.3, we see that for such T the map
HI(K,T) — H;b(K,G) is surjective. The theorem is proved.

Corollary 5.4.1. If K is a non—archimedian local field, then the map abé of

Theorem 5.4 is bijective.

Proof. By Corollary 3.9 any fiber of abé comes from HI(K,ZGSC) for some cocycle
z € ZI(K,G) . Since 2G®¢ is simply connected, by Theorem 5.0.1 HI(K,ZGSC) = 1. Hence
the map abé ig injective. By Theorem 5.4 ab(l; i8 surjective. Thus abé is bijective.

q.e.d.

Corollary 5.5 [Ko3]. Let G be a connected reductive group over a local field K.
Set M =7,(G).
(i) If K is non—archimedian, then there is a canonical, functorial in G bijection
1
H'(K,G) — (M), » Where T = Gal(K/K) .
(ii) If K =R, then there is a canonical, functorial in G surjective map

1Y(R,G) — B-LR M) = H}(R,M)
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Proof. (i) By Corollary 5.4.1 the map abé is bijective. By Proposition 4.1 (i)
Hib(K,G) = (MI‘)tors . The assertion (i) is proved.

(ii) By Theorem 5.4 ab(; is surjective, and by Proposition 4.2
HL, (R,G) = H™'(R,M) = H(R,M) , which proves the assertion (ii).

5.6. To investigate Galois cohomology over number fields we need some lemmas.

Throughout this subsection K is a number field.
Lemma 5.6.1 (Kneser—Harder). Let G be a connected K—group. Then the map

loc_ : H'(K,G) — T T H'(X_,G)

i8 surjective.
Proof. See [Hal], II, 5.5.1. See also [Kn3].

Lemma 5.6.2 (Kneser—Harder). Let T be a K—torus. Suppose that there is a place

A of K such that T is anisotropic over Kv . Then
0

LLI%(K,T) := ker [E¥(K,T) — T T BX(K . T)] =0 .
vEY
Proof. See [Hal], I, p. 408, or [Kn3], 3.2, Thm. 7, p. 58, or [Sa], 1.9.3.

Lemma 5.6.3 (Harder). Let G be a K—group. Let ¥ C ¥ be a finite set of places

of K.Forany v€X let T,CGg bea maximal torus. Then there exists a maximal
v
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torus TCG suchthat Ty is conjugateto T under G(Kv) forany vEX.
v

Proof. See [Ha], II, Lemma 5.5.3.

Lemma 5.6.4. Let G be a semisimple simply connected K—group. Let

j: T = G be a maximal torus of G such that for every v € ¥, the torus Ty 8
v

fundamental in GK . Then the map
v

j+ : H{(K,T) — HY(K,G)
is surjective.

Proof. Let ¢ € H'(K,G). By Lemma 5.3.4 the map jy : B'(K ,T) — H'(K_,G)
is surjective for v € ¥, - Hence for any v € Vm there exists an element 7 € Hl(Kv,T)
such that j*(r)v) = locv( ) . By Lemma 5.6.1 the homomorphism
loc : Hl(K,T) —T T Hl(Kv,T) is surjective. Hence there is an element # € HI(K,T)

@

such that n_=loc_(n) forall v € ¥, - We see that loc (j«(n)) = loc_(£) . By
Theorem 5.0.3 it follows that ¢ = j«(n) . The lemma is proved.

Lemma 5.6.5. Let G be a semisimple simply connected K—group and let £C ¥ (K)
be a finite set of places of K . Then there exists a maximal K—torus j: T =——— G with
the following properties:

() BAK,T)=0 for vE€X;

@) [11%x,T)=0;

(iii) the map jy : H{(K,T) — HY(K,G) is surjective.
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Proof. We may and will assume that X3 ¥_ and that L contains at least one
non—archimedian place \0 of K. For every place v € X choose a fundamental torus
Tv C GKv . By Lemma 5.6.3 there exists a K—torus T C G such that TKv is conjugate
to Tv for all v € ¥. We see that TKV is fundamental for any v € ¥ . Hence by Lemma
5.3.3 H2(KV,T) = 0, which proves (i). The torus T is fundamental over K, , where

0

Vo € % (K) , hence by Lemma 5.3.2 T is K —anisotropic. By Lemma 5.6.2
0

| ] |2(K,T) =0, which proves (ii) . Since £J ¥, the assertion (iii) follows from Lemma
5.6.4. The lemma is proved.

Lemma 5.6.6 ([M—Sh], 3.1). Let H be a reductive K—group such that H®® is

simply connected. Then

ker [H'(K,H) — B (K,HY) x TTHI(X M) =1 .

Proof. Let 7 be an element of the kernel. Consider the cohomology exact sequence
ix J*
B*(K) 4 Bk, B%®) —— BY(K,H) —— BI(K,H'") .
It is clear that # is the image of some element { € Hl(K,HBs) - Since loc () =1,

loc () € ker[iy - HY(K %) — B'(K _,H)]

forall v€ ¥_.Henceforany vE€ ¥ thereis t € Htor(Kv) such that

loc () = 6(t,) - By the real approximation theorem (cf. e.g. [Sa], 3.5) the group

Htor(K) isdensein T | Htor(Kv) , and therefore there exists t € HtOI(K) such that
@
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locv( 6(t)) = &(t,) forall v € ¥_. Thus loc_(6(t)) =loc (() . By Theorem 5.0.3
¢ = &(t) . It follows that the image n of (¢ in Hl(K,H) is trivial.

q.e.d.
Now we can prove an analogue of theorem 5.4 for number fields.

Theorem 5.7. Let G be a connected reductive group over a number field K . Then
the map abl : HI(K,G) —_— H;b(K,G) is surjective.

Proof. Let h € Hib(K,G) . It suffices to construct a torus T C G such that the
image of HY(K,T) in B}k, T(8) — 1) = Hib(K,G) contains h .

By Corollary 4.6 there exists a finite set S of places of K such that loc_(h) =0
for v£S.Let T’ CG% bea maximal torus such as in Lemma 5.6.5. We set

T= p(T(sc)) + Z(G)° ; then () — 7 Consider the exact sequence (2.14.2)
. — HY(K,T) — H;b(K,G) 6 kTl

Set = 6(h); then loc_(5) =0 for v £S. Since HQ(KV,T(SC)) =0 for vES by 5.6.5
(i), we see that loc_(n) =0 for v €S as well. Thus 7 € J_|_|_2(K,T(sc)) . By 5.6.5 (ii)
J_|_|_2(K,T(sc)) = 0 . We conclude that 7= 0. Hence h comes from HI(K,T) . The

theorem is proved.

Remark 5.7.1. Theorems 5.4 and 5.7 show if K is a local or a number field, then the

canonical embedding

B! (K,G)*M = p,E'(K,G*)\B!(K,G) «—— H.,(K,G)
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mentioned in Introduction (see also Remark:3.9.1) is a bijection.
We shall apply Theorems 5.4 and 5.7 to prolong non—abelian cohomology exact
sequences.
Proposition 5.8. Let
L

(5.8.1) 1— Gy 4, G, A, Gy —1

be an exact sequence of connected reductive K—groups. Suppose that the maps abcl; and
2

abé are surjective. Then the sequence
3

1 oo A o2 2
(5.8.2) H'(K,G)) — H'(K,G3) — H;} (K,G;) — H}, (K,G,)
is exact, where the connecting homomorphism A is the composition
1 ::Lb1 1 é 2
H'(K,Gg) —— H, (K,G,) —— H, (K,G,) .

Proof. Consider the commutative diagram

1 ko
Bl(k,G,) = HY(K,G,)

abzl labs |
)+ 1x

1 J 1 5§ 2 2
H;, (K,Gy) — H,, (K,Gy) — Hy, (K,G,) — H, (K,G,)

with exact bottom row. Since ab3 is surjective, the sequence (5.8.2) is exact in the term
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sz(K’Gl) . It is clear from the diagram that the composition
1 | A 2
H (K,G2) —H (K,G3) — Hab(K’Gl)

is trivial.

Now let {5 € B'(K,G,) lie in the kernel of A : H'(K,Gg) — H2(K,G,) . We
want to prove that £, €im j, . Since ab, is surjective, there exists €q € HI(K,G2) such
that ab,(jeé,) = aby({,) . Let z € ZI(K,Gz) be a cocycle representing £, . Twisting
the short exact sequence (5.8.1) by 2, and applying Proposition 3.8 and Corollary 3.9, we
reduce the assertion to be proved to the case £, =0.Then abs(£,) = 0. By Proposition
3.6 there exists 7, € HI(K,GgC) such that {, = p«7y . Since the exact sequence of

semigimple simply connected groups

~BC ~BC . ~BC
1 . G1 ) G2 ) G3 y 1
splits, the map Hl(K,ch) — Hl(K,ch) ig surjective. Hence 7, is the image of some
1 8C 1 .
cohomology class 7, € H (K,G2 ) . Set fy=pany €H (K,G,) ; then €3 =lxby -
q.e.d.
Using Proposition 5.8 we can compute the fibers of the connecting map

A : HY(K,Gy) — B2, (K,G,)

Corollary 5.9. With the assumptions and notation of Proposition 5.8, for any
wE ZI(K,Ga) we have
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A a(ce(w)) = ¢ (im [V - BY(K,¥G4) — B(K,¥G,)])
Proof. We apply twisting by z .
Applying Proposition 5.8 to the case of local and number fields, we obtain

Corollary 5.10. If K is a local or a number field then the sequence (5.8.2) of

Proposition 5.8 is exact.

Proof. The assertion follows from Theorems 5.4 and 5.7.

Recall that if K =R then HZ,(K,G) = H'(R,x,(T)).

When proving Theorem 5.7 we have actually proved that any h € Halnb(K’G) comes
from some torus T C G . We shall prove that a similar result holds for usual, non—abelian

cohomology HI(K,G) .

Theorem 5.11. Let G be a reductive group over a number field K . For any finite
set =C HY(K,G) there exists a torus T <—d— G such that = C j,H(K,T).

Remark 5.11.1. Steinberg ([St1]) proved for arbitrary field K thatif G is
quasi—split and ¢ € H'(K,G) , then thereis a torus j: T <— G such that
£ € j*Hl(K,G) . Theorem 5.11 shows that for a number field a similar (and even more
stronger) assertion holds for any group, not necessarily quasi—split. Of cause we use
Steinberg’s theorem when we use the Hasse principle for simply connected groups.

Proof of Theorem 5.11. Since = is finite, there exists by Corollary 4.6 a finite set ¥
of places of K such that locv(abl(f)) =0 forany £ €Z and any v £ X . We construct
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a maximal torus T’ C G asin Lemma 5.6.5. We set T = p(T’) - Z(G)° ; then
1(5) — T/ . We denote by j theinclusion T =—— G . We will prove that
WEYKT)IE.

Let {€=Z.S¢et h= abl( §) € Halxb(G) . When proving Theorem 5.7 we have proved
that there exists 1 € HY(K,T) such that h is the image of 7, i.e.
abl(ju(n)) = h = abl(¢) . Thus j«(7) and ¢ lie in the same fiber of ab’ .

Choose a cocycle z € Zl(K,T) representing 5 . By Corollary 3.9. ¢ "differs" from
z 8¢

“ jx(77) by a certain cohomology class coming from Hl(K, ) . Since z comes from T,

we have an embedding Z%j: T =< %G . Forany v € ¥ the torus T}&sc) is
v

fundamental in GIS{C (by construction), and it is not hard to show that TI((BC)
v

i8
Y
fundamental in “Gg° as well. By Lemma 5.6.4 the map Hl(K,T(Sc)) — HL(K %G5 is
v
surjective. Thus there exists an element { € Hl(K,'I‘(sc)) such that the image of the
cohomology class 7+ p4(() € Hl(K,T) in Hl(K,G) is ¢ . The theorem is proved.
Now using Theorem 5.7 we shall compute the first non—abelian Galois cohomology in

terms of abelian cohomology and real cohomology.

Theorem 5.12. Let G be a reductive group over a number field K . Then
- (i) the diagram

1
(5.12.1) HY(X,G) 200, g1 (K,G) x TTHYX_,G) — T TH. (K.,G)
e ! ab\™ o v ab\"'v?

is exact;

.. — 1 1
(ii) both the projections loc_: H , (K,G) — ']:I' H.,(K_,G) and

1, 1 1 o
ab_: '[:]' HY(K_,G) — T;]' H,, (K ,G) are surjective.
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Here the exactness of the diagram (5.12.1) means that HI(K,G) is the fiber product
1 1 1
of Hy,(K,G) and '[:r H'(K,,G) over ']:[' H ,(K,G) .

Remark 5.12.2. For semisimple groups this assertion was proved by Sansuc [Sa].

Proof of Theorem 5.12. By Theorem 5.4 the map
ab:) T ] Hl(Kv,G) — T T Haltb(Kv’G) is surjective. By Corollary 4.12 the
1) ®

homomorphism loc_ : H;b(K,G) — T H;b(Kv,G) is also surjective. Thus the
o

assertion (ii) is proved.

We prove the injectivity of

(5.12.4) H'(K,G) — H,,(K,G) x T TH(X_,G) .

Let £ liein the kernel. Choose a {-lifting z—extension Z =—— H —— G . Then ¢ is the

image of some element 5 € Hl(K,H) . From the commutative diagram

1 1 0
b e, 1
H'(K ,H) — H'(K,H) —— H_, (K,H)

1 - locv 1 w 1 +
H'(K,,G) — H (K,G) —— H_, (K,G)

one sees that # lies in the kernel of
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BY(K,H) — B, (K.H) x TJ BY(K ) .

Now by Lemma 5.6.6 =0 . Hence £ = 0. We have proved that the kernel of (5.12.4) is
trivial. Using twisting (and applying Proposition 3.8 and Corollary 3.9) we obtain the
injectivity of (5.12.4).
We prove the exactness at the term Hib(K,G) xT T HI(KV,G) . It is clear that the
o

image of (5.12.4) is contained in the kernel of the double arrow. Conversely, let
1 1
hx ¢ € Hab(K’G) x 'III' H'(K,,G)

be in the kernel of the double arrow, i.e. loc_(h) = ab'(¢_) . We want to show that
hx £ comes from HI(K,G) :
By Theorem 5.7 h = a.bl(r)) for some n € Hl(K,G) . Then
abl(locm(n) = abl(fm) .Let z € ZI(K,G) be a cocycle representing # . By Corollary 3.9
locm(r)) and ¢ "differ" by an element of the form z,o,.r(cw) where
(LETT Hl(Kv,stc) - To be more precise, { = tz(zp,;( (p)) - By Lemma 5.6.1 there
@®

exists a cohomology class ¢ € HI(K,ZGSC) such that loc_(¢) = (. We set
€ = t,(*p+(¢)) . Then ab'(€) = ab'(n) = h and loc (€) = t,(*pu(¢,)) = &, - The

theorem is proved.

Theorem 5.13. Let G be a connected reductive K—group. The abelianiasation map
abl: Hl(K,G) — H;b(K,G) induces a canonical, functorial in G bijection of the
Shafarevich—Tate kernel | | |(G) onto the abelian group -I-Ll-elab(G) :

Recall that by definition
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LLL(G) = ker [H'(K,G) —— @H%KV,G)]

Proof. From the commutative diagram

1
(5.13.1) B'(k,¢) 228! (K,G)
locvl . 110 Cy
ab

1 v 1
H (Kv , G) ——— Hab(Kv , G)

it is clear that ab! takes LLI(G) into || |1b(G) . Write temporarily ab 111 for the

. 1
restriction of abgy to ||](G).
We prove the injectivity of a.bl 1] By Theorem 5.12 the map

1 1 1
abg, x loc_ : H(K,G) — HL (K,G) x 1:r H'(K,G)

is injective. Since locm(J_]_I_(G)) =1, we conclude that the restriction abl ] of abé to

11 1(G) isinjective.
We prove the surjectivity of ab || . Let h€ || 11.(G) C B} (K,G) . Then

loc (h) =1€ ]:I' Hzlxb(Kv’G) . Hence the element
hx1€HL (KG)x TTH(X ,G)
®
lies in the fiber product over T | Halxb(Kv'G) . By Theorem 5.12 h x 1 is the image of
1]

some element ¢ € Hl(K,G) . We will show that £ € | | [(G).

We observe that locm(.f) =1.Nowlet v € ¥;; consider the element
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loc_(£) € Hl(Kv,G) . Since £ € Hl(K,G) , we gee from the diagram (5.13.1) that

1 _ 1. 4l 1 .
ab_(loc_(£)) = 0. By Corollary 5.4.1 the map ab_ : H'(K_,G) — H_, (K_,G) is
bijective. Hence loc (§) =1 forany v € ¥;. We conclude that £ € || |(G) . The

theorem is proved.

Corollary 5.14 [Ko3]. With the notation of 4.13 we have a canonical, functorial in
G bijection || |(G) —— ¢,(K,x,(T)).

Remark 5.14.1. Voskresenskii [Vo] was first to prove that | | |(G) has a canonical
structure of abelian group. Sansuc [Sa] showed that this abelian group structure is
functorial in G . He computed |||(G) in terms of the arithmetic Brauer group Br,G .
Our formula is equivalent to the formula (4.2.2) of [Ko2]. Concerning the functoriality see
Remark 0.4 in the Introduction.

5.15. Corollary 5.14 shows that the kernel of the localisation map

(5.15.1) H'(K,G) — T [ BY(X_,G)
vEYV

has a natural structure of an abelian group and can be computed in terms of rl(G') . We

show that a similar assertion holds for the cokernel of (5.15.1) as well.

Set M = ,(T). Set T = Gal(R/K), T, = Gal(K, /K ), H™X(K,M) = (M),

H_I(KV,M) = (MI‘v)t org for v € ¥;. Consider the canonical corestriction

homomorphisms cor_ : H_l(Kv,M) — H_l(K,M) . We define the compositions

1 cor
1 bl ol -1 -1
p, H(K,G) 2o Hyy (K ,G) = H (K M) —— H ' (K,M)
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Let HI(KV,G) denote the subset of the direct product consisting of the families
v

£ such that £ =1 for v outside some finite set. We consider the map
vveEY v

b= Ty s O HHK,G) — (Mp)yorg
The map x is functorialin G .
Theorem 5.16 [Ko3]. The sequence
0— [11(6) — BY(K,G) — ® BI(K ,G) £ (r,(T)p), g
is exact.

Proof. We have to prove only the exactness in the term & Hl(Kv,G) . Consider the

commutative diagram

(5.16.1) B'(K,G) ——®H (K _,G)

lab 19 abv

1 1
Ha.b (K,G) ® Hab ( Kv » G) (rl(c-)r)tors

Set M = rl(C') ; then using Proposition 4.11 we see that the lower row of the diagram is
the exact sequence (4.3.1)

ZL(K MK — HU(KME) — #(KMT) ,
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hence the lower row of (5.16.1) is exact.

It is clear from the diagram that the composition
1 1,

is zero. Now let £, = £ x £ € ®H (K ,G), where ¢ €T T H'(K_,G),
1]

{€EO® Hl(Kv,G) - Suppose that p(£,) = 0. Let HA be the image of {, in
4

® Hib(Kv,G) - Then the image of h, in (My) i8 zero, hence h, is the image of

tors
some element h € Hib(K,G) . Consider the element

hx £ €HL (K,G)x TTH(K,,G). It is clear that h x £_ is contained in the fiber
[14]
product over T | Hzlxb(Kv’G) . By Theorem 5.12 h x {, comes from HI(K,G) . The
®

theorem is proved.
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