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§0. INTRODUCTION

This paper, a sequel to [AD], contains examples, applications and further developments
of the notion of exact sequences of Hopf algebras. In §1, we recall notations and facts on
quantum groups and on the definition of exact sequences. In §2, we prove that any Hopf
algebra has a maximal central Hopf subalgebra, which shall be called the Hopf center. §3.1
is devoted to recall the construction of extensions from cohomological data ([Mj], [AD])
and to the notion of cleftness ({[AD], [By], [Sch2]); in §3.2 we discuss cleft extensions of
*-Hopf algebras. §3.3 contains several basic results on quotient theory of Hopf algebras.
The Frobenius morphism defined by Lusztig from the quantized enveloping algebra at
an odd root of unity to the usual enveloping algebra and its dual version give rise to
exact sequences of Hopf algebras. This was asserted by some authors but the rigourous
verification, contained in §3.4, follows from the present definition and a result of Schneider
on faithful flatness of the inclusion of a finite dimensional normal Hopf algebra. It follows
from previous work of Schneider (for extensions of algebras by a Hopf algebras) that any
extension of finite dimensional Hopf algebras is cleft. Therefore, one sees that to classify
the Hopf algebras up to certain finite dimension, one needs to classify the simple ones (in
the sense of Hopf algebras, i.e. without normal Hopf subalgebras) and then to construct
inductively the non-simple ones by the extension method. As for the first task, we prove
in §4 that Taft’s finite dimensional Hopf algebras [Tf] are simple (these Hopf algebras
also appear as the +-part of the Frobenius-Lusztig kernels for SL(2); I do not know if
the +—part of a general Frobenius-Lusztig kernel is simple). I further conjecture that the
Frobenius-Lusztig kernels are simple. (This was proved in [T4] for type A). This would
imply, in particular, that the inclusion of the algebra of regular functions on a semisimple
algebraic group in its quantum analogue at a root of 1 as the Hopf center of the later.
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2 NICOLAS ANDRUSKIEWITSCH

As for the second task, I begin to analize the cohomological meaning of the construction
above. If A is commutative and B cocommutative, one has a nice cohomology theory by
taking the total complex associated to a certain double complex. This idea goes back to
Singer who worked out the graded case; the translation to our setting offers no difficulty
(85.1, see [Hf]). The double complex arises because one has a cocycle for the algebra
structure, another for the coalgebra structure and a compatibility condition for them. By
a spectral sequence argument, we prove in §5.2 that Hopf algebras of dimension pq, with p
and ¢ primes, p < ¢, p and ¢ — 1 coprimes, are commutative and cocommutative, provided
they are not simple (compare with [H, p. 57]). For A and B general, the interpretation
of the extensions in cohomological terms is a "double” version of the non-abelian group
cohomology problem. :

I wish to thank E. Bifet, F. Cukierman, B. Pareigis, Nanhua Xi, and specially H.-J.
Schneider for very valuable discussions on the material presented here.

§1. PRELIMINARIES

§1.0 Notations and conventions. Our main reference for the general theory of Hopf
algebras is [Sw]. Let us fix a commutative field 7; then “Hopf algebra” will mean Hopf
algebra over T, unless an explicit mention. We shall use the following notation: m, A (or
4), €, S denote respectively the multiplication, comultiplication, counit, antipode of a Hopf
algebra (or an algebra or a coalgebra), specified with a subscript if necessary. The opposite
multiplication or comultiplication are indicated by a superscript "op”, resp. "cop”. We
shall also use the following convention: if ¢ is an element of a tensor product A @ B, then
we write ¢ = ¢; @ ¢!, omitting the summation symbol. An exception is the case ¢ = A(z),
where we use Sweedler’s “sigma” notation but dropping again the summatory. We also
denote by A™ the n-iteration of the comultiplication, e.g. A% = (A ®@id)A. The kernel of
the counit of a Hopf algebra A is denoted by A™¥.

We shall abbreviate "finite Hopf algebra” for a finite dimensional one.

Let A be an algebra, B a coalgebra. ‘We shall always consider the algebra structure
in Hom(B, A) given by the convolution product f * g(b) = f(b1))g(b2y) [Sw], unless
explicitly stated. (An exception: &~! will denote the inverse of the antipode—always
assumed bijective—for the composition). The group of invertible elements will be denoted
by Reg(B, A); its unit will be sometimes denoted by 0. Suppose in addition that A
and B are Hopf algebras; then we denote Reg,(B,4) = {# € Reg(B,A) : ¢(1) = 1},
Reg,(B,A) = {¢ € Reg(B,A) : ¢4 = ¢}, Reg, (B, A) = Reg;(B, A) N Reg,(B, A); these
are subgroups of Reg(B, A).

The left (resp., right) adjoint action of a Hopf algebra on itself is Ad(b)a = b(yyaS(b(2))
(resp., Ad,(b)a = S(b(1))ab(zy); the right (resp., left) adjoint coaction is ad(a) = a(z) ®
S(a(l))a(3) (resp., ad;(a) =a() ® a(l)S(a(B))).

§1.1 Quantized enveloping algebras. In this subsection, we recall the construction of
some algebras related to quantum groups at roots of 1.
Let ¢ be an indeterminate. Given r,s,d € Ny, we denote (as usual)

dr —dr

_q —q - . _ r4+s :[T‘+S]!d
[rla = —___qd T [r]'a ISIIhST[h]d’ |: r :ld [rltafs]la’
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Let g be a complex simple finite dimensional Lie algebra of rank n; let A = (a;;) be the
corresponding Cartan matnix. There exists a diagonal matrix D = (d,,...,d,) € Z"*"

such that DA = AD and detD # 0. We shall further assume that the d;’s are positive and
relatively prime:

Let ﬁg be the universal enveloping algebra of the split Q-form of g. It is well-known
(K] that g has a Z-form Uz (of the Hopf algebra structure). One can therefore consider

r

Ugr =Uz @z R, for any ring R. Let e;, fi, hi, be the usual generators of g; let e(t-") = f—i‘-,
ri
f(r) _ ﬁ (h,‘) _ hi(hi =1)...(hi—r +1)

1
rl’ \r r!

, 7 € Ng. These will be also the notations for

their images in Z{ z. The subalgebra spanned by the e'” (resp., 7, (hi) ) will be denoted
r

Ug s (vesp., Up -, Uryp). It is known [K] that the following elements form a basis of Z{ p:

(a)  _(aw) R\ f(en) (c1)
1<i<n

H

where the a;'s, b;’s and ci’s are non-negative integers. Here {eq,,...eay} U {hi} U
{fars- - fan} is a Chevalley basis of g.

Let P (resp. Q) be the free abelian group with basis w; (resp. a}), 1 < i < n. Let
{,) : P x Q¥ — Z be the bilinear pairing defined by (w;,a]) = §;;. Let o; € P be defined
by (e, aY) = a;; and let Q (resp. Q%) be the subgroup (resp. the subsemigroup) of P
generated by aq,...,aq.

Let s; be the linear automorphism of P defined by s;(w;) = w; — é;;a4; let W be the
subgroup of GL(P) generated by the s;’s. Let II = {a1,...,an}, R = WII (the set of
roots) and RT = RN Q7 (the positive roots).

For 1 # j, let m;; = 2,3,4,6 whenever a;;a;; =0,1,2,3. Let B be the group presented
by generators T; and relations

T.T;T;- - =T;TiT; ..., 1%
with m;; factors in each member of the equality. It is well-known that T; +— s; defines an
epimorphism from the braid group B onto the Weyl group W.

Let (|): PxQ — Z be the symmetric bilinear non-degenerate form defined by (wile;) =
d,‘ﬁ,‘j; we have (ai|cvj) =_d,-a,-_,~ = djaj,'; (|) 1s W-invariant.
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Definition 1.1.1. ([Dr], [J], see also [L5], [dCKP]). The simply connected quantized en-
veloping algebra Up is the associative Q(q)-algebra given by generators E;, F;, L;, L; ™1
and relations

LiL;*=L;"'L; =1, L;Lj=L;L,
LE; = qd"'s"-i E;L;, L;F;= q-d‘E‘j F;L;,

K - K[!

E,‘FJ‘ —FJ‘E.‘ :éijm,

and if i # j

S )PEPEEN =0, Y (-)PFOFREP =o.
htt=1—a;; htl=1-a;;

Here th) denotes E! divided by [A]!4, (idem for F,-(h)); furthermore, for a = ) m;w; € P,
one denotes Kg = [[; L;™, and K; = K,;.

For any lattice M, P D M 2 @, Ups denotes the Q(g)-subalgebra of Up generated by E;,
Fiand Kg (1 <1< n,B €M). Thus U = Ug is the adjoint quantized enveloping algebra,
as first defined by Drinfeld and Jimbo. Let U (resp., U—-, Un,) be the Q(g)-subalgebra
of Up generated by E;, 1 <1 < n (resp., by the F}'s, by the K for g € M).

It is well-known that Up (and ¢ fortior: any Ups) carries a Hopf algebra structure, with
comultiplication A, antipode § and counit ¢ defined by

AME)=EQ®l+K;®E A(F)=F,QK '+19F, AL =L;®L;
S(E)=-K'E; S(Fy) = ~FK; S(L;) = L;!
e(Ei) =0 e(F;) =0 | e(L;) = 1.

Now we recall the action of B by algebra automorphisms on Ups defined in [L1]. Denoting
still by T; its image in Aut(Ups), one has

Ti(Kp) = K,p, Ti(E:)=-FK;, Ti(F)=-K""E,
and if 7 # 3

T(E))= Y. (-1 *“EPEEY, T(F)= Y (-0 ¢ FRF.

r+s=—ag; rHs=—a;;

Fix a reduced expression wg = s;, ...s;y of the longest element of W; thus N is the
number of positive roots. Then one has an ordering {f1,...,8n} of Rt by setting 8, =
Siy -+ 84,_,(ai,). Let Es =T, .. T;_(Ey), Fp =T, ... T;,_ (F; ). Let us also denote
EM =T, ... T, (B

i
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Now let us introduce some Z[q, ¢~1]-forms of Ups. First we present a form due to Lusztig.

Let [I;li] = [R;;O], where

K;;c qlilet1=9) ¢, — g=di(c+1=9) =1
[ } H —d;s —.

1<s<h T —a

Definition 1.1.2. (cf. [L1]). Let U be the Z[g, ¢ ']-subalgebra of U = Ug generated by
th), F,-(h), K,-il, 1 <1< n, hée Ny Itis known that
(1) U is a Hopf subalgebra of U. Precisely (cf. [L5], [DeCL]),

h
A(E‘(h)) — qu‘j(h_j)E,-(h_J)Kf Q E:(J)’

j=0
h ] . '
(1.1.3) A(F) = Z q—de.f(h—j)Fi(J) ® Ki—JFi(h—J)’
Jj=0
K h [ K. K
(3] =2 [h_;-] ot (]

(2) U is a form of U, i.e. U Rz(q,0-1 Q(q) ~
(3) The elements

T | Cl L I e
1<i<n
with Ry, .. Nyt tn, 8, ..o €y € Ny, 8; = 0 or 1, form a basis of U.
We recall now some more notation, this time from [DeCP]:
E; = (q(a-'la-')/2 - q-(aala-‘)/2)Ei; T, = (q(mlm)ﬂ - q-(a-'lm)/i’)pi;
and more generally,

Eﬂ: = (q(ﬂzlﬂc)ﬂ - q"(ﬁ‘lﬂ‘)n)Eﬁt; F—ﬂ, - (q(ﬂslﬂ:)ﬂ - q*(ﬁe Fﬂz)/'l)Fﬂ'_

Definition 1.1.4. (cf. [DeCP]). Let Ay be the smallest B-stable Z[g, ¢~!]-subalgebra of
Ups generated by E;, F; and K3, 1<:<n, € M. Itis known that

(1) Aps is a Hopf subalgebra of Uy,.

(2) Apsis aform of Uy, ie. Uy ®z[q,q-1] Q(q) ~
(3) The elements

‘ Eﬂl...Eg:AﬁFg;...Fg,
with hy,..., AN, J1,...,J§ € Ny, B € M, form a basis of Ayy.
We shall abbreviate A = Ap.
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Let R be aring, v € R an invertible element, and Z[g,¢~!] — R the ring homomorphism
sending ¢ — v. The Hopf algebra over R obtained by extensions of scalars U @z, ,-1] R
is denoted by Ug. In the same vein, Ar denotes A ®z[q,¢-1] B. The main example we are
interested in is the cyclotomic field B = Q(v), where v is a primitive ¢-root of unity (¢
is odd and greather than 3). We shall denote by the same letters the images of E, etc.
in the respective specializations. Ap has a central Hopf subalgebra Z, generated by the
monomials -Egzl . Fg;,” K gﬂfg: o Ff;ll (see [DeCP]), which is in fact isomorphic to the
algebra of functions on the group dual (in the sense of Drinfeld) to the group corresponding
to g. This algebra plays an important role in representation theory of quantum groups at

roots of 1, see [DeCP], [DeCKP].

§1.2 Exact sequences. We recall here the definition of short exact sequences given in
[AD], [Sch]. Consider a sequence of morphisms of Hopf algebras

() 0—=AS5CS5B—0

where 0 denotes the trivial Hopf algebra 7. We shall say that (C) is exact if and only if
the following conditions hold

(1.2.1) ¢ is injective. (Identify in such case A with its image.)

(1.2.2) 7 is surjective.

(1.2.3) kerm = Cy(A)".

(1.2.4) (A) =LKer(r) = {z € C: (r®@id)A(z) = 1Q z}.

Either (1.2.3) or (1.2.4) imply 7¢ = € 415 (the trivial morphism of Hopf algebras). More-
over, if A = C (resp., C = B) is faithfully flat and «(A) is stable by the adjoint actions
(resp., faithfully coflat and B is stable by the adjoint coactions), then (1.2.1), (1.2.2), (1.2.3)
imply (1.2.4) (resp., (1.2.1), (1.2.2), (1.2.4) imply (1.2.3)) and = is faithfully coflat (resp.,
¢ is faithfully flat) (see [AD], [Sch]). Notice that «(A) = LKer(x) implies :(A) = RKer(r)
and hence A is stable for both adjoint actions; (1.2.3) implies the dual statement.

One says that a Hoi)f subalgebra A «— C (resp., a quotient Hopf algebra C —» B) is
strongly normal (resp., strongly conormal) if A is stable for both adjoint actions (resp., B
is a quotient comodule for the left and right adjoint coactions).

The preceding notion of short exact sequence is supported by the following more general
definition. A sequence A - C -5 B is exact if and only if (1.2.3), (1.2.4), (1.2.5) and
(1.2.6) hold, where

(1.2.5) ker: C A(HKer¢)TA.
(1.2.6) HKer(HCoker 7)) C n(C).

Here, for a morphism of Hopf algebras X EN Y, one denotes

HKer(f) = {z € X : (id®f ®id)A*(2) =2 ® 1 ® z(»y },
HCoker(f) = Y/Y f(XM)Y, LCoker(f) = Y/Y f(X™).
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This definition is stronger than the given in [AD] because it also requires 7 to have a

Hopf image. A long sequence ... — A; N At ELAN Ajrg — ... is exact if and only if

each "piece” A; EiN Ain it Aiyq 1s. Thus for infinite sequences exactness means the

same with respect to the preceding definition or to [AD]. Observe also that ... — A,-‘i»
Aiyy — ... isexactifand onlyif both ... 5 A;, 2V = 0and 0 -V — 4;,, — ...
are exact, where V = Im f; = HKer f;4,.

Lemma 1.2.7. (i) The sequence
(C[tft) 0—-ASCSB

is exact if and only if (1.2.1), (1.2.3), (1.2.4), (1.2.6) hold.
(i1) The sequence

(Cright) ASLHCSH B0

is exact if and only if (1.2.2), (1.2.3), (1.2.4), (1.2.5) hold.

Proof. (i) is left to the reader.

(i) ¢ 5 B — 0 is exact if and only if if and only if 7 is surjective and kerx C
C(HKern)*C. Assume that (Crigne) is exact; then kerm C C(A)TC C Cu(A)T and the
other inclusion holds because ¢«(4)* C ker m. Conversely, assume (1.2.2, 3, 4, 5). As kern
is a two-sided ideal, A = C' = B is exact; by (1.2.3,5)C 5 B — 0 alsois. O

We collect a number of results about faithful (co)flatness due to Nichols-Zoeller and
Schneider.

Theorem 1.2.8. (i) ([NZ]) Let B — H be an inclusion of finite Hopf algebras. Then
every left (H, B)-Hopf module is free as left module over B. In particular, H is free over
B.

(Recall that a (H, B)-Hopf module M is a left B-module and a left H-comodule such
that the coaction M — H @ M is a morphism of B-modules.)

(11) ({Sch, 3.3]) Noetherian Hopf algebras are faithfully flat over its central Hopf subal-
gebras.

(iii) ({Sch, 2.1(2)]) Hopf algebras are free over finite strongly normal Hopf subalgebras.

(iv) ([Sch, 2.1(1)]) Hopf algebras are faithfully coflat over its finite strongly conormal
quotient Hopf algebras. :

§2. INVARIANTS

§2.1. Let A be an algebra, B a Hopf algebra. Recall that a weak action of B on 4 is a
morphism of vector spaces —=: B@ A = A, b® a — h — a, satisfying
) (2.1.1) b—aa= (b(l) — a)(b(g) — &),
(2.1.2) b — 1 =¢(b)1,
(213) 1 —=a=a.
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We shall say that it is an action if in addition it satisfies the module axioms (no confusion
should arise between actions on modules and actions on algebras, the latter including in
addition the axioms (2.1.1,2)).

The significance of (2.1.1), (2.1.2) is the following [Sw]: Let © : A — Hom(B, A) be
defined by

(2.1.4) O(a)(b) = b — a.
Then © is a morphism of unital algebras if and only if (2.1.1), (2.1.2) hold.

Now suppose that A is also a Hopf algebra. One is naturally led to consider some Hopf
algebra structure on Hom(B, A). Let A : Hom(B, A) - Hom(B ® B, A® A) be defined by

(2.1.5) AF)b®B) = A ( f(bé)) .

Hom(B, A) is a complete topological algebra with respect to the topology defined by the
annihilators of finite dimensional subspaces of B [T1]. This topology will be called the finite
topology. Moreover, Hom(B® B, AQ A) is the completion of Hom(B, A)®Hom(B, 4) with
respect to the product topology. It is not difficult to see that (2.1.5) provides Hom(B, A)
a structure of topological Hopf algebra; the counit is given by

(2.1.6) {eHom(B,4), T) = (€4, T(1B))
and the antipode by
(217) SHom(B,A)(T) = 84TSp.

However, ©, defined by (2.1.4), is not, in general, a coalgebra morphism. This is, however,
true if — is the trivial action b — a = ¢(b)a; the morphism A — Hom(B, A) for the trivial
action will be henceforth denoted by Y.

In some circumstances, it is possible to twist the comultiplication of Hom(B, 4) in
order to have a morphism of Hopf algebras. Assume further the existence of an algebra C
containing A as a subalgebra, and x € Reg(B, C) such that

b= a=x(bu))ax" (b))
Define A, : Hom(B, A) - Hom(B® B,C ® C) by
Ax(T) (@ d) = x(b)) ® x(d()) .

A (x M (b@ydey) f(bayd@))x(bayday)) x (b)) ® xHdesy)-

Lemma 2.1.8. Assume that In A, C Hom(B ® B, A® A). Then (Hom(B; 4),A,) is a
Hopf algebra, with counit given by (2.1.6) and antipode by

Sx(THb) = x(51))S (X1 (Sbea))T(Sb(3))x(Sbe2y)) x ™' (besy)-
Furthermore, © is a morphism of Hopf algebras.
Proof. Left to the reader. O

§2.2 The Hopf algebra of invariants. We want to attach, to a Hopf algebra B acting
on a Hopf algebra A as in the preceding subsection, a Hopf subalgebra 42 of A4 such that
b— a=¢(b)aforall be B, a € A®, and maximal with this property. We can not take
directly profit of Hopf equalizers (cf. [AD], [Sch]) because the Hopf algebra structures on
Hom(B, A) making © and T morphisms of Hopf algebras are in general different.
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Let A be a Hopf algebra, C an algebra, f,g: A — C two algebra morphisms. Define
Equal(f,g) = {a € A:a) ® fla@)) ®a@) = ap) Qg(ap) Qap) € AQCQ A

it is not difficult to show that Equal(f, g) is a sub-bialgebra of A (since our base ring is a
field). To obtain a Hopf subalgebra we use the following recipe (compare with [Mal, [A]).

Lemma 2.2.1. Let A be a Hopf algebra, E C A a sub-bialgebra. Then §'F is again a
sub-bialgebra, for any i € Z, and
= S'E

=Y/
is a Hopf subalgebra of A. If H is any Hopf subalgebra of A contained in E, then H C
H(E).
Proof. S*'E is a sub-bialgebra because S is antimultiplicative and anticomultiplicative.

Therefore H(E) is a bialgebra (cf. [Sw, p. 45]) and clearly S(H(E)) = H(E); thusitisa
Hopf subalgebra. The rest is obvious. O

Here one takes negative powers of the antipode because of the convention on the leeC-
tivity of the antipode.

Corollary 2.2.2. Let HEqual(f,g) = (Equal(f,g)) a Hopf subalgebra of A. If H is
any Hopf subalgebra of A such that f(z) = g(z) for any ¢ € H, then H C HEqua.l(f q)
(and clearly HEqual(f, g) satisfies this property). O

Let B act weakly on A as above and denote
AB) = Bqual(©,Y), AP = HEqual(©,Y).

Then A(B) (resp., AP) is the maximal sub-bialgebra (resp., Hopf subalgebra) of A among
those whose elements a satisfy b — a = ¢(b)a for all b € B. We shall say that AZ is the
Hopf algebra of invariants (of the weak action of B on A).

Definition 2.2.3. Let B = A act on itself by the adjoint (cf §1.0). In this case, A(4) = A4
will be called the Hopf center of A. It is the maximal central Hopf subalgebra of A.

Proof of the equality. Observe first that A(Y contains any coalgebra consisting of central
elements. For, if H is such a coalgebra and a € H then

a(1) @ O(a(p))(h) ® a@) = a) @ hayae)S(he)) @ a@) = ap) @ c(h)ap) @ ag,.

The elements of A4 are central, and a fortiori those of S(A)): if a € A and h € A
then ha = h(1yaS(h(2))h3y = ah. Thus A =44, O

Example. Let A be either the universal enveloping algebra of a Lie algebra g or the group
algebra of a group G, and suppose that char 1 = 0. Then from the fundamental theo-
rem of cocommutative Hopf algebras, we infer that its Hopf center is either the universal
enveloping algebra of the center of g, or respectively the group algebra of the center of G.



10 NICOLAS ANDRUSKIEWITSCH

§2.3 The Hopf algebra of covariants. Now we pass to the dual version of the material
presented above.
Let A be a Hopf algebra, B a coalgebra. A linear map p: B — B® A is a weak coaction
if
(2.3.1) (6®id)p = m**(p® p)6, where m** : BQ AQB® A - BQ® BQ® A is the map
. cQh®RdRk— cQd® hk.
(2.3.2) (ep®id)p=€ep ®1.
(2.3.3) (id ®ca)p =1dp.
Again, we shall say that it is a coaction if in addition it satisfies the comodule axioms.
Let us consider Hom(A, B) with the coalgebra structure given by (2.1.5). Let
Homy;n(A, B) be the subspace of maps with finite rank; Homyin(A, B) ~ A* @ B. Then
A(Homy;s(A, B)) C Homyin(A ® A, B @ B). Indeed, the image of A(f) is contained in
C ® C where C 1s the coalgebra generated by Im f; and C is finite dimensional if Im f is
[Sw, Cor. 2.2.2, p.47]. (Observe that in fact A(a ® b)(z @ y) = (@, zy)ba) ® b))
Now for any p: B — B® A, let = : Homy;n(A,B) ~ A* ® B — B be the map defined
by ‘
Z(a ®b) = (1d ®a, p(b)).

Notice first of all that = can not be extended in general to the whole of Hom( A, B). Take
for example A = B = "1(G), the group algebra of an infinite group G, and p: 4 — A Q A,

pleg) = ey ® e, (the usual comultiplication of A). Let id € Hom(A4, A) then Z(id) should
be the formal sum 3 e, ¢ HG).

Lemma 2.3.4. = is comultiplicative if and only if p satisfles (2.3.1), and preserves the
counit if and only if p satisfies (2.3.2).

Proof. Left to the reader. O

When p is the trivial coaction (p(b) = 1 ® b), we shall denote 7 instead of =. Then
na®b) = (@ 1)b S
Lemma 2.3.5. Let B be a bialgebra, C a coalgebra; f,g : C — B two coalgebra maps.
Let Coeq(f,g9) = B/BJB, where J is the image of f — g. Then Coeq(f, g) is a quotient

bialgebra of B. Moreover, if ¢: B — D is any morphism of bialgebras such that qf = qg,
then it factorizes through Coeq(f,g).

Proof. Left to the reader. O

Lemma 2.3.6. Let B be a Hopf algebra, p: B — C a quotient bialgebra and let I denote
the kernel of p. Let J = 3 ., 8"I and H(C) = B/J. Then H(C) is a quotient Hopf
algebra of B. If ¢ : C — H is a morphism of bialgebras to an arbitrary Hopf algebra H,
then q factorizes through H(C).

Proof. Left to the reader (use [Sw, 4.0.4]). O

In particular, we denote HCoeq(f, g) = H(Coeq(f, g)).
Now let p: B — B ® A be a weak coaction of a Hopf algebra 4 on a Hopf algebra, B
and set

B(A) = Cer(E’ﬂ)a BA = HCOGQ(EJ?)
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Let D be a quotient coalgebra of B. We say that D trivializes the coaction p if the following
diagram commutes:

B— ., Bo4

QJ' 1q®id
p X, pgA.

Lemma 2.3.7. B, (resp., Ba) is the minimal quotient bialgebra (resp., Hopf algebra)
among those trivializing p.

Proof. Let b € B, z = p(b); ® p(b)' — 1 ® b. Let (a;) be a basis of 4, (a’) its dual basis;
then o = }°.2; ® a;, where z; = (id ®a’,z). With this notation, D trivializes p if and
only if z € kerq ® A (for any b € B), if and only if 2; € kerq for all 7, if and only if
kerqg D (£ —n)(a’ ®b), forany j, be B. O

Definition 2.3.8. Let ad : A — A ® A be the right adjoint coaction. Then A4 = A4
will be called the Hopf cocenter of A.

Proof of the equality. (Compare with [AD, before Prop. 2.16]). Let us say that a quotient
bialgebra q : A — C is cocentral if g(a(y)) ® a(z) = ¢(a(a)) ® a1y for any a € A. We claim
that ¢ : A — C is cocentral if and only if trivializes the adjoint coaction, i.e. if and only if

q(ag2)) ® S(a1))ai) = ¢(a) ® 1.

For, let z,y : A = C ® A be the applications z(c) = ¢(¢) ® 1, y(¢) = 1 @ ¢; y is invertible
with respect to the convolution product, and in fact y~!(¢) = 1 @ Se. But "D cocentral”
i1s equivalent to = * y = y * z, whereas D trivializes the adjoint coaction if and only if
y~'*z*xy = z. Thus, in particular, A — A4 is the minimal cocentral quotient bialgebra.
Let I =ker A — A(,4); then A — 4/8(I) is also a quotient bialgebra. Thus S(I) = I and

Ay =Aa. O

Remark. More generally, the Hopf centralizer of a quotient Hopf algebra p: A — C is A¢,
where p = (1®p)ad: A = AQ®C. One still has A¢c = A(¢), with the same proof as above.

§2.4 Hopf systems. We introduce here a formalism inspired by the approach of [DeCKP],
[DeCL], [DeCP] to representations of quantum groups at roots of 1. The contents of this
subsection will be not used in the rest of the paper.

A Hopf system is a family of unital k-algebras (A4, ),ec, where G is a group with identity
e, provided with morphisms of k-algebras

6g,h=Agh—"Ag®Aha g,her
e = Ae = k, Sg=A9—>A;’11,

subject to the axioms wich can be expresse by the commutativity of the following diagrams,
for any g,h,0 € G
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Aghe N Ay ® Ay
(2.4.1) 5,;.'1‘[ l:’d@ah,l
5,4 ®id
Agp @ Ay —— A;Q A ® Ay

Ay =25 A, 04, A, —2, 4,4,
O T
A, ——— 4,0k A, —— k®4,

A, le,g, A fels A,
(2.4.3) a,,,-ll Tm, a,_l,,l Tm,
id@Sg_1 S 1 ®id

Ag ® Ag-1 Ag ®Ag Ag—1 X Ag L AN Ag ® Ag

Here, 1, and m, are, respectively, the unit and the multiplication of A;,. Remark that
in particular 4. is a Hopf algebra and each A, is an A.-bi-comodule. On the other hand,
a Hopf algebra is the same thing as a Hopf system over the trivial group. We will always
assume that S, is bijective, for every g.

Let us denote, for p € N,

I={a:Gx:--xG— Ay, ® - B Ay, (g1, 9p) EAy @ B Ay, }

p—times 91,--9p

and I' = T'y. When necessary, we will write I',(G, Ay ) instead of T',. Each T, is a k-algebra
with pointwise operations. The elements of ', will be called sections. The support of a
section « is, as always,the set {¢g € G: a(g) #0}. Let A: T = Ty,e: T = k,5: T — TP,
be the morphisms defined by

(Aa)(g,h) = 64,n(a(gh)), e(a) =cclale)), S(a)(g) = Sg-1(a(g™").
and let also A'?, A?® =Ty — T'; be given by
A2(a)(g,h, 0) = (6,0 @ id)a(gh, 8), AB(a)(g,h,€) = (id ® §h, ba(g, he)

Then the axioms (2.4.1-3) imply

(2.4.4) AVIA = ABA.
(2.4.5) (id @) = (¢ ® id)A = idr,



NOTES ON EXTENSIONS OF HOPF ALGEBRAS 13

r, 245, p, 1, 2%, T,
(2'4'6) AI lm AI lm
r 2T r <=

Here ¢ ® id and id @¢ denote the morphisms from I's to I' given by (¢ ® id)(a)(g) =
(e. ® id)(ale,g)), (id®e)(a)(g) = (id®e.)(alg,e)); 1, m are defined by 1(A)(g) = Alg,
where 1¢ is the unity of Ay; ma(g) = mya(g, ), where m, is the multiplication of Ay; and
S ®id (resp.,id ®S) denotes the morphism given by (§®:d)a(g, h) = (S,-1 @id)a(g™", k),
(resp. (id ® S)a(g, h) = (id ® Sp-1a(g, h™1)).

Let (Ag)geq, (Bg)gec be two Hopf systems. A morphism of Hopf systems (A4,) — (B,)
is a collection of morphisms of k-algebras 1, : A, — B, satisfying the natural compatibility
requirements. Such morphism gives rise to algebra maps ¥, : Tp(G, A;5) — I',(G, By). Let
¥y = ;¥ verifies A" = ho A, S'p = ¢S, ' = e, with the same conventions as above.

On the other hand, (4, ® By)g € G is also a Hopf system, and the category of Hopf
systems over a fixed group G is monoidal.

Identify T'®? with its image in [', under the monomorphism wich sends oy @ -+ ® ap
in the funtion G X -+ x G = [[ 44, ® - @ Ag,, (91,...,9p) — 1(g1) ® -+ @ ap(gp).
Sometimes it si possible to find subalgebras I'y of T" such that ATy CT;®Ty, s(T'f) =Ty,
axioms (4),...,(6) unguarantee that they are actually Hopf algebras.

Let X be a set, (V;),x a family of k vector spaces, and denote I'(X,V;) = {s : X —
TI, Va,s(z) € V;}. Let ézv(v € Vz,z € X) denote the element of T'(X,(V;)) defined by
(6:v)(y) = bz yv. Let (vi)ier, be a basis of V. Then the family (vi6:)zex ier, 1s linealy
independent and if X is finite, is a basis of the vector space I' = T(X, V). In particular,
the natural application L@ T' — I'(X x X, V; ® V,) is a bijection. It follows that for a
Hopf system(A,)geq over a finite group G, I'(G, 4,) is a Hopf algebra.

Conversely, let C be a Hopf algebra and let A be its Hopf center. Assume that A is the
algebra of regular functions on an algebraic group G (this will be always the case under
certain "finiteness” assumptions). Let ¢ € G, M, the corresponding maximal ideal of A,
I, the two-sided ideal of C generated by ¢(M,), and 4, = C/I,. If h also belongs to G,
there exists a morphism 64 5 : A5 p — A; ® Ay making commutative the following diagram:

cC 4. cecC

! !

C/I —22 C/I,®C/I

Let B = A.; one has an exact sequence of Hopf algebras 0 - A — C — B — 0 (use
Schneider’s theorem 1.2.8 (ii); so in the preceding one should assume C noetherian). Finally
let S, : Ay — A%, be the morphism in the bottom horizontal arrow of the following
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commutative diagram, whose top horizontal arrow is the antipode of C"
¢ — C

! !

Clly —— C/I,-
The introduced morphisms of algebras é, 5, €., S, satisfy the axiomas expressed by (2.4.1-

3). There exists an algebra morphism ¢ : C — I['(G, 4,) given by o(c)(g) = class of ¢ in
A,.

Now assume further that C is a Poisson-Hopf algebra. Then A inherits the Poisson
structure and therefore, G is a Poisson algebraic group. Indeed, if 2 € C and z € Z := the
center of C, then

 (mely = {mm) - #{a ) = {52} - o)z = v, 2},
Consider the intersection T of all the Poisson subalgebras of Z containing A; this possible
by the preceding computation. Then T is a Hopf subalgebra, by the following argument

(taken from [DeP)): the algebra U = {t € T : A(t) € T @ T'} contains 4 and is closed by
the Poisson bracket, so it equals T'; thus T' = U. But by definition of Hopf center, T = A.

§3. EXTENSIONS OF HOPF ALGEBRAS

In this section, we pursue the study of extensions of Hopf algebras begun in [AD]; f.
§102. . '

§3.1 Construction of cleft extensions. Let A, B be two Hopf algebras. Let also be
given a weak action —: B® A — A (cf. §2.1) and a weak coaction p: B — B® A (cf.
§2.9). Let 0 : B x B — A be a bilinear map; assume that

(unitary condition)

(3.1.1) o(h,1) = (1, h) = e(h)1;
(cocycle condition)

(3.1.2) [y = oIy, may)le(hey, laymy) = o(hay, Ly )o(heylizy, m);
(twisted module condition)

(3.1.3) (hay = Uy = a))alhe), lizy) = o(hqy, ki ) hykay — a),

for any h,l,m € B and a € A.
Furthermore, let 7: B = A ® A; assume that

(counitary condition)
(3.1.4) ep(c)la =(ea ®id)r(c) = (Id Qe 4)7(c);
(co-cocycle condition)
(3.1.5) mae3s(A®1dQT @ id)(7 ® p)A = (Id ®m 402)(Id QA @ Id R id) (7 ® T)A;
(twisted comodule condition)
(3.1.6) (id ®m 462)(1d ®A @ id®@id)(p @ T)A = mi%:(Id®i1d ®p @ id)(T @ p)A,
where m!%, A AR B®A®A — B A® A sends hOk®cQh®k — c@hhQ k.
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Further, assume that the following compatibility conditions hold:
(3.1.7) p(H)=7(1)=1®1, £00=€Qe¢, e(a — b) = e(a)e(d),
(Parts of this axiom are redundant, see [T2]).
(3.1.8) Abay = a)7(beny) = (b)) (p(bezy)i = aqy) @ plb(2)) (b = ac@)) -

(31.9) (18 0(ba) ® b)) lbayb)
= p(b1) (P(gl)k ® (b2y — 9(51)’“)) (1 ®o(bs) © 5@))) -
(3.1.10) (1@ by — a) pb)) = p(by) (1@ brzy — a)
(3.1.11) A (G(bm ® 5(1))) m(baybe)) =
7(b(1)) (P(b(z))i — 7(b1))p ® p(b2)) (b — 7(5(1))”)
(a(o(bwy)s ® £(b)e) ® p(biay Y (bisy = p(b2)) (1@ o(biey B biay)) -

(In all the preceding formulas, we use implicitly the usual tensor product multiplication in
AR A) .
Let C = AT#,B denote the vector space A ® B provided with the multiplication
(a®b)(@®b) = a(buy = @)o(bea), b)) ® bay by
and the comultiplication

Aa® b) = aqyr(b)); ® plbez)i @ aey(beny) plbez))’ ® beay.
Let t: A= Candw:C — Bbegiven by ¢(a) =a®1, n(a®b) = c(a)b. A#,B (resp.,
AT#B) denotes the same space considered merely as an algebra (resp., as a coalgebra).

Proposition 3.1.12 ([Mj], [AD]). C = A"#,B is a bialgebra. Moreover, if o and T
are invertible with respect to the convolution product, then C is a Hopf algebra and its
antipode is given by

S(a#t) = [(0™* (Solbe)s ® pbw)s) ® Solby)i]
[771(bgay &S (ap(bsy) o(bi2y) " p(bs)) 7~ (bay)*) ® 1] .
In this case, _
() ToASCS B—T.

is an exact sequence of Hopf algebras.
Conversely, let (C) be an exact sequence of Hopf algebras and assume that in addition
it is cleft (see below). Then there exist —, o, p, T satisfying the conditions above, such that

C~A"#,B.

In addition, the description of exactly which data produce isomorphic extensions is given
in [AD, Thm. 3.2.14] (previous work under abelian restrictions was also done in [Si], [By],
[Hf]): :
The following definition was independiently found by the authors of {AD], [By]; the
author of the second paper was inspired by the given in [Sch2], [Sch3] for algebraic groups.
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Definition 3.1.13. The extension (C) is cleft if

(a) there exists x € Reg,(B,C) such that (id®@m)Ax = (x ®id)A (such x is called a
section);
(b) there exists £ € Reg,(C, A) such that £(ac) = aé(c), Va € A,c € C (€ is then
called a retraction);
(C) fX = SBIA. .
One deduces from (c) that £(1) = 1, ex = ¢, and henceforth 7y = idg and & = id 4.

The following Lemma was first proved by Byott; the author rediscovered independiently
part of it before the publication of {By]. See also {Sch3, 2.1].

Lemma 3.1.14. Let (C) be an exact sequence of Hopf algebras. The following statements
are equivalent:

(1) (C) is cleft.
(ii) there exists x € Reg, .(B,C) satisfying (3.1.13) (a).
(iii) there exists £ € Reg, (C, A) satisfying (3.1.13) (b).
(iv) there exist a morphism of A-modules £ : C — A and a morphism of B-comodules
x : B — C such that éx = epla and (&) * (x7) = id¢.

Proof. By definition, (i} implies both (ii) and (iii). We shall show that (iii) = (1); (ii)
== (i) is similar and will be left to the reader. }

Assume (iii). Let x : B — C be defined by x(rc) = £~'(cr))e). x is actually
well-defined: if ¢ € ker, then ¢ = ) a¢; for some a; € A1 and hence £71(cpy)c(z) =
E7 einy)S(ainy)ai2yciey = 0 by the formula {7 (ac) = £7'(c)S(a) [AD, 3.2]. Clearly,
x(1) = 1 and ex = ¢; moreover x is invertible and x7!(¢c) = S(eq))é(cry). Finally,
(id @m)A(xme) = €7 ey @ 7€ (ca)@)m(ew) = €7 (eaye @ 7(e) = (X ®
id)A(rc) because £ 1(c) € A = LKer .

We refer to [By, Lemma 4.5] for a proof of the equivalence between (i) and (iv). O

It follows from (iv) in the preceding Lemma that, in the setting of Proposition 3.1.12,
C = AT#,B has an antipode if and only if ¢ and r are invertible. If the last holds,
then C has an antipode [AD], see Proposition 3.1.12. For the converse, let £ : C' — A,
£(a®b) = ae(b), x : B = C, x(b) = 1®b. Clearly, x (resp., ) is a morphism of B-
comodules (resp., of A-modules). It is known that ¢ (resp., 7) is invertible if and only if x
(resp., &) is, see [BM, Prop. 1.8] (resp., its dual [AD, 3.2.5]).

In any case let ¥ : B — C be another morphism of right B-comodules. Then, using
the formula ¢ = {(c(1)) ® 7(c(2)), one sees that ¥(b) = f(b(1)) & b(z) for some f: B — A
(explicitly, f(b) = £x(b)). Conversely, any linear map f : B — A induces a morphism of
comodules ¥ : B — C by that recipe; and ¥(1) =1 if and only if f(1) = 1. Assume that x
is invertible. Then ¥ is invertible if and only if f is (observe that ¥ = (¢f) # x). Thus the
set of sections is in bijective correspondance with Reg, (B, 4).

Back to the general situation, let £ : C — A be a morphism of left A-modules and set

g(b) = (1 ®b). One has £ = € * gr and therefore, if the extension is cleft, the set of
retractions is parametrized by Reg,(B, 4).
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Assume now that o is trivial, i.e. that x is a morphism of algebras (such extensions are
called in the literature-under commutativity assumptions-Hochschild extensions [DG]).
Then ¥ is a morphism of algebras if and only if

(3.1.15) F(bb) = (bay — F(B) f(beay),

and f(1) = 1. Dually, if 7 is trivial (that is, if £ is a coalgebra map), then £ is a coalgebra
map if and only if

(3.1.16) A(f(5) = (1@ £(bwy)) (F(p(b); ® p(bxyY')

and eg = €.

In a cleft extension like (C), C is free as a left module over A.! There are examples of
commutative, cocommutative Hopf algebras which are not free over some Hopf subalgebra
[OS] (this example was rediscovered in [T'3]); thus there are extensions which are not cleft.
On the other hand, there are some important positive results, for example the following
is a consequence of [Sch4, Thm. 2.2], whose proof is based on a result by Kramer and
Takeuchi (the commutative case was first treated in [OS]):

Theorem 3.1.17. An extension of finite dimensional Hopf algebras is always cleft.

Other useful criteria are stated in [Sch4, Thm. 4.3]. These criteria apply in our setting
because in any exact sequence (C), C is an B-algebra extension of A (and an A-coalgebra
extension of B). Moreover, the Hopf algebra extension is cleft if and only if the algebra
extension is (this is the content of Lemma 3.1.14). Now an extension of algebras is cleft if
and only if

(1) it is Galois,

(2) it has a normal basis.

(See [DT], [BCM], [BM)). In the case of our interest (exact sequences like (C)), one does
not need to wonder about the Galois property: if ¢ is faithfully flat, then C is a Galois
B-extension of A by [T3]. Now "normal basis” means that C is simultaneously isomorphic
to A® B as A-module and B-comodule. Thus the notion of extension managed by several
authors, beginning by Singer [Si], coincides with that of cleft extensions, as in this paper.
The interested reader could find more examples of extensions which are not cleft arising
from the theory of algebraic groups in {Sch3] (even of Hopf algebras which are free, but
not cleft, over a suitable Hopf subalgebra). A nice survey on what is known about Hopf
Galois extensions is [Sch5|. Finally, we quote a result which follows from [BM] and will be
useful later.

Proposition 3.1.18. Let (C) be a cleft extension of finite Hopf algebras. If A and B are
semisimple, then C also is.

1The following remarks are well-known to specialists in Hopf algebra theory.



18 NICOLAS ANDRUSKIEWITSCH

§3.2 Extensions of x-Hopf algebras. In this subsection, we shall use results quoted in
the previous section to construct extensions of *-Hopf algebras. We will asume that the
base field is C.

Let A be a x-algebra and C a *-coalgebra (1. e., C has an antilinear involution z — z°
such that z(1)° ® £(2)° = 2°(2) ® °(1)). Then one endows Hom(C, A) with an involution
* defined by

£(c) = F(), f € Hom(C, A).

If ¢ also belongs to Hom(C, A), then.

(f*9)*(c) = (f * g)(c*)* = gley®)* Fle@®)* = (g" * F*)(c).

That is, Hom(C, A) is a *-algebra. In the same vein, Hom(A4, C) is a (topological) *-
coalgebra—notice that A°?(f)(z ® y) = A?(f(y @ z)).

Recall now that a *x-Hopf algebra is a pair (A,*), where A is a Hopf algebra, * an
antilinear involution making it a *-algebra, and A is a morphism of *-algebras (here (z ®
y)* = z* @ y*). Given a Hopf algebra A, it is equivalent to specify a x-Hopf algebra
involution, or an antilinear involution z — z° such that (A, o) is a #-coalgebra and m is a
morphism of *-coalgebras. Indeed, the correspondance is given by

z* = (S~ 1z).

On the other hand, A — A°? is a morphism of (real) bialgebras, hence preserves the
antipode [Sw, 4.0.4]. That is, S(z)* = §~!(z*) (compare with [W]).

Observe also that if A, B are *-Hopf algebras, then Hom(A4, B) is a (topological) *-Hopf
algebra, by f*(c¢) = f(c°)* as above.

It is clear what a morphism of *-Hopf algebras is; for example, the counit and the unit
are. Also, the various kernels and cokernels of morphisms of *-Hopf algebras inherit the
*-structure. We shall say that a sequence of morphisms of *-Hopf algebras

©) 0—ASC5HB—0

is exact if it is exact as a sequence of the underlying Hopf algebras. Let us fix two *-Hopf
algebras A, B and seek for conditions on a data —, o, p, 7 as in Proposition 3.1.12, in
order to get an extension of *-Hopf algebras.

First, we look the algebra case. It seems reasonable to impose © (cf. 2.1.4) to be a
*-morphism. This translates into the following condition:

(3.2.1) (b— a)* = b° — a*.

Equivalently, (b — a)* = S(b)* — a*,orb—a* =(S(b)* —a)*,or... Let 6 : BB - A
satisfy (3.1.1-3) and assume in addition that o is invertible. Analyzing the corresponding
section x, one sees it is plausible to ask

(3.2.2) o(b@b)* = o (S(h)* ® S(b)*).
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Lemma 3.2.3. Let B be a x-Hopf algebra, A a *-algebra, —: B@ A — A a weak action
satisfying (3.2.1), o a cocycle satisfying (3.2.2). Then C = A®, B is a *-algebra with
involution

(3.2.4) (a®b)" = J_l(bfﬂ) ® S-l(bz'l))(b( — a*) ® biy.
Proof. The lenghty but straightforward verfication is left to the reader, as well as that of
the following dual statement. [

Lemma 3.2.5. Let B be a *-coalgebra, A a *-Hopf algebra, p : B - B Q® A a weak
coaction satisfying

(3.2.6) p(b°) = p(b:)° ® p(b*)".

Let 7 : B — A ® A be an invertible co-cocycle (i.e., it satisfies (3.1.4-6)), satisfying
(3.2.7) 7(5°) = 771(d)*.

Then C = A™ @ B is a *-coalgebra with involution

(3.2.8) (a®b)° =8 (ap(b))'r ™ (b2y)k) " 77 (b2y))** @ p(by))i®. O

Remark. (3.2.6) means that = is a morphism of *-coalgebras.

Proposition 3.2.9. Let A, B be *-Hopf algebras, and —, o, p, 7 as in §3.1. Assume in
addition they satisfy (3.2.1, 2, 6, 7). Then C = AT#,B is a x-Hopf algebra and (C) is an
extension of *-Hopf algebras

Proof. We need only to check that the convolutions given by (3.2.4) and (3.2.8) agree, 1. e.
that (a ® b)* = S ((a ® b)°). Again, this is a lenghty computation which will be omitted.
(use the formula for the antipode given in [AD, 3.2.17]). O

§3.3 Basic properties of extensions. We collect in this subsection a number of facts
about extensions of Hopf algebras. For brevity, we shall refer to an exact sequence (C) as
in §1.2. If (C) is cleft, x and & will denote respectively a section and a retraction satisfying

(3.1.13) (¢).

(3.3.1). Let (C) be a sequence with ¢ injective and m surjective. If C is finite, then the
following are equivalent

(a) (C) is exact.

(b) kerm = Cu(A)*.

(c¢) «(A) = LKer(r).

(d) (C*) is exact, where

(€*) [N : L. aNYSL AL |

Proof. It can be found in [By, 4.1]; the non-trivial implication between (a) and (b) follows
from [Sw, 16.0.2]. We sketch however, for further use, the proof of (a) = (d).
We check first (1.2.4), i.e. that B* = LKer.*. Let 3 € B*,a € A, c € C. Then

(" ®@id)A(B),a@c) = (B,m(ac)) = (1® B,a@c).
On the other hand, if ¥ € LKer:* then y(A*C) = 0 and hence v = §r for some 8 € B*.
To prove (1.2.3) notice that (ker:*)* = 4 and (7*(B*)TC*)* = LKerr. O
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(3.3.2). (i). Let D be another Hopf algebra. Then
() 1-DRALDRC BT

is exact, where /! = id®¢, 7' = @ 7.
(i1). The following sequence is also exact:

Q) T-A5DeCIE DB — T,
where (' =1Q ¢, 7" = id @.

Proof. (i). Clearly, =’ is surjective and ¢ is injective. Now kern’ = DY @ C + DQkerw =
(D@ A)*D®C. Finally, let a; be a basis of D and let z = 3, a; ® ¢; € LKer'. Applying
ep @1id to both sides of the equality defining LKer, one sees that ¢; € LKerm = A.

(ii). Similar to the preceding. O '

(3.3.3). If(C) is another exact sequence, then 71— AQA - CQC — BB — T is also
exact. O '

Now we give a generalization of (3.3.1). Let H be a Hopf algebra and F a family of
finite dimensional representations of H closed by finite direct sums, tensor products and
taking the contragredient; we shall say that F is tensorial. Then the linear span ['s of
the matrix coefficients of representations in F is a Hopf algebra contained in the dual of
H. Sometimes we will emphasize T'x = T'x(H). If f: H' — H is a morphism of Hopf
algebras, then f*F is the family of representations of H' obtained composing with f.

Consider tensorial families of representations ', 7 of B, C' as in (C), respectively, and
set F = F7.

(3.3.4). Assume that

(a) T*F CF”

(b) 7*(T#(B)) = T (C) N 7*(B*).

If A is finite then
(C*) | T = Te(B) 2 T (C) 45 Tx(4) — .
is exact.

Proof. By definition of F, ¢* is well defined and surjective. By (a), n* is well defined,
hence injective since is the restriction of an injection. One sees, as in the proof of (3.3.1),
that LKer ¢* = Tz (C) N 7*(B*). To prove the assertion, we show finally that ['x(A4) is a
quotient comodule for the adjoint coactions. But this follows from the following general
observation:

Let ¢ : A — C' be an inclusion of Hopf algebras and let A’ C A*, C' C C* be dual Hopf
algebras such that +* induces an epimorphism C' — A’. If A is stable by the adjoint actions,
then A’ is a quotient comodule for the adjoint coactions. Indeed, let o € kers* = C'N AL,
Then ((+* ®id)ad @, a ® ¢) = (@, Ad,(¢)a) = 0 and hence (+* ® id)ad & = 0, which is our
claim. O

Remarks. (i). The hypothesis on A are in order to apply (1.2.8) (iv) and can be replaced
by any requirement insuring that * is faithfully coflat.
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(ii). By (a), one always has #*(T'x:/(B)) C T (C)N7*(B*). Let ¢ € T (C)N7*(B*).
Then ¢ € n*(B°) (the image of the restricted dual of B). Indeed, if R denotes the right
action of a Hopf algebra on its dual, then clearly 7* (Rr((8)) = Re(7*(8)) and the claim
follows from [Sw, 6.0.3].

For a Hopf algebra H, let H°P (resp., H°P) be the Hopf algebra obtained by taking
the opposite multiplication (resp., comultiplication); let H®°? = (H°P)°P_ Define (C°P),
(C°°P), (C®°P) in a similar way. One proves easily that the three are exact if (C) is.
Moreover,

(3.3.5). If(C) is cleft, then (C°P), (C°P), (C°P) are.

Proof A section for (C°P) is £°P(c) = £~ ( ¢); a retraction for (C°°P) is y°P(b) =
S~Hx7'y). O |

(3.3.6). Retain the notations and hypothesis of (3.3.4). If (C) is cleft, x* (T »(C))
C T#(B) or £*(T(A)) C Tz (C), then (C*®°P) is also cleft.

Proof. The candidates for retraction and section are respectively x* and £*. Let 8 €

Tz (B), v € T (C). Then (x*("B.op7),b) = (v @ 5,(id@m)A(xb)) = (v @ F,(x @
I)A(D)) = (B.opx*(7),b) for all b € B. In a similar way, one proves that £* is a section. O

(3.3.7). Let J C A be a Hopf subalgebra stable by the left adjoint action of C. Assume
that

(a) there exists £ : C — A such that £(1) =1, é(ac) = a€(c) foralla e A, c€ C.
Assume further that A is finite. Then the sequence

(Cy) . 0— A)JTALC/ITC S B0

is exact; moreover it is cleft if (C) is.

Proof. First, ANJYC = J*tA. Indeed, let z = ¥ jic; € A, with j; € J¥, ¢; € C. Then
z = £(z) = Y. ji€(c:) € JTA. Therefore 7 is well-defined and injective. It is clear that
ker® = 7(A*/J+A). Thus (Cy) is exact because 7 is faithfully flat (1.2.8) (iii). Finally, if
¢ € Reg,(C, A), then it defines £ : C/J*C — A/Jt A and this a retraction of (C;), which
is then cleft by (3.1.14). O :

The condition (3.3.7) (a) holds of course if (C) 1s cleft, e.g. if C' is finite dimensional.
But also holds if B has a functional u € B* such that byyu(bea)) = p(b)1 (i.e. if B* has a
left integral) and p(1) = 1. For, let £ : C — A be given by £(¢) = (id @urm)A(c); it is easy
to see that it satisfies (a). This admits a generalization to non necessarily normal Hopf
subalgebras and integrals in their quotient coalgebras, whose explicit formulation we leave
to the reader.

The following statement should be certainly improved; it should be useful to prove a
sort of Jordan-Hélder theorem for finite quantum groups.
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3.3.8. Let A, D be finite dimensional Hopf subalgebras of a Hopf algebra, such that
Ad(A)D C D. Assume that there exists £ : AD — A such that {(ad) = af(d), £(1) =1,
§(DYYC A(AND)*. Then AJA(AND)* ~ DA/DAD™.

Proof. By the bijectivity of the antipode, DA = AD and this is a Hopf subalgebra. Clearly,
(DA)YDY = DYA = ADT. The map q: A — DA/(DA)D™ is surjective; let r € kerq =
ANAD*. Thenz =Y a;d; = &(z) = Y a;é(d;) € A(AND)t. O

3.3.9. If A is central in C and B has trivial Hopf center, then A is the Hopf center of C.
(Dually, if B is cocentral and A has trivial Hopf cocenter, then B is the Hopf cocenter of
C.)

Proof. Let A' O A be the Hopf center of C; then 7(A’) = 7 and hence A’ C LKerw =
A, 0O _

(3.3.9) applies when B is simple (as Hopf algebra) and noncommutative.

§3.4 The Frobenius morphism. Lusztig [L4, Thm. 8.10, 8.16] has shown the existence
(and uniqueness) of -a Hopf algebra homomorphism Fr : Ug — Up such that

N
N e; ', if £ divides N
Fr(E§ )) - { 0 if not;

NI iy g
FT‘(Fi(N)) - { fi , if ¢ divides N

0, if not;
K % )i ¢ divides N
¢ v
ro(B]) -] () e
0, if not;
Fr(K;)=1.

It is known that Up is generated by E;, F}, K, Efl), F,-(l). Let u be the Hopf subalgebra
of Up generated by E;, F}, K; [L4]; it is known that dimu = 27¢dim9, '

" Lemma 3.4.1. The sequence .

(FR) 0—u—Up -5 —0

15 exact.

Proof. (1.2.1,2) being clear, we proceed with (1.2.3). It is known that ker Fr = Ugutifg
(L4, 8.16]. Thus, from the formulas [L4, 5.3 and 5.4] (see also [L2, 4.1]) (1.2.3) follows.
However, and in order to use Schneider’s theorem (1.2.8) (ii1) we prove the following Lemma
(proved independently but previously in [Li]); it will imply also (1.2.4). O
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Lemma 3.4.2. The finite dimensional Hopf subalgebra u is stable by the right and left
adjoint actions. :

Proof. We give the proof of the stability by the left adjoint and leave that of the right one
(which is very similar) to the reader. Clearly, it suffices to show that Ad(Ei(”)u C u. Let
z € Up be such that K;zK; ! = ¢%™ for some integers m;. It follows from (1.1.3) that

4
AA(EO)(2) = Y (~1) ¢* VB D Kio Kk TTED
7=0
t N 3
= Z(_l)iqdii(f—l+mi)EEf—J)$EfJ).
7=0

Let = be either Ejy with h =1 or a;5 =0, or Fj, with h # 1, or any K. Then, as

ﬂ EY =0,
di

B gl _ [
H t J

we conclude that Ad(Egl))(:z) = 0. Now let z = E}, with a;, # 0. Applying either the
commutation relation [L2, 4.1(g)], or {L4, 5.3(1)], or [L4, 5.4(a6)] (depending on whether

—a;n = 1,2 or 3) we see that Ad(EEC))(:c) € u; here one uses that u is preserved by the
action of the braid group [L4, 8.12). For z = F}, one uses instead [L2, 4.1(a)]. So we have

proved that Ad(Efl))(a:) € u for z in a family of generators of u. But

| ,
AAEDO)(z2) = Y ¢%34D) Ad(E{V K )(2) Ad(EP)(2)

=0

and we are done. O

Lemma 3.4.3. Consider Up as a_L_IB-comoduJe algebra via v = (Id @ Fr)A. Then Up is
an algebra cleft extension of u by Ug.

Proof. We need to define x € Reg,(Up,Up) such that vy = (x @ id)A. We will proceed
by steps.

(1). There exists an algebra homomorphism y; : {g 4+ — Up uniquely defined by
x+(ei) = Kt-_eE,(e)'. This follows from [L4, 8.6] since K¢ is central. Now

4
7x4(es) = (14OFr) (Z DEI K] @ EEJ))

=0

=K'EP @1+1®e = (x+ ®id)Ale:).

As x4 is multiplicative, yx4+ = (x+ @ id)A.
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(). There exists an algebra homomorphism y_ : Up - — Up uniquely defined by
X—(fi) = F9. (Same proof as for [L4, 8.6].) Again, yx— = (x- ® id)A.

(11i). Let xo :HB,O — Up be the algebra homomorphism such that xo(h;) = Kf [Ig' ]
Using (1.1.3), one_has again yxo = (xo @ id)A.
(iv). Let x : Ug — Up be defined by x(z4+2z2-) = x+(2+)x0(z0)x-(2-), for z; €

ﬁB,[, I=+,0,—. Then

Yx(z4+zoz-) =¥ (X+(z+)) 7 (X0(z0)) v (x-(z-))
= (x+ ®id)A(z+)(xo ® id)A(zo)(x- @ 1d)A(z-) = (x @ id)A(xz).

(v). Being a morphism of algebras, x4 is invertible and X;l = x+8. Thus y is invertible,
and x ! (z4zoz-) = X2z )xg Hzo)xT (z4). O

The last result also follows from a general result in [Sch4, 4.3]. From Lemma 3.1.14 one
deduces immediately (compare with [Li, 5.5]):

Proposition 3.4.4. The exact sequence (FR) given by the Frobenius morphism is
cleft. O

It is interesting to see the failure of y to be a morphism of algebras. First, one deduces
from [L4, 6.5(a2)]

[x(eq), X(f3)] = & (x(hf) -K7t S P [K;;2(tt—e)] Ef"”) |

1<t<e-1

Néxt,
[e(hi), x(e;)) = B ([Kﬁegaﬁ] - {IED

' —tay (1= | —lai; +t =1 | K; K; -
=E§'¢)(Z(—1)‘q foui 0[ 7 }f\;t[e_t]—{g])=aﬁx(6;‘)-

0<t<e

Here, the first equality follows from [L2, 4.1(c)]; the secohd, from [I&;;c]

Yicic(—1)geum0 [C""Jj - 1] K [t‘r_“j], for ¢ < —1, ¢ > 0 (this is [L3, 1.3 (g9)]); in

—£a,~j +t—-1

the third, one uses that ;

(L2, 3.3] and that £ is odd.

] =0if 1 <t < ¢, that [—8a,~,~+€—1] = —ajj

14
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We want now to present another exact sequence, dual to (FR). Let V be a U/-module.
Let A € P. Set

v ¢ v
Vi={veV: Kp=ghtad), [I:«] T [(A’f’ )] v, 1<i<n).
d;

For any lattice M, P 2 M D Q, let Fu be the category of free U{-modules of finite rank
V such that V = @remVs. Let F7 = F7p be the category of Ufg-modules obtained
from Far by extension of scalars. Let F' = F}, be the category of finite dimensional
Up-modules whose weights belong to M. Let F = *F. Let us denote B[G] = 'z (Up),
B,[G] =T (Up), v =Tx(u). (That is: G is the connected semisimple algebraic group
with Lie algebra ¢ whose "m” equals P/M).
Proposition 3.4.5. Assume that M = P. The sequence
(FR™) 0 — B[G] - B,[G] =2 v—0
1s exact.

Proof. This follows from (3.4.4) thanks to (3.3.4). Indeed Fr*(F') C F” is a consequence
of complete reducibility of simple Lie algebras and [L2, 7.2]. On the other hand, B[G] =
(UB)° and we can apply the second remark after (3.3.4). O

Remark. It was proved in [DeCL] that B,[G] is projective over B[G] of rank ¢4im9,

Let j be the subalgebra of u generated by K¥; it is a central Hopf subalgebra, isomorphic
to the group algebra of (Z/2Z)¢. It follows from (3.3.7) that the sequence

0— U/llj+ — Z’{B/qu+ E HB — 0

is also exact and cleft. One can also deduce (3.4.5) from this fact.
Recall the notation from 1.1.4 and the subsequent lines.

Proposition 3.4.6. The sequence 0 — Zo — Ap — u/uj* — 0 is exact.
Proof. Left to the reader; use (1.2.8) (ii). O

§4. SOME SIMPLE FINITE QUANTUM GROUPS

Let us a say that a finite Hopf algebra is quantum simple (g-simple for short) if it has
no strongly normal Hopf subalgebra or, equivalently, it has no strongly conormal quotient
Hopf algebra; see [AD], [Sch], [By]. Thus the dual of a finite g-simple Hopf algebra is
again q-simple. Suppose that a finite Hopf algebra C' is not g-simple and pick a non-trivial
strongly normal Hopf subalgebra A. Then by (3.3.1) C fits into an exact sequence like (C);
by (3.1.17) this exact sequence is cleft and hence it is possible to reconstruct C' from A
and B and some data. Therefore, to classify all the possible finite Hopf algebras of order
(that is, dimension) < N, we need first to classify the g-simple ones, and then glue them
via that data. We will discuss some basic features of this second step in the next section;
here we shall give examples of g-simple Hopf algebras. Let us work in this section over an
algebraically closed field 7. If G is a finite simple group, then clearly both the algebra of
functions on G, 7[G], and the group algebra of G, (G), are simple. On the other hand,
any Hopf algebra of prime order is simple, thanks to the Nichols-Zoeller theorem [NZ].
More precisely
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Theorem 4.1 [Z]. If the characteristic of 7 is 0, then any Hopf algebra of prime order
is the group algebra of a cyclic group, that is, it is commutative, cocommutative and
semisimple.

This was conjectured by Kaplansky. The commutative Hopf algebras of prime order over
an arbitrary field are well-known; see e.g. [TO]. In particular, they are all cocommutative.
It is now easy to deduce the following criteria of g-simplicity:

Proposition 4.2. If a finite Hopf algebra of order pq is not q-simple, where p and q are
primes, then it is semisimple.

Proof. This follows at once from (4.1) and (3.1.17, 18). O

Some results on the classification of semisimple Hopf algebras of low order can be found
in [LR], [Ms]. A result more precise than Proposition 4.2, 1ntersect1ng also [LR], is given
by Theorem 5.2.7 below.

Let us consider the algebra generated by three elements z and g*! with relations gg~t =
¢ g =1 and gzg~! = g%z, for some g € 7. It has a Hopf algebra structure given by

Alg)=g®g, Slg)=g¢"", elg)=1,

(43) A()=z®9+1Qz, S()=-zg7", e(z)=0.

Then by the quantum binomial formula one has
(4.4) Alz™) = gqt(n-c) [?] 2t @ gt

Assume further that ¢* is a primitive n-root of 1; then A(z") = z" Q@¢" +1®z™. We want
to study the Hopf algebra @, , generated by z and g, with the preceding relations and
structure plus z® = 0, ¢"™ = 1, for some m € Z. This algebra has dimension n?m and it
is isomorphic to the dual of the quiver Hopf algebra constructed in [Ci] (use [Ci, 3.8] to
prove the isomorphism). The Hopf algebra ®, := D, 1 (= D if n is fixed) was introduced
in [Tf] generalyzing an example of Sweedler (namely, the case n = 2). It is isomorphic
to the +-part of the Lusztig kernel corresponding to s£(2) discussed in §3.4. The Hopf
subalgebra of D, m generated by ¢" is central (indeed it is the Hopf center by 4.7 below)
and one has an exact sequence

0—1[¢"] > Dpm =D, — 0.

We concentrate now on ©,. Notice that Ad; = S*. It follows that the order of the
antipode is 2n [Tf]. Let D’ denote the span of {g'z/ : 0 <i < n—1}.

Lemma 4.5. Let H be a Hopf subalgebra of ® of dimension greather than 1. Then there
exists an integer s, 1 < s < n — 1 such that ¢° € H. Moreover, if z7 € H for some j > 1,
then z € H.

Proof. As H is §%-stable, H = ®,;H’, where HJ = HN®D/. Assume that H’ # 0 for some
7 # 0 and fix z = f(g)z’ € H, where f is a polynomial of degree < n — 1, f # 0, say
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flg) =03 aig’. Now,as HR H =@, ;H'@ H and H' @ H' = (H® H) N (D' @ D7),
we conclude from (4.4) that

(4.6) fla®g)z’"t@¢’ 'zt € H.

Take t = j; then f(g ® ¢)(1 ® z/) € H ® H. Applying m**1(A* ®@id) to this element, we
see that f(¢*)z/ € H, and in particular f(1)z/ € H. We claim that it is always possible
to choose f such that f(1) # 0. Indeed, applying m to (4.6) for t = j — 1, we see that,
if h(g)z’ € H, then gh(¢™%g*)z’ € H, and therefore. gf(q?*¢**)z7 € H for all k. Set
frlg) = gf(a7*g); if fi(1) = 0 for all k, then f(g~?*) = 0 for all k; as degree of f is
<n-—1, f should be 0.

So we can assume that z7 € H and by (4.6) again, z7~* and ¢’ belong to H. O

Now it is easy to determine the Hopf subalgebras of ®. Indeed, if z € H then g € H
and hence H = ©. Otherwise, H is a Hopf subalgebra of T[g] ~ WZ/nZ).

Proposition 4.7. @ is g-simple.

Proof. Let H be a non-trivial normal Hopf subalgebra of ©; then for some 5,1 < s < n-1,
g* € H. But then Ad(z)(¢°) = ¢*(¢** - 1)g* 12 € H. Thus H=D. O

For n prime, the last result follows from (4.2).

We discuss now briefly the (well-known) representation theory of @. Let us fix j,m
0<jm<n—1 LetV, be the following D-module: it has a basis {vy : 0 < h < j}
such that z.v4 = vp41, where by convention v;4; = 0, and g acts by the scalar ¢*™. Then
the V; m’s constitute a classification of the indecomposable D-modules.

The following questions arise naturally from the preceding discussion:

(a) Is the +-part of a Lusztig kernel always a simple finite quantum group?

(b) Has it always has only a finite number of decomposables?

On another direction, it is likely that Lusztig kernels are also g-simple. (For type 4,
this was proved in [T4]). If true, we shall deduce from (3.3.9) that B[G] is the Hopf center’
of By[G] (resp., that Z, is the Hopf center of Ap).

§5. COHOMOLOGY OF HOPF ALGEBRAS

-§5.1 Singer’s cohomology. Singer [Si] defined a cohomology theory for a pair of (graded,
connected) Hopf algebras A, B, with B cocommutative and acting on A, A commutative
and coacting on B, subject to two compatibility conditions. He also showed that the 2-
cohomology group classifies the extensions of A by B. Singer’s cohomology can be also
defined without the "graded and connected” assumption and again the 2-cohomology group
classifies the (isomorphy classes of) extensions of A by B. Details can be found in [Hf]
the classification theorem is also a particular case of {AD, Th. 3.2.14].

We begin by reviewing Singer’s cohomology in the setting of our interest; for the mo-
ment, it 1s convenient to do not suppose that A is commutative and B, cocommutative;
we shall latter do so. Let us fix two Hopf algebras A and B together with an action
—: B®A — A and a coaction p: B — B ® A, such that p(1) = 1, e(b — a) = e(a)e(b),
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and

(5.1.1) A — a) = (p(bny)i = o)) @ plby)’ (b = agw))
(51.2) p(5b) = () (p(B)i @ bizy = p(B)¥),

(5.1.3) (1®bay — @) p(ba)) = p(b1y) (1 ® bra) — a) .

Clearly, (5.1.3) is superflous if A is commutative and B cocommutative. For brevity, one
says that the pair (A, B) is compatible.
Let N be a left B-module and define an action of B on N @ 4 by

(5.1.4) b(n ® a) = p(bg))in ® p(b))*(bz) — ).

This is a left B-module action thanks to (5.1.2) and N @ A with this action will be denoted
by N®A. Notice that A: 4 — A®A is a morphism of B-modules by (5.1.1). Let X be a
right A-comodule (with structural morphism ¢) and deﬁne acoaction BQRX - BRXQA
(still called ¢ by abuse of notation) by

(5.1.5) (5 ® ) = plbin)): @ e(2); @ plbey) by — ()7).

This a right A-comodule (denoted by B®X) by (5.1.1); (5.1.2) implies now that the

multiplication B&B — B is a morphism of comodules. _
Now we consider the category €(A4, B). An object M of €(A, B) is simultaneously a

left B-module and a right A-comodule, such that the action B&M — M is a morphism of

A-comodules, and the coaction M — M@A is a morphism of B-modules. Both conditions

are expressed by one equality: '

(5.1.6) c(bm) = p(b))ic(m); @ p(bn))*(bzy — e(m)).
(The arrows in this category are those linear morphisms which preserve all the structures
involved; we shall use the notation Hom% for them).

If N is a left B-module, then N®A belongs to €(4, B) with coaction n®a + a®a)®
a(z): this is again a consequence of (5.1.1). If X is a right A-comodule then it follows
from (5.1.2) that B®X belongs to €(A, B) by letting B act on the first factor. Thus,
we have in particular two translation functors S,T : €(A, B) — €(A, B), S(M) = M®A,
T(M) = B@M. Observe that M ~ {z € S(M):¢(2) = 2@ 1} ~ T(M)/B*T(M).

On the other hand, if M, P belong to €(A, B) then M ® P (considered as A-comodule
via the multiplication of A and as B-module via the comultiplication of B) also belongs
to €(A, B). Here one use for the first time the hypothesis (5.1.3).

Next, one says that M in €(4, B) is an (A, B)-algebra (resp., coalgebra) if the multi-
plication m : M @ M — M (resp., the comultiplication § : M - M @ M) is a morphism
in €(A4, B). (In such case, we shall denote p instead of ¢ for the coaction and — for the
action). If X is an (A, B)-algebra then S(X) = X®4 also is, with the tensor product
algebra structure; similarly, if Y is an (A4, B)-coalgebra then T(Y) = BRY also is. Notice
that in this case, there is an isomorphism '

(5.1.7) _ Reg(Y, X) = Regh(T(Y), S(X))..

Here, Regp(T(Y), S(X)) := Reg(T(Y), S(X)) N Homa(T(Y), S(X)). Explicitly, 6(f)(b®
z) = b— ((f @ id)p(z)).
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Remark. The monoidal category €(A, B) is in fact the category of representations of a
Hopf algebra. Indeed, assume for simplicity that A is finite dimensional (otherwise one
should consider a structure of topological Hopf algebra on Hom(A4, B), see [T1]). Let
H = B ® A*; following the recipe of [Ma, Prop. 3.13], one considers the matched Hopf
algebra structure on H induced by the left action —: 4* @ B — B and the right action
—: A*® B — A* (see also [T2]). These actions are explicitly

o —b=3 pBile o)), {0 ba) = (o b = a),

and the corresponding multiplication is
(b® a)(d®7) = blay — d1)) @ (agy — dey)r.

Thus if M € €(4, B), one defines an action of H on M by (b® a).m = b.({a, c(m))c(m);;
(5.1.6) guarantees that this is effectively an action. Conversely, any H-module gives rise,
by reversing the procedure just described, to an object of €( A, B), and the tensor product
in €(A, B) corresponds to the comultiplication of H.

Consider now the category €, of (A, B)-algebras. The coaction p: N — N ® A gives
rise to a natural transformation n from the identity functor to S. Moreover, there is a
natural transformation y : $? — S given by uy : NQA®A — NRA, un = id®ec ®1id, and
(S,n, 1) is a monad (or triple) in €; [McL, p. 133]. Therefore, for each X € €; one can
form the corresponding simplicial object [McL, p.171]. For the benefit of the reader, let
us write down the formulas explicitly. Let F? = $9t1(X), for ¢ > 0; the face operators
éfz : F9 — FItl are

_5_2(a:®a0®---®.aq)=p(:c)®ao®"'®aq,
$(z®a® - Qa)=7Ra® - QA(ai—1) - Qa;, 1<ilg+1;

: F9t1 5 F7 are

the degeneracy operators g;

2;(:B®ao®“'®aq+l)=$®ao®-‘-5(ai)"'®aq+ls O‘SiSQ’-

Similarly, one has a comonad (or cotriple) (T, 4, x) in the category €, of (A4, B)-coalgebras
by setting § : T — id, 8y : BQY — Y the action, x : T —= T?, xy : BQY — BRBQY,
xy(b@y) =b®1®@y. Let GP(Y) = TP*(Y). The explicit expressions for the coface
operators d : GP*!1(Y') — GP(Y) and codegeneracy operators sf : GP(Y) — GPF(Y') are
as follows: -

d?(b0®.--®bp+l®y)=bo®..:bjbj+1®"°®bp+1®y, 0<;<p
d£+1(b0®"'®‘bp+1 QY)=b® @ - Qbpy1 — v,
i?(b(,@---@bp@y)=b0®...bj®1®bj+1"'®bp+1®y, 0<5<p

For X in €1, Y in €y, set CP9 = RegA(G?(Y), FI(X)) = RegH(TP+1(Y), S7+1(X)).
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The family of groups C?9 together with the group homomorphisms ﬁ;, g_;, df; and g?
is a "double” simplicial group; more precisely we have a bifunctor from €, x €; to the
category of "double” simplicial groups. In particular, the group Autcoalg‘;(Y) acts on the
right on CP7 by group homorphisms. It follows that C?¢ has a T-action if Y = [T, with

the usual comultiplication, and trivial action and coaction.

Assume from now on, till the end of this section, that A is commutative, B is cocom-
mutative. The preceding constructions apply in the (full) subcategories €2° (resp., €3%) of
commutative (resp. cocommutative) algebras (coalgebras).

Let 88’7 : CP7 — CP+1:9 and 957 : CP7 — CP9+! be the differentiation operators

B =(Fod)+(f od) s x(fE odl,)),
B0 = [(80 f)x (8o f ) k- (80H o 2TV

The (—1)? guarantees that 9,8, + 8,8, = 0 (cf. [CE, p.63]) and hence C?? is a double
complex. The use of monads avoids various tedious computations; however, it is convenient
to note that, by (5.1.7), this double complex is isomorphic to DP? = Reg(T?(Y), S9(X)),
that 1s, to

(5.1.8)

Reg(Y, X @ A%?) — Reg(BRY,X @ 49?) —s ...

5.9 I T

Reg(V, X ® A) — Reg(BRY,X®4) — ...

ag-ﬂ a;-ﬂ

0,0 1,0

Reg(Y,X) —» Reg(BQY,X) 2 ..

In this presentation, the face, coface, degeneracy and codegeneracy operators are given

by
Saf(lry ®...5, @) = (px ®id) (f(b1 ® ... b, B Y)),
5f(b1®...5,®y) = (idxgaei-1 ®A ®id) (f(h ®...5, @), 1<i<yg,
S (b1 ®...b, ®y) = f(p(b1 ®...5, @ Y)k) @ p(b1 ® ... b, @ Y)¥;
o f(b1 ®...b, ®y) = (idxgae: @ ®id) (f(b1 ®...b,Qy)), 0<i<yg;
dof(br1®...bp41@Y) =b1 = f(b2® ... bp41 QY),
i f(0r1®.. b1 ®Y) = f(b1 ® ... bibit1 @ ... bpr1 ®y), 1<i<p,
B f01@ . by @Y) = f(b1 ® ... by ® bprs — ¥);
I ®..,0yY)=f(bi®..5; @1 ®bit1...5,®y).
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The differential 0y, &; are given by formulas similar to (5.1.8). Let Reg, (B®?QY, X ® A®7)
be the subgroup of those f € Reg(B®? ® ¥, X @ A%?) such that f(by @ - ® b, ®y) =
e(y) [1; €(b;) if one of the b;’s is equal to 1, and also (id xg 49+ ®e®id) (f(b1 ® ... b, ®y)) =
e(y) I1; ¢(b;). Adding a subscript + throughout in (5.1.9) (with standard conventions if
p = 0 or ¢ = 0), one obtains a double complex (5.1.9); whose total cohomology is the
same as that of (5.1.9). This cohomology will be denoted by H*(A, B; X,Y). Observe
that if A is the trivial Hopf algebra (and hence several actions and coactions are uniquely
determined) and also Y is trivial, then the cohomology of complex in the lowest row is
exactly Sweedler’s cohomology [Sw2]; it will be denoted H§,,.

. Take now X =Y = 71 and define H*(B, A) as the cohomology of the total complex
E™ = @pyg=m—2,p>1,q>1 D79 That is, we drop the first column from the left and the
lowest row in (5.1.9), decrease both the vertical and the horizontal index by 1 and take
the cohomology of the total complex of the resulting double complex.

Here is a description of the low index cohomology groups. ZO(B A) is the subgroup of
Reg, (B, A) of those maps f satisfying

(5.1.10a) (BB = (bry — F(B)) f(beay),
(5.1.10b) A(F(5)) = (1® f(by) (F(p(b2));) ® plbay)’) -

By (3.1.15), (3.1.16), f provides simultaneously an algebra map y : B — C and a coalgebra
map £ : C — A, where C = A#B with trivial cocycle and co-cocycle. Denote X = X5
E=¢ 7 to emphasize the dependence on f. Then the multiplication in Reg(B, A) translates
into{sox, =g* f.

Next, Z!(B, A) is the subgroup of those pairs (g, 7) € Reg, (B®?, A) x Reg, (B, A®?)
such that o satisfies (3.1.2), r satisfies (3.1.5), and

(5.1.11) A (0(5(1) ® 5(1))) m(bybezy) = (by = 7(bn))
(b)) (18 a(bs) ® b)) (o(o(biay)s ® p(b)s) @ plbea)) (bsy = plbisy)))

So,let 0 - A — C — B — 0 be a cleft extension. Then there exist —, p, o, 7 satisfying
(3.1.1-9). As A is commutative, B cocommutative and ¢ and 7 invertible, one deduces
from (3.1.3, ..., 6) that — is an action and p a coaction; from (3.1.8, ... , 10) that —,p
satisfy (5.1.1, 2, 3) and from (3.1.11) that o, fulfill (5.1.11). Thus (o, 7) is an element of
ZY(B, A). Conversely, given (o,7) € Z!(B,A), C = A"#,B is a cleft extension of A by
B; indeed, (3.1.8) and (3.1.9) follow from (5.1.1, 2, 10) because A is commutative and B
cocommutative. Moreover, it follows from [AD, 3.2.14] (see also [Hf]) that two extensions
(with the same action and coaction) are equivalent if and only if the corresponding pairs
(a,7), (¢',7") are congruent modulo B!(B, A). Thus H'(B, A) classifies extensions with
given action and coaction. (It is also possible to define a Baer sum translating the group
operation of H!(B, A), see [Hf]).
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We record the identities defining H%(B, 4). It would be interesting to interpret these
group in terms of the so-called Whitehead modules (cf. [Ho], [Lo]; the denomination
varies greatly from author to author). An element of Z?(B, A) is a triple (¢,,7), where

¢ € Reg, (B, A®?), ¢ € Reg, (B®?, A®?), v € Reg, (B®%, A), such that

(5.1.12)
(A ®@id®id)é(b1))(id ©i1d @A)$(b(z))
=(1® ¢(b1)))(id @A ®id)¢(bz)) (#(p(b3));) ® plbz))) ;
(5.1.13)
(bay = ¥(hay @Ky ® £1))) ¥(b2) ® heayka) @ £e2))¥(besy ® sy @ keay)
=v(bayh(y ® Ky @ Lay)v(bezy ® h) ® k2)l(z));
(5.1.14) :
(b1y = B(h1)))d(b2))(1 @ B(bezy ® h(2)))(id ®A) ((bes) ® h(3)))
= ¢(b1)h(1))(A ®@id) (¥(b(2) ® h2y))
(% (p(be3))i ® p(ha));) ® p(biay) (bray = p(hey)?));
(5.1.15)

(bay = b(hay ©k))) ¥(be) ® hayka))Av(bie) ® ks © k)
= Y(ba)h(1) ® k)P (ba) @ hi2))(1 @ v(b) ® A3y ® k2y))
(7(p(bay): ® p(h(ay); ®p(k(z))e) @ p(bray) (bsy — plheayy Y beyhisy — p(k@y)*)) .

§5.2 Examples. In order to classify all possible cleft extensions between T1[N] and G},
for some groups G and N, one should first determine all the posible compatible actions
as in (5.1.1,2), and then compute the corresponding cohomology group. We discuss now
some concrete examples to get a flavour of how difficult this task could be. All the groups
in this subsection will be denoted multiplicatively, unless explicitly stated.

Assume first that A is a commutative Hopf algebra and B = T{G) is the group algebra
of a group G. Then, as is known, it is equivalent to give an action —: BQ A — A or a
representation m of G by algebra automorphisms on A. Moreover, — is compatible with the
trivial coaction if and only if G acts (via ) by Hopf algebra automorphisms. Now assume
that A = T[V] is the algebra of functions on a finite group N. Then a representation 7 by
algebra automorphisms is uniquely determined by a homomorphism ¢ : G — S(N) (where
S(X') denotes the group of bijections of a set X'), and G acts, in such case, by Hopf algebra
automorphisms if and only if ¥(G) C Aut(N). (Explicitly, 7(g)f = fo(g™1).)

Dually, if B is a cocommutative Hopf algebra and A = TI[N], then coactions p :
B — B ® A are in bijective correspondance with representations of N on B by coal-
gebra automorphisms (explicitly, u(h)(d) = (id @ex)p(b), where e, denotes the character
of T[N] corresponding to h € N); p is compatible with the trivial coaction if and only if
t(N) C Authopt alg(B). If B = G), the former condition amounts to an action of N on
the set G, namely, ey, 5y = p(h)(eg), and such p is compatible with the trivial action if
and only if 6(N) C Aut(G).
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So assume that A = I[N] and B = HG) and fix  : G = S(N), 6 : N — §(G). Then
(5.1.1), (5.1.2) take the following form

(5'2'1) ng(hy) = ¢8,(g“)“(h)¢g(y),
(5.2.2) Or(g9z) = 0n(9)0y _, (w)(2)-

Here g,z € G, h,y € N. Thus, if in addition
(5.2.3) P(1)=1, 6,(1)=1

for all ¢, h, then A, B is a compatible pair. Clearly, (5.2.1) (resp., 5.2.2) are always true
for h=1o0ry =1 (resp., for ¢ =1 or £ = 1). (These conditions are equivalent to those in
[Ma, Thm. 2.1], [T2]). Letting ¢(g) = ¥(g)™', one obtains the more readable formulas

(5.2.1°) : 2o(hY) = ©4,(9)(R)eg(v),
(52.2) On(92) = 01(9)04,(n)(T)-

In particular cases, one obtains from the above discussion some strong requirements; for
instance, (5.2.3) implies the existence of a group morphism G — S§(N — {1}). Assume for
example that G has order p and N = Z/qZ, with 2 < p < ¢q. If  is non-trivial, then some
factor of g (different from 1) divides (p — 1)!; thus if ¢ is prime then § is always trivial. In
such case, ¥» maps G onto a subgroup of Aut(N) ~ Z/(q —1)Z. If in addition p and ¢ — 1
are coprime, 1 is also trivial. See [Gr|, [By2] for the classification in the case p = ¢ prime.

The conditions (5.2.1,2) have a cohomological interpretation. Let us consider the groups
C={R:N — G} and D = {T: G — N}, with pointwise multiplication. We let N act
on D and G act on C by h.T = T o 8(h™'), g.R = Ro (g). Let us define E : N — D,
F:G-C, by

En(g) = pg(h™1)™,  Fy(h) = 8a(g).
Lemma 5.2.4. (521) (resp., (522)) holds if and only if E (resp., F') is a (non-
commutative, see [Se]) 1-cocycle.

Proof. Fis a l-cocycle if and only if Fy; = F,g.F;, if and only if 8x(g9z) = 04(9)8,,n) (),
and this is (5.2.2"). The other is analogous. O

- Assume for example that ¢, is a group homomorphism. Then (5.2.1) implies that ¢,
e, g, for all g,y. Assume further that F is a coboundary, i.e. that there exists T: H —

such that 84(g) = T(h)™'T(py(h)). Now 8ay(9) = 8x(8,(g)) = T(h) "' T(pe,(s)(h))
9r(g); one concludes that 8, = id, for all y. (Of course, the same holds if ¢ is injective).

Qo

Now we assume that the compatible actions are fixed. We discuss first the computation
of the full cohomology and then that of the first cohomology group. The standard tools
to deal with the total cohomology of a double complex are spectral sequences. Let

P
fihor

EP’?_H‘I

vert

(D**),  (vesp., 1EP? = H, Hi (D))
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be the double complex obtained by taking first the cohomology of the rows-with respect
to the horizontal differential-and then the cohomology with respect to the differential
induced by the vertical one in the initial complex (resp., interchanging vertical by horizontal
throughout). (Here (D** is the double complex arising from (5.1.9) by dropping a row
and a column as explained above). In practice one needs to show that any of these E,
degenerates sufficiently to allow to compute H*(B, A). We include here some remarks of
how this task could eventually be accomplished. Observe first that

HZ (B, A®%), ifp>2,
Z1,(B, A%, ifp=1.

HE (Do) = |
Moreover, if B is the group algebra of a finite group G this is isomorphic either to the group
cohomology group HP(G,(A®9)*),if p > 2, or to Z*(G,(A®1)*), if p = 1, where the x
indicates the group of units of the algebra in question, cf. [Sw2, Thm. 3.1]. Assume further
that A = TI[N], for some finite group N; then A®7 = T[NY], where N?¢ denotes the direct
product of ¢ copies of N, and the group of units of A®? consists of the nowhere vanishing
functions on N9, i.e. ()N, Now G acts on N? by bijections; let Oy, ... O, be the orbits
of this action. Then as G-module, ()N ~ @;¢;<4(71%)% and the cohomology we are
looking for can be deduded, as the cohomology functors are additive, from the cohomologies
of all the G-modules (7*)?, O = O; for some j. Let K be the isotropy group of some
point in O; that is O ~ G/K. Then by Shapiro’s Lemma H*(G,(7%)°) ~ H*(K,T¥),
with K acting trivially on 7% (see [Br, pp. 73 and 136]; here one uses that G is finite,
and hence that (7%)° = Ind%(7%) = Coind$ (1), cf. [Br p. 70]). Finally one has the
universal coefficient exact sequence, cf. [Br, p. 60]:

0 — Exty(Hn_1(K), 1) = H*(K, %) — Homg(H,(K), %) — 0.

A similar analysis holds for the other spectral sequence; one has to replace [Sw2, Thm.
3.1] by its dual version, which in turn follows from the following observation: if N
is a finite group and B is a coalgebra, then Reg(B, 1[N]) is naturally isomorphic to
Homges (N, (B*)*), via f + (h — enrf), where for h € N ¢, denotes the correspond-
ing character of [N]. This isomorphism gives rise to an isomorphism of complexes, as in
loc. cit. '

Here is a more precise result.

Proposition 5.2.5. Consider the compatible abelian pair (T[N], W(G)j, where G and N
are finite groups, with trivial action and coaction. Then

HI(N,H?(G,T*)), ifp>2,q922,
HY(N,ZYG,T*)), ifp=1,q92>2,
ZYN,HP(G,1*)), ifg=1,p>2,"
ZYN,ZY(G,T%), ifp=1=q.

—1,g-1 _
(BT =

Here G acts trivially on 7™ and the various groups appearing in the right-haﬁd side
refer to group cohomology.
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Proof. Let X, Y be two sets. There is a natural isomorphism
Homgers( X, Homgets(Y, 7%)) = Homgets(Y, Homges (X, 7)),
and hence one has a natural isomorphism of double simplicial groups
Homgets(G?, Homgers (N9, T%)) ~ Homgers( N7, Homgets (G?, 1%)).
Taking cohomology with respect to G? and as the functor Homges(N?, ) is exact, one gets
HP(G, Homgets (N9, 77)) =~ Homges (N, H? (G, TX)).

(Recall the standard resolution of a trivial G-module [Br, p. 59]). Taking now cohomology
with respect to N7 one has

HY (HP(G, Homses(N*,7%))) > HY(N, HY (G, T%)).

=1

But we have already observed above that ;E;™ coincides with the left hand side in

the last isomorphism. O

Now if one is merely interested in extensions, the situation is neatly simpler [CE], since
there are exact sequences

0— ;E;‘lo — H' — 1E20‘1 — [Eg‘o — H?,

0— ”Eg’l — H! — HE;'O - ”Eg‘g — H?.

Thus for a compatible abelian pair (7[N], G)), where G and N are finite groups, with
trivial action and coaction, one has

(5.2.6) .

0— Homsr(N,Hz(G, T — HY — HYN, Homg, (G, 7)) — H*(N, H2(G, ).

As an application, we can now prove:

Theorem 5.2.7. Assume that the characteristic of 7 is 0. Let C be a finite Hopf algebra
of order pq which is not q-simple, where p and ¢ are primes, 2 < p < q, p and ¢— 1 coprime.
Then C is commutative and cocommutative. '

Proof. By (4.1), (3.1.17), and passing to the dual if necessary, we can assume that C fits
into a cleft extension 0 — T(Z/¢Z] — C — WZ/pZ) — 0. By the remarks before (5.2.4),
we know that the action and the coaction are trivial, so we can use (5.2.5).

Assume first that p < ¢. On one hand, H*(Z/qZ,Homg(Z/pZ,1*)) = 0 by [Br,
10.2]. On the other hand, we can also assume that 7 is algebraically closed and hence
Homg,(Z/qZ, H*(Z/pZ,1*)) = 0 because H*(Z/pZ,71*) = 1> /(7*)? [Br, p. 58]. Thus
C is the trivial extension and the claim follows.

Assume now that p = ¢. "Then the above argument shows this time that H! ~
H*(Z/pZ,Homg,(Z/pZ,V*)) = H*(Z/pZ,Z/pZ), since (we assume that) T is algebraically
closed. The assertion follows now from group theory and (5.2.8) below. [

We still assume that 7 is algebraically closed.
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(5.2.8). Let G, N be finite groups as above and let A = T[N], B = YG). Assume
that N is abelian and denote its character group by N. Fix an action of G on N by
group automorphisms. Thus one has an action of G on N by group automorphisms and
a fortiori a compatible pair structure on (A, B), with trivial coaction. Then there is a

monomorphism H*(G,N) — H'(A, B).
Proof. Let

(5.2.9) 1-N—-PoGo1

be an exact sequence of groups. Taking group algebras, one gets an exact sequence of Hopf
algebras

(5.2.10) T— WNY) = YP) = G) — .

Clearly (N) = T[N]. Moreover, two exact sequences like (5.2.9) are isomorphic if and
only if the corresponding sequences like (5.2.10) are; here one uses that an isomorphism of
Hopf algebras preserves group-like elements. O

§5.3 Remarks on the general case. Let (A, B) be a compatible pair as in the begin-
ning of §5.1. We define Z°(B, A) as the subset of Reg, (B, A) of those maps f satisfying
(5.1.10). Its elements could be called Hopf 0-cocycles. In the same vein, one can consider
only the algebra (resp., coalgebra) structure on A (resp., on B), forgetting the compat-
ibility conditions (5.1.1-3), and hence the algebra (resp. coalgebra) cocycles, which are
the elements of Reg,(B, A) (resp., Reg.(B, A)) satisfying (5.1.10a) (resp., (b)); they are
non-commutative versions of those in [Sw2).

Example. Let C = B°P? ® A with the product Hopf algebra structure and define — :
BQC —Candp:B—=BQC by b—(d®a)=d®b— a, p(b) = p'3(b). Then (C, B) is
a compatible pair. Moreover p: B — C is an algebra cocycle (whose inverse is ((§ ®1d)p).
There is an analogous dual statement. This generalizes (5.2.4).

Let Z'(B,A) = {(o,7) € Reg, ,(B ® B,A) x Reg, (B, A® A) : o satisfles (3.1.1,2),
(5.3.1); T satisfies (3.1.4,5), (5.3.2) and both satisfy (3.1.11), (5.3.3,4)}. Here (5.3.1) (resp.,
(5.3.2), (5.3.3), (5.3.4)) is the condition which follows from (3.1.3) (resp., from (3.1.6),
(3.1.8), (3.1.9)) because — (resp., p, (4, B)) is an action (resp., a coaction, a compatible
pair). Let B%(B, A) be the group of those ¢ € Reg, (B, A) such that ¢(b(1))bg) — a =
biry = ad(bz)), (1@ ¢(ba))p(bi2) = p(b1 ) (1Q ¢(b(2)). Let H(B, A) be the quotient space
of Z1(B, A) by the following action of B°(B, 4) (see [AD]): ¢(c,7) = (%0, 1), where

*o(b® d) = ¢(b)) (ba) = #(d(r))) o(bea) ® d2))d ™ (bayday),
*r(b) = Ag(b1y) (b)) (¢ @ id)p(bay) (1@ 67 (beay)) -

It is clear how a morphism of compatible pairs should be defined. Fix a Hopf algebra B and
consider the category Hp whose objects are triples (A, p, —) giving rise to a compatible
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pair (A, B) and whose arrows are the Hopf algebra morphisms which preserve the action
and the coaction. Defined as above, Z° gives rise to a functor from this category. Let

O—>A1£)A2£¥A3—VO

be an exact sequence of Hopf algebras in H!(B,A). In particular, it follows that the
coaction p3 : B — B ® Aj is trivial. One checks easily that the sequence

0 — 2°(B, A,) 15 29(B, Ay) L5 29(B, A4)

is exact. One would be happy to extend this sequence to an exact sequence involving H?2.
However, H?, at least as defined here, is not functorial. Let f : A —» A’ be a map in Hp and
let f! denote the map Reg(id, f) X Reg(id, f ® f) : Reg; .(B® B, A) x Reg, .(B,A® ) —
Reg, ,(B® B, A") x Reg, ,(B, A’ ® A"). Then the conditions (3.1.1,4) are clearly preserved
by f'. The same is true for (3.1.2,5,11); this is more transparent when expressing this
axioms in the following way:

(3.1.2) doo * dyo = d3o * dy0,
(3.1.5) 817 x 8% = 827 % 607,
(3.1.11) §'o xdy1 = dyt % dp7 % 6%0 x §%0.

(5.3.2,4) also follow easily. But (5.3.1, 3) are apparently true only if f is surjective. These
problems seem to be similar to those arising in the non-abelian group cohomology theory.
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