
Nol!.ma.tiy U.neaIL Pohlc.alLe. ComptexM 

And Equ-i.vaJr.,ian,t SpU;t:U.nglt 

by 

AnWt. H. ASSAVI 

Max-Planck-Institut 
fUr Mathematik 
Gottfried-Claren-Str. 26 
D - 5300 Bonn 3 

MPI/SFB 85-54 

University of Virginia 
Charlottesville 
Virginia 
U.S.A. 



INTRODUCTION: 

Normally Linear Poincare Complexes 

And Equivariant Splittings 

Amir H. ASSADI(*) 
University of Virginia 

Charlottesville, Virginia USA 

The study of a number of problems in group actions on 

manifolds calls for explicit constructions of actions. Successful appli­

cations of surgery theory in the non-equivariant problems has been a 

great motivation for various generalization of surgery to the equivari­

ant set up. However I the variety of problems which may be approached 

via surgery in transformation groups is quite rich. The wide range of 

phenomena which are to be studied in some of the traditional p~oblems 

(such as existence and classification problems) has limited the range 

of applicability of the existing equivariant theories. As a result, it 

seems appropriate to device specialized surgery theories which aim at 

different classes of more specific problems. 

In the problems which arise in conjunction with the existence and 

classification of actions on manifolds, it is often useful (in agreement 

with the general philosophy of surgery) to divide roughly the construc­

tions to two steps. In the first step, one uses methods of algebraic 
topology to study the problem in the homotopy category. In the second 

step one passes from the homotopy category to manifolds via surgery. 

The objects of interest in the first step are Poincare complexes. Since 

the category of Poincare complexes plays an important role in the study 

of smooth manifolds, it is natural, thus, to study homotopy related 

problems of G-manifolds on the level of equivariant analogues of this 
category. 

The question arises, then, as to what extent a Poincare complex 

with G-action should inherit the structure of a G-manifold. In this 

paper, we suggest a category of Poincare complexes with G-actions, whose 

Objects are called "normally linear Poincare G-complexes u and the 
morphisms are "isovariant normally linear maps". This category inherits 
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d 11 t he homotopy aspect.!.> 01 the cateqory of POinc<lre complcxt.::, vll tlwu I 

C;-r..lctHms, whiJe it has il certain amount of "manifold information" 

(from the category of G-manifolds) built into its objects and morphism:;. 

ThlS is in the form of a "suitable stratification" and a linearization 

of the Spivak normal sphere bundles of strata. 

The range of applications and usefulness of this category, of 

course, depends on how successfully one is able to translate "the alC?e­

braic topology" of fJ. problem into the kind of information which would 

allow one .to construct "homotopy models" in this category. Constructions 

of objects in a category of Poincare G-complexes becomes difficult if 

the candidate Poincare G-complex is required to have "too much manifold 

information" built into it. On the other hand, imposing "insufficient 

manifold-like structure" on a Poincare G-complex makes it difficult to 

construct equivariant surgery problems from such complexes, (mainly due 

to lack of equivariant transversality.) 

Thus, it appears that the nature of the problem at hand should 

determine the extent of manifold-like data required from homotopy models. 

We will illustrate this pOint by studying the problem of equivariant 

splittings of closed G-manifolds in our category. Theorem 11.1 and 11.2 

give necessary and sufficient conditions for the existence of splittings 

up to homotopy in terms of normally linear Poincare" G-complexes. Theorems 

IV. 1 , IV. 3, and IV. 7 illustrate constructions and solutions of the 

relevant surgery problems, using the homotopy models of Theorem II. 1 . 

To give concrete examples, Theorem IV. 5 considers the problem for 

homotopy spheres and yields a generalization of Anderson-Hambleton's 

theorem ([ 1 J Theorem A) while Theorem III. 1 illustrates a shorter and 

different proof of their theorem. Further applications of these ideas 

will appear in a subsequent paper. 

The contents of this paper is as follows. In Section I the category 

of normally linear Poincare G-complexes is introduced, and some relevant 

definitions and backgr~und information is mentioned. Section II contains 

the construction of objects of this category which will be used to study 

equivariant splittings. Section III illustrates the theory applied to 

the special case of homotopy spheres to give another proof of the 

Anderson-Hambleton theorem. This section serves to motivate the genera­

lization of thi s theorem in Section IV. (Theorem IV. 5 ), and the solution 

of the splittiFl'9 problem up to concordance (Theorem IV. 1 , IV. 3 and 

IV. 7) with varying degrees of generality. We conclude the paper by a 

brief discussion of the algebraic obstructions which arise in the 

general splitting problem. 
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Fin<:llly, we would like to poinl out il few rURlilrks <:lntl Illention SWill' 

features which ilre implicit in this particular choice of ilpplicnlion 

for normally linear Poincare complexes. First, our methods does not 
require "general positionalityn or the so called "Gap Hypotheses" 

which have been used by most authors. Bere, the reader will find a 
discussion of the problem of relaxing IIgeneral positionality" in the 
equivariant surgery problems in Reinhard Schultz' survey article and 
collection of problems [20]. Thus, the theories which use general­
position-type assumptions do not apply to our situation. S~condly, we 

have considered non-simply-connected manifolds, not only to achieve a 
greater degree of generality, but also to illustrate new applications 

for the algebraic K-~heoretic functor Wh; of [8] I [9] which is the 
relevant functor to capture such obstructions. We have postponed 

explicit computations of these obstructions as well as certain other 

surgery obstructions to a forthcoming paper. The reader, however, will 
find some results in this direction in [9]. 

The third point concerns the notion of quasisimple actions and 

their constructions. The homological hypotheses which are necessary in 

the splitting problem and lithe extension problem fl of [9] use Zq1T­

coefficients (local coefficients) where Z :;: z/q Z • When 'If is an q . 
infinite group I ot).e cannot replace Zq1T - coefficients with Z (q) 'If -

coefficients, where Z{q} is the integers localized at q. While the 
constructions of [9J are given for Z 1T (in order to provide necessary q 
and sufficient conditions for the constructions to exist), they work as 

well with Z{q)1T replacing Zq1T everywhere: Thus, in all the homolo­

gical conditions in this paper, one can replace Zq by Z(q) ; but 
the sufficient conditions obtained in this form will not be necessary 

anymore. S. Weinberger has independently studied "unextended homologi­

cally trivial actions" [23] (which is the analogue of our quaSisimple 

actions for the case of Z (q) 'If - coefficients) using nZabrodsky mixing". 
Weinberger's survey article in [24] contains further ideas and develop­
ments-in conjunction with construction of actions. We refer the reader 

to [20] for articles of Schultz and Weinberger and the~r references for 

discussions of related results and problems. 

Finally, to study G-actions on Poincare complexes which are not 

quasisimple, one encounters completely new phenomena. The methods of 

constructions which assume that G acts trivially on homology do not 

apply to non-quasisimple actions. An alternative is to study such pro­

blems via "homotopy actions". This is the pOint of view of [7] (see 

also (4]). Construction of non-quasisimple normally linear Poincare 
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G-complexcl;j (usinq homotopy actions) and further applicatioIl:. will lx' 

discussed in a forthcoming paper of the autllor. 

REMARK: It appears to us that the constructions of normally linear 
Poincare complexes, (e.g. as in Section II) may be combined with 

Browder-Quinn's paper in Manifolds, Tokyo, 1973 1 (University of Tokyo 

Press 1975) to give a general set up for classification theory of quasi­
simple actions. Moreover, Browder-Quinn theory can be potentially use­
ful to analyze the G-manifold structures on normally linear POincare 
G-complexes. In this fashion, one may try to refine the results of our 
Section IV by analyzing the relevant surgery obstructions in the 
Browder-Quinn theory (instead of passing to concordance to bypass 
possibly non-zero obstructions). 

SECTION I. PRELIMINARY NOTIONS: 

Throughout this paper G is a finite group of order q, and we 
will work in the category of G-CW complexes, While G-actions on 

smooth manifolds are assumed to be smooth. The smoothness assumption 

is made only for convenience sake and most of the results, when appro­

priate, are true about more general types of action with some regulariy 
conditions, e.g. locally smooth PL actions, etc. 

An earlier definition for a Poincare G-complex was suggested by 

Frank Conolly [11}1 where all the homotopy analogues of the ingredients 
involved in a G-manifold were built into the definition of a so called 
"G-Poincare complex tt

• For our purposes 1 however, it is appropriate to 
introduce G-complexes which have inherited some linear structure on the 
regular neighborhoods of various strata. This restriction, in this case, 

makes it possible to translate the homotopy problems involving (non-free) 

G-manifolds into questions which involve the homotopy structure of the 

fixed'point sets without losing the linear information naturally given 

for their normal bundles. Furthermore, we will discuss methods of 
construction for such G-complexes with this richer ... structure I and obtain 
Positive answers in a variety of circumstances. 

Let C be a category of Poincare complexes (pairs). C could be 

the category of simple Poincare complexes, Or the category of finite 

Poincare complexes, or a more general category, for instance [221. We 

will fix C during the following discussion and suppress any reference 
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to it unless it is necessary. I"or the applications, the context will 

determine the category r . 

1.1. DEFINITION: A normally linear Poincare G-complex {pair} with 
one orbit type is a Poincare complex (pair) in C in ,the ordinary 

sense (not necessarily connected). A normally linear Poincare G-pair 
(X,y) with (k+1) orbit-types is defined inductively as follows. 
Let H be a maximal isotropy subgroup. Then (G· Xfl , G • yH) is re­
quired to be a Poincare G-pair with one orbit type 'which has anequi­
variant regular neighborhood pair (R , d

1
R) in (X/Y) such that: 

(1) there exists a G-bundle v over G· XH such that (R, d
1

R) is 
G-homeomorphic to (0 (v) I 0 (v I G • yH}) ; 

(2 ) there is a normally linear poincare G-pair (c 1 aC) with k orbit 
types and a G-homeomorphism f . S(v) -> d+C c ac such that . 
X = ClIO(v) and Y = a _ CUD ( \) 1 G • yH) where a C = ac - d+C and 

f -
ft ::::: f I S (v I G • yH) . 

REMARK: Normally linear Poincare G-complexes defined above are diffe-
rent from Conolly's [11] G-Poincare complexes in at least two different 
points. First, the Spivak normal'fibre space of one stratum in the next 
is already given a linear structure. Second, the poincare embeddings of 
our definition are more manifold like in that the complement of one 

stratum in the next is also prescribed (subject to the appropriate 
identifications coming with the structure). As we shall illustrate in 
Section IV 1 this results in a great simplification of the construction 
of surgery problems. 

v is called the equivariant normal bundle of G' xH • An isova­

riant normally linear map is an equivariant map which preserves the 
isotropy types and the normal bundles (after the identification of re­

gular neig~borhoods and disk bundles). The G-homeomorphisms f and 
f' above are (G-cellular) isovariant normally linear maps of Poincare 
pairs with k orbit types. It is possible to show inductively that for 
each subgroup K.s; G I (XK, yK) is a Poincare complex which is p·oincare 

embedded in (X,Y) , and its Spivak normal fibre space has a N(K)­

linear structure. (N{K) = normalizer of K in G). 

Normally linear Poincare G-complexes are constructed in (4],[S], 
[71,(9) in the semifree case. Smooth G-manifolds are normally linear 
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Poincare G-complexes in u nutural munner. We drop the prefix G Wh('ll­

ever the context allows us to do so, 

1.2. CONVENTION: All Poincare complexes with G-actions are assumed 

to be normally linear Poincare complexes. If L S; K S; G I dimxK - dimXL > 2 • 
;: 

If X is connected, we assume that XK is connected for all K £;; G • 

All manifolds are compact and all Poincare complexes are finite. 

We will study first the case of semi free actions which serve as 

a model for the inductive proofs of similar resultp for actions with 

several isotropy groups. However, the generalization of the results of 
the semifree case is not immediate, even in the case of actions on 

spheres (or disks) due to the fact that the fixed point sets of iso­

tropy subgroups of composite order satisfy very little homological 

restrictions in general. In fact~ Oliver's work [17] shows that in the 

case of disks, only certain Euler characteristic relationships are 

necessary (and sufficient). Therefore, it is inevitable to consider 

some restricted classes of actions where some minimal homological 

conditions are imposed on the fixed point sets of various isotropy 
subgroups. 

A convenient category of G-complexes is the category of quasi­
simple actions. 

1. 2. DEFIN;I:T10N: An action 4> : G x X ... X is called quasisimple if for 

the action of N(K)/R on the fundamen­

xK and, subsequently I 
a 

Note that the triviality of the action 

each isotropy subgroup K s;; G I 

tal group of each component of 

H* (XK ; Z 'lf1 (XK) ) are trivial. a q (l 

of N(K)/K on tt1 (X!l makes it possible to define unambiguously the 

action on. the homology of x~ with local coefficients Zqtt1(X~) • 
(Recall that Zq:: Z/q 2 ., One may also use Z (q) systematically). 

REMARKS: (1) Quasisimple actions were introduced and studied in {9]. 

(2) Replacing Zq by Z(q) in the above definition, for a free G­

space X I quasisimplicity means that 'lf1 (X/G) ~ tt1 eX} x G and G acts 

trivially on the homology. This notion has been called "an unextended 

action" by S. Weinberger and studied in (23) independently. 



1.3. lJEFINI'l'lON: Lot. X 

is a finite group of order 

action is called simple) if 

(BG x X) • Here X denotes 
q g 

~l(X} and localizes TIi(X) 

Section II. 
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he a conncc'Leu G-CW complex, when.' (. 

q. X is called a simple G-space (amI the 

(E
G 

x GX) q is fibre homotopy equivalent to 

the localization of X which preserves 

for i>1 at Z/gZ .Ct. [10} and [9] 

In dealing with non-simply-connected complexes, it is necessary to 

consider simple homotopy types and simple homotopy equivalences. The 

eguivariant generalizations of the Whitehead torsion are studied in 

[18]1[15],[14]. To construct a G-action on a Simply-connected finite 

complex X {up to homo~opy type in the category of finite complexes} 

the projective class group KO(ZG) and certain subgroups or subquotients 

play an important role (cf. [21],[17],[2],[1] etc.). If "iT1 (X) l 1 , then 

the analogue of KO (ZG) is an abelian group Wh~ (n c: f) where 'If:;:: n 1 (X) 

and r is the extension 1 -> 1T ~ r ~ G -l> 1 obtained from the 

action of G on 'If 1 (X) (whenever defined). Wh; (1T c: r) and its alge­

braiC properties and topological applications are treated in {9]1 and 

an alternative definition in terms of the fibre of a transfer map bet­

ween Whitehead spaces is given in [8]. 

We will briefly recall the definition and some properties of 

Wh ~ (1T c: r) when r;:; 'If x G (the case of quasisimple. actions}. Let A be 

the category whose objects are pairs (M,B) where M is a finitely 

generated Z r - projective module which is free over 'It and B is a 
TI - basiS for M. Two objects are eqUivalent (M, B) ""' (M t I B ') if there 

is a 'IT - simple isomorphism f: (M , B) -> (l~' I B t) • Let A J = A/'"" 

and consider the monoid structure on A' induced by direct sums (and 

disjOint union), taking (o,~) as the neutral element. Then {Zr,G) 

generates the monoid of trivial elements T I and we define 

Wh~ (n c: r),.:; A I/T • It is an abelian group which fits into a 5-term 

transfer exact sequence Wh t (f) E>Whl ("iT) JL>Wh; (1T ef) JL:>KO (Zf) tr;>Ko (Z1r) • 

The homomorphism a is induced by the forgetful functor (M,B) -> M " 

FUrthermore, let Wh~(1riZq} = K1 (Zq1r)/{±1r} • Then one has a commutative 

diagram 
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when: (lOY is a generalization of the Swan homomorphism teL t21J) 

0
G

: (Zq)x_> KO (ZG) (when 'IT:::: 1 ). 

A topological application of Whi ('IT c r} is as follows. Suppose 
(X,Y) is a pair, 'Il,(X)::: 'Il , and X is a finite G-complex. Let 

<p : G x Y -> Y be a free quasisimple action, and let H* (X, YiZq'll) ;:: o • 
Then there exists a free finite G-complex XI such that Y is an 

invariant subcomplex, and there exists a 'IT-simple homotopy equivalence 

f : XI -> X reI Y if' and only if )""£" (X, Y) ;:: 0 in Whi ('IT C 'IT x G) I 

where T(X,Y) is the Reidemeister torsion of the pair {X,Y) (well­

defined in Wh,('ll;Zq) due to the homological hypothesis). Cf. [9) 

Section I for further details. 

1. 3. LEMMA: 
G 

H*{X,X iZq'lr) 

Suppose 
::: 0 and 

X is a finite semifree simple G-complex. Then 

YT (X, XG) E: Wh~ (1f c 1f x G) vanishes I where 
7T::: 'll1(X) • 

PROOF: Cf. [9] Proposition 11.3. 

We extend the notion of admissible splittings of [1] to non-simply 

connected closed manifolds (Poincare complexes). L~t Mn be a closed 

manifold and let M
n ::: M~ U b1~ be a splitting so that M1 n M.2 ::: eM2 • 

It is an "admissible splitting" if 'Ill (eM,) ~ 'Il1 (Mi ) '" 1f1 (M) ::: 11 (simi­
larly for Poincare complexes}. 

I • 4 • LEMMA: Let 4>: G x Mn -> Mn be semi free and suppose that 

M ::: !oil U M2 is an equivariant admissible decomposition of (M,$) such 

that Mi are simple. Let M,G;:: F and Mi n F ;:: F i • Then 

H*(Mi,Fi;Zq'll} ::: 0 and YT(Mi,Fi )::: 0 for i;:: 1,2,'Ir ::: 'lll(M) 

PROOF: This follows from 1.3. 

• 
In the next section we will show how to construct normally linear 

POincare complexes to solve the equivariant splitting problem for closed 

G-manifolds on the level of homotopy. 
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SECTION II. SPLITTING UP TO HOMOTOPY: 

As before I G is a finite group of order q . Let <p: G x rn -;. rn 

be a smooth, semifree action on a homotopy sphere. In {1] Anderson and 

Hambleton studied criteria for the existance of equivariant homological 
n . n n n n symmetry of 0: 14>} I ~. e . r = 0, U D where each 0. is an invariant 
nG nG 2 .. ~ 

disk and Hj ({01) ) ~ Hj ((02» for all j . Roughly speaking l vani-
shing of a semi-characteristic type invariant characterizes (rn , $) 

which are homologically double in the above sense, provided that 
n> 2 dim rG . Anderson and Hambleton call this structure a (strong) 

balanced splitting. 

Since any homotopy sphere is a twisted double, the results of [1} 
may be interpreted as finding obstructions to make a (given) II non-
equivariant symmetry" into an equivariant one. Besides leading to the 
discovery of a new and interesting invariant of such semi free actionsl 

this equivariant symmetry may be regarded as a homolo~ical regularity 

condition (i.e. similarity to the linear actions). From this perspec­

tive, it is natural to ask if such equivariant splittinqs exist for 

more general actions. In this section, we propose to study this ques­

tion for closed manifolds under some homological restrictions which 
impose P.A. Smith Theoretic conditions on the fixed point sets of 
isotropy subgroups. Our approach is to find invariants which characte­
rize the existence of equivariant splittings on the level of normally 

linear P?incare complexes, thus reducting the problem to an equivariant 

surgery problem. Since the fixed-point sets of non-trivial subgroups 

are, in general, non-simply connected, we will study the problem with 

special attention to the fundamental group. The following theorem gives 

necessary and sufficient conditions for the existence of eguivariant 
splittinqs in the category of normally linear Poincare complexes, with 

semi free actions. The general case is stated separately and its proof 
is an elaboration of the arguments for the semifree case. 

II.1. THEOREM: Suppose 4>: G x X -> X is a quasisimple semifree 

action such that (X,~) is a normally linear finite Poincare complex 

with eX,4»G = F I v{FCX} :;:; v I and a (non-eguivariant) admissible 

splitting X =: Xl U X2' F n Xi ::: Fi • Suppose (1) tt*{Xi,FiiZq'lf}:;:; 0 

and (2) "(1: (Xi,Fi ) €Wh~('lf cn x G) vanishes. Then there exists a quasi­
simple semifree normally linear finite Poincare G-complex X' with the 

following properties: (a) (X' ) G :;:; F, v (F eXt) == V ; (b) X' has an 
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equiv<.lriant admissible splittintJ XI~. Xl' U X!, , X. n F ' F. uud X~ 
~.l 1 1 

an! simplei (c) there exists a normally linear isovarianL milP 

f : X' -> X which induces a 'If-simple homotopy cquivalencci (d) X! 
J. 

and oXi are 'If-simple homotopy equivalent to Xi and oXi .n~l Fi 
and oF i respectively. Furthermore, the hypotheses {1} and (2) above 

are necessary for the existence of such X' . 

PROOF: Since X is normally linear, there exists a Poincare pair 

(C,dC) with a free G-action, such that ac::: S(v) and X = D(v) UC 

(after appropriate identifications.) Let C. = C n}(. , and let 
J. J. 

de" = ae n x. ,de.. = 
-,l. J. +,l. 

C n ax. 1 00C. = a c. n () C •• Note that 
J. ~ +,l. - J. 

dOC 1 = dOC2 and d+C
1 

::: d+C
2 

; denote them by aO and 0+ respecti-
vely. Thus we have the following diagram 

DIAGRAM (D) 

in which not all maps are equivariant. If XI exists with the desired 

properties, we can write x''''' C' UD{v) and obtain a diagram (D J
) in­

volving Cl..,C~ and the analoguous boundary decompositions in which all 
J. 

maps are equivariant. Furthermore, we will get a map of diagrams 

(DI) --> (D) with the induced map 3b --> aO T ai --> a± ,ac' --> ac I 

and C' --> C being the identity or an equivariant 'If-simple homotopy 

eqUivalence, as it is clear from the context and the requirements 

(a) - (d) above. 

Let us use an asterisks to denote orbit spaces (e.g. x* = X/G) 

and a bar to denote a covering with the deck transformation group G 
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(e.y. e* := <..: in the above situation) . 'l'hu::i we look lor a diayram 
(0 1*) of orbit spaces in which the spaces C! * and j)1* as well as 

1 + 
the dotted arrows are to be determined: 

DIAGRAM (D'*) 

The left side and the right side faces of the parallelograms in 
(D) , (DI) and (D I *) are push-outs with respective push-out maps, 
and we denote them by (LD) , (RD), (LD') , etc. Moreover, in (D'*) 
we have the following equalities up to homotopy: C1 *;:: e* , °0* ;:: 00 ' 
d_C1* ;:: d_Ci and ac'*;:: ac* and the appropriate maps are induced 
by the corresponding maps in (D) • 

In the terminology of [9] Theorem V.l, we wish lito push forward n 

the free action from the push out diagram of free G-spaces (LD) to 
the corresponding diagram (RD) after possibly replacing (RD) by 

homotopy -equivalent complexes. Since the constructions of f9] are 
sufficiently functorial, they apply t~ this situation. Briefly, note 

that Hx(Ci,o+ciiZqn} ;:: H*(Ci1o_ci;zqn) ;:: H*(Xi/Fi;Zqn) ;:: 0 by 
POincare duality, excision and hypothesis (1) of the Theorem. Further, 

the quasisimplicity condition ensures that the scheme of [9] applies 
to construct the appropriate localizations of the diagrams 

> Ci 
A 

I -----------------> a+ 
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and then take push-outs. ·.rho f ini teness obstruction as wull as thu 
Whitehead torsion obstruction for choosing C! to bt.! finite and 

.1. 
n-simple homotopy equivalent to C. I is the imago of the Reidemeister 

T .1. 
torsion t (X. , F.) in Wh 1 (n c: 11 x G) , and it vanishes by hypothesis 

.1. .1. 

(2). It follows from the duality of the Reidemeister torsion [16] that 

the corresponding obstructions for choosing a~ to be finite and 

(equivariantly} n-simple homotopy. equivalent to 3+ vanishes as well 
(cf. [9] Theorem 1. 13) .. The existence of an equivariant n-simple homo­

topyequivalence (C',cC') --> (C,aC) and n-simple homotopy equiva­

lence of Ci and Ci follows from the constructions and the functo­
riality of push-outs. 

The necessity of conditions (1) and (2) of the Theorem for exis­
tence of X, together with the appropriate equivariant splitting 

follows as in [9] Section II. 

• 
Equivariant spllttings of actions with two isotropy types and 

semifree actions can be treated in a s~milar fashion. This observation 

allows one to generalize Theorem II.1 to actions with several isotropy 

types, provided that the fixed point sets of adjacent strata are rela­

ted to each other in the same manner that the stationary point set of 

G and the free stratum are related in the semifree case. The condition 

of quasisimplicity as in Definition 1.2 ensures that this is the case. 
(The hypotheses of the following theorem may be relaxed at the expense 

of introducin9 more complicated notions and longer statements, but we 

will not do this). The proof of this theorem uses an inductive argument 

similar to II.1 and we will omit it. 

11.2. THEOREM: Let (XI') be a finite G-Poincare complex. Suppose 
X = X1 U X2 t and denote 1", (K) ::: xX n x. • Assume that the splittings 

K ~ ~ 
F 1 (K) U 1" 2 (K) ::: X are admissible for all isotropy subgroups K SG 

such that H* (1", (K) , F, (L) ; Z iT1 (F. (K) ) ::: (} and 'YT (Fl,' (K) I l, l, q l, 
F i (L)) ~ Wh~ {'If 1 (1" 1 (K» c 'II 1 (F i (K)) Xc G) vanish. Then there exists a 
finite G-Poincare complex (X' ,11') with (X',W1

G
::: (X,41)G and an 

equivariant admissible splitting X, ::: X1 UXi such that (a) there 

eXists a normally linear isovariant simple homotopy equivalence 

f : X t -> X exte.,nd.j.1..l.tt ... :t:h,~ .. ~l1cllfs;i.Qn ... 1},G ::: XG 
eX i (B) Xi and 

X I and X! n X f K are Simp'l~ homotopy equivalent to' Xl,' and X n XK 
~ . i 

repectively and x· G n Xi ::: xG n Xi 
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SECTION 111: A SPBCIAL CASE 

In the special case where Nn is a homotopy sphere, an equiva­

riant splitting is obtained as an application of 11.1, or by a direct 

argument. This yields another proof for a Theorem qf Anderson­

Hambleton [1J. We will mention this special case separately to illus­

trate the theory in a concrete case. 

111.1. THEOREM: Let 

a semifree action and 

n n n 
E be a homotopy sphere, 4>: G x £ -> E 

Fk = £G where v::: V (F e £} and dim v> k 

Given a splitting F:;: F1 UF'2 I there exists a corresponding equiva­

riant splitting En:;: D~ U o~ into disks such that D~ n p = F i if and 

only if H*(Fi;Zq} ::: 0 and O{F'i) = 0 in KO(ZG} • 

PROOF: Choose X~ c: En to be d~ffeomorphic to on and X, n F :: F'1 

and ax 1 n F :: i)F 1 • This follows easily from handle body theory and 

general posi tionality I since n > 2k I and we are working non-equiva­

riantly. By Theorem 11.1 we have a normally linear finite Poincare 

complex Xi such that (Xi,i)Xi>G::: (F
1

,aF1) , and v(F1 eX,) :: vlF, I 

and there is an isovariant map f1 : Xi ---> E which extends the 

inclusion on D(vIF,> .. Since Hi (F1) ::: 0 for i ~~. -1 , it follows 

that Xi is obtained from D(v) by adding free G-cells of dimension 

at most k. Thus, f1 can be deformed into an isovariant embedding 

extending the inclusion of D(vlp,) . Let R be an equivariant regular 

neighborhood of f 1 {Xi> U D (v) in En. Then closure (R - 0 {v I F2 } ) is 

diffeomorphic to D~ and En is equivariantly split as D~ U o~ 
where o~:: En - int(D~) • The necessity of these conditions follows 

easily as in [1J or L2] Section II. 

111.2. REMARK: The existence of X1 follows from a direct argument, 

by attaching free G-cells of dimension ~ k to S(vIF1) as in [2] II.V 

or [3J Sectinn II. Then the equivariant map f1 : Xl -> t n extending 

the incluslon D(vIF,) --> En is a direct consequence of obstruction 

theory, and it can be deformed rel O(V/F1 ) to an isovariant map using 

general positionality of F. 
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SBCTION IV. SPLI'l"l'ING UP '1'0 CONCORJ)ANC.B: 

In this Section we use the existence of equivariant splittings of 

Section II to find equivariant splittings of a G-manifold (M,~) based 

on a given non-equivariant splitting. This illustrates the construction 

of surgery problems from a given normally linear Poincare G-complex. 

When the appropriate obstructions for the existence of an equiva­

riant splitting in the category of normally linear 'Poincare complexes 
vanish, we obtain (X',ep') which is isovariantly 'l1'-simple homotopy 
equivalent to (M,CP). Next, we return to the category of G-manifolds 

by smoothing (X',cp·) equivariantly, while preserving the splitting up 

to equivariant homotopy. The result will be (Mt,~) which is isovari­

antly 'l1'-simple homotopy equivalent to (M,~) (relative to an equivari­

ant regular neighborhood of MG::: MIG ). Rather than a detailed analy­

sis of the relevant surgery exact sequence (leading to the surgery 
obstructions in order to arrange {MI,w> to be G-diffeomorphic to 

{M,ep) and inherit the desired splitting from (X I ,$'}), we pass to a 

restricted concordance in order to get a positive answer. Namely, we 
change the action on the free part of {M,$) reI S(V{MG) to get 

(M,W) concordant to (M/~}{rel MG) such that (M,$) is equivariant­

ly split as desired. 

If 'l1'1(M) = 1 , then this change in action is merely taking the 
equivariant connected sum of (1)1 I i\l) and an llalmost linear" sphere 
(Sn,o) • Thus in this case, the G-homeomorphism type of {M,i\l} is not 

changed in order to be equivariantly split_ Again we give the proof in 

the case of semifree actions and only state the general case. 

IV. 1. THEOREM: . Let ~ : G x Nn -> t<ln he a quasisimple smooth semi­
free action with (M,,~}G::: pk, v{PcM) ::;; v and a (non-equivariant) 

admissible, splitting of the closed manifold M::.M1 U M2 1 Mi n F = F i • 

Assume that- (1) H*(Mi ,Fi ;Zq1f):: O,and (2) ¥-r(Mi,Fi ) EWh~('lTC'l1' xG} 

vanishes. Then there exists a guasisimple semifree G-action on M 1 

say l/I: G x M -C>. t.i , such that: (a) (Mz W) is concordant to (M t ep) 

relative to P i (b) (M,$) has an equivariant splitting M::;; M, U Mi 

where M,;" are simple, 14i 0 F ::;; F i and )tli and aMi are 'IT-simple 

homotopy equivalent to Ni and aMi respectively. Furthermore, con-

ditions (1) and (2)' are necessary for the existence of (M1¥J) • 
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PROOF: Since by Theorem 11.1 the condition~ (1) an~ (2) are nocessary 
for the existence of equivariant splittings in the category of normally 
linear Poincare complexes, (cf. 11.1) we need to show only their 
sufficiency. 

First, we construct the concordance on the level of normally 
linear Poincare complexes. Thus we have an equivariantly split G-com­
plex XI which satisfies all the stated properties if we replace X 

by M in Theorem 11.1. 

IV.2. PROPOSITION: U~der the hypotheses of IV.l, there exists a 
normally linear G-poincare pair (Y, ay) such that: (1) yG;;: F x [0,11 
and v(yG cY) ::: 'V x [0,1] (2) ay::: M U Xl where the induced action 

on M is , and on X, is the action given by Theorem 11.1. 

PROOF: Let f: X --> M be the isovariant map of 11.1, and let Y 
be the mapping cylinder of f. 

• 
We continue the proof of IV.l by finding a normal invariant for 

(y I ay) which restricts to the natural one given on M c:: ay • Using the 
normal linearity, let Y.:;:: D (v x [O,l]) U yl where 

ay I = C U S'(v x [0 I 1]) U C f using the notation of II. 1# and Y I has a 

free quasisimple G-action. 

Let BG be Stasheff's classifying space for stable spherical 
fibrations. As before, we denote the orbit space by an asterisk: 

x* IE X/G ~,Let a: y' * -> BG be the classify;ing map for the Spivak 

spherical fibration of Y' * • Then a f C* lifts to 130 since C* is 
a manifold. Also this lift extends over S ('V x [0,,1]) * • The obstruc­
tion to extending this to a lift of a to BO ;is an element 
X E h* (Y' * ,C* us ('V x (0,1]) *) , where h*:;:: generalized cohomology theory 
of G/O. Since H* (Y.',C U S('V x [0,1]) iZq) ::: 0 by excision, the Cartan­
Leray spectral sequence for the covering pair (Y',C) --> (Y'*,C*) 
collapses and HO {B I h* (Y' ,e) lrl h* (yl *, C*) • From the hypothesis of 

quasisimplicity, it follows that G acts trivially on h*(Y',C) 
(cf. [9] 11.6 and Lemma 11.10) and h*(Y'*,C*) ;;h*(Y·,C) • Thus X is 

q-divisible. On the other hand the transfer trOO € 11* (Y' ,e) vanishes, 
Since Y' is (non-equivariantly) homotopy equivalent to C x [0,1] • 
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Therefore X = 0 and u liflH to DO. 

This yields the desired normal invariant, say 

f : (W
n

+ 1 taW) -> (Y' *, oY' *) such that aw;:: C* u s tv x to 11 J) * U v n 

and f I C* u s (v x [0,1]) * is the inclusion. The splitting 

C J * ;:: c; * U Ci * (as given in IL 1) induces an equivariant decomposi­

tion v;:: v 1 UV2 I V1 0V2 ;:: VO:;:: cV1 ;:: cV2 • Let fi lVi' i;:: 0,1,2. 

The surgery obstruction to making f1 : (v 1 ,av1) --> (C1*,oC;*1 into 

a homotopy equivalence reI S (v x 1) 'I< such that 11 : (V 1 ' i:)V 1) -> (c" ccp 
is a 'If-simple homotopy equivalence rel S (v It 1) vanishes by [22) 

Theorem 3.3 (cf. [9J Theorem IL 7). Let .N~+l be this normal cobordism, 

and add Nn +1 to Vn +1 along V to obtain a new normal map (after 
,1 1 

smoothing corners, etc.). Then fl : W' --> ¥'* with 

aWl ;:: C* U seV)( [O,l]}* Uv t 
1 V';:: Vi uVi ' and 

ft I V1 : (Vi.lavP -> (c;*,ac;*) is a hom~topy equivalence 

rel S (v xl) * n ac; (and the induced map on the G-coverings is 1f-simple). 

Next, we can do surgery on f' rel C* US (v x [0,1]) * U Vi to make it 

into a homotopy equivalence of pairs, applying again Wall's Theorem 

([ 22] Theorem 3.3) since 'If 1 (Ci) a; 'If 1 (Y') S 'II • Call'the new map 

ftl W" -> V' I where aw":;:: C*US(vx [O,l])*UV" and vn:;::V,UVi ' 

V1 = Vi and fll I Vi is also a homotopy equivalence (and ftl; \7" -> C 1 

and fll I Vi are 'If-simple equivalences). Adding . D tv x [0,1]) back 

to W" along S (v x [0,1]) yields the desired concordance. (The reader 

can easily verify that W" is an s-cobordism with a free G-action, and 

M' = VI U D(v x 1 IF) and M' - V" U DCv x 1 I F 2} y!eld the eNuivariant 1 1 12- 2 ~ 

splitting required by the Theorem}. 

• 

:tV.3 . 3 THEOREM: . Suppose 1T 1 (M) = 1 in IV. 1 • Then there exists an 

almost linear sphere (Sn,O) such that the equivariant connected sum 

(M,l/J) = (M,<P).# (Sn to) admits an equivariant splitting as in the con­

clusion of Theorem Iv.i. 

PROOF: Let l' E Wh1 (G) be the torsion of the relative h-cobordism WI! 

\-lith respect to C/G. Choose X ,E MG and the linear sphere 

S (TXM $ R) = sn where the tangent space Tlf has the linear represen­

tation induced by •• Let Kn +1 be the concordance snx {O,l] ob­

tained by adding free 2-handles and 3-handles to the free stratum of 

Sn so that the resulting G-n-cobordism has torsion -T • The new 
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equi variant concordance M x [0 I 1] fI Sn x [0 ,1] (where the connected 

sum is along an arc {X} x [0,1) in the stationary point sets) is 

actually an equivariant s-cobordism, and hence a product. But 
a (M x (0,1 J II Sn x [0,1] with the induced action is G-diffeomorphic to 
(H,.) U (H,. II 0) where (j is the ualomost linear ll action induced on 
Sn x {1} in the concordance sn x [0 I 1 J • (See [5]). 

IV.4. COROLLARY; Given (M,.) 

there exists a smooth action ~ 

as in IV.1, and so that 
: G x M -> M such that 

'IT 1 (M) :; 1 

(M, tP) has 

an equivariant splitting as in the conclusion of Theorem IV.1, and 

(M,.) is G-homeomorphic to (M,~) • 

• 

If Mn is a homotopy sphere, then we get an equivariant decom­

position into disks, thus generalizing the Anderson-Hambleton Theorem 
[1] Theorem A. Note that the methods of [lJ which are based on general 

position arguments do not apply here,' since codimensions could be quite 
small. 

IV. 5 • THEORE14 : n n Let 4>: G)( E -> t be a semifree action with 
n G (E ,.> =: F and \) (F C: t) =: \) , dim \) > 2 • Assume that En =: D~ U O~ 

n with 0i fl F =: F i is a non-equivariant splitting. Then there exists 
a smooth semi free G-sphere (E,W) such that (E,tP) is G-homeomorphic 

to (L,.) , (L1tP)G =: F , tP I G x\)=: 4> I G x \) I and O;,'IjI) has an equi­
variant splitting into disks 1: =: on U Dn with (Dn ) G :; F. if and 

only if j!O(-ll
j 

UG (Hj(F i » • 0 in KO(ZGl , i = lor' 2 . 

• 

IV.6. REMARK: Suppose Fk is a mod q homology sphere. Then Anderson 

and Hambleton prove that the necessary and sufficient conditions for 

existence of a "balanced splitting" of Fk (i.e. F is homologically 

a double) is that a certain semicharacteristic type invariant vanishes 
(cf. [lJ Theorem B). Thus Theorem IV.S can be applied to generalize 

this result of Anderson-Hambleton and improve their dimension hypothe­

sis in Theorem B of [1] from dim v;;: k +:2 to dim v > 2 • 

As in Section II, we can generalize the above results to actions 

with many' isotropy subgroups. The proofs of the semifree cases can be 
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adapted to serve as Th ...... inductive step of the following theorem. 'I'he 

normally linear Poincare G-complex which is the homotopy model in this 

case is provided by Theorem 11.2. We omit the details. 

IV.7. THEOREM: Let (Xn ,$) be a smooth closed G-manifold with an 

admissible splitting X = X1 UX2 ' satisfying all the hypotheses of 

Theorem 11.2. Then there exists a smooth G-action I/J: G x X -> X such 

that (X,l/J) is concordant to (X,$) reI XG and (X,I/J) has an equi­

variant splitting X = X' UX' which satisfies the conclusions (a} and 
1 2 

(b) of Theorem 11.2. 

SECTION V. REALIZATION OF OBSTRUCTIONS; 

One may use normally linear poincare complexes to construct actions 

with admissible splittings which do not admit necessarily equivariant 

splittin~s. Again, th~·results qf this section may be specialized to 

the situation considered by Anderson-Hambleton [1] to give an alterna­

tive proof of their Theorem C. The important algebraic calculations of 

the hyperbolic map in the Rothenberg-Ranicki exact sequence for the 

quaternionic groups are due to Anderson-Hambleton ([1] Proposition 5.2 
and [13J Lemma 6.1) who applied it in their examples of actions on 
spheres without balanced splittings. These calculations are used to take 

care of the case where the 2-Sylow subgroup is the quaternion group of 

order 8 I denoted by fIS • 

V.1. THEOREM: Let Mn be a simply-connected closed manifold, and 

M
n = M~ U M~ be an admissible splitting. suppo~e that Fk eM is a 

closed submanifold with normal bundle v which admits a G-bundle 
structure with a free representation on each fibre, where G is a sub­

group of SU(2) whose 2-Sylow subgroup is either ti} cyclic or (ii) 

Qa and K F 1 mod 4 . Assume that (M~+1,F~+1) is a manifold pair 

such that a(MO,FO) :: (M,F) satisfying the hypotheses: 

(1) for i = 1,2 ~1{Mi) = 1 and (2) H*(Mi,Fi;Zq):: 0 I where 

F i :: Mi n F I i = 1,2 • Then there exists a quasisimple semifree action 

" : G x M' -> M' such that M,G = F , where M' is homotopy equiva­

lent to M. Further, (M',$) has an equivariant splitting 

Hi UM2 I Hi OF :;; Fi if and only if I(-1)jCGHj (M1/ F,) :; 0 in KO(ZG). 
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'I'he proof of this theorem and further applications of normally 

linear Poincare complexes will appear elsewhere. 
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