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hence the lower lOW of (5.16.1) is exact.

Ii ia clear from the diagram that the compoaition

ia zero. Now let eA = e )( ef EEi gl(K ,G), where e En gl(K ,G),
CD v. ID lD v

~f Eer. H1(Kv,G) . Suppose that ~(~A) = 0 . Let hA be the image of ~A in

f

Ei g~b(KVJG) . Then the image of hA in (Mr)tola ia zero, hence hA is the image of

some element h EH~b(K,G) . Consider the element

h )( e E Ha1b(K,G) )( n a1(K ,G). Tt is clear that h x e ia contained in the fiberm v CD
(D

product over n H~b(Kv,G) . Hy Theorem 5.12 h)( e(lJ comes from H1(K,G). The
lD

theorem ia proved.
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hence the lower row of (5.16.1) is exact.

It ia clear from the diagram that the composition

ia zero. Now let eA = eco )( ef Ee H1(Kv,G) ,where eco En H1(Ky ,G),
co

~f Eer.H1(Kv>G) . Suppose that IJ(~N = O. Let hA be the image of ~A in
f

e H~b(Kv,G) . Then the image of hA"in (Mr)tors ia zero, hence hA ia the image of

some element h EH~b(K,G) . Consider the element

~ )( e(J) EH~b(K,G) )( n H1(Ky,G) . It is clear that h x {m ia contained in the fiber
(J)

product over n H~b(Ky,G) . By Theorem 5.12 h x ~(J) comes !rom H1(K,G) . The
(IJ

theorem ia proved.





THE ALGEBRAIC FUNDAMENTAL GROUP

AND ABELIAN GALOIS COHOMOLOGY

OR REDUCTIVE ALGEBRAIC GROUPS

by

M.V. Borovoi

Introdnction

Let G be a connected reduetive group over a fjeld K of characteristie 0. The aim

of tbis paper is to "abelianize" the first Galois cohomology set .H1(K,G).

Let G6S denote the derived group of G. Let Gse denote the universal covering of

the semisimple group GSSj the group GSc is simply connected. Consider the eanonical

homomorphism

p : Gse -+ GSs -+ G .

Deligne ([De], 2.0.2) noticed that the quotient set p(Gsc(K))\G(K) has a natural

structure oI an abelian group. We regard this abelian group as the abe li ani zed

O-dimensional Calois cohomologfl HO(K,G)&bld of G.

Inspired by the results of Kottwitz [Ko2], [Ko3], we try to abelianize the

l-dimensional Galois cohomology. Consider the abelianized cohomology set
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This expression makes sense: we use twisting to define a certain equivalence relation on

H1(K,G). We will show that H1(K,G)abld can be canonically embedded into same

abelian group H~b(K,G), the first abelian Calois cohomologJl gro'Up.

Moreover, iC K is a local field or a number field, then tbis embedding turns out to be a

bijection; thus the set H1(K,G)abld has in this case a natural structure of an abelian

group. Following Kottwitz [K02]' [Ko3], we compute this abelian group in the local case.

We use these results to investigate and in a sense compute H1(K,G) when K ia a number

field.

Let K be an algebraic closure of K. We write U for GK. In Section 1 we define

the algebraic fundamental gro'Up 7r"1(U) a.s follows. Let T C G be a maximal

torus defined over K. We write T(sc) for p-l(T) and set

where X* denotea the cocharacter group. The group ~1(U) ia a finitely generated

abelian group endowed with a Gal(K/K)-action. If K =( then r 1(IT) ia just the usual

topological fundamental group r~oP(G(()). For any K our algebraic fundamental group
~ ~

ia connected with the invariant Z(G) of Kottwitz [K02], where G ia a connected dual
~

Langlanda group far G and Z(G) ia Ha center. Namely, ~1(G) is the chara.cter group of
~

the (-group Z(G).

In Section 2 we definethe abelian Calois cohomology groups
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(i ~ -1) .

Here Ei denotes the Galois hypercohomology of the complex

-1() 0o--+ T BC --+ T --t 0

of tori, where -1 and 0 above the letters denote the degrees. We show that the abelian

groups H~b(K,G) depend only on ~1(G). A short exact sequence

of (connected) reductive K-groups gives rise to the ahort exact sequence

and the long cohomology exact sequence

Thus '1"1 is in a sense an exact functor and (Hi ) > ia in a sense a cohomolouicalab i_-1 o·

functor.

In the third section we construct the abe l i an i za ti on map

1 1 1 1ab = aba :H (K,G) --+ Hab(K,G)
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with kernel p*HI(K,GSC
). This map defines an embedding of the abelianized Galois

cohomology H1(K,G)abld into H;b(K,G). Observe that in the case of a semisimple group

G we have

(where ker p is a finite abelian group), and abI is in this case the connecting

homomorphism H1(K,G) --+ H2(K,ker p). We generalize the construction of Kottwitz

[Ko3], who constructs abI in the case of a Iocal field K. We also construct a

homomorphism

with kernel p(Gsc(K)); in the case of a loca1 field K this map was constructed by

Langlands [LaI] (see also [Bo], 10.2).

In Section 4 we compute explicitely the groups H~b(K,G) for a local field K in

terms of 7r1(G). We write r for Gal(K/K) and M for 7rI (n). Then

where (Mr)tors denotes the torsion subgroup of the group of coinvariants Mr' We then

write an exact sequence connecting the groups H~b(K,G) (i ~ 1) for a number field K

and for its completions Kv' In particular, we compute H~b(K,G) for i ~ 3 and compute



-5-

it in asense for i = 2. For i = 1 we compute the group

in terms of r 1(G). All these results are of an abelian nature and generalize the

Tate-Nakayama duality theory for tori. The results concerning the case i = 1 are

essentially due to Kottwitz.

In Section 5 we prove that if K is a loeal or a number field) then the abelianization

map abi is sUIjective. For Iocal fields this is very elose to a result of Kottwitz [K03]. This

surjectivity means) in particular) that for a local non-archimedian fieId K

1
H (K)G) ~ (Mr)tors

([K02], 6.4.1). In this case ab6 is not only surjective but also injective.

We use the surjectivity of abi over local and number fieIds to investigate the usual)

non-abelian Galois cohomology H1(K,G)) where K is a number field.

Theorem 5.11. For any finite subset S (M1(K)G) there exists a K-torus

j : T ~ G such that S ( j*H1(K)T).

In other words) for a number field K all the H1(K)G) comes !rom tori.

Further) we compute H1(K,G) in terms H~b(K)G) and the real cohomology:
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Theorem 5.12. Hl(K,G) is the fiber product of H;b(K,G) and n H1(Kv,G)
m

over Q H~b(Kv,G), where lD denotes the set of infinite places of K.

This result generalizes a theorem of the beautiful paper [8a] of Sansuc (and is inspired by

Sansuc's result).

From Theorem 5.12 we obtain

Theorem 5.13. The restriction of abl to the Shafarevich-:I'ate kernel defines a

bijection ill
1
(K,G) --+ ~b(K,G).

Thus we see again after Voskresenskii [Vo] ,.: _ J Sansuc [Sa] and Kottwitz [Ko2], that,
ill(G) has a natural structure of an abelian group. Combining this bijection with the

resu1ts of Section 4 we can compute ill(G) in terms of r 1(G). The obtained formula ia

equivalent to a formula of Kottwitz (Ko2].

Remark 0.1. The results of this paper can be easily adapted to the CaBe of any, not

necessarily reductive, connected K-group. Let GU denote the unipotent radical of G. We

set Gred = G/GUj this is a reductive group. We set

'"1(U) = if1cared
), H1 (K G) = H

I
(K Gred)ab' ab'

~....

and 80 on. With this notation almost all the results of the paper remain true for all

connected K-graups.
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Remark 0.2. In the ease of a semisimple group G all the results of tbis paper were

already known (cf. [Sa]). On the other hand for Ioeal fields our results are just a more

functorial reformulation of results of Kottwitz [K02], [K03]. The contribution of the present

paper is that we construct the abelian Galois eohomology and the abe1ianisation map for

any reductive group over an ari bit rarll fie1d of eharacteristie O. This enables us to

obtain new results eonceming usual, non-abelian Galois cohomology of reduetive groups

over number fjelds.

Remark 0.3. Most ef the results of tbis paper are relative, they descri1:>e the Galois

cohemology of G module the Galois eohomology of GSc. Thus our computations in

Section 5 of Galois cohomology of reductive groups over number fields are based on the

fundamental results on Galois cohomology of semisimple groups due to Kneser [Knl], [Kn2]

and Harder [HaI], [Ha.2].

Remark 0.4. Our algebraic fundamental group r 1(IT), abelianization map ab~ and

80 on, are functorial with respect to any homomorphism rp: G -+ G' of reductive
...

K-groups. Kottwitz [K02]' [K03] eomputes everything in terms of the center Z(G) of a
...

connected Langlands group G. The group G is functorial only with respeet to norma l

homomorphisms rp: G -+ G', Le. such that ~G) is normal in G. Therefore the

corresponding groups and maps of the papers [Ko2] and [Ko3] are functorial only with

respect to normal homomorphisms; 80 bis results look less functorial than ours. It should

however be mentioned that the me thods and cons truc t ions of [K02] and [K03] are

completely functorial. It suffices just to substitute Hom( r(U),(*) for Z(G) to make all

the statements and proofs of the corresponding results of Kottwitz completely funetorial

with respect to all homomorphisms G -+ G'.
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Notation

K is a field of characteristic 0, K is an algebraic dosure of K . We write r for

Gal(K/K) . For an algebraic variety X over K we write X for Xl{'

When K is a number field, let Y = J\K), r
m

and r f denote the set of all

places, the set of infinite (archime~an) piaces and the set of finite (non-archimedian)

places of K , respectively. We often write just Q) for

the completion of K at v.

We denote by JJn the group or roots of unity of order dividing n, and set
'"
11(1) = lim JJn .

+--

G is a reductive K-group. Ey a reductive K~roup we always mean a connected

reductive K-group. Let GSs denote the derived group of G . We set Gtor = G/GSS . We

denote by Z(G) the center of G and set Gad = G/Z(G) . Let G8C denote the universal

covering of the semisimple group GSs . We have the canonical homomorphism

•Let 5 be a K-group of multiplicative type, e.g. a torus. We let X (5) denote the

character group Hom(5,(Gm) and let X*(S) denote the cocharacter group Hom(Q;m'S) ,

*where Gim is the multiplicative group. We usually consider X (S) and X*(S).

For a reductive K-group G and a split maximal K-torus T we let R(G,T) denote

the root system of G with respect to T. We denote by RY (G,T) the system of coroots.

Ey definition R(G,T) (X*(T) and RY (G,T) (X.(T).

Let L be a torsion free abelian group. We write LY for Hom(L,ll).

Let M be an abelian group. We let Mtors denote the torsion subgroup of M . We

set Mtf = M/Mtors ; this ia the maximal torsion free quotient of M .
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Let Ä be a group and M a Ä-module. We say that M is a finitely generated (resp.

torsion free) Ä-module if M ia finitely generated (reep. torsion free) as an abelian group.

Let M be a finitely generated Ä-module. By a short torsion free resolution of M we

mean an exact sequence

-1 0o---t L ---+ L ----+ M -------t 0

of finitely generated Ä-modules such that L-1 and L0 are torsion free. We write L for

the complex 0 ----+ L-1 ----+ L0 ----+ 0 .

Let M be a Ä-module. We write MÄ and MÄ to denote the subgroup of invari­

ants and the group of coinvariants of M , respectively. We often consider the functors

(MA)tors and (Mi.\)tf.

Let G be an algebraic group. As usual, we write Hi(K,G) to denote the Galois

cohomology Hi(r,G(K)) (where r = Ga1(K/K) ). We denote by Zi(K,G) the set of

i-cocycles and by Bi(K,G) the set of i-eobords.

For any r-module M we write Hi(K,M) for Hi(r,M) . Similarly if F/K is a

Galois extension with the Galois group Ä and if M is a Ä-module, we write Hi(F/K,M)

for Hi(A,M) and Üi(F/K,M) for Üi(A,M), where Üi are the Tate cohomology groups.

H K is a number fjeld, we use the the notation 'oe to denote the localization maps

loc : H1(K,G) ---+ H1(K ,G)v v
1 1loc : H (K,G) -------t Ir H (K ,G)

(I) vE r v
CD

and so on.
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1. The algebraic fundamental group of a reductive group

In this section we define the algebraic fundamental group 'X'1(GK) of a reduetive

group G defined over a field K of chara.cteristic O.

1.1. Let G be a (eonneeted) reductive K-group. First suppose that G is split.

Choose a maximal split torus T C G . Consider the canonical morphisID p: GSc
---+ G .

We write T(sc) for p-1(T) ( GSc . Set

1t is a finitely generated abelian group.

Lemma 1.2. For two split maximal tori T,T' C G , the groups ~1(G,T) and

'l'"2(G,T') are canonically isomorphie.

Proof. Choose an element g E G(K) such that T' = gTg-1 . The isomorphism

int(g) : T ---+ T' induces an isomorphism g*: 'X'1(G,T) ---+ 1:1(G,T') . We will show

that g* does not depend on the choice of g.

Let N denote the normalizer of T in G . 1t suffices to show that if g E N(K) then

the automorphism g* of 1:1(G,T) is trivial. The group N(K) acts on T and on

1:1(G,T) through its quotient group W:= N(K)/T(K) . One knows that the Weyl group

W is generated by the reflections ra corresponding to the roots 0' ER(G,T) . It remaios

to show that for 0' E R(G,T) the reflection ra acta on 1:1(G,T) trivially.

Wehave

r a(X) = X-(a,X) aY
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for X EX.(T) ) where Q v is the correaponding coroot. Since all the coroots come from

X.(T(8C)) , we aee that

thus r Q acts on X.(T)/p.X.(T(sc)) trivially. The lemma ia proved.

Definition 1.3. Let G be a split reductive K-group. Let T C G be a split maximal

K-torus. We set 11"1 (G) = 11"1 (G,T) and call this abelian group the algebraic fundamental

group of G .

By Lemma 1.2 this definition is correct.

1.4. Now let G be any (not necessarily split) reductive K-group. By the algebraic

fundamental graup of G we IDean J'"1(U) (recall that U = GI{ ).

The Galois group r = Gal(K/K) acts on G and thus on 11"1(71) . Thia action can

be described aB follows.

Choose a maximal torus TI CU. For u E r choose an element g E G(K) suchu

that gu • uT I • g;1 = TI . Then u acta on J'"1(U,T') as the composition

In particular, if T C G is a maximal torus defined over K, then the action of r on

J'"1(71) ia the action on J'"1(T)/P.X.(~sc)) induced from X.CIJ·
Dur algebraic fundamental group ia a functor from the category of reductive

K-groupa and K-homomorphiaIDa to the category of finitely generated r-modules. The
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following lemma shows that this funetor ia in a sense exact.

Lemma 1.5. Let 1 --t GI ----+ G2 --+ G3 --t 1 be an exact aequence of

connected reduetive K-groups. Then the sequenee

is exaet.

Proof. Left to the reader as an easy exercise.

1.6. Examples. (1) For a K-torus T we have 1"1(T) = X*(T) .

(2) Suppose GSs to be simply eonneeted. Then the eanonieal homomorphism

1"1(CJ) --t 1"1(ntO!) is an isomorphisID, thus 1r1(U) = x*cator) .

(3) Let G be a semisimple group. Then G = Gse/ker p , where ker p is a finite

abelian K-group. Let T (G be a maximal torus defin~ over K. Then

T = T(se) /ker p . One can easily show that I"l(IT) = (ker p)(-l) := Hom(H(l),ker p) .

Note that 1"1(G) and ker p are isomorphie aB abelian groups, but are in general

non-isomorphie as r-modulea. E.g. if G =PGLn ,then ker p = #n but 1"1(U) = 71/n71 .

Corollary 1.7. For any reduetive K-group G we have an exaet sequenee

Proof. We eonsider the eanonical exact sequence 1 --t GSs
--t G --t Gtor

--t 1

and apply Lemma 1.5 and the statements 1.6 (1,3).
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Now let z E ZI(K,G&d) be a cocycle. Consider the twisted form zG of G . Hy

definition (zG)K' = Gx" ,but u E Gal(K'/K) acts on (zG)K' by g ............... Zu · ug • z;1 ,

where g ............... ug is the action of u on Gl\'

Lemma 1.8. Let Z E ZI(K,Gad) be a cocycle. Then the map

~1(GK) ---+ ~1((zG)K-) , induced by the canonical isomorphisID Gx"---+ (zGlI{) is an

isomorphism of Galois modules.

Proof. The assertion follows !rom the description 1.4 of the Galois action on '"I (U) .

In the remaining part of this seetion we prove some comparison results, whieh will

not be used later.

'"
1.9. Consider the functor Z(G) of Kottwitz. Here G is a connected Langlands dual

A A A

group for G, and Z(G) ia the center of G (cf. [Ko2]). By definition G is a connected
A

reductive (-group endowed with an algebraic action of r = Ga1(K/K) . The group Z(G)
A

is an algebraic (--group of multiplicative type; r acta on Z(G) algebraically. The

*character group X (Z(G)) ia a finitely generated r-module.

* A

Proposition 1.10. The r-modules ~1(U) and X (Z(G)) are eanonically

isomorphie.

Proof. Hy definition (d. [Ko2]) there is a maximal torus T C G such that
* '"

X (T) = X.(Tl\) ) where T is a maximal torus of G defined over K. Moreover
A '" Y y

R(G,T) = R (GK,TK), where R and R denote the system of roots and the system of
A y A Y

coroots, respeetively. We have Z(G) = n ker [a : T ---+ Gm(] where a runs through
A '" y

R{G,T) = R (Gx",TK). Hence
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where we write Rv for R v (G,T) and we UBe () to denote the subgroup of X.(TK)

generated by the set in brackets.

All the COI(>ots aVE Rv (X.(T) corne from X.(~sc)) ; moreover the set

R
V (P.X*cr<sc)) generates p*X*(~sc)) (cf. [8t2] , Lemma 25). Thus

X*(Z(G)) = X.(T}/p*X*(~sc)) = 1f1(1J) , which WaB to be proved.

Remark 1.9.1. Let l{J: GI --+ G2 be a homomorphism of reductive K-groups. First

suppose that l{J is normal, Le. r,o(G 1) is normal in G2 . Then one can define a
*... ...

homomorphism l{J : G2 --+ GI (cf. [Bo], [K02]). But if l{J is not normal, then we
* ...

cannat define l{J • In other words, G ia functorial with respect to normal homomorphisms
... ...

only. Proposition 1.9 shows, however, that the center Z(G) of G is functorial with

respect to all homomorphisms.

Remark 1.9.2. (of personal nature). For me the fact that If1(71) is the character

group of Z(G) ia not at allsurpriaing. When defining 1"1(U) Iwanted to define more

functorially the functor Z(G) of Kottwitz. On the contrary, I was surprised by the

following reau1t:

Proposition 1.10. Let K be ( and let K be either IR ar 4:. For a connected

reductive K-group G there ia a canonical i80IDarphisID

where I"~op is the usual topological fundamental group.

For brevity we write 1"1(G(4:)) for If~OP(G(()) and 1f1(G(())(-1) for
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Hom( 1"~oP(G}m(())' riop(G(())).

We recall that in the case K = IR the Galois group r = Gal((/IR) acts on

1"1(G(()) and (non-trivially) on 1"1(Q}m(()) . Sinee 1"1(Gim()) is isomorphie to 71 as a

group, but not as a r-module, we see that 'K1(G(()) and 'K1(G(())(-1) are isomorphie

as groups, but in general not aB r-modules.

In the case K = ( we have r=1 ,and 1"1(G(())(-I) is isomorphie to 1"1(G(()).
x N

To fix this isomorphisID it suffiees to fix an isoIDorphism r 1(( ) -----+ 71 (or a square root

of -1 in ().

Proposition 1.10 justifies the term "algebraie fundamental group". The proposition

means that iT1(G) is "the topologieal fundamental group, defined algebraically".

Proof. First we consider the case of a torus. Let T, T' be two K-tori. There is a

canonieal map

This map is r-equivariant , and one ean easily see that it is an isoIDorphism of groups.

Taking Gm for T' we obtain the required i80IDOrphisID

In the general case we define the map 'K1(G) ----+ r 1(G(())(-I) as follow8. Choose a

maximal torus T (G defined over K; then 'K1(G) = X*(T)/p.X.(Tie) . We eonsider

the eomposition
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One can easily check that QT(P.(X.Crsc))) = 0 ,hence QT induces an homomorphism

It ia not hard to check that (QT). does not depend on the choice of T .

Now we have the commutative diagram

(1.10.3) 0 I 'K1(Uss) I 'K 1(7J) I 'K(U tor) • 0

111
0-41"1(GsS (())(-l)---+ 'K1(G(f:))(-l)---+ 'K1(G tor (f:))(-l)---+O

The upper row is exact by Proposition 1.5. The lower row comes from the exact sequence of

the fiber bundle G(() over ator(() .

We have already shown that the right vertical row in (1.10.3) is an isomorphism. The

proposition 1.10 is weil known for semisimple groupe (cf.e.g. [V-o]), hence the left

vertical arrow is an i80morphisID. We conelude that the middle vertical arrow is an

isomorphism. q.e.d.

1.11. Our definition of I"1(U) uses explicitely the group structure of G . We are

now going to show how to define 'K1(G) in a more "algebraic-geometrical" way. We make

no further UBe of this construction here.

Let again K be any field of characteristic O. Consider the algebraic-geometrical

fundamental group r?r(U) defined by Grothendieck [Grl] (see also [Mil]) (we take

1 E Gi(K) aB the base point). Set I"rr(U)(-I) =Hom(H(l),rrr(U)) . Note that
...
71(1) = ~l(CmK) . To any regural map m: (J}mK-4 GK such that m(l) = 1
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we associate its dass m* = Ci.(m) E ~?r(U)(-l) = (Hom ~?r(GmK)' ~?r(~)) . Let

~?r(U)(-l)alg denote the subset of such algebraic classes in ~?r(U)(-l).

Proposit.ion 1.12. (i) lfyr(U)(-l)alg is a subgroup of the abelian group

~?r(IT)(-l) .

(ii) The map m t----+ Cl(M) induces an isomorphism of r-modules

J"1(U)~~rr(U)(-l)alg .

(iii) J"yr(U)(-l) is isomorphie (as a r-module) to the completion of r1(U) with

respect to the topology defined by the subgroups of finite index.

We omit the prcof.

Remark 1.13. Let H be a eonnected K-Bubgroup of G . Consider the homogeneous

space X = H\G . 1t has a canonieal base point, namely the image of tbe neutral element of

G . In this case one can similarly define the algebraic fundamental group 7r1(X) as the set

<?f algebraie classes in

One can sbow that ~?r(X) is an abelian group and that r1(X) = r?r(X)(-l)alg is a

subgroup. In tbe case K = ( we bave "l(X) ~ r~oP(X«(»(-l) .
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2. Abelian Galois cohomology

2.1. Let K be a field of Characteristic O. We write r for Cal(K/K). Let G be a

(connected) reductive K-group. Choose a maximal torus T (G (defined over K). We

consider the complex of tori

T· = (T(sc)~ T)

where T is in degree 0 and T(sc) ia in degree -1. We define the abe l ian Calois

cohomo l 091/ of G as follows:

Definition 2.2. H~b(K,G) = uf(K,T·).

Here Hi means that Galois hypercohomology of the complex T(SC)(K) ---+ T(K) of

Gal(K/K)-modules. We may regard H~b(K,G) as the hypercohomology of the double

complex

(2.2.1)
2C (r,T(K)) ---+ ...

t
C2(r,T(sc)(K)) ---+ ...

where Ci are the usual groups of non-homogeneous continuous cochains. Note that the

bidegree of Tsc(1\) is (-1,0).

We see that the groups H~b(K,G) do not depend of the choice of the algebraic

closure K of K. We are going to show in this section that they neither depend on the

choice of T. Moreover J they depend only on r 1(IT).
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2.3. Short torsion free resolutions.

Let fJ. be a finite group and M a finitely generated fJ.-module.

Definition 2.3.1. A short torsion free resolution of M is an exact sequence

of fJ. modules such that L-1 and L0 are finitely generated and torsion free (over 1l.).

We write L· for the complex (L-1 -+ L0). For brevity we shall spea.k of resolutions

of M meaning short torsion free resolutions.

Let Li -t M and L; -+ M be two resolutions. We say that the resolution Li
dominates L; if there exists a surjective morphism Li -+ L; of resolutions, i.e. a

commutative diagram

i isuch that the homomorphisms LI -+ L2 are surjective for i = -1, O.

Lemma 2.3.2. (i) For any finitely generated 4-module M there exists a short

torsion free resolution L· -+ M.

(ii) For any two resolutions Li -+ M and L; -+ M there exist a resolution L; -+ M
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dominating both Li and L2.

Proof (i). There exists an epimorphism 1l[4)k -+ M, where k is a natural number.

We set LO= ll[A)k, L-1 = ker [LO-+ M).

(ii) We take for L· the fiber product of Li and L2 over M. This means that

o 0 0 -1 -1 -1
L = LI )( L2, L = LI e L2 .

M

Lemma 2.3.3. Let J.l: MI -+ M2 be a morphism of 4-modules.

(i) There exists a short torsion free reduction of Jj, Le. a commutative diagram

where Li and L2 are resolutions of MI and M2 , respectively. Moreover, if J.l ia

surjective, we can choose Li -+ L2 to be an epimorphism of complexes.

(ii) For any two resolutions of J.l there ex:ista a third one dominating both (in the above

sense).

Proof. (i) Let L2-+ M2 be a resolution of M2 and let L· -+ MI be aresolution

of MI. We take for Li the fiber product of L· and L2 over M2.

(ii) We construct the third resolution of J.l as the fiber product aver Jj of the first and the

second ones.

Lemma 2.3.4. Let
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(M)

be a ahort exact sequence of 4-modules.

(i) There exist a short torsion free resolution of (M) , Le. a commutative diagram

o-+ Li ---tl L; ----t) Li ---+1 0
111

with exact rows, where L: -+ M. is a resolution of MI' for i = 1,2,3.
I I

(ii) For any two such resolutions of (M) there exists a third one that dominates both (in

the obvious sense).

Proof. (i) By Lemma 2.3.3 there exists aresolution (L; -+ Li) -+ (M2 -+ Mg) of

JJ, such L; -+ Li is an epimorphism of complexes. We set Li = ker[L~ -+ Li].

(ü) We use the fiber product construction.

Now let D be any A-module. Choose a ahort torsion Iree resolution L· -+ M. We

consider the complex

L • Q) D = (L-1 8 D -+ L0 Q) D)
71

Definition 2.4. a i(4,M,D) = nf(A,L· Q) D).
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To prove the correctness of Definition 2.4 we have to prove that Hi(&,L· 8 D) does

not depend on the choice of the short torsion free resolution L of M .

First note that if a resolution Li ---t M dominated a resolution L; --+ M, then the

commutative diagram

defines a quasi~somorphism 0: Li --i L; of complexes. Since torsion free 1Z-modules are

acyclic under the tensor product functor ~D, the morphism
7I.

is again a quasi-i80morphism. Any quasi-isomorphism Ci ---+ c; of complexes of

ä-modules induces an isomorphism Hi(äJci)~ g.f(A,C;) on the hypercohomology.

Thus in our case we have a canonical isomorphism

Now let Li ---+ M and L; ---t M be two resolutions. Applying Lemma 2.3.2 (ii) we

obtain that there is an isomorphism
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Applying Lemma 2.3.2 (ii) onee more, we see that this isomorphism is canonieal. Thus

Definition 2.4 is correct.

2.5. Let J.': MI -+ M2 be a morphism of J1-modules. Using Lemma 2.3.3 one can

uniquely define the morphism

Let

be an exact sequence of J1-modules. Using Lemma 2.3.4 one can uniquely define a family of

connecting homomorphisma

such that the sequence

ia exact.

We see that eR· (&,M,D) ia a cohomological functor of M. Note that

ai{&,M,D} = 0 for i ~ -2.

Remark 2.5.2. In the language of derived categories we have just
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L
where 8 denotes the left derived functor of the tensor product.

11

Remark 2.5.3. We can also define the IITate groupell

"'i '" i ·eH (A,M,D) := H (4,L ~ M) (i E 71) ,
71

where L·~ M is a short torsion free resolution. Here H denotes the

hypercohomology of the double complex Hom(P· ,L·) , where P ia a complete

resolution for A (see e.g. [A-W]).

Proposition 2.6. Let L· --t M be a ahort torsion free resolution of M, and let D be

a A-module. Then there ia an exact sequence

(2.6.1) °--t Jr1(4,M,D) --t HO(4,L-1 e D) --t HO(A,LO 8 D)--t

(-Jr(°(4,M,D) --i H1(4,L-1 ~ D) --t ...

Proof. We consider the short exact sequence of complexea

°--i (0 --i LO ~ D) --i L· 0) D --i (L-1 8 D --i 0) --i °

and write down the corresponding lang ~:- -/"';.... hypercohomology exact sequence



-26-

2.7. If fi is a finite group and U is anormal subgroup of fi , then we have inflation

homomorphisms

Now let r be a pro-finite group and M a finitely generated (over 7/.) discrete

r-module. Let D be a discrete r-module. We set

ßi(r,M,D) =!..!.E1 ßi(r/U,MU,nU) ,

U

where U runs over the open normalsubgroup of r.

Let L· --+ M be a short torsion free resolution of M, Le. an exact sequence

of discrete r-modules, where L-1 and L0 are finitely generated torsion free abelian

groups. Let d(r,L· ID) denote the hypercohomology of the double complex"

o --+ CO(r,LO~D) ~ C1(r,LO~ D)-~~ C2(r,LO~ D) --+ ...

1. 1 1
0---+ C°(I\L-1S D)~Cl(r,L-l~D) ~C2(r,L-l S D) --+ ...

where Ci(f,.) denotes the group of continuous non-homogeneous cochains. Since

MU = M for sufficiently small U, we have
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O'~ i·ow (f,M,D) = H (f,L GD D).
1l.

2.8. Let f again denote the Galois group Gal{K/K). Let M be a discrete finitely

generated F-module. We are interested in the groups Jf(i(Gal{K/K),M;K
x

) j for brevity

we write just Jri(K,M,K)().

Let L· --+ M be a short torsion Iree resolution. Consider the complex T-1 --+ TO

of K-tori such that L· = (L-1 --+ L0) is the complex X*(TK1) --+ X*(TK) of

cocharacter groups of these tori. By definition

Thus dt(i(K,M,K
x

) is the Galois hypercohomology of a complex of tori.

2.9 Examples. (1) H M ia torsion free, then we set L-1 = 0, L°= M, X*(TO) = M.

1 V\)( iThus Ji (K,M,nJ = H (K,T).

(2) Suppose that M ia finite. Choose aresolution L· --+ M and define the complex

T· = T-1 --+ TO as above. Then the homomorphism T-1(K) --+ TO(K) is surjective. Set

B = ker[T-1 --+ TO]; it is a finite abelian K-group. Then the hornomorphism

cf complexes ia a quasi-isomorphism. Hence
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i )( . -1 O' i+1H (K,M,K ) := IJf(K,T (K) ---+ T (K)) = If{K,B(K) ---+ 0) = H (K,B).

Now let G be a connected reductive K-group.

- 0
Proof. Lei T (G be a maximal torus (defined over K). Set L = X*(TK),

L-1 = X*(T(BC)). Then by definition of r 1(71), (L-1 ---+ L0) ---+ r 1(71) is a resolution of

rn . . 0 i (7!'\ K)() i( (sc)r 1(Uj. Hence, as It was shown In n 2.7, H (K,r1 Uh = H K,T ---+ T). By

definition Hi(K,T(sc) ---+ T) = H~b(K,G). This proves the proposition.

We see horn Proposition 2.10 that the groups H~b(K,G) depend oo1y on the Galois

module r 1(IT).

Corollary 2.11. Let z E H1(K,Gad) be a cocycle. There are canonical isomorphisms

H~b(K,zG) --+ H~b(K,G) .

Proof. The assertion follows horn Lemma 1.8 and ProJX>sition 2.10.

Proposition 2.12. Let 1 ---+ GI --+ G2 ---+ G3 ---+ 1 be an exact sequence of

connected reductive K-groups. Then there is a long abelian cohomology exact sequence

Proof. The assertion follows from Lemma 1.5 and the reaults of nO2.5 (cf. (2.5.1)).
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The exaet sequence (2.12.1) can be defined more explicitly as follows. Let T2 ( G2

be a maximal tOmB. Let T3 be the image of T2 in G3, and let TI be the inverse image

of T 2 in GI' We have the ahort exact sequence

of complexes of tori. Then (2.12.1) is the corresponding long hypercohomology exa.ct

sequence.

2.13 Examples. (1) G ia a torus. Then (T(sc) --+ T) = (1 ---t G), and

H~b(K,G) = Hi(K,G).

(2) Suppose that GSs ia simply connected. Hy 1.6(2) the homomorphiam

~1(U) = ~1(Utor) ia an isomorphism, hence H~b(K,G) = Hi(K,Gtor).

(3) Let G be a semisimple group, G = G8C/ker p. Then ker(T(Sc) --+ T) = ker p,
. . 1

and by 2.9 (2) H~b(K,G) = H1+ (K,ker p) . Recall that ker p is a finite abelian

K-group.

(4) For any G we have H~~(K,G) = (ker p)(K) . This followa from the definition

(the reader should look at the double complex (2.2.1)).

Proposition 2.14. Let G be a connected reductive K-group. Let T (G be a

maximal K-torus. Then there are exact sequences

( ) i+1(k) i (G) i(Gtor) i+2(k )2.14.1 ... ---t H K, er p ---+ Hab K, ---+ H K, ---+ H K, er p --+ ...

Proof. Consider the ahort exact sequence
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1 --+ GSs
-+ G -+ Gtor

-+ 1

Applying Proposition 2.12 and calculations 2.13 (1,3), we obtain (2.14.1). We obtain

(2.14.2) from ProIX>sition 2.10 and Proposition 2.6.
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3. The abelianizaüon map

In ihis section we construct the abelianizaiion maps

o. 0 0ab . G(K) = H (K,G) --+ Hab(K,G)

111ab : H (K,G) --+ Hab(K,G)

for a reductive group G over a field K of characteristic O. We follow close1y the

construction of Kottwitz [K03].

3.1. For any K-torus T we have canonical isomorphisms

(3.1.1) i N i
H (K,T) --+ Hab(K,T)

These isomorphisms are isomorphisIDs of functors T~ Hi(K,T) and

T t----+ H~b(K,T) from the category 9' of K-tori to (the category of) abelian groups.

We consider the category '1 of connected reductive K-groups G and (ail) their

K-homomorphismB. Let '§ 0 denote the full subcategory of '1 whose objects are

reductive K-groups G such that GSs is simply connected.

Theorem 3.2. The isomorphisIDs (3.1.1) for i = 0,1 can be uniquely prolonged to

morphisIDs of funetors

o 0 0ab : G(K) = H (K,G) -----+ Hab(K,G)

(from '1 to abelian groups) and
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1 1 1
ab : H (K,G) ----+ Hab(K,G)

(hom 'I to sets).

We prove Theorem 3.2 in Subsections 3.3-3.5.

3.3. First we extend (3.1.1) (for i = 0,1 ) to 10' Let G be a K-group such that

GSs is simply connected. The diagram

(i=O,l)

iis commutative, and we are forced to define abG (i=O,I) aB the composition

The map abg is a homomorphism of groups. Since G~ Gtor is a functor (in OUf

case hom 10 to 9'), we see that abO and abI are morphisms of functofs.

To extend abO and ab i to , we need z- extensions. The notion of a

z-extenBion was introduced by Langlands [LaI], [La2] and extensively used by Kottwitz.

We collect in this section definitions and lemmas trom a number of papers ([KoI] ,

[M-Sh], [Ko2], [Ko3]).

3.4. z-Extensions

Definiüon 3.4.1. Let G be a connected reductive K-group. A central extension
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1 ----i Z --+ H ----i G ----i 1

of G is called a z-extension if HSS is simply connected and Z is a product of tori of the

form RF/K(;m for finite extensions F /K .

Consider the canonical covering p' = GSc·x Z(G)o -----i G J where Z(G)o is the

connected component of the center Z(G) of G, and the map pi is defined by

(g,z)~ p(g). z for g E GSc, z E Z(G)o . Set A = ker p' ; it is a finite abelian group.

Lemma 3.4.2. Let F/K be a finite Galois extension such that Gal(F/F) acts on

*X (A) trivially. Then there exists a z-extenson H ----i G with kernel Z such that

Z ~ (RF /KfGm)n for some natural n.

Remark 3.4.2.1. This result was proved by Milne and Shih [M-Sh] with the

additional hypothesis that F splits G.

Proof of Lemma 3.4.2. Set 4 = Gal(F/K) . There exists a surjective homomorphisID

* .
s : L ----i X (A) of ~-modules, where L is a 71 [A] -free module. Set Z be a K-torus

*such that X (Z) =L ; it is a torus of the form (RF/KfGm)n . Since s is surjective, the

*induced homomorphism s : A ----i Z is injective. We set

H =(Gsc x Z(G)o x Z)/A

and define aB: H ----i G = (Gse )( Z(G)o)/A to be the epimorphism induced by the

projection
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Then ker a
H
~ Z (because A c ~ GSc x Z(G}o is injective) and HSS ~ GSc (because

A c ~ Z is injective). The lemma is proved.

We need a special kind of z-€Xtensions, namely, e-liJting z-eztensions.

Definition 3.4.3. Let {E Hi(K,G} (i = 0,1) . A z-extension a: H ----+ G is caUed

a e-lifting z-extension if { comes from Hi(K,H}.

We observe that in the case i = °any z-extension is {-lifting for any

{ E HO(K,G} = G(K} . In the case i = 1 there is

Lemma 3.4.4 (Kottwitz [Ko3]). Let F/K be finite Galois extension such that

IWsK/ F : H1(K,G) ----+ H1(F,G) takes { to 1. Let Z c • H ----+ G be a

z-extension whose kernel Z ia of the form (RF/K~m}n . Then H ----+ G ia a {-lifting

extension.

Proof. Consider the commutative diagram

H1(K,H} ----+ H1(K,G} ----+ H2(K,Z}

111
H1(F,H) ----+ H1(F ,G} ---+ H2(F ,Z}

with exact rows. Since Z ~ (RF/KCm}D , the restriction homomorphisID

H2(K,Z) ----+ H2(F,Z} is injective. We see from the diagram that the image cf { in

H2(K,Z) is trivial. Hence { comes from H1(K,Z), which was to be proved.

Hy definition any element {E H1(K,G) comes from H1(P/K,G) for sorne finite

Galois extension F /K . Then ResK/ p { = 1 . Thus we get
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Corollary 3.4.5 (Kottwitz [Ko3]). For any {E H1(K,G) there exists a {-lifting

z--extension H ---+ G .

The corollary follows from Lemma 3.4.2 and Lemma 3.4.4.

3.5. Now we can extend the maps abO and abi from ~ 0 to ~.

3.5.1. Let {E Hi(K,G) (i = 0,1) . Choose a {-lifting z-extension

Z c ~ H~ G and consider the commutative diagram

The element {E H1(K,G) is the image of some element "E H1(K,H) . We are forced to

set abb( {) = 0ab(abA(,,)) . Recall that the map ab~ has been defined before (because

HSB ia simply connected).

In the case i = 1 we have Hi(K,Z) = 0 , hence " ia unique and abb( {) ia defined

uniquely. In the case i = 0 the lifting " of { ia not unique, but one can easily see from

the diagram that 0ab(ab~(fJ)) does not depend on the choice of 1]. It is clear that abg

is a group homomorphisID.

3.5.2. We have to prove that the above defined element abÖ( {) doea not depend on

the choice of the z-extension H ---+ G .

Let Ql: BI --+ G and Q2: B2 --+ G be two z-extensions. We say that 01
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dominatea 02 if there exists a surjective morphism of z-extensions

Lemma 3.5.3. Let {E Hi(K,G} (i =0;1) . Let °1 : H1 --4 GI and °2 : H2 ----t G

be two {-lifting z-extensions. Then there exists a third one 0: H ---+ G , dominating

both.

Proof. We set H = H1 x G H2 (fiber product). Then 0: H ---+ G is surjective and

ker 0 = ker 0 1 )( ker 02 . We see that ° is a z--extension. In the case i = 1 the set of

cocycles Zl(K,H} is the fiber product of Zl(K,H2} and ZI(K,H2} . Since 0 1 and Q2

are {-lifting extensions, we conelude that 0 ia also a {-lifting extension. In the case i=Q

any z--extension is {-lifting. The lemma ia proved.

3.5.4. We prove that the construction of abb(~} does not depend on the choice of

z-extenaion H ---+ G . Let °1 : H1 -------+ G and °2 : H2 -------+ G be two {-lifting

z-extensions. First suppose that 01 dominates °2 , Then we have commutative diagrams
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Let '11 E H
i
{K.H1) be an element such that Ql*( '11) = {.' Set

TJ2 =ß.,( '11) E Hi(K,H2) . Then 02*{ '12) = {. Since abi is a morpbism of functors on

10 ' the rectangle in the diagram of cohomology above is commutative, and therefore

ab~{TJ2) = ßab{ab~ ('11)) . We .conclude that 0lab{ab~{TJl)) = 02ab{ab~{ '72)) . Thus in

tbis case 01 : BI ---+ G and °2 : H2 ---+ G gives us the same element abb{ {) .

Now let 01 and 02 be any two {-lifting z-extensions. Using Lemma 3.5.1 we

reduce the assertion to be proved to the already considered ~ase when Q1 dominates O2 ,

Thus we have proved that the definition of abb{~) does not depend on the choice of the

z-extension H~ G .

3.5.5. We have defined the map abb: Bi(K,G)~H~b{K,G) . One can easily

check that abg is a homomorphism of groups. We roust now prove that abb is a

morphism of functors. To do it we need

Lemma 3.5.6 [Ko3]. Let ß: GI -----+ G2 be a homoIDorphism of connected

reductive K-groups. Let {I E H1{K,B) . Then there exists a {1-lifting z-extension of ß,

i.e. a commutative diagram

(3.5.6.1)

such that 01 is a ~l-lifting z-extension and 02 is a z-extension.

Proof. Set ~2 = ß.~1 . Let 0: B~ GI be any e1-lifting z-extension and let

02 : B2~ G2 be any e2--lifting z--extension. Let H1 be the fiber product of H and

H2 over G2 . We have canonical homomorphisIDs (}1: BI -----+ GI and
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~ : H1--t H2 . One can easily see that a1 is a z-extension with kerne!

ker a )( ker Q2 . Since Zl(K,H1) is the fiber product of Zl(K,H) and Zl(K,H
2

) over

Zl(K,G2) , we see that Q1 is a ~l-lifting extension.

We will need later the following version of Lemma 3.5.6.

Lemma 3.5.7. Let ß be a surjective homomorphism of connected reductive

K-groups. Let {2 E H1(K,G2) . Then there exists a z-extension (3.5.6.1) of ß such that

~ is surjective and Q2 is a {2-lifting extension.

Proof. Let °2 : H2 --+ G2 be a {2-lifting z-extension. Let Q: H --+ GI be any

z--extension. We set H1 = H )CG H2 .
2

We prove that abi (i = 0,1) is a morphism of functors. We consider the case i = 1 ;

the case i = 0 can be proved similarily. Let GI' G2, Hp H2, {I' {2 be a.s in Lemma

3.5.6. We have the commutative diagram

Bi (K,G1) ...<--H
i
(K ,H1) ----+. H~b(K,Hl) ----+. H~b(K,GI)

~1 1(ßH)* 1 lßab

H
i
(K,G2)<: H

i
(K,H 2) IH~b(K,H2) IH~b(K,G2)

where the commutativity of the central rectangle follows from the already proved

functoriality of abö on '10· Let 1'11 E H
1(K,H1) be a lifting of ~l j then

(~)*(1/) EH1(K,H2) ia a lifting of {2 (because the left rect~g1e is commutative). Now

from the commutativity of the other two rectangles we see that

1 1
ßab(abG ({2)) = aba (e2) .

1 2

q.e.d.
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Theorem 3.2 is proved. In the remaining part of tbis section we prove three

propositions that complete Theorem 3.2.

Proposition 306 [Ko3]. Ker abh = p$Hi(K,Gsc) (i = 0,1) .

Proof. First suppose that GSs is simply connected. Then abh is just the map

Hi(K,G) --t Hi(K,Gtor) induced by the canonica.l homoIDorphisID G --+ Gtor . In this

case the assertion follows from the exact cohomology sequence

i( ss) P* i i tor
0 .. --+ H K,G J H (K,G) --+ H (K,G ) --+ "0

In the general case we have the diagram

Bi ( K 1 GSC
) -----t Bi (K GSc) 0

I ab' =

p*1 1
Hi(K, G) •H~b(K 1 G)

which is commutative because abi ia a morphism of functors. From this diagram it ia dear

1( sc) ithat p*H K,G ( ker abG .

Now let ! E ker abh . Choose a !-lifting z--extension Z~ H~ G . We have

the commutative diagram



-40-

Hi(K, Z) H~b(K,Z)

1 ab~ 1
Hi(K, H) •H~b(K,H)

1a.
ab i 1

Hi(K,G) G .i
I Hab(K,G)

with exact columns. Let 1] E Hi(K,H) be an element such that (l*( 1]) = { . In the case

i = I we have H1(K,Z) = 0 ,hence '7 is unique and abA( 1]) = 0 . In the case i = 0 we

may choose '7 such that ab~( '7) = 0 . In both cases 1] E ker ab~ ,hence '7 comes from

Hi(K,Hss) = Hi(K,Hsc) . Taking in account the commutative diagram

we condude that e comes from Hi(K,Gsc) , which was to be proved.

3.7. Hy Theorem 3.2 the map abO ia a group homomorphisID. We want to show that

the map abI has also a certain multiplicativity property.

Let z E Zl(K,G) . We consider the twisted form zG of G . Let

denote the canonical map defined by Cf.(z ') I I Cf.(z I z) for z I E H1(K,zG) , where

Cf. denotes the cohomologica1 dass. Note that if G ia abelian, then zG ca.n be identified
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with G and in thia case t ia e-------+ e+ ct(z) .z

Proposition 3.8. Let z EH1(K,G) . Then the diagram

t z 1
----------~. Hab(K,G)

1
~x+a(z)-+ H1 (K G)

ab '

H1(K,zG)

1abI

H~b(K,zG)=H~ b(K,G)

(3.8.1)

commutes, where a(z) = ab6(Cl(z)) and we identify the abelian groupe H;b(K,zG) and

H~b(K,G) using Corollary 2.11.

Proof. Let ß: G ---+ G' be a homomorphism of connected reductive K-groups.

For z E Z1(K,G) set z' = ß.z E Zl(K,G') . It is dear that the diagram

(3.8.2)

commutes.

Now suppose that GSs is simply connected, and take Gtor for G' . Then

H1(K,G') = H1(K,Gtor) = H;b(K,G), tz' = (x~ x+Ct(z')) and the diagram

(3.8.2) becom~ the diagram (3.8.1). This proves the proposition for G E 10'
To treat the general case we need

Lemma 3.8.3. Let z E Zl(K,G) and eE H1(K,ZG) . Then there exists a

z-extension a: H ---+ G , a cocycle w EZl(K,H) such that a.w = z , and a
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Proof. Choose a Galois extension F/K trivialising both Ct(z) E H1(K,G) and

{ E H1(K,zG) . By Lemma 3.4.2 there exists a z--extenaion a: H --t G whose kernel Z

is isomorphie to (RF /KGim)n . By Lemma 3.4.4 a ia a Ct(z)-lifting extension. Moreover,

since a ia surjeetive, any eobord b E B1(K,G) ca.n be lifted to B1(K,H) . Using twisting,

we obtain that z ia the image of some cocyele w E Zl(K,H) .

Consider the twisted homomorphism wer: wH --t zG . 1t is clear that W Q is a

z--extension with kernel Z ~ (RF /KCSm)n . Ey Lemma 3.4.4 wer is a {--lifting extension.

Thua Lemma 3.8.3 ia proved.

We prove Proposition 3.8 in the general case. Let er: H --t G ,wand z be as in

Lemma 3.8.3. Since the diagram

H1(K, wH)
t

I H1(K,H)w

(w0).1
t z

1o.

H1(K, ZG) • H1(K, G)

commutes and aab(abÜ(Ct(w))) = abÖ(ct(z)) , the assertion to be proved ia reduced to

the already proved assertion concerning H, wand ". The proposition is proved.

Using Proposition 3.8 we ca.n compute the fibers of the map abÖ .

Corollary 3.9. For z E Zl(K,G) set e= ct(z) . Let zp : zGsc
---t zG denote

the twist of p: GSc
---t G . Then
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The corollary follows from Proposition 3.8 and Proposition 3.6.

Remark 3.9.1. We see that any fiber of abÖ is the image of the Galois cohomology

of same twisted form of GSc .

Rernark 3.9.2. Corollary 3.9 shows that the map ab!: H1(K,G) -------t H~b(K,G)

induces the embedding

mentioned in the Introduction.

The following proposition shows that the maps abi define morphisms of cohomo]ogy

exact sequences.

Proposition 3.10. (i) [Ko3]. Let

be an exaet sequence of connected reductive K-groups. Then the diagram

commutes.
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(ü) If moreover Gl is a torus, then the diagram

H1(K ,G 2) ---+ Hl(K , Gg) I H2(K,Gl )

1 1 1
H~b (K , G2) ---+ H~b (K , Gg) ----+ H

2
(K,Gl )

commutes.

Proof. First suppose that Gl'G2,Gg E , 0 . The morphism

1 ---tl Gl • G2 I Gg ---t. 1

! ! !
1 G t or G t or ---------' G t or \ 1------t. 1 ----+ 2 --, 3 ------t,

of ahort exact sequences defines a morphism of cohomology exact sequences, which proves

the assertion in this case.

To treat the general case we need

Lemma 3.10.1. Let

(G) 1 ----+ G1 ----+ G2 ----+ G3 ----+ 1

be a ahort exact sequence, and let {3 EH1(K,Gg) be a cohomology class. Then there

OOsts a e3--lifting z--extension of (G) , i.e. a morphism of short exact sequences
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1 --+ H1 --t H2 --t H3 --t 1

1 '1 1
1--+ GI -+·Q2 --+ G3 --+ 1

such that Hf.. --+ Gf.. is a z--extension for t. = 1,2,3 , and moreover H3 --+ G3 is a

e3-lifting z-extension.

Proof. Choose a z--extension H --t G2 and a e3-lifting z-extension H3 --+ G3 .

We set H2 = H )(G H3 . Let H1 be the kernel of H2 --+ H3 . We obtain the
3

commutative diagram

Since H2 --+ G2 is surjective, the homomorphisID H1 -+ GI is also surjective. Since

H1 ia anormal subgroup of H2, HSS is simply connected. Since

ker [H1 --+ GI] = ker [H --+ G2] J we conclude that H1 --+ GI is a z-extension. The

lemma is proved.

We prove Proposition 3.10 in the general case. To prove assertionB (i) and (ii) it

suffices to prove the commutativity of the diagrams

HO(K ) G3) 0 • H1(K,G1)

1 1 and

H~b (K JG3) L H~b(KJGl)
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i ~
respectively. Let ~3 E H (K,G3) , where 1 = 0 or 1. By Lemma 3.10.1 there exists a

morphism (3.10.1.1) of exact sequences such that Ht --+ Gt are z--extensions for

f. = 1,2,3 and that e can be lifted to an element "E Hi(K,H3) . Thus the assertion is

reduced to the already considered case of a ahort exact sequence in r; 0 . Proposition 3.10

is proved.

We observe that the maps abg and abÖ are i80morphisms for tori and are weil

known for groups G such that G8S is simply connected. The following remark shows that

these maps are also weIl known for semisimple groups.

Remark 3.11. Let G be a sem.isimple group, G = GSc/ker p . Then for i = 0,1 the

diagram

(3.11.1)

commutes. Here 0 is the connecting homomorphism and the right vertical arrow is the

isomorphism of Example 2.13 (3). We omit the proof (cf. [Ko2] Remark 6.5, [Ko3]

Lemma 1.8).
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4. Computation of abelian Galois oobomology

In Section 3 we have defined the abelianisation map abI: H1(K,G)~ H~b(K,G).

By Proposition 2.10 H~b(K,G) = Jrl(K,M,K
x

). In this section we try to calculate

H 1(K,M,K'x) for i ~ 1. We compute J(1(K,MJK~) for local fields. For a number field

K we compute Jr(1(K,M,K
x

) for i ~ 2. For i = I we compute the kerne! and the

cokernel oe tbe localization map Jr(1(K,M,l{x)~ e a 1(K ,M,K
x

).v v

All this stuff is a kind of Tate-Nakayama theory. The results in the most interesting

case i = 1 are essentially due to Kottwitz.

4.1. In this section K ia a Ioeal or global field of characteristie 0,

r = Gal(K/K), M is a finitely generated r-module .

Proposition 4.1. Let K be a non-arehimedean Iocal field. There are canonical

isomorphisms:

(i)

(ii )

(iii)

1 '"x N
~v: Jr (K,M,n. ) ---+ (Mr)tors

2 TTX N
Jr( (K,M,n. ) ---+ (Mr)tf e ~rll

11.

~(K,M,Kx) = °for i ~ 3.

4.1.1. We prove (iii). Let L· ~ M be a short torsion free resolution, where

L· = (L-1~ LO). In the exact sequenee (2.6.1)



-48-

i O."..x .~ 't'TX ) i+1( -1 KX
••• ---i H (K,L S l\. ) ---i dJ (K,M,l\. ---i H K,L S ) ---i ...

we have Hi(K,LOS I{x) = 0, Hi+1(K,L-1 S I{x) = 0 for i ~ 3 (cf. e.g. [Mi], 1.11). Hence

Jll(K,M,I{x) = 0, which proves (iii).

4.1.2. We begin proving (i) and (ü). Let L· ---+ M be ahort torsion free resolution.

We consider the dual complex

L' v = Hom(L· ,11) = (LOV
---+ L-1v )

(recall that v denotea Hom • 7l. ). Here L0v is in degree 0 and L-1 v ia in degree +1.

We have by definition

i 't'TX i .:tTX
tR (K,M,l\. ) = H (K,L ~l\. ).

The cup product pairing

defines canonical homomorphisma

(4.1.2.1) ßi(K M I{x) - H2-i(K L · v )B" - , ,

where B denotes Hom(· ,Br(K)).
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Lemma 4.1.3. Homomorphisms (4.1.2.1) are isomorphisms for i ~ 1.

Proof. If M is torsion free then this ia the Tate-Nakayama duality theorem. In the

general case we can write down the exact sequence (2.6.1) and the corresponding

commutative diagram. Applying the five-lemma we obtain the desired result.

4.1.4. We compute aO(K,L· v )B. By definition

nO(K,L • v )B = ker[(Lov)r ---+ (L-1v)r)B = coker[(L-1v)rB ---+ (Lov )rB]

We have

ov r 0 0 0 0 v
(L ) = Homr(L ;0.) = Hom(Lr,ll) = Hom((Lr)tpll) = (Lr ) t f

Hence (Lov ) rB = (L~)tf ~ Br(K) = L~ ~ Br(K).
II II

Similarly

Further

coker[(L-1 v)rB ---+ (Lov )fB] = coker[L
r

1 ~ Br(K) ---+ L~ ~ Br(K)]
II

= coker[Lr1
---+ L~] 8 Br(K) = Mr 8 Br(K) = (Mr)tf 8 Br(K)

II II l
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There ia a canonical iSOIDOrphisID Br(K)~ ~rll.. Now 4.1 (ii) follows from Lemma 4.1.3.

4.1.5. We compute H1(K,L· y )B. Following an idea of Kottwitz [Ko2], we consider

the ahort exact sequence

.y.y .y°-+ L --+ L ~ --+ L • ~/71 -+ °
71 71

which gives rise to the hypercohmology exact sequence

Ifl(K,L · y ~~) -+ IHO(K,L •y ~ (l(ll) -+ 1H1(K,L · y ) -+ °

(because L· y 8 ~ is a complex of injective r-modules).

We 0bserve that

• y ••y •
L ~ ~ = Hom(L ,~), L 8 (Q./"ll.) = Hom(L 1~/1l).

Since q and (l/71 are 71-injective, the sequences

0-+ Hom(M,q) -+ Hom(LO,(l) -+ Hom(L-1,Q) -+ 0

o-+ Hom(M,~/71)-+ Hom(L0,~rll.) -+ Hom(L-1 ,~.I71) --+ 0

are exact. ThUB
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IHO(K,L • y ~) = If>(K,Hom(L · ,~)) = HO(K,Hom(M,~)) = Homr(M,~) =

Hom(Mr'~) = Hom((Mr)tf'~)

and similarly

We see that

1 .y
IH (K,L ) = coke~[Hom(Mr)tf'~) -+ Hom(Mr,~/71)]=

= coker[Hom((Mr)tf'~/ll) -+ Hom(MrJ~/ll)]=
Hom(ker[Mr -+ (Mr)tf]' ~/1l) = HOID((Mr)tors,~/ll)

Using the canonical i80IDOrphism Br(K)~~/1l , we conclude that

1 · y B
IH (K,L ) = Hom((Hom(Mr)tors,~/71), Br(K)) ~ (Mr)tors J

Now 4.1 (i) follows from Lemma 4.1.3.

Proposition 4.1 is proved.

The exposition in the remaining part of the section is somewhat sketchy.

Proposition 4.2. For K = lR there are canonical iSOIDorphisms
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i x IV ... i-2
~IR: tN (IR,M,G: )~ H (IR,M) far i ~ 1.

In particular

{

H1(iR,M) if i is odd

iIO(IR,M) if i is even (i > 0).

Proof. Similar to that oi Proposition 4.1.

4.3. Now let K be a number field. Set A = A e K, where A is the adele ring of
K

K. We set 1J = AX
/I{x.

Let M be a finitely generated r-module. Let L' --t M be a short torsion free

resolution. We consider the short exact sequences

1 --t K X
---+ A)( ----+ 'C --t 1

°---+ L · QD K
X

---+ L •e A)( ---+ L' e 'C ---+ °

and the corresponding lang exact sequence

(4.3.1) 1 )( 1 T X 1 7'f\... ---+ eN (K,M,I{ ) --+ tR (K,M,ft ) ---+ eN (K,M,vJ --+ ...

We would like to compute this exact sequence.
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Proposition 4.4. There are canonical i80IDorphisIDs

(i) ~ : Jr(l(K,M,U)~ (Mr)tors

(ii) H
2(K,M,7J)~ (Mr)tf 8 ~rll.

(iii) ~(KtM,U) = 0 for i ~ 3.

Proof. The same aB that of Proposition 4.1.

Lemma 4.5. There is a canonical isomorphism

Proof. The embedding EB(K 8 K) c..... AX
induces the homomorphismv K

By Shapiro's lemma

Thus we obtain a homomorphisID

We must prove that it is an isomorphism. Using the exact sequence (2.6.1) we reduce the
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case of a torsion free module M. The

Corollary 4.6. For auy h E ~(K,M,J{)() (i~O) there exists a finite set S( 1'(K)

such that loc (h) E eNi(K ,M,Kx
) is zero for v i S ~v v v

Proof. It follows from the proof of Proposition 4.5 that for any ~ E ai(K,M,1\x)

there exits a finite set S ( r such that ~ comes from eN1(K, M, $(K ~ K)(). This
S vK

implies the proposition.

Corollary 4.7. For i ~ 3 the localization map

(4.7.1) i( K)( i,.,..)(loc : JI K,M J ) -+ n eN (K ,M,n )
m m v v

is an i80morphism (where we write m for r (K)).
m

Proof. This follows from the exact sequence (4.3.1) and Propositions 4.1(iii) and

4.4(iii).

Corollary 4.8. (Tate-Poitou). If i = 2 and M ia finite then (4.7.1) is an

isomorphism.

Proof. This follows {rom the exact sequence (4.3.1) and Propositions 4.1 (ii) and 4.4

(ii).
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Proposition 4.9. The canonical isomorphisIDs

2 ,.,..X 2 "..X
tf* : H (K,M,l\. ) -+ H (K,Mtf ~ l\. )

2 V X 2,.,..xloc : 8 (K,M,l\. ) -+ TT R (K ,M,I\.')
m v 'vm

define an isoIDorphisID of H 2(K,MJI\x) onto the fiber product of H2(K,Mtf ~ l{x) and

TT Jil(Kv,M,K;) over TTH2(Kv,Mtf8KX).
m m

Let TM be the K-torus such that X*(T) = Mtf We have computed

d/2(K,M,K
x

) in terms of the Galois cohomology H2(K,TM) of tms torus and of the real

cohomology groups d{2(K,M,K;) ~ HO(Kv,M). Observe that the homomorphisID

is surjective, but the homomorphism

in general is not surjective.

Proof. Consider the canonicalshort exact sequence

i tfo-+ Mtors ----+ M --+ Mtf --+ 0

and the corresponding commutative diagram
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with exa.ct rows. It is clear that

tf* x loc
m

: H 2(K,M,K
x

) ~ H2(K,TM) x n ß 2(Kv,M,K;)
m

define a homomorphism j from OV2(K,M,K
x

) into the fiber product over

n H
2
(Kv,TM)·

m

We prove that j is injective. Suppose eE ker j. Then eE ker tf*, hence e= i*(1])

for some "1 E H3(K,M(1)). Now, since ~ Eker loc , i*{loc (1])) = 0, hencem m

loc (1]) = 6( ( ) for some ( En H1(K ,MT)' Since the mapm m m v
CD

is surjective ([Ha],II,A.1.2, see also [Sa], 1.8), there exists (E H1(K,TM) such that

(CD = locm(()· We see that loc
CD

(6(()) = locm(17). Hy Corollary 4.7 the map

loc; : H3(K,Mtors(1)) --t n H3(Kv,Mtors(1)) is bijective, hence 6( () = "1. Hy
m

construction {= i*( 11). We conclude that {= O. This proves the injectivity of j.

The proof of the surjectivity of j is left to the reader.
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We are going to consider tRI which is the most interesting caae.

4.10. We write H-1(K,M) for (Mr)tors and, if v E 'I, write H-1(Kv,M) for

(Mr )tors' For v E Yf we have obvious corestriction homomorphisms
v

For v E Y we also have corestriction homomorphismsm

Proposition 4.11. The following diagram commutes

where the vertical arrows ~v and ~ are the isomorphisms of Propositions 4.1, 4.2 and

4.4.

Idea of proof. We reduce the assertion to the caae of torsion free M. For such M the

assertion is well known (as the compatibility the Iocal and the global Tate-Nakayama

dualilies for tori).
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CoroIlary 4.12. The localization map

1 KX 1 xloc : tR (K,M, ) --+ n tN (K ,M,K )
m m v v

is surjective.

Idea of proo!: We consider the exact sequence similar to the exact sequence 4.3.1, hut

for a sufficiently large finite Galois extension F /K. This exact sequence is partly

computed, see Proposition 4.11. We obtain the desired assertion by applying Chebotarev's

density theorem.

We can as wen choose a short torsion free resolution L· --+ M and reduce the

assertion to the case o! torsion free M.

4.13. Let F/K be a finite Galois extension such that Gal K(F) acts on M

trivially. We set fJ. = Gal(F/K). Then M is a fJ.-module. Consider the cokemel

where corv is the corestriction map, and Ay is a decomposition group of y in F. One

can show that c1(F/K,M) does not depend on the choice of F. We write c1(K,M) for

Cl(F/K,M). We set

I 1 1'7")( 1 U X
ill,R(K,M) = ker[loc : ß (K,M,I\. ) --+ mtN (Ky,M,I\.y)'

y
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Proposition 4.14. There ia a eanonical i80morphiam

Idea of proof. One can show that i111(K,M) ia canonically isomorphie to

where F/K ia as in 4.13. We write & for Gal(F/K) . This kernel is the eokernel of

ci0(&,M,(A 8 F)x) --+ ci0(A,M,(A~F)x/Fx) "
K

(see Remark 2.5.3 for the definitions of the groupe oii). Then we eompute these groups

and the homomorphism by methods of the proof of Propositions 4.1, 4.4 and Lemma 4.5.

We show that this homomorphism is

This proves the assertion.
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5. Galois cohomology over local and number fie1ds

In this section we apply the results of SectioDs 3 and 4 to the study of the usual

(non-abelian) Galois cohomology of eonnected reductive groups over loeal and (espeeially)

number fields.

5.0. We shall need the following fundamental results on Galois cahamology aver Ioeal

and global fields.

Theorem 5.0.1. ([Knl], [Kn3]). Let G be a simply eonnected group over a

Don-archimedean local field K. Then H1(K,G) = 1 .

Another proof of tbis result appeared in [Br-T].

5.0.2. Let K be a number field. A K-group is said to satisfy the Hasse principle, if

ill(G) := ker [H
1(K,G) ------+ TI H1(K ,G)] = 0 .

vE r v

Theorem 5.0.3 (Kneser-Harder--ehemousov). For any semisimple simply eonnected

group G aver a number field K) the map

1 1
H (K,G) ----+ 11 H (Kv,G)

CD

is bijective.

In particu1ar, the Hasse principle is valid for such a group.

The classieal groups were treated by Kneser (cf. [Kn2] , [Kn3]), and the exeeptional
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ones, excepting ES' by Harder [HaI]. The proaf in the most difficult case ES' initiated

by Harder [Hai], has recently been completed by ChemouBOv [eh].

We begin with proving that the maps abO and abI are in sorne cases surjective.

Proposition 5.1. Let K be a non-archimedean local fie1d. Then for any connected

reductive group G the homomorphism abO: G(K) --+ H~b(K,G) is surjective.

Proaf. First suppose that Gss is simply connected. Then in the exact cohomology

sequence

we have HI(K,GSC
) = °by Theorem 5.0.1. Thus in this case the map

ia surjective.

In the general case choose a z--extension Z c;.C- ..... H--+ G . We have the

commutative diagram

H(K) I G(K) I H1(K,Z)

1ab~ 1abg 1
H~ b (K,H) --+ H~ b (K,G) ---+ HI(K,Z)

with exact rows. Since ab~ ia surjective and HI(K,Z) = 0 , we conclude that abg ia

also surjective. q.e.d.
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Remark 5.1.1. For K = IR the homomorphism abO ia in general non~urjeetive.
)(

For example Iet 21 denote the algebra of the Hamilton quaterniona over IR. Set G = 2l ;

then GSs ia simpIy connected and Gtor = Cm . Hence

ia the reduced norm

)( )(

N~ /IR : 21 ----+ IR

We see that

. 0 )( -1-)( 0
1m abG = IR+ .,. IR = Hab(IR,G) .

Corollary 5.2. If K is a non-arehimedian loeal field, then

H~b(K,G) = G(K)/p(Gse(K)) .

To prove the surjectivity of ab! for Ioeal and global fields we need the notion of a

fundamental torus.

5.3. Fundamental tori (a survey). Let K be a local field and let G be a eonnected

reduetive K-group.

Definition 5.3.1 [K03]. A fundamental taros T (G is a maximal torus of minimal

K-rank.

There is a one-to-one correspondence between the maximal K-tori of G and
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maximal K-tori of ase:

T ( G I I T(se) ( GSc

T' ( Gse
I • p(T') • Z(G)o

where Z(G)o is the conneeted eomponent of the center of G . We see that a maximal

torus T C G ia fundamental in G if and only if T(se) is fundamenal in Gse .

Proposition 5.3.2 ([Knl] , II, p. 271). If T (G ia a fundamental torus of a

semisimple group over a non-arehimedian field, then T is anisotropie.

In other words, in tbis case G contains anisotropie maximal tori.

Lemma 5.3.3 [Ko3]. Let T be a fundamental torus of a simply eonnected

2semisimpie group G over a Ioeal field K . Then H (K,T) = 0 .

Proof. If K is non-arehimedian, then T is anisotropie, and by Tate-Nakayama

duality H2(K,T) = 0 . Now suppose K = IR . Then T is isomorphie to a produet of a

compaet torus and a torus of the form (R(/IRGim)n (cf. e.g. [Ko3] , Lemma 10.4), hence

2H (IR,T) = 0 .

Lemma 5.3.4 ([Ko3], 10.1, see also [Brvl]). Let T ( a be a fundamental torus of

a reduetive IR-group. Then the map H1(IR,T) ---+ H1(IR,G) ia surjeetive.

Theorem 5.4. If K is a Iocal field, then the map ab6: H1(K,G) ---+ H~b(K,G) ia

surjective.

This result ia essentially due to Kottwitz [K03].
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Proof. It suffices to find a maximal torus T (G such that the map

is surjective. Let T be a fundamental torus of G ; then T(sc) is a fundamental torus of

Gsc . From the exact sequence (2.14.2)

where H2(K,T(sc)) = 0 by Lemma 5.3.3, we see that for such T the map

H1(K,T) --+ H~b(K,G) is surjective. The theorem is proved.

Corollary 5.4.1. Ir K is a non-archimedian Ioeal fieId, then the map abÖ oi

Theorem 5.4 is bijective.

Proof. By Corollary 3.9 any fiber of abÖ comes from H1(K,zGsc) far some cocycle

z E Z1(K,G) . Since zGsc is simply connected, by Theorem 5.0.1 H1(K,zGSC
) = 1 . Hence

111the map abG ia injective. By Theorem 5.4 abG ia surjective. Thus abG ia bijective.

q.e.d.

Corol1a.ry 5.5 [Ko3]. Let G be a connected reductive graup aver a local fieId K.

Set M = r 1CO) .

(i) If K is non-archimedian, then there ia a canonical, functorial in G bijection

H
1
(K,G) ---+ (Mr)tors ,where r = Gal(K/K) .

(ii) If K = IR , then there ia a canonical, functorial in G surjective map

1 ,. 1 1
H (IR,G) ---+ H- (lR,M) = H (IR,M)
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Proof. (i) By Corollary 5.4.1 the map abÖ is bijective. By Proposition 4.1 (i)

H~b(K,G) = (Mr)tors . The assertion (i) is proved.

(ü) By Theorem 5.4 abÖ is surjeetive, and by Proposition 4.2

H~b(IRJG) = iI-l (IR,M) = Hl (IR,M) , whieh proves the assertion (ii).

5.6. To investigate Galois cohomology over number fields we need some lemmas.

Throughout this subsection K ia a number field.

Lemma 5.6.1 (Kneser-Harder). Let G be a eonnected K-group. Then the map

1 1loc : H (K,G) --+TI H (K ,G)
00 m v

is surjective.

Proof. See [HaI], IIJ 5.5.1. See also [Kn3].

Lemma 5.6.2 (Kneser-Harder). Let T be a K-torus. Suppose that there is a place

Vo of K such that T is anisotropie over K . Then
Vo

Proof. See [HaI], TI, p. 408, or [Kn3] J 3.2, Thm. 7, p. 58, or [Sa] , 1.9.3.

Lemma 5.6.3 (Harder). Let G be a K-group. Let E ( r be a finite set of places

of K . For any v eE let T (GK be a maximal torus. Then there exists a maximal
v v
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torus T C G such that TK is conjugate to Tv under G(Kv) for any v EI;.
v

Proof. See [Ha], II, Lemma 5.5.3. ,

Lemma 5.6.4. Let G be a semisimple simply connected K-group. Let

j : T c;"c_...~ G be a maximal torus of G such that for every v E V
m

the torus T
K

ia
v

fundamental in GK . Then the map
v

ia 8urjective.

Proof. Let ~ E H1(K,G) . By Lemma 5.3.4 the map j*: H1(K ,T) ---+ H1(K ,G)v v
1

1/v EH (Kv'T)is surjective for v E V . Hence for any v E V there exists an elementm m

such that j*(1/ ) = loc (~) . By Lemma 5.6.1 the homomorphismv v
loc : H1(K,T) ---+ n H1(K ,T) ia surjective. Hence there is an element 'fJ E H1(K,T)

m m v

such that 1/ = loc (1]) for all vEr . We see that loc (j*( 1])) = loc (~). By
v v m m m

Theorem 5.0.3 it follows that ~ = j*( 1]) . The lemma ia proved.

Lemma 5.6.5. Let G be a semisimple simply connected K-group and let ~ ( Y(K)

be a finite set of places of K . Then there exists a maximal K-torus j: T c.c- ...... G with

the following properties:

(i) H2(K ,T) = 0 for v EI;;v

(ii) i112(K,T) = 0 ;

(in) the map j*: H1(K,T) ---+ H1(K,G) ia surjective.
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Proof. We may and will assume that E) r and that E contains at least onem

non-archimedian pIace va of K . For every place v EE choose a fundamental torus

Tv (GK . By Lemma 5.6.3 there exists a K-torus T (G such that TK is conjugate
v v

to Tv for all v E E. We see that T
Kv

is fundamental for any v E E. Hence by Lemma

5.3.3 H2(K ,T) = a J which proves (i). The torus T is fundamental over K , where
Y va

va E Yf (K) , hence by Lemma 5.3.2 T is K
yO

-anisotropie. By Lemma 5.6.2

1Jl2(K,T) = a J whieh proves (ii) . Since E) Ym J the assertion (iii) follows from Lemma

5.6.4. The lemma is proved.

Lemma 5.6.6 ([M-Sh] J 3.1). Let H be a reductive K-group such that HBS ia

simply eonnected. Then

Proof. Let 1] be an element of the kernel. Consider the cohomology exact sequence

1t is clear that 1] is the image of some element (E H1(K,Hss) . Since loc (1]) = 1 ,m

for all vEr . Hence for any vEr there is t E Htor(K ) such that
CD m v v

locv( () = 6(tv) . By the real approximation theorem (cf. e.g. [Sa] J 3.5) the group

Htor(K) is dense in IrHtor(K ) , and therefore there exists t E Htor(K) such that
v

CD
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loc (6(t)) = 6(t ) for all v E 'Y . Thus loc (6'(t)) = loc (). By Theorem 5.0.3v v m CD CD

( = 6(t) . It follows that the image 1] of ( in HI(K,H) is trivial.

q.e.d.

Now we can prove an analogue of theorem 5.4 for number fields.

Theorem 5.7. Let G be a connected reductive group over a number field K. Then

the map abI: HI(K,G) --+ H;b(K,G) is surjective.

Proof. Let h EH~b(K,G) . It suffices to construct a torus T CG such that the

image of HI(K,T) in HI(K,T(sc) --+ T) = H~b(K,G) contains h.

By Corollary 4.6 there exists a finite set S of pIaces of K such that locv(h) = 0

for v ~ S . Let T' C G8C be a maximal torus such as in Lemma 5.6.5. We set

T = p(T(sc)) • Z(G)o j then T(sc) =T' . Consider the exact sequence (2.14.2)

1() 1 ( ) 6' 2( (sc))... --+ H K,T --+ Hab K,G ~ H K,T --+ ...

Set '7 = 6(h) j then locv(1]) = 0 for v ~ S . Since H2(Kv,T(8C)) = 0 for v E S by 5.6.5

(i), we see that locv(") = 0 for v E S as weil. Thus 1] Ei112(K,T(sc)) . By 5.6.5 (ii)

i112(K,T(sc)) = 0 . We canelude that 1] =0 . Hence h comes from H1(K,T) . The

theorem is proved.

Bemark 5.7.1. Theorems 5.4 and 5.7 show if K is a local cr a number field, then the

canonical embedding
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mentioned in Introduction (see also Remark:~.9.1) ia abi,jection.

We shall apply Theorems 5.4 and 5.7 ~ prolong non-abelian cohomology exact

sequences.

Proposition 5.8. Let

(5.8.1)

I

1 --+ G1 ..l....... G2~ Gg ---+ 1

be an exa.ct sequence of connected reductive K-groups. Suppose that the maps ab~2 and

1abag

(5.8.2)

are surjective. Then the sequence

is exact, where the connecting homomorphism tJ. is the comPQsition

Proof. Consider the commutative diagram

with exact bottom row. Since abg is Burjective, the sequence (5.8.2) is exact in the term.
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H~b(KJG1) . It is clear from the diagram that tbe composition

is trivial.

Now let {g EH
1

(K,Gg) lie in the kerne! of A : H
1
(K,G3) --+ H~b(K,Gl) . We

want to prove that {3 E im j•. Since ab2 is surjectiv~J there exists {2 E H
1
(K,G2) such

that ab3(j*{2) = ab3({3) . Let z E ZI(K JG2) be a cocycle representing {2' Twisting

the ahort exact sequence (5.8.1) by z2 and applying Proposition 3.8 and Corollary 3.9, we

reduce the assertion to be proved to the case {2 = 0 . Then abg( ~g) = 0 . Hy Proposition

3.6 there exists 1]3 E Hl(KJG~c) Buch that {3 = P*1]3 . Since the exact sequence of

semisimple simply connected groups

1 --+ GSC
----+ GSC

----+ GSC
----+ 11 2 g

splits, the map Hl(K,G~c) --+ Hl(K,G~C) is surjective. Hence 773 is the image of some

cohomology class 772 EHl(KJG~c) . Set {2 = P* 1J2 EH
1

(K,G2) ; then ~3 = j. ~2 ..

q.e.d.

Using Proposition 5.8 we can compute the fibers of the connecting map

Corollary 5.9. With the assumptions and notation of Proposition 5.8, for any

w E Zl(K,G3) we have
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Proof. We apply twisting by z.

Applying Proposition 5.8 to the case of local and number fields, we obtain

Corollary 5.10. If K is a Ioeal or a number field then the sequence (5.8.2) of

Proposition 5.8 is exact.

Proof. The assertion follows from Theorems 5.4 and 5.7.

. 2"0
Recall that If K = IR ihen Hab{K,G) = H (IR, W"1(U)) .

When proving Theorem 5.7 we have actuaily proved thai any h E H~b(K,G) comes

from Borne torus T ( G . We shall prove that a similar result holds for usual, non-abelian

cohomology H1(K,G) .

Theorem 5.11. Let G be a reduetive group over a number field K. For any finite

set S ( H1(K,G) there exists a torus T c j • G such that S ( j.H1{K,T) .

Remark 5.11.1. Steinberg ([St1]) proved for arbitrary field K that if G is

quasi-split and eE H1(K,G) , then there is a torus j: T c • G such that

{ E j.H1(K,G) . Theorem 5.11 shows that for a number fjeld a similar (and even more

stranger) assertion holds for any group, not necessarily quasi-split. Of cause we use

Steinberg'8 theorem when we use the Haase principle for simply connected groups.

Proof of Theorem 5.11. Since B iB finite, there exists by Corollary 4.6 a finite set E

of places of K such that loc (ab
1
({)) = 0 for any {E =: and any v ~ ~ . We construct

v
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a maximal torus T' ( aSc as in Lemma 5.6.5. We set T = p(T / ) · Z(G)o ; then

T(sc) = T' . We denote by j the indusion T c • G . We will prove that

i*(HI(K,T)) ) S .

Let {E S . Set h = abl ({) E H~b(G) . When proving Theorem 5.7 we have proved

that there exists 1] E Hl(K,T) such that h is the image of 1], i.e.

abl(j.( 1]» = h = ab l ({) . Thus i.(1]) and { lie in the same fiber of abI.

Choose a cocycle z E Zl(K,T) representing 1]. By Corollary 3.9. { "differs" from

. i.(1/) by a certain cohomology class coming from HI(K,zGBC
). Since Z comes from T,

we have an embedding Zj: T c..........+ zG . For any vEr the torus Tf sc) ia
m v

fundamental in G~C (by construction) t and it is not hard to show t hat Tksc) is
v v

fundamental in zG~c a.s weIl. By Lemma 5.6.4 the map HI(K,T(SC)) ----+ HI(K,zGSC) ia
v

surjective. Thus there exists an element 'E HI(K,T(SC)) such that the image of the

cohomology dass 1] + p~( () E HI(K,T) in HI(K,G) is e. The theorem ia proved.

Now using Theorem 5.7 we shall compute the first non-abelian Galois cohomology in

terms of abelian cohomology and real cohomology.

Theorem 5.12. Let G be a reductive group over a number field K. Then

, (i) the diagram

is enct;

(ü) both the projections loc : HIb(K,G) ----+ TI Hlb(K ,G) andm a a vm
I I 1

ab : TI H (K ,G) ----+ TI H b(K ,G) are surjective.m v a vm m
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Here the exactness of the diagra.m (5.12.1) means that H1(K,G) is the fiber product

of H~b(K,G) and 11 H
1
(Kv,G) over 11 H~b(Kv,G) .

(D QJ

Remark 5.12.2. For semisimple groups this assertion was proved by Sansuc [Sa].

Proof of Theorem 5.12. By Theorem 5.4 the map

abI: 11 H1(K ,G) ---+ 11 Ha
1
b(K ,G) is surjective. By Corollary 4.12 the

(D v vm (D

homomorphism loc : H1
b(K,G) --+11 H1

b(K ,G) is also surjective. Thus the
(D a a v

m

assertion (ii) ia proved.

We prove the injectivity of

(5.12.4) H~(K,G) ---+ H~b(K,G) x 11 H
1
(Kv,G)

m

o

Let eHe in the kernel. Choose a {-lifting z-extension Z~ H ---+ G . Then e ia the

image of some element 1] EH1(K,H) . From the commutative diagram

1 1

1 loc 1 1
H1(Kv,H) ..--! H1(K,H) ---t. H~b(K,H)

1 loc 1 1
H

1
(Kv,G) ..--! H

1
(K,G) ---+. H~b(K,G)

one sees that 1] lies in the kernel of
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HI(K,H) --+ H;b(KiH) x TI HI(KV,H) .
m

Now by Lemma 5.6.6 1] = 0 . Henee e= 0 . We have proved that the kernel of (5.12.4) is

trivial. Using twisting (and applying Proposition 3.8 and Corollary 3.9) we obtain the

injectivity of (5.12.4).

We prove the exaetness at the term H;b(K,G) x TI H1(Kv,G) . It is clear that the
m

image cf (5.12.4) is eontained in the kernel cf the double arrow. Conversely, let

h x em EH~b(K,G) x TI H
1
(Kv,G)

(J)

be in the kernel of the double arrow, i.e. loe (h) = ab1(e ). We want to show that
(J) m

h x e comes from H1(K,G) .
(J)

Hy Theorem 5.7 h = ab1(1]) for some 1] E H1(K,G) . Then

ab1(loc (,.,) = ab1(e ). Let z E Z1(K,G) be a eocycle representing 1]. By Corollary 3.9m (J)

loe (1]) and { "differ ll by an element of the form ZP.( ( ) where
(J) (J) m

( E TI H1(K ,zGsc). To be more precise, { = t (zP.(' )). Hy Lemma 5.6.1 there
(D v (J) Z (D

(J)

exists a eohomology class 'E H1(K,zGsc) such that loe (() = ( . We setm (J)

e= t (zP.( ()) . Then ab
1
( {) = ab

1
( 1]) = hand loe ({) = t (zP.(' )) = e .The

Z (J) Z (J) (D

theorem is proved.

Theorem 5.13. Let G be a eonnected reduetive K-group. The abelianiasation map

abI: H1(K,G) --+ H~b(K,G) induces a canonica.l, funetorial in G bijeetion of the

Shafarevieh-Tate kernel ill(G) onto the abelian group ll.J.1b(G} .

Recall that by definition
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Proof. From the commutative diagram

(5.13.1) H1(K,G)
abi 1

· Hab(K,G)

10cv1
abI

110
Cv

H1(K ,G) v 1
· Hab(Kv 1 G)v

it is clear that abI takes ill(G) into ~b(G) . Write temporarily abill for the

restriction of abi; to ill(G).

We prove the injectivity of abill' By Theorem 5.12 the map

abö x locO) : H1(K,G) ----) H;b(K,G) )( TI H1(Kv,G)
m

is injective. Since loc
lD
(ill(G)) = I , we conclude that the restriction abill of abb to

ill(G) is injective.

We prove the surjectivity of abill' Let h E~b(G) ( H;b(K,G) . Then

locO)(h) = 1 ETI H~b(Kv,G) . Hence the element
m

h )( 1 EH~b(K,G) )( TI H1(Kv,G)
m

lies in the fiber product over TI H~b(Kv,G) . By Theorem 5.12 h)( 1 ia the image of
m

some element {E H1(K,G) . We will show that {E ill(G) .

We observe that locm( ,) = 1 . Now let v E Yf i consider the element
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loc (~) E H
1

(K ,G) . Since ~ EH
1

(K,G) , we see from the diagram (5.13.1) thatv v

ab1(10c (t)) = 0 . By Corollary 5.4.1 the map abI: H1(K ,G)~ Ha
1
b(K ,G) iav v v v v

bijective. Hence locv({) = 1 for any y E 'f. We conelude that {E ill(G) . The

theorem ia proved.

Corollary 5.14 [K03]. With the notation of 4.13 we have a canonical, functorial in

G bijection ill(G)~ c1(K,'K1(IT)) .

Remark 5.14.1. Voskresenskii [Vo] was first to prove that ill(G) has a canonical

atructure of abelian group. Sansuc [8a] showed that this abelian group structure is

functorial in G . He computed ill(G) in terms of the arithmetic Brauer group BraG .

Dur formula is equivalent to the formula (4.2.2) of [K02]. Concerning the functoriality see

Remark 0.4 in the Introduction.

5.15. Corollary 5.14 shows that the kernel of the localisation map

(5.15.1)

has a natural structure of an abelian group and can be computed in terms of 'Ir1(71) . We

show that a similar assertion holds for the cokemel of (5.15.1) as weIl.

Set M = 'Ir1(IT) . Set r = Gal(K/K), r y = Gal(Kv/Ky )' H-
1
(K,M) = (Mr)tors'

H-1(Ky ,M) = (Mr )tors for y E Yf · Consider tbe canonical corestriction
v

bomomorphisms cor : H-1(K ,M) ---+ H-1(K,M) . We define the compositionsy y

1 abI 1 -1 corv _ I# : H (K ,G)~ Hab(K ,G) = H (K ,M)~ H (K,M)v v v v
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Let e H1{K ,G) denote the subset of the direct product consisting of the familiesvv

('y)yE r 8uch that 'y = 1 for v outside some finite set. We consider the map

The map IJ ia funciorial in G.

Theorem 5.16 [K03]. The sequence

ia exaci.

Proof. We have to prove only the exactnesa in the term e H1{K ,G). Consider thev

commutative diagram

(5.16.1)

Set M = ~1 (G) ; then using Proposition 4.11 we see thai the lower row of the diagram ia

the exact aequence (4.3.1)

1 )( 1.)( 1 7'f\
J{ (K,M;K ) ---+ eH (K,M,fi ) ---+ H (K,M,vJ ,
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hence the lower row of (5.16.1) ia exact.

It ia clear from the diagram that the composition

is zero. Now let {A = {m )( ~f E EB H1(Kv,G) ,where 'm En H1(Ky,G),
m

ef E lDr,H1(Kv.G) . Suppose that IJ(eA) = 0 . Let hA be the image of (,A in

f

EB H~b(Ky,G) . Then the image of hA in (Mr)tors is zero, hence hA is the image of

some element h EH~b(K,G) . Consider the element

h )( e EHa
1
b(K,G) )( n H1(K ,G). It is clear that h)(' is contained in the fiberm y m

m

product over n H~b(Kv,G) . Hy Theorem 5.12 h)( {m comes from H1(K,G) . The
m

theorem is proved.
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