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GEOMETRIC FEATURES OF LATTICE POINT PROBLEMS

BEN LICHTIN

Introduction.

The purpose of this survey article is to introduce the (non-expert) reader to some of
the problems, techniques, and results in the study of “laitice point problems”. This de-
scriptive phrase appears in many different contexts and means different things to different
subspecialties. In this article the common meaning attached to a “lattice point problem”
consists of the following general counting problem.

Let w > 0 be a real or integral valued parameter. Let R, be a family of bounded closed
sets in R" with positive Lebesgue measure. Assume R = U,R,, is unbounded. Let ¢
denote a rational function defined on R. Define for each w

Nww)= Y elm), Ve = [ edo-don
meI"NR., Ru

When ¢ = 1, one often writes N(w), V(w) for N(w,1), V(w,1). Thus,

N(w) =gqer card(R,NI"), V(w) =get vol(Ry).

Problem. Describe the behavior of N(w,¢) as w — oo and relate the behavior to that
of V(w,p) as w — co.

A lattice point problem for a class C of rational functions is “geometric” if there exists
a function ¢¥(w, ) such that ¢(w,y)/V(w,p) — 0 as w — oo and so that

N(w,p) — V(w,¢) = O(¢p(w,)) as w — oo for all ¢ € C.

Geometric lattice point problems are of interest in particular in numerical integration
because they give classes of expanding domains and rational integrands for which integra-
tion and summation agree up to lower order error terms in the parameter of expansion.
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In general for multidimensional problems, standard numerical integration methods do not
appear to work as well as they do in one variable. In part this is due to a lack of geometric
machinery available to develop alternative integration schemes. GLPs offer one class of
such problems for which considerable geometric and analytic machinery is available for
comparing integration and summation with some precision.

This article discusses a few ideas and results that exhibit interesting uses of singularity
theory to the analysis of GLPs. The discussion falls nicely into two parts. Part 1 treats
the case in which the domains R,, are determined by homogeneous and positive definite
polynomials on R”. Sections 1,2 treat the circle problem and a generalization to quadratic
forms. This is a classical GLP originating within analytic number theory. The main
problem, at least when ¢ =1 is not to show that one is dealing with a GLP. That can be
verified in an elementary way. Instead, the emphasis is placed on obtaining good estimates
for the smallest rate of growth of the error term

E(w) = N(w) — V(w).

Even for such a concrete problem, the determination of the precise order in E(w) is a
difficult problem that remains unsolved. The purpose of the discussion is to give a flavor
of certain underlying insights and techniques that have led to nontrivial information about
the growth of E(w).

Section 3 then discusses more recent work of Randol and Colin de Verdiere that analyses
the growth of E(w) in terms of singularity theory when one views R, as the “homothetic”
expansion of a bounded domain

{P<1}

with boundary {P = 1}. Here, if P is a positive definite form of degree d, then R, =
w'/4R;. For this class of domains, the most natural class of weight function are rational
functions with homogenous numerator and denominator, although more general functions
are certainly useable. This is discussed at the end of the section.

Part 2 discusses certain ideas needed if one wants to analyse N(w,y) for a family of
domains that expands in a manner different than the homothetic one of Part 1. In partic-
ular, suppose P € R[z,...,z,] has degree d, is not homogeneous, but still determines a
proper mapping on R". Then it appears to be more natural to define

Ry ={P L w}

rather than
R, = w'/'R,,
since V(R',)) = vol({P < 1} w™/? but N(R,,) need not have this asymptotic.

Two cases are treated, using functional methods generalizing those of section 2. Section
4 describes the work of Mahler, who treated the case of elliptic polynomials on [0, c0)",
rather than R", and analyzed N(w,¢), V(w, ) using the lattice N™ rather than Z". The
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results are similar to those in section 3. They are obtained however by the analysis of a
Dirichlet series that does not possess a reflection type functional equation but which can
still be analytically continued to the complex plane as a reasonably well behaved function.
An estimate for

E(waq’) = N(w7 ®) — V(w,(p)

is then derived via purely analytic methods. The main result, Theorem 4.10, says that
E(w, ) is of strictly smaller order whenever ¢ is the quotient of elliptic polynomials on
[0, 00)". However, no explicit estimate for the error can be derived using Mahler’s methods.

A natural desire, emanating from section 4, is to loosen the restrictive condition of
ellipticity. Recently, the author of these notes has discovered a method to do this for
hypoelliptic polynomials. Hypoellipticity is a growth condition at infinity that is consid-
erably weaker than ellipticity in that it allows, as one example, an arbitrary form of top
degree, but requires compensation in the growth with lower order terms that do grow at
infinity. Section 5 treats the salient features of the analysis containing results on GLPs
determined by hypoelliptic polynomials on [1,00)”. The main result, Theorem 5.10, is
an extension of Mahler’s work, but exploits resolution of singularities at “infinity”, and
applies to all weights ¢ which are quotients of hypoelliptic polynomials. Again, one can
show that E(w, ¢) is of strictly smaller order in w, but no explicit estimate seems to follow
easily from the proof of 5.10. The reason for such difficulties essentially arises from the
contributions to E(w,¢) that come from the behavior of o/ P* near the boundary of the
chain of integration [1,00)".

In order to obtain simple and general estimates for E(w, ¢), it is therefore considerably
easier to work with the entire lattice Z". Here, one can incorporate one of Bochner’s ideas,
applied originally to elliptic polynomials in [Bo], but whose method evidently extends to
hypoelliptic polynomials on R™. As a result of this technique, one can give a simple and
explicit estimate for E(w, ). This is sketched at the end of section 5. The main result,
stated in Theorem 5.33, gives a general estimate, applicable to the situations in which the
methods of section 3 do not yet apply. The natural goal, therefore, should be to improve
these estimates by combining the ideas of section 3 and section 5.

Three appendices to the article discuss certain technical points which the reader may
find helpful.

The polynomials W(z) = z¥+...+z% typically analyzed in the context of Waring’s prob-
lem certainly fall into the class studied in section 4, while those of other Pham-Brieskorn
type polynomials (that is, additive and weighted homogeneous) belong to the class studied
in section 5. However, the methods used in the analysis of Waring’s problem are consid-
erably more technical, due to the desire to study the asymptotic of card({z € [1,00)" :
W(z) = £} NN™. To keep the length of these notes reasonably modest, nothing further
will be said about Waring’s problem or others that arise within diophantine approximation
theory. The primary reason is that considerations primarily of a subtle arithmetic, not
geometric, character dominate the analysis. Because the typical reader here is expected to
be more geometric in orientation, this seems to be a reasonable constraint.



Part 1. Positive definite forms

Section 1. Landau’s analysis of the classical circle problem

In this section P will denote the polynomial 2 + z2. Define the counting function
N(w) = card{(m;,m3) € Z* : m} + m? < w}.
Evidently, the area of this region is mw. The first result is elementary.

THEOREM 1.1.
N(w) = mw + O(w'/?).

One of the reasons why there is interest in the asymptotic of N(w) is-

Remark. The ring of integers in the field Q[i] equals Z[¢]. The norm of a Gaussian integer
my + tm, equals P(my,m2). So, asymptotic information about the circle problem gives
the asymptotic distribution of Gaussian integers. |

PROOF:
N(w) = Z 1= Z Z 1
mextmi+miw  |mi|<wt? my < /omm?
= Y (1+2[ w—m%])
[m1|<wt/?
=2 Z (\/w—-m§+0(1))+0(w1/2)=2 Z 1/w—m%+0(w1/2)
fmy|<w!/? fm|<wli2 (12)
[w'/?]
=4 Z \Jw—m? +O(w1/2)
m1=0

Vv
=_4/ vVw — u?du + O(w”z) ( via monotonicity of u — Vw — u?,u € [0, Vw))
0
= 1w + O(w'/%). 1§

Define E(w) = N(w) — 7w.



One has introduced the O(w!/?) error initially in (1.2). Remarkably, one can reduce the
best exponent for E(w) to a number in {1/4,1/3]. It is not yet known, however, what is
the best exponent. Here, an argument of Landau, adapted from that given in [Kr], will be
given that shows

E(w) = O(w'/3*+¢) for any e > 0.
This notation means that for each ¢ > 0 there exist C, B, such that
|E(w)] < Ccw'/?*¢  ifw > B,.

The proof uses an expansion of the continuous function w — [;* N(u)du into a series
of Bessel functions and then a Tauberian argument of Landau. Although this argument is
based upon the rather special nature of the polynomial P, it seems worthwhile to present
the details because it can be modified, in principle, to suit other polynomials. Moreover,

such arguments tend to be known to experts and scattered throughout the literature. So,
it is perhaps useful to include a few examples in this article.

Recal! the definitions of the first two Bessel functions.

1) = 77 (3) (1= ) 2cos(yu)du

_ 2 y\? ! 3/2
Jg(y) = W (5) v[O (1 - U) cos(yu)du .
The following facts will be needed below.
(1.3.1) There exists ¢ > 0 such that for i = 1,2,

|7i(y)] < % fory>0.

2 N
Ji(y) = Mr—ycos (y - .7%7. - g) + O(y_3/2),

(1.3.3) For each positive integer n

(1.3.2) Fori = 1,2

di; (£ nierym)) = \/g Ji(27 /7).

Remark. The higher exponent Bessel functions will be used in Section 2. For this section,
these two will suffice. J

For two integrable functions f, ¢ on R define
f(w) * g(w) = / flu)g(w — u)du .
0
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In addition, introduce the function

¢(u) =u-— IIu] - 1/23

whose significance for the analysis of lattice point problems has been understood since the
classical works of Hardy-Littlewood, Landau, and van der Corput. The main properties of
this function are summarized in Appendix A.

LEMMA 1.4.

1% N(w) = %wz — 8w 2p(w?) + dp(w'/?) x Pp(w?/?).

Proor: Introduce the notations

Z "f(m) resp. Z " f(m) to indicate that f(b) resp. f(a), f(b) are weighted by 1/2.
a<m<h a<m<hbh

Then,

l*N(w)z/OwN(u)du:4/Dw S 1 du

mf+m§$u
my,m2 20

=4 Z "(w—mf——m%)

<
co(0n1+3)- 103
- )

From this, the above formula is clear. §

Introduce the notation

c(n) = card{m € Z* : P(m) =n}.

THEOREM 1.5.
C

1*N(w) = %wz + % Z ::) J2(2r/nw).
n=1
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PROOF: Use Lemma 1.4 and the series expansion (cf. (A-1)) for 3. As pointed out in

(A-6), one can interchange summation and integration in the integrals for w!/2¢(w!/?)
and ¥(w'/?) x (w'/?). One calculates and finds

oo

-1 1
1/2 1/2 z 1/2 o 1/2
w ‘l,[)(w ) = — —w * szn(21lnw )

and

&sin@'frkw]/z) x sin(2mlw'/?)
J2(2m+/(k? + £2)w)

k% 4 02

By the growth estimate (1.3.1), one sees that the series converges absolutely. By grouping
together the terms with indices (k, £) for which P(k, £) = n, one completes the proof of the
Theorem. J

One can proceed to prove
THEOREM 1.6. For any e >0

E(w) = Oc(w1/3+‘).
PROOF (LANDAU): Introduce a parameter h and consider the differences

w+h w
/ E(u)du and E(u)du.

w w—h

One notes that the monotonicity of N(u) implies

N(u)—ﬂ'u|ue[w1w+h] > N(w)—n(w+h) and N(u)—ﬂ'u|u€[w_h’w] < N(w)~n(w—nh).
Thus,
- / Blu)du—rwh <B(w) <7 [ Blu)du+7h. (1.7)
w—h w
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By (1.5),

/w+h E(u)du = 0w+h N(u)du — -/Ow N(u)du —= [M - E-U—z-]

. 2 2
=35 ¢(n) [“’W‘;h - L2 /n(w + R)) — :’—n : Jz(zm/rﬁ)]
= Z e(n) [ww-l;h - 227y /n(w + h)) — :_n : Jg(ZTrM)]

n<z
+ Z % [(w + h)J2(2r/n(w + h)) — tJ2(27r\/77u-)-)] ,
n>z

where the parameter z will be chosen below (cf. (1.10)) to be an appropriate function of
w, h.

Use (1.3.3) in the sum over n < z. This implies

w wth oy
Z -;h - Jo(2wy/n(w + R)) — — Jo(2nv/nw) = f \/;Jl(%rr\/ﬁ) du .

Thus,
Z % [(w + h)J2(2ry/n(w + h)) — wJ2(21r\/rTu')] (18

w+h
= Z % / VuJi(2nv/nu)du + Z % [(w + h)J2(2my/n(w + h)) — ng(27r\/FzE)]

n<z n>z

Estimate the two terms in (1.8) as follows. First, if n < z then (1.3.1) implies

w+h

; Vuldy(2r/nu)du < nl% [(w + h)3/4 — w5/4]
cwd/t N
If h < w then A . .
5
2574 v.x Y
(1+w) 1+4 ” O((w))
Thus, the prior estimate is
chw!/* 1 2 —3/4
—7 + i 0w /4y,
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This implies

Z C,E::) [(w + h)J2(2m/n(w + h)) — wJ2(21r\/ﬁ)] < [hwl/“ + O(h2w‘3/4)] z :;1(;2 .

n<z n<z

The sum over n > z can be estimated by using (1.3.1) on the two J; terms and treating
the difference as a sum. This gives

Z e(n) [( + h)J2(27y/n(w + k) )«—wJ2(21r\/_)] & Z 5/4 ((w+h)3/4 +w3/4) .

n>z

The term in the parentheses is w3/#0(1) when h < w. Thus, combining these two estimates,
one concludes

et 1/4 C(n) 3/4 c(n) 2,,-3/4 C(”)
/ E(u)du < hw'/* Y =+ Y7 =+ O(Rw ™) 3 =

w n<z n>z n<z

It is easy to see that

n<z n4 (xn‘
Z C(n) < Z & qu-i-c
n>zx n% En>zn
Thus,
w+h - 2,4+¢
/ E(u)du L, hwt 2ite + w* 22t 40 (h 2'% ) ) (1.9)
w w

One forces h,w to satisfy the inequality h? < w®/4, Then, set 2 = h%w® and find q, b so
that the first two terms in (1.9) are the same. One finds that a = —2,b = 1. Set

z=h"%w. (1.10)

One now wants to impose an additional constraint, if necessary, upon h,w that insures

p3/2-2¢
O( .y —7—-)=0(1) asw— oco.

This will hold if A < w!/3+¢ . Thus, one sets z = h~%w subject to the constraint b < w!/3+e,
This implies

w+h
/ E(u)du <, (wh)/?weh~%,

w



Thus, (1.7) implies
1/2+¢

R1/2+2¢ +mh.

E(w) <.

One now chooses ¢ so that if h = w® then these two terms have the same order in w for
each €. One solves for ¢ and finds

+ €.

Wi

Cc =

This implies
E(w) = O (w'/**¢) for each e > 0,

as claimed. |

Section 2. A functional method for analyzing ¢ generalized circle problem

In this section @ = Y.,
over R. Further, define

i j=1 GijTiT] denotes a positive definite quadratic form defined

Nw)=cardfmel":Q(m)<w}.
Set
D = det (a.-,-) R

A=vil({Q <1}) =

n/2

VDT(Z+1)

So V(w) =gef vol({Q < w}) = Aw™/?. This section will sketch Landau’s argument, given
in [La-1], that proves

THEOREM 2.1. -
N(w) = V(w) + Ofw T =317,

To appreciate the significance of (2.1), one should first observe what is the “trivial”
estimate for the error E(w) = N(w) — V(w). This is

PROPOSITION 2.2. et
Nw)=V(w)+O0(w 7).

PRrOOF: To each lattice point m contained in the set {Q < w} assign the open box
C(m) ={(z1,...,zn) ER" : |z; —m;| < = 2 for each 7 }.

Clearly, if m # m' then C(m) N C(m') = B. Moreover, since each box has volume equal to
1, it is clear that vol(UmC(m)) = N(w).
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One now observes the existence of functions c(w), ¢'(w) such that ¢(w), ¢'(w) = O(w!/?)
and

{@ <w—c(w)} CURC(m) C{Q <w+c(w)}.

Thus, by the homogeneity of @ one obtains

vol({Q < w—c'(w)}) = Alw—c'(w))™? < N(w) < vol({Q < w+c(w)}) = A(w+c(w))*/?.

n—1

Hence, N(w) — Aw™/? = O(w™7 ). B

PROOF OF (2.1): The key functional tool is the quadratic theta function associated to Q
and its functional equation of reflection type, discovered by Epstein [Ep]. For y € R)h, 2 €
R", set
Oqlrshy)= T emmRlmenanilhom)
mFoe"

Next, set Q to denote the quadratic form associated to the inverse matrix of (aij). That
is,
1 aD
D 2 Bay,
ij

Q(xl;'°°azn) =

A fundamental property of O is the identity [Ep]

e—2mi(h-z)

Oq(e,hy) = e
Q(Z y) y"/z\/ﬁ

Oé(ha —Z, 1/3,() .

Set A1(2) < Az(z) < -+ resp. m(h) < n2(h) < --- to denote the elements of {Q(m +
2)}mso resp. {@(m + h)}mpo, arranged in order and with multiplicities of membership
possibly larger than 1.

Define the following Dirichlet series, which converge absolutely if Re(s) > n/2:

e2mi(m-h) st
D(S, z, h) = Z — = Z ak(z, h) e—alog,\,,(z)
s QT
- e—21n'(m-z) 0
Dis,z,h)= > = S bi(z, h)emtloam ()
m¥—hel™ Q(m + h) k=1

Note. For simplicity, ax(z,h),bx(z,h) are denoted ag,br in the following. Similarly,
Ar(z),ne(h) are denoted Ag, 7 . By the notational convention used in the prior paragraph,
one notes that |ag| = |bx| = 1 for each k. In particular, each coefficient equals 1 when
z,helI™. 1
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Now set

1 ifheZ”
‘)’:

0 ifh¢Zn
6—{1 ifze 2™
“lo ifzg¢zm’

Epstein showed the following pair of identities that determine analytic continuations of
these two series to the entire s plane as meromorphic functions.

D—l/2 Se—2mi(z-h) 00
" T(6) Doy h) = e = S [y (B hy) — 1] dy
) $ 1 (2.3)
e—2m’(z-h) ) .
+ """Dll—z/l v [OQ(h,—Z,y) - 1] dy.
. ~ 5.D1/2 ,7621“'(:-}1) oo -
7 *T(s) D(s,2z,h) = g - . +/; y [@Q(h,-—-z,y) — 1] dy
+D'/? e’"‘("")/l y¥7*7 [Og(~2,—h,y) — 1] dy.
Setting
e = D—1/2e—21'r:'(z-h)ﬂ,—n/2 ’
one deduces the following functional equation:
N —5)~,n
h)=cn?*—2—-D(< — : 2.4
D(s,z,h)=cm O (2 8,2,h) (2.4)

In particular, if o < 0 then 3 —o > 0. So, one obtains the following expression for D(s, z, k)
ifo<0:

D(s,z h)=c.M.§: b_"(,,k,rZ)a
M) = m”
Moreover, the series on the right converges absolutely. One concludes that for fixed 4, z

o >n/2implies |D(o +it,z,h)| = O(1),

- - I3 -9
o < 0 implies |D(o +it,z,h)| = ’W .
Stirling’s asymptotic (2.5) for I'(s) implies that in any vertical strip 07 < 0 < 09
I'(5—s) 22
——— t 2 4 .
2=~ o(l#-*)
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Thus, for any € > 0 and z, A,
|D(—€ + it, 2, h)| = O(Jt| 7).
Furthermore, from the fact that 1/T'(s) = O(e?!"), (2.3) implies, that for o € [—¢, 2 + €]
D(s,z,h) = O(*I"y.
One concludes from the Phragman-Lindelof theorem:
D(s,z,h) = O(jt|*7%)  uniformly for o € [—e¢, g— + €. (2.5)

One now recalls three properties of the Bessel function of any exponent. First, there is
the series expansion. Given v € R set

= —1) v+2i
Ju(y) = ; m (%) . (2.6.1)

Secondly, there is the estimate for large y

1
|7u(y)] = 0(—\/-1}:)- (2.6.2)

Thirdly, one has for each positive integer r

;;rr (yq—' J”+r(2~/‘-’7)) =y J.(2v) (2.6.3)

Using (2.6.1), an elementary exercise of residue calculus shows

LEMMA 2.7. If e € (0,1/4),y > 0,7 € N then

et DR _g) oy
[f_iw P(S) Yy ds = y-i-—& ) Jg“*'f(z\/g)

Corresponding to the finite sums of weighted coefficients, produced by the “weighted
Perron’s formula” (cf. Appendix B), define the following. (Note that the dependence upon
z,h is not indicated in the notation for simplicity.)

Alw) = Z an

An<w
Aw)= ) an(w=)
Ax(w) = % Z an(w — A,)?
'AHSw

Ag(w) = % > an(w—-Aa) k=3,4,....
" An<w

13



A tedious calculation with step functions shows, setting Aq(w) = A(w),
/ Ag(u)du = Agyr(w),
0

w wy We—1
and Ak(w) = f a'w1 / dwg o / A(wk) dwk .
0 0 0

A second important property concerning these functions is the relation between the
Ai(w) and the k*" difference operators. Define the operator and its iterates

A, f(w) = f(w+2) - f(w),
AY f(w) = A, (AL f) () v22.
Then .
A fa)= Y- (- (1) fw 4.

3=0

Moreover, a straightforward calculation, left to the reader, shows

A, Ar(w

/ " Awy) duoy | (2.8)

w

w+tz wy+z
dw1 / A(U)g) d’U)2 y
wy

3}"
’5
\‘

w

‘ w-.i-z wy+z Wy—1+2
A®) Ay (w) = f dw; / dws ... / A(wy) dw, .

w wy

One starts with the formula below, in which w > 0,a > n/2,r € N

1 a+ioo A w
% (S z, h S ' 2 ak(l - r(r )
a—100 r A <t w
Now move the vertical line to 0 = —e where, for convenience, one assumes ¢ € (0,1/4).

Residue calculus, combined with the growth estimate (2.5) and analytic continuation for-
mula (2.3), implies that for r sufficiently large

2 —eio0
Ar(w) = — T w4+ __.._.___D(O’f’h) + L/ D(s,z,hw’
wr DiT(2) - 2-(241)-(2+7) r! 27 f oo L
_ %y wh 4+ D(0,z,h)
DIT(Z 47+ 1) r!
¢ [Tt (2 -8 & 13 . ds
+ — —i - m .

2n —e—i0O F(S ; nk ( n [ 11"
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The Bessel functions arise naturally once one interchanges summation and integration,
which one may because the series of functions

= P(%—S) _bf_ ,R_Z s
kzz:l 1-\(3) 7]3( ﬂk)

converges absolutely and uniformly over the line ¢ = —e. Then, Lemma 2.7 says that the
integral over this line equals

we—% > bk
e Z T+% 'J§'+r(27r\/77k w).
k=1 ’71;
One concludes
% . D(0,z,h
Ar(w) = "7 t+ry 205 0) (29)
DIT(Z +r+1) r
> b
+7r,___ wit Z: %ii- I3 +-(2m\/nk W)

Note. For the rest of the discussion one imposes the condition that h,z € Z" . With this
condition, it is clear that A(w) = N(w), defined at the beginning of the section. The
reader will hopefully not find this confusing. §

Since each coefficient a; in the definition of A(w) is nonnegative, one can relate A (w)
to A(w) as follows. First, the chain of intervals, corresponding to the domain of integration

of AL A (w),
[We—1, ey + 2] C [Wrep, wr—p +22] ... C [w,w + r2]
implies this sequence of inequalities for any w, € [wr—y,wr—1 + 2} :
A(w) < A(w,—1 < A(wy) £ A(wr—1 +2) < A(w +12).

Thus,
2" A(w) < A A (w) < 2" A(w +72). . (2.10)

One now proves the following important estimate.

LEMMA 2.11. Let w,y > 0 and z € (0,w]. Set

flw,) = whE Jg . (2n /).
Then, there exists E = E(n) such that

n—1

A F(w,y) < 22 (minfw,y2?)) ¥,
y‘l
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where the difference operator is taken with respect to w.

PROOF: The proof uses three properties established above. These are

(1) The expression for AL f in terms of the flw+vz) (2.8);
(2) The estimate for {J,| (2.6.2);
(3) The differential equation (2.6.3).

Details are left to the reader. [

One uses this Lemma to estimate A(,r) A (w). The resulting‘estimate will be combined
with (2.10) to estimate A(w).

First, since v = § = 1, one writes, with f denoting the function defined in (2.11),

pi N
AD A (w) = L A (2 4 PO2R) oy
z z ' F4
D§F(§+r+1) r!

r—-“- Z ”‘+'§ A(f‘) f(”U),f]k)

One finds by a simple calculation

w+z w1tz wro1+2
A(zr) (wr) _ / dwy / dwy - - / rldw, = r!z", (2.12)

w un Wrey

AP (0¥7) = (5 +r) - (G +1) [rwt +0 (wh)]

The last item is to estimate

| Z .n.+.r. A(r) f(wank) |

Since each bk = 1, one obtains from Lemma. 2.11,

—

(min{w, 2*n})* . 7

k=1 k=1 '7k
Now split up the sum according to
z2r]k <w or zznk > w.
Then
2zl 1
# 5 g i m s ¥

k=1 1 m<w/z? T
1

+ EwT+% Z
m>w/z? nk_t_ﬂ' (2.13)

One therefore needs an estimate of the following sort.

16



LEMMA 2.14.

(1) Z{k:qkSR} 1/’?; = O(R?”K) ]fﬁ < !21 .
(2) Xim>ry Ui =O0(RT™")if 6> 3.

PROOF: Set

m=- Y 1=y ¥ 1

{k:m <R} W=l {(meI™:Q(m)=mn}

It is not difficult to see that G(R) = O(R?). Indeed, there exists C > 0 such that Q(z) >
C||z||*. Hence,

Q(m)=nx <R implies |m|* < C'R.

Since there exist O( R¥) lattice points in the R sphere of R™, one concludes G(R) = O(R%).

Introduce the notation k(y) to denote the largest index for which 74,y < y for any real
number y.

Case 1. kK < %

Partial summation states

> = S +"<Z’”G(nk) U

{kina <R}

k(R)—1

= > 6o () e

e M4 Mk(R)

G(R) -1

Tt dy G(R
=K Z Gnk)./ K+l x( )
k=1

Tk(r)

: . : R Gu G(R
= (since G(u) is constant in [ng,Nk41) ) K- / u£+1) u + GR)
y

) W:(R)
Nk (R) _?___s
=0 (/ u*—ﬂ—l du) + O(nk(R))

m

= O(R*™%).

Case 2. k> %

17



Z 1ot = i G(m)—f}'(m-l)

kine>R k-—k(R)-H K
G(R
k=k(R)+1 T Men Te(R)+1
k41 [o <]
<w S oo [ _o( / ,ﬁ_x-,du)
k=k(R)+1 Me(R)+1
O(R*%).

Using Lemma 2.14, a simple calculation shows that the estimates in (2.13) agree and
equal

0 (z'+‘—'=l : wii_l) : (2.15)

Now set z = w” and choose « so that the order in w of (2.12) and (2.15) agree. A simple

calculation shows that .

n+1’

Then, replacing z by this power of w inside the O(-) terms, and recalling the definition of
A from the beginning of the section, one sees that

7:

A A(w) = 2" [Aw% +0 (wl;_lﬂ-'f)] .

Hence,

A(w) < Aw® +0 (wn%‘ﬁh) .

Moreover,

A (w + rw?i'r) > Aw? + 0 (w&?ﬂ—'f) .
Setting y = w + rw™¥T one notes that w = y+ O(th'). Thus,
Aly) > Ayt +0 (y%_-nl-_l) .
One concludes that for all large w
A(w) = Aw? +0 (wF 1) .

As already noted, A(w) = N(w), when h,z € Z". This completes the proof of Theorem
21. 1
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Section 3. Results obtained using singularity theory

In this section R, will denote a compact region
{P <1} CR?,

where P is a positive definite homogeneous polynomial of degree d. The appropriate ho-
mothetic expansions will then be

Rew = {P <w}=w'?R,.
Randol and Colin de Verdiere have given estimates for the growth of the error
E(w) = N(w) - V(w)

in terms of the geometry of the hypersurface 9R;. To carry out the analysis, they have
used Poisson summation to express a smooth approximation to N(w) as a sum of fourier
transforms. Then geometric methods are used to estimate the absolute values of the
transforms. The discussion here will sketch that given in [CdV] which exploits the local
analysis of singularities to give asymptotics of certain oscillatory integrals arising naturally
in the problem. However, many details can not be included in so limited a discussion as
that given here.

The first point is to express N(w) in a naive way. Set

x = charactenstic function of R,,
and  xu(-) = x(-/w'/%).
It is clear that x,, is the characteristic function of R,,. Thus,
N(w)= Y xu(m).
meln"

To apply Poisson summation, one needs a C* function, so one smooths x,, as follows. Let
p:R™ — [0,1] be a C* function with support in the ball of radius 1 and satisfying

/ pdz = 1.

pe(:) =€ p(-/€).

Thus, p, satisfies the same property as p but has support in the ball of radius ¢. Consider
now the convolution

For € > 0, set

Yo pi@)= [ xuly) e = u)dy,

and define the series

N(w)= Y xuw * pe(m).

meln
One has the
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LEMMA 3.1. For each w,e > 0, xu * pe is C*° with compact support.

Defining, for f € C°(R™),

f& = [ flx)e ™€ dg,
nn

a standard fact is that

frg=f*§ foranyge COR™.

Thus, Poisson summation shows

ProPOSITION 3.2.

Nw)= ¥ %u-pe(m).

meln

Consider the m = 0 term. It is easy to see via the homogeneity of P and definition of
pe that

PROPOSITION 3.3.
Rw(0) - pc(0) = vol(Ry) w™/.

Separating this term from the rest of the series in (3.2), define the “error term”

E(w)= Y Xu-pe(m).

m#OEI"

As w — 0o one must estimate the growth of E.(w). To do this, one first rewrites the
Xw(m) factor in each summand of E.(w).

For any z # 0 € R™, set v, = z/||z|| and w(2) = w'/?| |

Then,
fulm) = [ (ot emin) g
nn
_ o/ / x(y) e~ Il m,0) gy
_ /e / e=3miu(m)m 1) gy
R
Thus,
Xw(m) = w™¢ g(w(m)vm).

Moreover,

pe(m) = p(em).
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One concludes

E(w) = N(w) — vol(Ry) w™/? = /¢ Z x(w(m)vm)p(em). (3.4)

m#0

To estimate E.(w) it is therefore necessary to determine useful estimates in w, z of x(w(2)v,),
as w — oo that are summable in z when z assumes values in Z" — {0}. Moreover, when ¢
becomes a function of w as done below, it will then also be necessary to do the same with

H(em).

Assume this is done, for the moment. This means that one can prove the existence of
a < 0 and for each € a constant C(e) which is bounded as € — 0 such that

|Ee(w)]| < w™T* C(e) for all w sufficiently large. (3.5)

One then needs to understand in what way N(w) converges to N(w) for large w as € — 0.
To do this, one first notes that if the lattice point m is contained in the € neighborhood of
Ruw but not in R, then x, * p(m) need not equal zero. Extending this, one finds easily,

LEMMA 3.6.

(1) N(w) is uniformly bounded for small € > 0 and w contained in bounded intervals.
(2) Let T={w >0: R, NZI" = B}. Then

lirr%)Ne(w) =Nw) ifwel

Thus, if one allows w to increase without bound but remain in Z then combining (3.4),
(3.5), and this lemma would give an asymptotic for N(w) whenever w stays in Z. Since I°
is at most countable and has no finite cluster point, this is not a very restrictive condition
measure theoretically. However, aesthetically it is not too pleasing since the exact nature of
Z¢is very unclear. To circumvent this difficulty, Colin de Verdiére developed a modification
of the above discussion, due to Randol [R]. The rest of this section will sketch his ideas.

Given § > 0 define
R1(B) = {z € R" : d(2,R1) < B},

and for 8 < 0 set
Ri(B) =R" = {z : d(z,R" = R,) < -5}

For arbitrary § and positive w set

Ru(B) = w'/* Ry(8)
and xw(f) = characteristic function of R, (5).

Note that R(3) is not necessarily the 4 neighborhood of R,,, although R,,(0) = R,,.
In the following, xg will denote the characteristic function of R;(5).
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Now define

Nw,B)= > xuw(B)(m)

meln

N(w,8)= > xuw(B) * p(m)

meln

and

(w,8) =" xuw(B) * pe(m).

m#0

As in (3.4), one notes that

E(w,B) = w™* Y Rp(w(m)vm) pem).

m#0

It is easy to check that

N(w, —e/wlld) < N(w) < Ne(w,e/wl/d)

and
vol(Rw(B)) = vol(Ry) + O(w™/¢ gn1). (3.7)
Thus, by setting
ﬁ = e(_"ﬁ_)’/w'},
one finds that
|E(w)| < max {|E(w,~B)|, |Ee(w, B)|} + O (w T +7m ). (3.9)

So, one is forced to obtain estimates for the E(w, ) that are uniform in § when § is
chosen according to (3.8).

Remark 3.10. The necessity of choosing the exponent of € as in (3.8) will be clarified at
the end of the proof of Theorem 3.26. The O (wn_i-"'?f"&ﬂ) error term should be under-

stood as an “elementary estimate” that arises solely from estimate (3.7). The entire effort
will be directed to showing that the local classification of singularities implies, under the
assumptions of Theorem 3.26, that one can never do worse than this elementary estimate.
That is, the two other terms appearing in (3.9) can never grow faster than this power of w.
It should also be pointed out that when n = 2 Landau has shown that one cannot hope to
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do better than O(w?/?) in general. This appears to have been the motivation for insisting
upon proving a theorem with the error term estimated by the above power of w. i

In the discussion below, one will first insist upon studying the magnitudes of all ¥ g(w(z)v,)
for |8| <« 1. It will not suffice to do this only if 8 = 0.

Now, since each R,,(f) has a smooth oriented boundary, one can apply Stokes’ theorem.
To state the identity, introduce the following convenient notation. Set

ng(z) = outward unit normal vector to IR, () at
do(f) = area differential over IR (f).

One then has

ProrosITION 3.11.

Xp(w(z)v:) =dcf/ xs(z) e 2miw(2)(vs2) g
R"

=/ e-—21riw(z)(u,,::) dr
R1(8)

=i —2miw(z)(vy,1) do (3
= (4 V,,ﬂ T g '
2rw(z) Jor,(p) ( N

For £ € §S"~!, and any 8, define n = (£, 8) and
‘15(7]:37) = (gam)lap_l(ﬁ)s
0(77,33) = (ﬁvnﬁ(x)”agl(ﬂ)s

Tuto(n) = / e~ oy o) do(B).
8R1(B)

I,(zy(n) is an example of an “oscillatory integral” with phase ¢(7, z) and amplitude a(n, z).
For each fixed 7, the asymptotic in w(z) is determined, up to terms that decrease expo-
nentially, by the singular set of the map £ — @(#, z). This follows from the simple to check
property that if 2’ is a regular point of @(7, z) then I,,(,y(7) is exponentially decreasing in

w(z).

The critical points of ¢ are easily seen to consist of the following set of points.

PROPOSITION 3.12. The critical set of ¢ equals

{(¢,z) : £ is normal to R,(f) at z}.

To find useful estimates for E(w, #) that are uniform in 3, one should first eliminate the
dependance in 8 of the domain of integration. To do this precisely requires certain ideas
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from the theory of Fourier integral operators. Due to a desire to keep this paper within a
reasonable length, the proof of the following result will not be given.

Set
¢(&2) = ¢(€,0,2) = (§,2)|,p, do = do(0). (3.13)

THEOREM 3.14. There exists a C*™ function A(n,z) such that for all § whose absolute
value is sufficiently small, one has

(1) A(fs O’I) = a(fa OaI)'
(2) Define

Jw(z)(‘q) = f 6_2".“’(:) ﬁP(E:I) A(n, ﬂ:) dg.
R,

Then,
Iw(z)(n) — —2miuw(z)f Jw(z)(n) )

Impose now the following “finiteness” condition on the type of singularities possessed
by . This condition will be assumed to hold for the rest of this section.

For each £ € S, the function # — (£, ) has only isolated singular points.  (H)

Using (H), one can “localize” the estimate for the growth of J,(;)(7) in a standard way
to one of an oscillatory integral with phase given by the universal unfolding of a singularity.
This will now be described in a general setting.

Let z — %(y, z) denote a family of functions depending smoothly upon the parameter y.
Assume that z resp. y is contained in an open set X C R* resp. J) C R™. Assume further:

for each y,v,(z) admits only finitely many isolated singular points in X (3.15)

Let b € C®°(X). Define
I, (y,b) = j e'TVW:2) bz dx.
X

The behavior in 7, as 7 — .00, of Z,(y,b) can be determined by localizing the domain of
integration to one of a sufficiently small ball centered at each singular point of ¢, contained
in A, and then patching together all locally determined estimates by a C'°° partition of
unity. A typical result needed to do this follows from the Malgrange preparation theorem.

PROPOSITION 3.16. Assume (3.15) holds. Then there exists M € N such that for each
y € Y, ¥y(z) possesses at most M singular points in X.

Let £(1y) = singular set in X of 3.
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PROPOSITION 3.17. For each p € E(v,) there exists an open neighborhood V, C V, and
¥(y,p) € R such that

(1) VN Z(dy) = {p};
(2) For any be C(V,),

/ einb(y,z) b(:c) dr = O(T‘r(y-P)), T — 00. (*)
Yy

For example, if 1, has a nondegenerate critical point at p, then y(y,p) = —k/2.

Define the index
o(y,p) = inf {¥(y,p) : (*) holds }. (3.18)

If ' is a regular point of 1, then one sets o(y,z') = —oo since in this case there exists a
neighborhood VY, so that the oscillatory integral in (*) exponentially decays.

Although the above can be defined for any parametrised family of singularities, for
purposes of estimating the growth of oscillatory integrals when one is not given very precise
(or any) information about the singularities, it is useful to assume that locally one uses
the universal unfolding of a singularity for the phase function.

Recall the

Definition. If f € R{z,,..., s} has a singular point at 0, then the universal unfolding
of f is the function

F(( z)= f($)+z Cifi(z),

when:
(i)
m =g.; dim (a:l,...,:cn)R{a:;,...,m,,}/(@f/@a:l, ...,0f/0zy,) is finite;

(ii) The {f;} form a basis of J(f). 1

The vector space in (i) will be denoted by J(f). The codimension of the singularity
equals m.

Given any %(y, ) and p € E(3,) for which the germ of 4, at p is f(z), and such that
conditions (i), (ii) hold, the universality of F' implies the

PRrOPOSITION 3.19. There exist:
(1) A point ¢,
(2) Neighborhoods Z of ¢ in R™,Y of y in Y, and B of the origin in R,
(3) C*° functions

h:(Y,y) = (2,() and H:(Y xVy(y,p) — (8,0),
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such that

a) For eachy € Y, H(y, ') defines a C* diffeomorphism;
b)
Y(y,z) = F(h(y), H(y,z)) for all (y,z) €Y X V. (#)

Thus, an estimate for the index function ¥((,0) of the oscillatory integral

] e'TF (D) p(z) dx
B

that is uniform in (,b would automatically give an estimate for the integral defined in
Proposition (3.17).

From hereon, one will assume that Y, V, have been chosen so that (a), (b) of Proposition
3.19 hold when the phase function ¥ is the function (£, z) defined in (3.13).

Since S™~! x OR; is a compact space, the open cover {Y X V,},ex(y,), has a finite
subcover {Y; x Vp, {‘=1. To each U; =4.5 Yi X Vp, there is the function, denoted f;(z),
with 1solated singular point at p; and universal unfolding

Fi(¢,z) = fi(z) + Z GG pi(z),

j=1

defined in a bounded open set Z; x B;, such that equation (#) holds, after specializing ¥
to be ¢.

Suppose now that (y,p) € U;. Thus, the germ of ¢, at p determines an element of the
family of functions appearing in Fj. Set C; to equal the set of smooth functions h on B;
such that for each ¢ € Z;, h((,*) has compact support. Given b € C; define the oscillatory
integral

LG = [ RO ya) s,

and the indices o;,0 :

oi(¢) = inf {¥(¢,0) : Ii(r,¢,b) = O(r7$D) for all b € C;}, (3.20)

i = supcez; 0i(C),
o = maz; {0;}.

By the definition of Jy,(;)(7), given in Theorem 3.14, and the prior discussion, it follows
that

PRroPOSITION 3.21.
Jw(z)(rl') = O(w(z)") as w — o,
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and this estimate is uniform in 1.

Clearly, this is the first result to try and exploit in order to obtain an estimate for
E.(w, B). The naive way to proceed would be first to understand how big can o be. Since
the Dirichlet series

1
2 llmll*

0#£meEIn

has its first pole at s = n it is clear that if 1 — ¢ > n then (3.21) would suffice to give an
estimate for E,(w, B) satisfying (3.5). However, to force ¢ < 1 — n requires ¢ to be much
too small to be of any use. This is the case because a nondegenerate singularity on R*™?
must appear in any neighborhood of a deformation of f;. This then forces o; > —(n—1)/2.

Thus, to convert (3.21) into a useable estimate of the E.(w, §), one must do some ad-
ditional analysis of each I;(7,(,b). Colin de Verdiére worked this out for certain cases.
However, much more work needs to be done to extend his results. The discussion here will
treat the possibility that the singularity fi(z) is a “simple singularity class” in Arnold’s
classification of [A].

Remark. By the phrase “singularity class” of an element f of R{z;,...,z;} is meant
the set of all germs of smooth functions right equivalent to f under germs of smooth
diffeomorphisms fixing the origin. I

These classes are types A, Di, Eg, E7, Es. For purposes of the analysis here, a crucial
property they satisfy is that there exists a weighted homogeneous polynomial that can be
used to represent each of them. These are written down in the following list, in which
the notation @ will refer to a nondegenerate quadratic form in the variables not appearing
explicitly in the canonical form polynomial of each class. Of course, the total number of
variables in each polynomial must equal the dimension of IR;.

Anyr: oI+ Q,

Dupyi: zizg 23724 Q,
Es: 2y +z3+Q,
Er: 2+ 3z +Q,
Ey: z¥+254Q.

Recall that one singularity class o' is said to be adjacent to the singularity class o, in
which case one writes this as

!
o — o,

if a function representing the class ¢' appears in the universal unfolding of a function
representing o.

The adjacency diagram of these 5 classes of singularities is given in the following diagram:
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Ay +— Ay — A3 — Ay «— As — Ag — A7 — ..

v M

Figure 1
To each of the functions f;,j = 1,..., L, defined above by the covering of S"~! x 9R,,

one has the parameter space Z; of dimension m; = dim J(f;). One now breaks up each
Z; as follows. For each t = 0,1,...,m; set

Wi(j) ={C € Z;: dim J(F;({,-)) =t at some point in B;}.

To state the main result of the analysis, one must first define certain indices which
determine the growth or decay of certain integrals arising in the analysis. The definitions of
the indices is in terms of the weights with respect to which f;(z1,...,zn—1) is homogeneous.

Let 71(5),-..,rn-1(j) be the weights. Thus, for any t > 0,

fi(trl(j)zl, voe atrn-l(j)xn—l) = tfj(zlv- .o ,$n—1)-

One can choose monomials for the basis of J(f;) and determine their weights, where
weight of zf‘ . -xf‘"_"l‘ = Z Tuky.

Order the weights by magnitude and denote them by 0 < $;(j) < s2(j) < ... < s, (J)-
Since f; is simple, sm;(j) < 1. Define

. 1
puli) = 77 o)
Secondly, define for each 7 =1,...,L
n—1
i) == ru(s).
u=1l

The significance of this number is given by
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PROPOSITION 3.22.

e(j) = inf {7= /B

J

'™ li®) p(z)dz = O(r7) for all b € C=(B;) } .

PROOF: This is proved in [A]. B

Similarly, define, using notation from (3. ),

&i(j) = sup{;(¢) : C € W(4) ). (3.23.1)

Thirdly, define for each t and j,
ve(7) = supu pu(7) [€(4) — &(7)), |
() = (infu pa)(mj = > su(5)) = n(j) (3.23.2)

u

Finally, define by induction on the codimension the numbers a,(j), for t = 0,1,...,m;

as follows:
@m;(J) = mj for each j.
Next, set
Aj = { singularity classes adjacent to f; whose codimension at some point of B; = m;—1}.
Set for any t < m;
@(j) = inf{a(h): h € Aj,h # f; }.
Then define
ay(j) = inf{a(5),&(5) } -

Evidently, if A; = 0, then a,(j) = ai(j) for all ¢.

The first table below gives the indices of the five singularity types defined above. The

second table gives expressions of a}(j) in terms of €(j) whenever f; is one of these five
classes. A useful exercise for the reader would be to verify as many of them as possible.

m(class) e(class) supy {ptu} infu{ttu} m— Z Su

Apr - 1 1 n+2 n+2 n(n+3)
2 n+2 2 n+1 2(n+2)

2
N S
Er 6 5 ) 7 9
T
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In the following table, the notation €, a; is now intended to be read as the value of the
indices, defined in (3.23), when the singularity class of f; is indicated on the left.

;o n+2 n(n + 5)

A : =
mHLT T T T 1)
n
Dn+1: O’:=n€t+m7
. 5
Eg: at=6£,+6,
2
E;: a;=9£¢—?,
35
EB: O!;=156t—ﬁ,

Looking closely at these values and working out all the values of a,, one will observe the
following relation,

LEMMA 3.24. For eacht and j
m
where m; is the codimension of f; (the first column of table 1).

The point of this peculiar observation will be made clear at the end of the proof of

Theorem 3.26.

The main analytic result in [CdV] consists of the following estimates. The proof will not
be given here. Suffice it to say however that the assumption of weighted homogeneity of
the defining equations f; appears to be needed for certain delicate parts of the analysis.

THEOREM 3.25.

(1) If f; is one of the five classes written above, then there exists C > 0 such that for
eacht=0,1,...,m; and each b € C(B;)

|7;(, ¢, b)|w. (J-)| < Croirtael) B¢,;({) for r sufficiently large,

where the domain of O ; is Wy(j) and

mj—ti

0:;(¢) = H d(¢, W1+u(j))‘”“(j) for some positive vy(j).

u=l1

(2) Ift # 0 when f; is of type Eq, or t is arbitrary in all other cases, then

/ 04,;(¢)d¢ = O(h*P)  as h —0.
{¢A(C W () <h)nsupp(b)
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(3) Ift =0 when f; is type Ey then one can choose for © ;({) a function of form

5
H d(¢, Wu(j))_”"(j)(z C:‘i("))_llB for some positive vy(7) .
u=1 i

Using Theorem 3.25, one can proceed to a sketch of the proof of one of the main results
proved in [ibid] (in a different form than is given there). This theorem essentially says that
the main source of error in E(w) is the “elementary” estimate (3.7) when any possible
singularity exhibited by ¢ is simple.

THEOREM 3.26. Let P be a positive definite form on R™. Assume that the germ of the
function

(E,I) € Sn—‘] X aRl - 90(63 '7") = (61 $)|8'R1

1s C'™° equivalent to the germ of a universal unfolding of a simple singularity at any singular
point of @(€,-). Then

E(w) = O(w%_2+ﬂ:z-rn) w — 00.

PRroOF: Denote the five simple singularity classes by Cy,C;,Cs,C4,Cs. Suppose that the
classes Cy resp. C; contain all Ay resp. Dg. For any £ and each point z € £(ip¢), the germ
of p(€,-) at = therefore belongs to exactly one of these classes.

Foreach j =1,...,5and t=0,1,..., set

Wi(j) = {¢ € S : the germ of (£, ) at some singular point has codimension ¢

and this germ is adjacent to a singularity in class C;}.
For a given m # 0 € Z™, the vector v,, can belong to at most 5 classes.

The discussion below will assume ¢ is arbitrary for C; # E7 and t # 0 if C; = E;. The
modifications needed in the only other case are left to the reader to discover.

Consider the cone over W,(j), denoted RT W,(j). Let

B.(j)={y € R™ : d(y,R* W,(j)) < 1},
B\(j) = {y € R™ : d(y,R* W,(4)) < 3/2},

and set

A7) = Bi(5) — Uq>t3q(j)
={y €R": d(y,R* Wi(j)) < 1, d(y,R* Weyi(5)) > 1, i > 0}.

Combining this with (3.25) one gets
nve - -
[X(w(m)vm)| < w(m)~ tal) O(vm) if vm € Wi(j).
One next shows the following two estimates, whose proofs are left to the reader.
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LEMMA 3.27. For each t there exists Cy > 0 such that for any ¢ € A(j), and each
¢ € A7) for which d(¢,¢') < 1/2, one has

O¢,j(ve) < Ct Oy, (ver) .
LEMMA 3.28. Assume that e = w™¢. Then for all N >» 1
plez) =0 (L +w 3=17) .
Combining these two lemmas implies that if v,, € W(7), then

IX(w(m)vm) plem)| < C /B ( )w(z)-‘#ﬁ“ﬂﬂ O ;(v:) (1 +w ¥[2]) "V dz.
* m

Since By(m) C By N {||z|| = 1/2} if m € A¢(j), one concludes

> RGw(mvm) em)| < C: [ w(z) " FH0 0,(v:) (1 + v Hzl)) N d
meAL () B ()N {llz21/2) (3.29)
= Cor S0 | =0 (1 4w ) O05(02) .
Bi(Hn{li=l21/2}

Now convert to polar coordinates (r,8). The second integral in (3.29) now becomes
bounded from above by the product of a constant, possibly different than Cy, and

o0
/ P27+ () (/ 0,,;(8) de) (1+w %r)"Ndr
1/2 {€ESn=1:d(€,W. (1)) <3/2r)

which is, by parts 2,3 of (3.25),
< Caf PEE () =aG) (1 4 =)D dr |
1/2

An estimate in w of this latter integral is given by

LEMMA 3.30. For any positive ¢
oo
/ r*(1+wPr)y N dr = OWPt))  asw — oo,
when N > 1,a > -1, > 0.

PROOF: Split the integral into one over the interval [c,w?] and the second over [w?, c0).
Over each interval, one gets the O(w?(®*+1)) by an elementary calculation. §
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Thus, there exists C} such that

w4 Z |%{(w(m)vm )p(em)| < C;wl‘ﬁlﬁg(.i)+%[li—l+n(j)—a:(j)] ) (3.31)
mEA,(5)

Using the value for a indicated by (3.8), one now checks that the exponent of w in (3.31)
will be at most the “elementary estimate”, stated in the theorem, iff

n—1

&(7) < o (7).

Since the function v — (v — 1)/2v is increasing, and m; < n, Lemma 3.24 shows that this
inequality holds for any simple singularity. Finally, since each possible m is included in
at most 5 different A.(7), the series defining E.(w, 8), § defined by (3.8), is bounded from

above by the sum
5
w4y N N [R(w(m)vm)h(em)).

=1 t meEA,(7)

So, the theorem follows. I

Additional Remarks.

(1) The same proof with obvious modifications will work if P is weighted homogeneous
and positive definite on R™ (like z* + ¢°).

(2) If one wants to introduce weights, determined by a rational function ¢, defined every-
where on R", and thereby compare Np(w,¢) and Vp(w, ¢), the first problem encountered
is determining the order in w of Vp(w,¢). This of course is clear if ¢ = 1. For ¢ not
constant, in general it is not so clear how one can find a “main term” in the asymptotic
of Vp(w, ). Doing this is essential before one even begins to look for an error term.

Suppose one can decompose ¢ by degree, ¢ = ¢, + ¢@r—1 + ... where

itTy,. .. tz,) =t'o(zy,...,25).

Vp(w,0) =Y (/Rl ﬂPidm) w

i<r

Then it is clear that

Thus, if
f ordz #£0 (3.32)
R

then the order one wants the error term to grow less than should evidently be (n +r)/d.
Using the same arguments and notations as in this section, the error term can be written

wH S T (w(m)vm) Hem).

m#0
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Since the exponents used in this section are by definition uniform in the amplitudes, the
effect of introducing ¢ is not detected in the estimation of this series. As a result, whenever
(3.32) holds, one is assured of a lower order in w for E(w,¢), that is, the lattice point
problem with weight determined by ¢ is geometric. This may also be the case if (3.32)
fails. However, the smaller the largest degree is of that homogeneous term of ¢ for which
(3.32) holds, the bigger is the estimate for the error relative to Vp(w,¢). In particular, it
becomes increasingly less clear that the error does not begin to overwhelm the main term
from Vp(w, o). This is the main danger of not having (3.32) satisfied for ¢,.

(3) Whenever (3.32) does hold, the asymptotic

Np(w,9) =) (/Rl soidw) w*# = 0w ¥ )

i<r

implies that
/ prdz — w_L"FNp(w,go) = O(w—a').
R1

Thus, an integral over R, is approximated by a finite sum, depending upon a parameter,
and the difference goes to zero as the parameter increases without bound. The finite sum
is over points in Ry of the form m/w,m € ZI". The rate with which the error decays has
been approximated by local analysis using singularity theory. This technique should be of
interest in numerical integration.

(4) The conditions needed to be verified in order that Theorem 3.26 holds are not at all
easy to verify, simply starting from P, unless n = 2. Here, one can only encounter an Ag
singularity and the value of k equals the order of vanishing of the curvature along the curve
OR; at the singular points.

From this point of view, it is preferable to analyze the lattice point problem from a
different point of view, one in which the error term can always be shown to be of lower
order, although an explicit estimate may be harder to give. Because such a procedure
would be more general, one should expect the size of the error to be bigger. The analytical
methods of Part 2 do this. An important goal in the analysis of these types of problems is
to combine (and considerably extend) the geometric ideas of Section 3 with the analytical
ones from Part 2, with the hope of understanding much better the error, for classes of
polynomials P and weights ¢.
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Part 2. Functional methods for some GLPs

In this part, z = (z,,...,z,) denotes a variable point of [0, 00)" for section 4 and [1, 00)"
for subsequent sections. One sets ||z|| = maz {z;}, and dz = dz; ...dz, . All polynomials
will be assumed to be defined over R.

Section 4. Elliptic polynomials
Given P(z) of degree d, write

P(z) = Py(z) + Py—s(z)+ ...+ Pi(z) + Po, deg P; = j for each j.

Definition 4.1. P is elliptic on [0, 00)" if for all =
|Ps(z)] >0 and |P(z)|>0. 1

The condition on |P| is not essential but does simplify the discussion below. The reader
will easily be able to modify the discussion if |P(z)| is allowed to vanish in [0, 00)".

Remark. An interesting example of an elliptic polynomial arises in number theory. Given
a number field K, a “ray class” C of K is an equivalence class of ideals defined by the
relation A ~ B iff A = («)B, where o € K is “totally positive”, that is, each real embedding
of K maps a to a positive number. Shintani showed [Sh] that each ray class zeta function
can be expressed as a finite sum of Dirichlet series Dp(s,¢), of the type defined prior
to Proposition 4.9, where each polynomial P is elliptic on [0, 00)". (Although he did not
explicitly state this, it is clear from his construction, that the “norm form” polynomials
appearing in his analysis, are in fact elliptic and defined over R.) A consequence of Theorem
4.10, proved in this section, is then a completely “elementary” analytic continuation of any
ray class zeta function. |

Let ¢ = Q/T where @, T are also elliptic on [0, 00)™. Set
e=degQ,f=degT, 6 =e— f.

For w > 0 set

{meNr:|P(m)|<w) {IPj€w}n(1,00)"

This section will show
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THEOREM 4.2. (Mahler) There exists § > 0 such that
N(w,¢) = V(w,p) = 0 (V(w,p)/w’) .

That is, the lattice point problem with R, = {z € [1,00)" : |P(z)| £ w} is a GLP
whenever P, @, T are elliptic on [0, 00)".

Note. The discussion below will assume that Py, Ty, Q. > 0 and P > 0 on [0,00)". The
trivial changes needed if some of the signs are negative are left to the reader. I

Simple growth estimates become available immediately from the elllptl(:lty condition.
First, ellipticity implies the existence of ¢; > 0 such that

inf {Pg(z),Qc(z),Tf(z)} >cx forall z € S~ N[0,00)".
Thus,

PROPOSITION 4.3. For all z € [0, 00)™

Pu(z) 2 o]
Qu(z) 2 =]l
Ty(z) 2 cillllf. W

Secondly, writing

Ho) = Z: e

(z) = Z 2
J-1 Tz

“)=3 T}%l)

one sees that for each =z

P(z) = Py(z) [1 +p(2)] ,
Q) = Qu(=)[1 + q(=)],
T(z) = Ty(z)[1 + 1(=)]

It is clear that

p(), o(z), Hz) = ("1“) . (4.4)
Thus,
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PROPOSITION 4.5. There exists C > 0 such that for all z € [0,00)"

P(z) 2 Cllz|*
Q(z) 2 Cll=|I®
T(z) 2 Cllz|l’ -

PROOF: The proof will be given only for P and the similar details for the other polynomials
are left to the reader.

There exists R > 0 such that ||z|| > R implies |p(z)| £ 1/2. Thus,

<]
|<§.

P(z) _
Pd(:L')

So, ||z|| = R implies
P(z) 2 Pu(z)/2 2 S |le|*.
On the compact set [0,00)" N {||z|l £ R}, there exists ¢; > 0 such that P(z) > c,. Thus,

there exists c3 > 0 such that ¢; > ¢;||z||¢ if ||z|] < R. Now set C = min{c3,¢;/2} to prove
the proposition. §

Remark. Of course one also has upper bounds of exactly the same form with a possibly
different constant. |I

Thirdly, if z € [1, 00)™ and w denotes any point in $*~! N[0, 00)” then there exist smooth
functions u;(w),j = 1,...,n such that

zj=1+ruj(w) j=1,...,n,

defines a coordinate change whose jacobean equals 7"~ !drdw. Set 1 = (1,...,1). The point
u(w) = (u1{(w),...,un(w)) is denoted by w unless it is helpful to emphasize otherwise. In
these coordinates one writes

P(z) = P(1+ rw) = Py(T +rw) (1 4+ p(T + rw))

= r?Pyw +T/r) (1 + p(T + rw)) (4.6)
Q) = *Qulw +T/r) (14 ¢(T+7w)) ,
T(z) = rfo(w +T/r) (1 + t(T+ rw)) 5

The functions
Qe(w+T/r)(1+ ¢(T+rw)) Tpw+T1/r)(1+t(T+rw))

are necessarily smooth functions on [1,00) x S*~! with values in some interval not con-
taining the origin.
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Note. Introduce the notation. Given the multiindex J = (j1,...,Ja),

|J|=Jl++3n7 J!=j1!"'jn!:
P (w) = Dit ... Di Pyw).

One now expands out the Py factor using Taylor’s formula (in the original z coordinates)

o 1
Piw+T/r)=Piw)+ 3 %_) . (1)

1<71<d T
. RO (1)
= Py( )[1-%-15%5&! T1Pa(@) (r) .

Ellipticity of P implies Pg(w) > 0 for each w. Now define

PO 71\
Plrw)= ), JdeEw;'(F) ‘

1<]J1<d

It is clear there exists B > 0 such that for each J

P (w)
J1Py(w)

<B forallwe S"'N[0,00)".

Thus, since each |J| 2> 1, one concludes

P(r,w) = O (%) . (4.7)

Moreover, combining (4.4) and (4.7}, one observes the existence of R > 0 such that r > R
implies for all w € S*~1 N[0, 00)"

lp(r,w)] £1/2 and |P(r,w)| <1/2. (4.8.1)

Thus, the defimitions of p, P imply

p(I+rw) = %E —A';_(f" ) (4.8.2)
1=0
d—1

’P(T+rw)=%-2 @
i=0

where each A;(w), Bi(w) is a rational function of u(w) that is bounded over §*~!, and the
series converges absolutely and uniformly over [R,00) x S™~!.
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Theorem 4.2 follows from the more precise result Theorem 4.10. To formulate this, one
introduces the two functions

DP(S,(P) — Z ¢(m)

meN® P(m)'

¢(z)
IP(S, 99) = -/[l,oo)" P(&!)’ dz .

One first observes
PROPOSITION 4.9. Dp(s,¢),Ip(s,p) are analyticifo > (n+ 6)/d.
PROOF: Restricted to [1,00)", the growth of P,@,T given in (4.5) implies that for any
z € {1,00)"
P(z) > C(z1 -+ za)",
e(z) < C(zy -+~ 2,)".
Thus,

@ @
—dzr 5] ——dz
| [100)m P | 1,00 P7
<C""/ (:r1~--$ﬂ)%t§'d:n.
[1,00)"

Clearly, if (—do+6)/n < —1, then the integral converges. This implies Ip(s, ) is analytic
if o > (n+ 6)/d, as claimed. The proof for absolute convergence of Dp(s, ) in this
halfplane is similarly easy and left to the reader. 1

THEOREM 4.10.

(1) Ip(s,¢) admits an analytic continuation as a meromorphic function on C.

(2) The first pole of Ip(s, ) is simple and occurs at s = (n+6)/d.

(3) There exists M > 0 such that for any 0, < 0, £ (n + 6)/d and € > 0 then there
exists a constant C' = C(¢,01,02) so that

n+é
[Ip(s,0)] < € (L4 [ MEF-+e) |

for all o € [01,02] and |t] > 1.

(4) Dp(3,¢) admits an analytic continuation as a meromorphic function on C.

(5) The first pole of Dp(s,) is simple and occurs at s = (n + 6)/d.

(6) There exists u > 0 such that if 07 < 03 < (n+ §)/d and € > 0 then there exists
C' = C'(e,01,02) so that

IDP(31(P)| < (1 + Itlﬂ(-n-?—‘—a)-}-f) ’

for all o € [01,0,] and |t| > 1.
(7) Dp(s,¢) — Ip(s, ) Is analytic at s = (n + 6)/d.
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Remark. The estimate in part (3) is much weaker than what can be proved using more

detailed arguments. The argument used to establish (6) shows that one can take p = nd.

The proof of (4.10) will follow Mahler's with some (evident) modifications, needed to deal

with Ip(s,¢), rather than the integral taken over all of [0, co)”, which is what Mahler used.
|

PROOF OF “THEOREM 4.10 IMPLIES THEOREM 4.2”: The needed observation comes from
the pair of equations, valid for any ¢ > n/d:

1 etico ds .
Np(w,@)=5—[  Dp(s,e)w’—, (4.11.1)
C—100
1 fetiee ds
VP(wa‘P) = 2_71'1/ ] IP(sﬁo)waT . (4'11'2)

(4.11.1) is Perron’'s formula, cf. (B-1). The proof of the second equation is an exercise
with Mellin inversion and uses the existence of ¥ > 0,k € Z, B # 0, such that

Vp(w,) ~ Bulog v,

as well as the fact that Vp(w, ) =0 for y € 1, a corollary of (4.5).

Set
vp(w,p) = right side of (4.11.2).

Then Mellin inversion implies that

© dw
Ip(s,p) = s/ w™vp(w, p) —.
o w

A well known identity states that for w > 0 a regular value of P,

dz
Vi(we) = | pdz

{P=w}N[l,00)" dP’

where ¢ dz /dP denotes the Leray residue of ¢ dz /(P —w) along {P = w}. Thus, for o > 1,

[o ]

Ip(s,p) = / wVp(w,¢)dw = w™*Vp(w, )
0

00 d
+s ] w™*Vp(w, ) —
0 0 w

<, dw
=s/0 w Vp(w,tp)';.

So, vp(w,y) and Vp(w, ¢) are both the Mellin inversion of Ip(s,¢)/s and must therefore
be equal.

Now (4.11.1), (4.11.2), combined with (4.10) and the standard residue argument used
in Part 1, evidently shows (4.2). 1
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The rest of Section 4 will be devoted to proving Theorem 4.10 along the lines of Mahler’s
original argument. It is hopefully instructive for the reader to compare this “elementary”
argument with the general argument of section 5.

PROOF OF PARTS (1)-(3): Choose R so that (4.8.1) is satisfied. Then
Ip(s,¢) = Li(s) + I(s),

* rr=lp(r,w)
I(s) = / / enw) g
1(6) sn-1njo,00)r JR  P(rw)*

R _n-
L(s) = / enw) b,
2(s) [S"‘"n[ﬂ,m)" o P(r,w)’

By (4.1) and (4.5), P is never zero over the compact subset of R that is the domain of
integration for I;(s). Thus, it is clear that I;(s) is entire. Moreover, the growth estimate
asserted in part (3) of (4.10), is easily verified for J3(s). So, it suffices to argue for I;(s).

where

To do this, one writes P as in (4.6) and expands out the factors (1 +p)", and (14+P)~*
via Taylor’s formula with remainder. For each integer h > 1,

h

(1+p)"=;(_)p +h( ) /(l—v" 114 vp)™ ™" dv,
h
(1+1’)"=;( )’P‘+h( )'P" /(1 V)11 +oP)* P do

| Using (4.8.2), one derives an explicit expression of each power of P resp. p as a polynomial
in 1/r resp. an absolutely convergent series in 1/r that converges uniformly over S™~!.
Moreover, one has the estimates which are uniform in w

P!l < r=* and [P <rh.
A simple calculation also shows that the only term without a factor of 1/r in (1+P)*(1+
p)~* is the constant 1. Thus,

h—1
PA+rw)™* =r~% Py(w)™* |1+ Z Ci(s,w)r™ 40, ,(r™") (4.13)
=1
where
(1) Each Ci(s,w) is polynomial in s, rational in u(w), and bounded over S"~1.
(2) O,,..(r~*) denotes a function that is polynomial in s, rational in u(w), bounded over
S§7~1 and which satisfies the estimate:
there exists C > 0 such that for |s] > 1,7 > R,

05,0(r™™) < Cls|*r* (4.14)

uniformly in w.
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It follows from a simple argument that uses the polar coordinate expressions for ¢}, T that
(4.13) gives an analytic continuation of I;(s) into the region

S P +6—h
d .
as a meromorphic function with a simple pole at s = (n + §)/d with residue equal to
Qc(w) —n/d
dw ,
fsn-ln[o oo)n Ty(w) («)

and with any other pole possibly occurring at s = ﬂ'—f;",i = 1,...,h — 1. The growth
estimate of part (3) follows easily from (4.14) by choosing M = d, and using a simple ar-
gument of convexity, based upon Phragman-Lindel6f. An argument of this type is detailed
in [Sa-2, 6.1]. This completes the proof of parts (1)-(3) of Theorem 4.10.

Needed for the rest of the proof of (4.10) is the following simple extension of (1)-(3).

LEMMA 4.15. For any differential monomial D] |J| > 1, and F = P,Q, T,

. D! F(z) 1
el e " F(z) (nzu”!)

PROOF: Since D] F is a sum of polynomials of degree at most deg F' — |J|, the asserted
limit follows immediately from (4.5). B

Now, for multiindices B;,...,B,,,Cy,...,C, # 0, set B = (B,...,By,), and C =
(C1,...,C¢,). Define |B| = |By| +... + |By, | with the same definition for |C|. Now define

Ipc(s,¢) = /lm) [DB ] [DC' ]-%dw.

The proof of parts (1), (3) of (4.10) extend straightforwardly to each Ipc(s). This is left
to the reader to establish. Of particular interest here however is the approximation of the
first pole.

PROPOSITION 4.16. The first possible pole of any Igc(s) must be smaller than (n +6)/d.
In particular, Ipc(s) is analytic if o > 2H8=IBI=IC]

ProorF: It suffices to show that Ip¢(s) is analytic in a halfplane containing o > (n+46)/d.
Combining Propositions 4.9 and (4.15), it is clear that there exists C > 0 such that for all
T € [1,00)"

—IB|=ICl— Z1Bi=|C)—ds$4
< C|=z| |B|-|C| d"+650(m1-'-$n) Bolel-d '_

4 .
(222 (%57 -5
=1 ¥ =1 P-’ B
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Thus, Ipc(s) is analytic if o > 2E2=IP=ICl

PROOF OF PARTS (4)-(7): These will follow easily from (1)-(3) and the Euler-Maclaurin
formula extended to n variables. Thus, one must insure that the decay condition (C-4) is
satisfied by Dl(p/P*) for any index I. An elementary exercise, left to the reader, shows
that this function can be written as a linear combination of all possible functions of the

form
fil22e] f257) 5

Bi+...4By, +C1+...+C, =1

and the coeflicients are polynomials in s with integral coefficients. Thus, (4-16) implies
that (C-4) is satisfied over the interval [1,00) in each coordinate plane.

where

As discussed in Appendix C, the Euler-Maclaurin summation formula constructs for each
k=1,2,..., numbers ¢c,(k), 1 = 0,1,...,k — 1, and a periodic C* function o¢(u), where
u denotes a coordinate on R, so that if f(u + iv) is any holomorphic function satisfying

(C-4), then

o0 00 k-1 oo
> f(V)=/ f(u)du +ch'(k)f(')(1)+/ or(u) fP (u) du.
v=1l 1 =0 1
The precise values of the c;(k) and expressions of o} are given in the appendix.
Set, for each ¥ =1,2,... and : =0,1,...,k -1
B (w) = ci(k)
B (u) = on(u).

One now sets £ = 1 and iterates the Euler-Maclaurin summation formula n-times to
show

PROPOSITION 4.18. Ifo > (n +6)/d, and I = (iy,...,in), then

o)=Y 3 [, m) B Dl E) de

i1=0 in=0

1 ¥
SRR ] WO(er) b (@) DL(L) da. B
i
Moreover, one observes that Proposition 4.16 implies that for each I # (0,...,0),

/[] - hf:)(:::l)---hg:)(zn)D,{(%)dz is analytic if o > nto-l1 (4.19)

d
One can then repeat this procedure k£ > 1 times. In this way one proves
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PROPOSITION 4.20. If 0 > (n + §)/d then

png)= Y S [ WP Dl E ds ®

=0 ip=0

Thus, there exist constants c¢(I) for each I # (0,...,0) € I} so that

Dp(s,p)=Ip(s,¢)+ 3. o)  DiE)de (2)
I1#(0,...,0) €T}, [1,00)"
DO BN LR LT O
IEI”

As in (4.19) one observes that for any I € I}

n+é—k

. (4.21)

f h(k)(:c ) hgk)(g;n)Di(—f-)d:c 1s analytic if o >
[1,00)" i P

Thus, formula (1), combined with the analytic continuability of each Ig¢(s), determines an
analytic continuation of Dp(s, ) into the region ¢ > 2t4=% a5 a meromorphic function.

By Proposition 4.16, it is then clear that Dp(s, ) must have a pole at s = (n + §)/d
and Dp(s,¢) — Ip(s,p) must be analytic at s = (n + §)/d. This proves (4), (5), (7) of
the theorem. In any vertical strip of finite width, contained in |t| > 1, the proof of part
(3), applied to each Ig¢(s) implies immediately the polynomial growth of Dp(s, ) in any
such strip. This proves (6) and completes the proof of Theorem 4.10. |

Additional Remarks.

{1) The extension of Mahler’s argument to elliptic polynomials on R™ is straightforward
by adapting Euler-Maclaurin so as to give a summatory formula for a series taken over
2" rather than N". A different (but essentially related) method of studying such a lat-
tice point problem, using analytic methods, has been carried out by Bochner [Bo|, using
Poisson summation (not surprisingly). Indeed, the approach taken by Randol and Colin
de Verdiere, cf. Section 3, while directed at the contribution that geometry makes to the
error term, starts with the analytic point of view taken by Bochner.

(2) Instead of a series, like Dp(s,¢), defined over N, one often wants, in problems of
a diophantine approximation nature, to sum over lattice points inside some semialgebraic
subset of R™. It appears to be very difficult to give an analytic continuation of the Dirichlet
series, so obtained, using the methods in [Ma-1]. In {Ma-2], Mahler was able to analyze the
functional properties of a Dirichlet series when summed over the lattice points of a cone
in [0,00)? with the special property that the slope of a boundary ray of the cone was a
quadratic irrationality 4. The polynomial P continued to be elliptic on [0, 00)?. By a very
pretty and clever argument, Mahler used the periodicity of the continued fraction for v to
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determine an analytic continuation of the series to the entire s plane as a meromorphic
function. Remarkably, the nature of the polar locus of this function is considerably different
than that obtained in Theorem 4.10. Mabhler discovered that there could be countably
many poles on vertical lines, not just rational poles. Moreover, the imaginary parts of
the nonrational poles depended upon the fundamental unit of the field generated by ~.
One could not hope to obtain such a property using geometric considerations only. This
indicates the subtle and different nature of this type of problem, for which a successful
analysis requires a combination of arithmetic and geometric reasoning. |

Section 5. Hypoelliptic polynomials

A natural extension of the class of elliptic polynomials on [0,00)" is the class of hy-
poelliptic polynomials on [1,00)". Unlike elliptics, the top order term is in some sense
not significant for a hypoelliptic polynomial. Only the relative behavior at infinity of the
polynomial with its partial derivatives is important. As a result, the geometry at infinity
for a hypoelliptic polynomial can be more varied than an elliptic polynomial.

Definition 5.1. P is hypoelliptic on [1,00)" if for each differential monomial D2

A
Hm D; P(I) 0.
lzl—eo  P(Z)
z€[1,00)"

In this section P will always denote a hypoelliptic polynomial on [1,00)" that is defined
over R.

Hérmander [H6, ch. 11] found a class of hypoelliptics exhibiting the relative insignifi-
cance of the top order term.

Example. Let  be any polynomial of degree § and R any elliptic polynomial on {0, c0)"
of degree r € [2k6 —2(k—1),2k6). Set P = Q?* 4 R. Then, P is hypoelliptic on [1;00)". §

The following property was proved by Hérmander [ibid].

PROPOSITION 5.2. There exist ¢,C, D > 0 such that

’ D; P(z)

< —clAl >D.
Pz) < Cllz|| if |zl = D

Implicit in (5.2) is the possibility that P(z) can equal 0. However, this can only occur
on a compact subset of [1, c0)".

Recall that d = degree P. One concludes

COROLLARY 5.3. There exist a,C,D > 0 with a > ¢d such that

|P(z)| 2 Cll=|* if ||z]| 2 D.
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Definition 5.4. The Lojasiewicz exponent of P at infinity is the largest « for which for
some D, C > 0 one has

|P(2)l 2 Cllz||* if [|=]| 2 D.
Denote this exponent by ap. Set cp to be the largest ¢ for which the inequality in (5.2)
holds. Call this the hypoellipticity exponent of P. i

Remark 5.5.

(1) Tt is clear that ap < d. If P is elliptic, then ap = d.

(2) The above inequalities imply that outside a compact subset of [1,00)", the sign of P
is constant. For simplicity, one assumes in the following that the sign is positive. |

Now let ¢ = Q/T where Q, T are both hypoelliptic on {1, 00)". Again, for simplicity, one
assumes that ¢ is positive outside a compact subset of [1,00)". One can then choose positive
constants «, D so that (5.3) holds for P, @, T. In addition, an elementary calculation shows
that a positive constant c* exists so that (5.2) also holds for ¢.

Define Np(w, ), Vp(w, ) as in Section 4. The main result of this section is

THEOREM 5.6. There exists 8 > 0 such that

Np(w,(P) - VP(‘LD,(,D) = O(Vp(w,(,o)/we) as w — oo,

A sketch of the proof that hypoelliptics determine a GLP follows.
Choose Dy > D, > 0 so that (5.3) holds if ||z|| = Dj,i = 1,2. Define

m
DP(SHP) = Z ;((m)), :
meEN™
T-P(m)#0

Now let x denote a C* function with values in [0, 1] and satisfying the property

@ {1 if |[z]| > D
)=
X 0 if ||| < Ds.

Thus, for any differential monomial D2 of positive order,
supp (DZ(x)) C {=: l|z]| € [D1, D:] }. (5.7)
> (m)e(m)
mp(m
Dp(s,p,x)= Y BT

Next, let Ky € K; be compact subsets of [1,00)" such that {P = 0} N [1,00)" C K.
Further, using the notations of Section 4, let £, 42 be any nonnegative integers, L be any
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nonzero multiindex, and set B resp. € to denote £; resp. £; tuples of multiindices whose
sum is L. The notation B + C is also used to denote this sum. Define

In(s,) = [ £ iz, *)
[1100)" _K2
IP(S,‘P:X)= / %dw,
[1,00)"
_ L{X¥P
Ly s,00x) = v/[I,oo)n D; (P') dz,

I(s,0,x) = /[lm)n xDf (%) dz

4 B: I 2 C:
DJip Dy P @
I.s,so,xz/ xll[” ]ll[“ ]-—dz.
BC( ) [1,00)" © it P Pe

i=1

A simple estimation argument, similar to (4.9), uses (5.2)-(5.4) to show

PROPOSITION 5.8. Dp(s,p,x),Ip(s,¢,x), and each function defined in (*) are analytic
and absolutely convergent if o > n/ap.

Following the argument given in the proof of parts 4-7 of Theorem 4.10, one con-
cludes that the integral representations given in (4.20) of Dp(s, ¢, x) are valid whenever
o > nfap. Although the I(L, s, ¢, x) are the functions that actually appear in these rep-
resentations, the important analytic continuation properties are found in the I (s, ¢, x).
This is the point of

LEMMA 5.9. The following differences of the functions defined above are all entire functions
of s.

(1) DP(ss(P) - DP(sa(P’X)'
(2) IP(S’ ‘10) - IP(Saq%X)‘
(3) I(L’S’SO?X) _IL(S:(P:X)'

PRrROOF: (1) is clear since the difference is a finite sum of functions of the form (1 —
x(m))/P(m)®. (2) is clear since the difference is an integral over a compact subset on
which P is never 0. Similarly, (5.7) implies that (3) is a finite sum of integrals, each of
which is supported on a compact subset over which P is never 0. |}

Thus, it suffices to study the functional properties of Ip(s, ¢, x) and each Ir(s, ¢, x).
One notes from the discussion in Section 4 that each IL(s,,x) is a linear combination
(with coefficients in Z[s] of degree |L| — 1 in 3) of the Igc(s, ¢, x), with B+C = L. Thus,
it suffices to determine the functional properties of Ip(s, ¢, x), and any Igc(s, ¢, X).

Following the “tauberian program” of Section 4, Theorem 5.6 will then follow from
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THEOREM 5.10.

(1) Dp(s,¢,x),Ip(s,, x) and each Ig ¢(s,, x) can be continued to the entire s plane
as meromorphic functions with rational poles.
Let py(¢p) resp. A1{p) denote the first pole of Dp(s,,x) resp. Ip(s, ¢, x).
2) p(e) = Ma(e).
Let p(¢) denote the common value of p1(¢p), A1(p).
(3) Dp(s,¢,x) — Ip(s,,x) is analytic at p(yp).
(4) There exist p,M > 0 such that for any 01 < 02 < p and ¢ > 0 one can find
C = C(e,01,02) so that for any ¢ € [01,02], ,|t| 21 and C

|Dp(s,0,x)| < C (1 + |t|P(P(s¢’)—-al)+e) ”

|IP(35901X)| < CMO" (##)
IIB,C(S:(Pv X)l < CM°.

Remarks.
(1) As in the proof of Theorem 4.10, one can choose u = nd for the constant in part (4).
Different values for g have been given in [Li-2,3].

(2) An appealing, but probably naive, conjecture, in light of (5.5), is that
n
= —. 11
o) = 2 (511

For this would give a characterization of the first pole of Dp(s, ), Ip(s, ) via the geometry
of ¢, P at infinity. (5.11) would extend to hypoelliptics the relation, proved in Theorem
4.10, between the first pole of a Dirichlet series and the Lojasiewicz exponent determined by
elliptic polynomials. The analogous assertion for the local isolated hypersurface singularity
case would claim, for example, that the largest root of the local b-function was controlled
solely by the multiplicity of the defining function, which is known not to be the case, cf. [Ig].
In general, a perhaps more reasonable question to consider is a geometric characterization
for an estimate of el M |

SKETCH OF PROOF OF THEOREM 5.10: One sees, using the expression for Dp(s, ¢, x),
given by (4.20), and by the above reductions, that the proof splits into two parts:

Claim 1. For any pair of tuples of multiindices B,C, the functions Ip(s,¢,x) and
Ipc(s, ¢, x), admit analytic continuations to the s plane as meromorphic functions with
rational poles and satisfy the growth estimate (##) of (4).

Claim 2. The first pole of Ip(s,¢,x) is strictly larger than the first pole of any
Ipc(s, ¢, x) if B or C do not both consist of zero vectors.

Remark 5.12. Claim 1 has been established in [Li-3] while Claim 2 is proved in [Li-4].
An alternative proof can be based upon an argument of Bochner and is sketched at the end
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of this section. These assertions can be viewed as analogues of the well known properties
established for the distributions P on S(R"), defined by

@ — pPildz.
P#0
The general significance of these distributions was first emphasized by Gelfand. Two proofs
of the analytic continuation of these distributions are known. The first uses resolution of
singularities, cf. [Ati], [Be-Ge], while the second uses the functional equation and b-
function [Be].

In [Li-1,2,3] the functional equation at infinity was used to prove parts (1), (4) of The-
orem 5.10. In particular, the “moderate growth” of the series outside the domain of an-
alyticity was proved using the functional equation, just like the reflection type functional
equation (2.4) yielded the growth estimate (2.5) for the Dirichlet series determined by a
positive definite quadratic form. However, it seems to be difficult, so far, to use the general
algebraic functional equation to establish the relatively precise analytic properties (2), (3).
For purposes of a unified discussion, the proof of Claims 1,2, given here, will therefore be
based upon resolution of singularities at infinity. i

Since the analysis needed to prove both claims is carried out at infinity, it is first neces-
sary to define the following objects.

Definitions /Notations.

1) The chart at infinity in (P'R)™ will be denoted (R™, (w1,...,wy)). The hyperplane
at infinity {w; ---w, = 0} is denoted H,. The notations 1/w resp. dw are used to denote
the point (1/wy,...,1/w,) resp. the differential dw; - - - dw,.

2) Define the rational functions

1
R(w) =aeg W’
®(w) =aes p(1/w).
The letter x will also be used to denote the function x(1/w).
3) Set

nBc(w) = X ;1:111 [%] ] (1/w).

It is clear that npc is defined over the set (0,1}” in the chart at infinity. Moreover, by
(5.2), one sees the existence of ¢',C' > 0 such that for each B,C

[DC P

t—l

InB.c(w)] < C'lwy -+ wn|® .
Thus, for each p € 9{0,1]" N Ho

lim Y)B'c(w) =0. (513)
wE(O,'l,]"
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Note. In the following one fixes a particular B,C and then drops the subscript from 5
whenever there is no possibility of confusion. 1

The proof of Claims (1), (2) is based upon analyzing the integrandsin Ip(s, ¢, x), Ip,c(s, ¥, x),
using a resolution of singularities.

There exist a nonsingular real algebraic manifold ¥ and projective morphism = : ¥ —
(R™,(wy,...,wy)) such that the following properties are satisfied.

(5.14)

i) There exists a divisor D C Y so that 7 : ¥ — D — R" is an isomorphism onto its
1mage;
ii) D is a normally crossing divisor. That is, D = UD, where each D, is smooth and
at each point p € D the set of divisors containing p are mutually transverse;
iii) The divisor determined by

n

[H(wi—l)-nwg-R-‘I)-x-n]o-;r

1=1 i=1

has support in D (so that it too is locally normal crossing);
iv) (0,)*Nx(D) = 0.
Thus, (0,1)" is disjoint from the locus of blowing up determined by .

Next, one takes an open polydisc U containing [0,1]" in the chart at infinity and sets
X =x"YU)
D=DnX
B=r-1(0,1)"NnX.

An elementary observation is the

LEMMA 5.15.

i) B C D.
ii) BNnD = 0B.

PROOF: (i) follows from (5.14)(iii). To verify (ii), one notes that (5.14)(i,iv) imply
#~1(0,1)"nD = 0.

Moreover, since  is continuous, 7~1(0,1)" is open in X and equals int(B). Thus, BND =

BN D =8B by (i). 1

A second elementary result will also be needed below. For each point ¢ € B there
exists an open neighborhood U, and coordinates (z1,...,z,), defined in ¢, and centered
at q, such that

U, N D C UL, {z =0}. (5.16)
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A “sign distribution” is a function
e:{1,...,n} = {+,-}.
To each sign distribution one defines an open subset of any U, by setting
Oc={z€lU,:€(i)z; >0, foreach i =1,...,n}.

One notes that the only geometric property of interest possessed by these sets is their
disjointness from D.

LEMMA 5.17. For each q € OB there exists a set £; of sign distributions such that

Ueee, O = int(B) N U, .

ProoF: By (5.14)(i) and (5.15)(i), it is clear that
int(B) NU, C U.O..

Suppose for some g that int(B)NU, N O, # 8. Further, suppose that O, ¢ int(B) NU,.
Then, Lemma (5.15) and (5.16) imply that

O, N(int(B)NU)#® and O ,N(BNU)#D
but O, N(GBNU,) =1.

Since O, is connected this decomposition of O, into two disjoint open subsets cannot
occur. Thus, O, C int(B) NU,;. This implies Lemma (5.17). 1

To each irreducible component D, of D one defines the following orders.

My =ordp Rom, (5.18)
mgy = ordp, $or,
Ko =ordp nom,

Yo = ordp, Jac(n) — ordp, (w?---wi) o,

where Jac(m) denotes the jacobian of .

To each D, for which M, # 0 and e € N, define the ratios

— —(e + Yo + ma)
ple, Do) = A
Ble, Do) = —(e+ "aﬁ‘;a’}’a +mgy) .

If M, = 0 one sets p(e, Do) = B(e,Dq) = —o0, for each e.
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Define
p(m) = supa{p(1,Da)},  B(m) = supa{B(1,Da)}. (5.19)

Note. As will be explained below, the regularization procedure, described in [G-S, chs.
1,3], can be applied very naturally to determine the analytic continuation of Ip(s,y, x),
Ipc(s,p,x). In light of this, it becomes clear that p(1,D,) resp. B(1,Dq4) are possible
values for the first pole of Ip(s, ¢, x) resp. Ipc(s,,x). Thus, any pole of Ip(s, ¢, x) is at
most p(7), and any pole of I c(s, ¢, Xx) is at most S(x). 1

A key step in the proof of Theorem 5.10 is therefore the proof of the inequality

o(m) > A(m). (5.20)
This will follow immediately from

LEMMA 5.21. Suppose q is a point in 0B such that 7(q) € Heo. Let D, be any component
of D containing q. Then k4 > 0.

PROOF: Assume there exists a point ¢ € 0B with n(q) € Hy for which ko < 0 for
some divisor Dy containing q. Let U, denote a neighborhood of the point so that (5.16)
holds. Assume that coordinates are chosen so that the divisor D, satisfies the property
Do N U, = {z1 = 0}. There exists at least one sign distribution € so that O C int(B)NY,.
Given any point p = (p1,p') € O, the path v(t) = (1 — t)p + t(0,p'),t € [0,1) is entirely
contained in O,. By definition, one has that '

ordi(nomov)=Ky .

Thus, ko < 0 implies
}ir%nowou(t) #0.

On the other hand, O, C int(B)NU, implies that for all ¢ > 0, wov(t) € (0,1)". Moreover,
as t — 0, 7 o v(t) approaches a point in H,. Thus, by (5.13) the limit of 5 along the path
mov(t) must equal 0. So, the point ¢ with the above properties must not exist. This proves
the Lemma. |

An entirely similar argument that uses (5.2), as expressed in the (wy,...,w,) coordi-
nates, shows the important

LEMMA 5.22. Suppose q is a point of 3B such that n(q) € Hy,. Let D, be any component
of D containing q. Then Mgy > 0. Moreover, if ¢ € OB is such that 7(q) ¢ He then
M, = 0 for any component D, containing q.

Remark 5.23. Geometrically, Lemma 5.22 says that the strict transform of the denomi-
nator of R(w) is a component of D that is disjoint from B in X. That is, the polar divisor
of Ro 7r| x cannot intersect B. This property is very useful because it implies that the
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regularization procedure of Gelfand-Shapiro-Shilov can be applied in essentially the same
manner as has been done to find the first pole of the distributions PZ, cf. [Ig, Li-5, Va]. |

Furnished with these preliminary observations, one can now proceed to the

ProOF oF CLAIMS (1), (2): In light of (5.20), it evidently suffices to show,

(1)  Ip(s,¢,X), resp. Ipc(s,p,x) can be analytically continued as meromorphic
functions with possible poles contained in the set {p(e,Dq)}e,o resp. in the set
{B(e, Da)}e,o -
(1") The analytically continued functions satisfy the growth estimate (##) of part (4)
in the statement of Theorem 5.10.
(2') p(m) is the first pole of Ip(s, ¢, x).
By (5.20), it will suffice to prove (1'),(1"),(2") for Ip(s, ¢, x)} only. The proof of (1'),(1")
for Ipc(s, e, x) is similar and left to the reader. (5.20) is then invoked to establish that
the first pole of Dp(s, ¢, x) can only equal the first pole of Ip(s, ¢, x).

One has for ¢ > n/ap,

dw
Ip(s,p,x =/ Rlox 47—
S W s BT
: dw
=ger li i
def 10 [ea]n R(’pxwf---w?,

dw
“wz)l’

= [ Romy(o-xomir(s;
B

z,
where |7*(dw/w? - --w?)| denotes a density on X.

Since 7 is proper and B is a closed subset of the compact set #~1[0,1]", B is also
compact. For each ¢ € B there exists an open neigborhood U, so that (5.16) holds iff
g € 8B. The open cover {U;} of B admits a finite open subcover {U;}[L,, where U; is

centered at ¢;. One now takes a finite partition of unity {v.} subordinate to the cover
{U;}. Thus, for ¢ > n/ap

[ Bomr e xomir (=il = N5 [ (Rowy o xomuelr (ol
(5.25)
One next fixes an arbitrary I;. One chooses the coordinates centered at g; so that
U;ND =Ul_{z; =0}.

Assume that {e;,...,ep(;} are the sign distributions so that O, C int(B) N U;, k =
1,..., R(3). Define for each y =1,...,r

M,’(i) = OI‘dD’. (R o 71')
m;(i) = ordp, (¢ - x o)
7;(i) = ordp; |7*(dw/wi - --wy)|.
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By keeping U; sufficiently small, one observes that Lemma 5.22 implies that M;(¢) > 0 for
each 1, 7.

Next, define for each i =1,...,N

i o)) = g . —A @) +miGE)
(4, p(m)) = #{;: M) p(r)},

and set
J(p(m)) = {t: v(i,p(7)) 2 1}.

By definition, J(p(7)) # 0. In this regard, one should also note that r = 0 is possible.
This occurs iff ¢; € int(B). In this case, each M;(i) = 0 and ¢ ¢ J(p(7)).

It now follows that the Gelfand-Shapiro-Shilov regularization method [G-S] applies to
the integral over each open set O, ,k =1,...,R(i) and t = 1,...,N. One thereby obtains
an analytic continuation of each summand on the right side of (5.25). This proves (1'). The
growth estimate of (#+) is an easy consequence of the explicit expressions that determine
the regularization. This is left to the reader to verify.

Thus, it suffices to prove (2'). This is done as follows. Assume that i € J(p(r)), so that
the principal part at s = p(7) of

dw
2 )

wl n

/ (Rom)®(p-xom)v.|m*(
u;,nB

consists of at most v(i, p(7)) nonzero terms. One then shows that the term of order equal
to v(z, p(7)) must be positive.

Note. When one ¢ is fixed, ¢, p(7) are subsequently dropped as the argument for v. 1

After reindexing, if necessary, one may assume that

- (A7) +my() —
{J' MJ(‘) _p(ﬂ')}_{112$"'7v}'

One sets z' = (z2,41,...,2n)-
Then the contribution from U; to the term of order v in the principal part has the form

R(3)

E Z U:ADs...0D (Zv+l)§:z:+l) e (Z")S:(n) gl(z’)ﬂ(‘ﬁ) 92(2’) ‘UC(Z’) 93(2') dzl (526)
¢ k=1 V 1 een v

where the following properties are satisfied:

(1) ¢o41y---,Cn > —1, (cf. [Va] where this property was first used for a related prob-
lem);
(2) ¢1(#') is the restriction to N¥_; D; of the strict transform of Ro 7 in U;;
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(3) ga(2') is the restriction to NY_, D; of the product of the strict transform of ® o 7

and (a continuous extension of} x owin U;
1)
(4) ga(2") is the restriction to N%_, D; of the strict transform of the quotient of |{Jac(r)|

with w? ... w? in U;.
From Lemma 5.22 and the positivity of P - ¢ - x over all but a compact subset of [1, c0)"
(cf. (5.5)), one concludes that g1(z'), g2(2'), g3(2') are finite and positive over the domain
of integration in (5.26). Moreover, since {v.} forms a partition of unity, one concludes that
the double sum in (5.26) must be positive.

This implies that p(7) must be a pole of Ip(s, ¢, x). Furthermore, any rational number
larger than p(7) could not be a pole of Ip(s,,x) since it would be larger than any
candidate pole p(1, D), used to define p(7). This proves (2') and therefore Claim (2). By
the above remarks, the proof of Theorem 5.10 follows. @

Concluding Remarks.

(1) The reader might wonder if there exist any polynomials determining a proper poly-
nomial P on [1,00)" for which the lattice point problem with R,, = {P < w} N [l,00)" is
not geometric. Such examples are not difficult to find. Choose n = 2 and a < b positive
integers. Set P(z,y) = z°y®. Explicit calculations will verify that N(w) and V(w) both
have growth w!/® but so does E(w).

(2) The allowable choice of 4 = nd in Theorems 4.10, 5.10 implies, by the discussion in
Appendix B, one of two interesting conclusions. Either there is no pole of Dp(s, ) in the
interval (p(¢) — =3, p(¢)), in which case there exists a nonzero polynomial A(u) such that

Np(w, @) = wP® A(log w) + O (w? P —7Tte), (5.27)

or there is at least one other pole in this interval and one has therefore found a second
and lower order term in the asymptotic of Np(w,¢), which experience shows to be quite
difficult. However, from the analysis of Appendix B, it does not yet follow that (5.27)
implies

E(w,p) = O(w? @ ~7a%e),

This is because the asymptotic of Vp(w,¢) is only controlled by the analytic properties
of Ip(s,y) whereas the asymptotics of Np(w,¢) are controlled, a priori, by the analytic
properties both of Ip(s, ) as well as the other integrals appearing in the integral represen-
tation (4.20) (appropriately modified for hypoelliptic polynomials via the smoothing term
X)- It is at least possible that a pole of one of these functions of s might sneak into the
above interval and determine a second pole of the Dirichlet series. This is the reason why
an explicit estimate for E(w, ) cannot easily be given using the integral representation of
Dp(s,¢) based upon the iterated Euler-Maclaurin formula.

In order to circumvent this difficulty, an alternative integral representation of Dp(s, )
is useful, when one works with the entire lattice Z". For here one can exploit Poisson
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summation and ignore all problems arising from the constributions near the boundary of
[1,00)". In [Bo], Bochner worked out the details if the polynomials P, Q, T are elliptic over
R". However, using the existence of hypoellipticity constants (see (5.4)), it is easy to see
that the argument extends to hypoelliptic polynomials. This will now be sketched.

Assuming hypoellipticity of P,T on R" it follows that there exists D > 0 such that
{P-T=0}C{z:|=z| <D}
Choose D' > D and a smooth function x : R® — [0, 1] such that

(2) {1 if ||z|| 2 D'
) =
X 0 if|z| <D.

Define, as above, but now over R*, (no confusion should result by using the same notation)

p(m
DP(ST ‘10) = P((m))"
mel”
T -P(m)3#0
Ip(s,tp)=f -E;dzl---dzn,
R.—{llz|l<D}
X ¢(m)
Dp(s,¢,x) = YR VR
( ) it P(m)l
IP('sv(PsX) = / X};:D dIl "'dxn-
R

The analogue of Lemma 5.9 evidently still holds, that is,

LEMMA 5.28. The following differences of the functions defined above are entire functions
of s.

(1) Dp(s,¢) = Dp(s,p,x)-
(2)  Ip(s,9)—Ip(s,,%).

Let € > 0 and define the decay function

Edzq,...,z,) = e~ ClzD*

Define
Ec - x - p(m)
D(s,€) = —_
2 T Fy
D(s, 6,£)= /n e~ 2milz) E_,};)i_(p dry---dz,.

An application of Poisson summation then shows
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PROPOSITION 5.29. Foreache>0ando » 1

D(s,€) = Z D(s,e,m).

Clearly, one has, for o >» 1
P_H.(I)D(S!e) =DP(3a‘P1X)7 (530)

linz.' D(s,€,0) = Ip(s, 0, x).

Now, applying the existence of positive hypoellipticity constants for ¢, P, one can show,
via the argument in [Bo, pgs. 33-36), sketched below for the reader’s convenience,

THEOREM 5.31. The function defined by

}igg E D(s,e,m)

m30

is an entire function of s.

Thus, one concludes from (5.28),(5.31)

Dp(s,p) — Ip(s,¢) is an entire function of s. (5.32)

The main conclusion that one can deduce from (5.32) concerns an explicit and easy to
state estimate for E(w, ), when one uses the sets R, = {z € R" : |P(z)| < w}.

THEOREM 5.33. If P,Q,T are hypoelliptic on R", deg P = d, and ¢ = Q/T, then

E(w, ) = O, (wPP)~71%¢) a5 w — co.

PROOF: For each of the 2" possible sign functions 7 : {1,...,n} — {+,—} define the
quadrant

Qr = {z : 7(i)ei 2 0},

series (m)
p(m
D,—(S,(P) = Z P(m)”
meQ.N1"
T.-P(m)5#0
and integral

I,(s,tp)zf %d.’cl---dz‘n.
Q-—{llzll<D}
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Thus,
D(s,p) =) Ds(s,) — D(s,¢)

where D(s, p) is a finite linear combination of Dirichlet series over lattice points contained
in the intersection of at least two quadrants. The growth of each such series in vertical
bands of the s—plane can be analyzed via the same reasoning used to prove (5.10). This
is left to the reader.

Moreover, one has that for o » 1
DP(ss ‘P) - IP('Sa ‘P) = Z[DT(S!‘P) - IT(Sa‘P)] - D(S, 50) .

By (5.32), the left side is entire. By evident applications of part 3 of (5.10), applied to the
sum over the 7, as well as each of the series appearing in D(s, ¢), one concludes that for
each 6 > 0 there exists a constant Cy > 0 such that for any 0, < 07 < p(p)

IDp(o + it, @) — Ip(o + it, )| < Colt|F7PO=+)  if 5 € [0,0].

Then, since this difference has no poles, it follows that when ¢ » 1
1 »ds p(e) =g +e
E(w,p) =aet 5— [ [Dp(s,9) = Ip(s, p)lw’ — = O (w7227},
T Joee s

by the argument of Landau given in appendix B. 1

SKETCH OF PROOF OF THEOREM 5.31: The idea is to show two properties.
(1) Given a compact subset K of the s—plane, there exists an integer b = bx > 1 such
that if m 3 0 then

A(8,m) = get lin}) ||m|[2bﬁ(s, €,m) exists and is finite,
[ d

where the convergence is uniform for s € K;
(2) The series

Z Als,m) |2b converges absolutely and uniformly if s € K.

m#0

It is clear that (1) and (2) imply the assertion of the theorem.
Define the operator
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An application of integration by parts and Stokes’ theorem, applied 4b times, implies that
foro» 1 and any m # 0

(=2mi)*||m|[* D(s, e, m) = ] e~ L AY(E, - x - /P?) doy -+ dan.

Bﬂ

Now use the existence of positive numbers cp resp. ¢* so that the inequality in (5.2)
holds for P resp. ¢. Set ¢ = min{cp,c*}.

By expanding out Ab(E, - x-@/P®), using Leibniz’ rule, one sees the following by a
tedious calculation, best left to the industrious reader. Given a compact set K, set oy =
inf {cr|K}. Using the notation from (5.2)ff, set

b= 1+[( degQ—aTz)c—— O’}(a’p‘i'nn.

Then there exists a constant C'x such that for any ¢ >0 and s € K
[ B8 (el P day o < Cic. (5.34)
nll

Moreover, if I # 0 and J are indices with |I + J| = 2b then the exponential decay of E, at
infinity implies
lim | |Di(E)DI(xp/P")|dzy + dzn =0, (5.35)
— nn
where the convergence is uniform in K. Properties (1), (2) now follow from (5.34), (5.35),

by choosing b to be the maximum of the expression above and % + 1. This completes the
proof of (65.31). 1

The reader therefore sees an instructive difference in the methods described in sections
3-5. The first technique, when it can be applied, focusses more directly upon E{w,¢)
and so, obtains more precise results. The second method shows that under fairly general
hypotheses on P, ¢ (over R") one has a GLP, for which a general, but no doubt improvable
estimate for E(w, ) can be derived. Clearly, it would be very interesting and worthwhile
to know how to combine both methods and improve the error estimates.

(3) Whereas (2) has treated the case in which the series is defined over 2", the reader of
these notes might also be interested to know of an elementary argument that estimates
E(w) (that is, where ¢ = 1) when P is hypoelliptic over [1, 00)". This will give an “explicit”
estimate for E(w), when the sum is taken over the lattice points in N™. As the reader will
note, the level of explicitness is considerably less than that achieved in (2). This appears
to be typical of the type of problem encountered when working over [1,00)".

To do this, one needs to start with two theorems that give the asymptotic form of
N(w),V(w). As pointed out in Remark 5.12, parts (1), (4) of (5.10) have been proved
by different methods than those used here. Combining these parts with the tauberian
argument, due to Landau (see appendix B), one knows the following more precise form of
(5.27).
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THEOREM 5.36. Let py > p2 > +++ > py > p1 — = 2 pe41 - be the first £+ 1 poles of
Dp(s,1). Then there exist nonzero polynomials Ay(u),...,As(u) € R[u] such that
14
N(w) =" whAi(logw) + Oc(w” ~77%¢)  asw — oo,

=1
A complete asymptotic expansion for Vp(t) is also known to exist.

THEOREM 5.37. Let Ay > Ay > -+ be the poles of Ip(s,1). Then there exist nonzero
polynomials By(u), Ba(u),..., € R[u] such that

V(w) = Z w Bi(logw) as w — oo.

i=1
One can now show

THEOREM 5.38. The lattice point problem with ¢ = 1 is geometric and an explicit esti-

mate can be written down in terms of the hypoellipticity exponent for P|[l oo)" and the

first two exponents appearing in (5.37).

PROOF: Let € > 0. Define the sets
UE(U)) = {.’B € [l,cx))" : P(:L') <w+4 wl-fCP},

L(w)={z €[1,00)" : |lz]| 2 w* - % and P(z) < w - w! P},
Ec(w) = {3 € [1)00)“ . ".’L‘” S we — % and P(:B) S w— wl—cc;-} :

cwy= |J Cm),

meEN"

[|m | 2w
P(m)<w
where
C(m)={z:|z; —m;| <1/2, foreachi}.
The following is easily verified.
vol(Le(w)) + vol(€(w)) = vol ({x € [1,00)" : P(z) S w — w' ™" }), (5.39)
vol(£(w)) < vol({z € [1,00)" : ||z} L w*—-1/2}) < C{w* —1/2)".

for some C > 0. Now set 8 = A\; — A2, one has
o

vol(U(w)) = Z(w + wl—ecp)AcBi (log (w+ wl—ecp))
i=1
= (w + wl—ecr )’\1 B, (log (w + wl—fCP)) + OK((w + wl—tCP)/\l —ﬂ-i-x)
= w B (log w) + O (w ~P+*) 4 O, (whr —#F%) (5.40.1)
and similarly

vol(Le(w)) = w* By(log w) + Ok (w™ ~P+*%) 4 O, (w* ~P+7). (5.40.2)
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Proposition (5.2) implies, by means of the Taylor expansion of P around each point m,
used in the definition of C,(w), that for all w sufficiently large,

Le(w) C Cw) C U(w). (5.41)
Moreover,
vol(Ce(w)) = N(w) — ve(w),
where | .
ve(w) = #{m € [1,00)" NN" : ||m] £ w* — 3 and P(m) < w}.
Clearly,

ve(w) = O(w*").
Thus, combining this estimate with (5.39)-(5.41) implies

N(w) = V(w) + O(w™) + Ox(wr~P+%) 4 O (whr—P+%)

One can choose ¢, & so that two of the three exponents are equal, in which case the order
is the larger of the two values. In either case, one will arrive at an “explicit” description
of the order of E(w). For example, suppose one chooses € so that

A —ecp+ k=X —f+k,

that is,
AL — A

k]

cp
and discovers that this is useful in the sense that en < A,. This occurs iff

Az
—=

A <

One concludes that if, in addition, A\; < (1 + cp)A; then an error estimate is O,(w**¥*).
However, if A; > (1 + cp)X2 then an error estimate is Q(w"™(*~*3)/¢F) Ope then sees
that “good” estimates for A\; — A; and cp, if such exist, could be used to give reasonable
estimates for E(w). However, so far, no work to the author’s knowledge has treated this
problem.
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Appendix A

The purpose of this appendix is to give a proof of the uniform boundedness of the partial
sums Eﬁ;l sin(2mnu)/n, which is consistently needed in arguments involving estimates
of trigonometric sums. The discussion is adapted from Lindel6f’s book [L].

It is clear that (u), defined in Section 1, is periodic on R with period 1. It therefore
admits a Fourier series, which can easily be calculated to equal

1 o= sin(2mnu) ) )
P(u) = -= ’; — with equality only for u ¢ Z. (A-1)

The series converges uniformly to ¢(u) on any closed interval inside R — Z.

PROPOSITION A-2. The partial sums "1 sin(2rnu)/n are uniformly (in u, N) bounded

This will follow as an immediate corollary from Proposition A-4 proved below.

Let u € (0,1). Choose circles C; of radii r; < r2 < r3 < ..., centered at the origin in
the complex z plane subject to the following condition for each j :

r; € (2m7,27(7 + 1)), and there exists ¢ > 0 such that inf; g|r; — 27k| > c.  (A-3)

The tail of the Fourier series of ¥(u) can be represented as

PROPOSITION A-4. For eachm

i sin(2run). -1 e** dz

= — — X
e/ ™ 2m Jo,_ ef—1 2z

PROOF: Let € > 0 and form the set

D.= U {z: |z —2mik| > €} .
kel

Thus, it is easy to see the existence of M, such that

] - | <M. ifzeD..
et —1

Consider the function
cuz

er —1°

It is not difficult to show the existence of M! such that

ur

|ef_1|<M; if z € D,. (A-5)

62



Choose € = ¢, defined in (A-3). Then there exists M/ such that for each m =1,2,...

I euz
et -1

. <M; ifz€Cn.

One now checks that

. R dz et2riku
Ca=d2mik \ =7 T T Tomk

Resz=2wik ( € . d_zz) + Resx:—Zrik ( € E) _ 3m(21ruk) .

Thus,

er —1 et —1 =z mk

Using the easily verified property, valid for each u € (0,1), and ¢ sufficiently small:

et? 3

2

=0uniformlyinArngorArgze(—-;E+e,g+e)u(-72£+e, €),

|z]—o00 €% —

one shows that
. e dz
lim —=0.
R—oo

|sj=p €*—1 2

Thus, one concludes

-1 e** dz e**  dz e  dz
py T T = Z [R68z=2m'k ( . : —) + Res;=—2rik ( . . —)] )
T Jo e —1z k] ef—1 =z ef—-1 =z

completing the proof. J§

A consequence of use in Section 1 is the

PROPOSITION A-6. If g(u) is an integrable function on [a,b] then

b L sin(2nnu >, b sin(27nu
/., g(u)Z%——)duZ g(u)#du.

n=1"@e
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Appendix B

An integral formula of considerable use in the functional approach to lattice point prob-
lems, as well as many other problem requiring asymptotic information on averages of
coefficients of Dirichlet series, is “Perron’s formula”. This gives an integral representation
for the function

1 fw>1
k(w)=<{ 1 fw=1
0 fw<l,
as follows, in which ¢ is any positive number:
1 ct+ioo s dS
R(‘LU) = -2TI': l_im w T , (B-l)

The integral is understood to be a principal value when w = 1. The proof of this is a
standard exercise with residue calculus and left to the reader (cf. [Ti-2]).

In order to be useful however, as exemplified by the discussion in Section 2, one often
needs a version of (B-1) with weights. Thus, let r be a positive integer. Define

[slr =s(s+1)---(s+7).
A second use of residue calculus shows that

1/=+‘°° , ds {;‘T(l—ﬁ)' if w>1

i Joio T L0 ifw < 1.

Suppose one has a Dirichlet series

ag

D(S) = vy
k Ak

for which one knows the existence of a (right) halfplane of absolute convergence and an

analytic continuation as a meromorphic function outside this halfplane that satisfies two
properties:

(1) In any vertical strip of bounded width there are only finitely many poles.
(2) There exists “moderate growth” at infinity in any vertical strip, that is, for any
interval [a, b] there exists M(a,b) such that
|D(o +it)] < [t|MY  for all o € [a,],

then one can use (B-2) to give an asymptotic for a weighted sum of the ax

1 A"
NP(w:r)=def ';l' Z Qg (1_;) .

T A <uw
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The most rudimentary version of the procedure is essentially the following. Assume that
the series converges absolutely if ¢ > ¢. Suppose one wants to move the contour o = ¢
to the line o = ¢', where the band {o + it : ¢ € (¢/,c)} contains poles of the analytically
continued series. Set [nM(c',c)] + 2 = r. Let R(c',T) denote the rectangle, symmetric
with respect to the o axis, of height 2T and width ¢ — ¢/, and whose vertical sides are
contained on the two lines ¢ = ¢, ¢’. Let P denote the set of poles in this band. The choice
of r now insures that

lim D(s)w® ds

T—oo J{t=%T}nR(c', T) [s]-
Thus, residue calculus implies

Np(w,r) =) Res,=, (D(s)w p ) L f e D(s)w*

2EP 27 ! —j00 [ ]r

=0.

Since the integral over the leftmost vertical line converges absolutely, the integral is O(w®').
On the other hand, if the sum of residue terms is not zero then this sum is of order strictly
larger than w®, so that one has extracted an asymptotic for N(w,r).

The argument of Landau in section 2 is a considerable refinement of this procedure
when the analytically continued series possesses a “reflection type” functional equation,
of a kind often encountered in analytic number theory problems. On the other hand, for
(geometric) lattice point problems not determined by quadratic polynomials, one almost
never will have a reflection type functional equation. In this case, it is useful to know

a modification of Landau’s tauberian argument, presented in its most complete form in
[La-2].

Suppose that the series D(s), given above, has positive coefficients but does not satisfy a
reflection type functional equation of the form (2.4). Instead, suppose only that it possesses
an analytic continuation to the complex plane as a meromorphic function with moderate
growth in any vertical strip of bounded width. A sketch of this modification will be given
here. The author would like to thank P. Sargos for communicating the argument below.

Suppose that the first pole of D(s) equals pg. By a theorem of Landau, one knows that
po 18 real. Assume that each pole is real. Further, assume there exists g > 0 such that for
any € > 0,07 < 03 < p there exists C = C(¢,01,02) > 0 such that

ID(o +it)] < C(1+ [{}HP=+<) (B-3)

for o € [01,02] and |t| > 1. An application of the Phragman-Lindeldf theorem will show
that the moderate growth satisfied by D(s) implies (B-3).

One proves

THEOREM B-4. Let pg > py > ...> pr > p —% > pk+1 > ... denote the poles of D(s).
Then for any € > 0, :

E Resyp; (D(s)w f_’;) + O (wPo=E+e)
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SKETCH OF PROOF: Start with the identity, valid if ¢ > py by (B-1),

1 c+ioo . ds
N(w) = % /,_.._,'oo D(s)w T .
Define the primitives Ny(w), N2(w),..., as done in (2.8). Then the difference operator
A, applied to Ni(w) can be realized as an integral operator w — f:“ N(w;)dw; . Ap-
plying this operator to both sides of the above equation and then interchanging the two
integrations gives

c+ico w+tz . ds 1 c+ioo ds
A Nl(UJ) = —"'/ / D(S) wldwl -‘;— = % i D(S)Az (wf)?
where of course,
w2z
Ay (wy) = / widw; .
Iterating this v times and using (2.8), gives the formula
c+ioco ds
AV Ny(w) = — / (8)A®) (w?*) =
s

where

w+z wy+z wy—1+z
A(,") (w®) =def/ dwl/ dwq / w) dw,

w Wy—1

=(1'[3+,) ()=, (@)

i=1

One now estimates the kernel A% (w®). When z is small relative to w one has

w4z wy+z wy—1+z
AP (w*) ~ 2" w® = / dw, f dwy - / (wy — w’)dw, .

w wy Wy-1
Since w, € [w,w + vz] one can then estimate the integrand from above by
(w+vz)’ —w® = w1+ 0(z/w)),

where the O(-) depends upon s and is bounded when s is confined to bounded subsets.
Thus, for z small relative to w and s bounded

AW (°) = 2° w* (14 O(z/w)) . (B-6)
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Using (B-5) one can transport the line o = ¢ to the left. In particular, for given v one
moves to ¢ = p — v/u + €, where € denotes an arbitrarily small parameter below. Let P,

denote the poles of D(s)AS,") (w®) encountered between o = c and 0 = p—v/u + €. The
estimate on |D(3)| implies, by (B-5), (B-6),

1 p—v/ptetioo ds
A(zv) Ny(w Res,=, | D(s A(”) w’ / D(s A(‘v) w') 22
(w) = ; AP@AR @) 45 [ DEAP )]
= Z 2" Res,=p (D(s)w _...) + 0. ( v+1 wp—1+e)+0(wp+u-—vlﬂ+e .
pEP, B-T)

One obtains a similar expression with N Ny(w—vz). Guided by (2.10), one now divides
by z? and wants to find z = w® that insures the two error terms in (B-7), with p = py,
have the same order in w. One finds that z = w!=?/#(*+1) This forces the two error terms
to agree up to an arbitrary e. The order in w of this error term is easily checked to be

0 (wPo-,.—(;"m+f) .

The same result is found with A" N,(w — vz). Since € is arbitrarily small and v can be
taken arbitrarily large, this implies that N(w) itself differs from the sum of residues by
O (wPe~/#+¢) and establishes Theorem B-4. &

For many series of interest, it is usually not possible to prove the moderate growth con-
dition in as strong a form as stated above. For such series, it is useful to have a “truncated
Perron’s formula” (without weights!) at one’s disposal. The following formulation is taken
from Titchmarsh’s book [Ti-1, 3.12].

LEMMA B-8. Let

oo
ag

D(s) = —
k=1 ke

be a Dirichlet series that has a single pole at s = 1 of order r. Suppose that ar = O(¢(k))
where k — ¢(k) is monotonically increasing. Then for any ¢ > 1, and integral valued
parameter w

1 fetT ds w® d(2w)wlogw #(w)
k§lak+ = om 7 D(s)w’ —+O(—('—_—1—)',,)+O(—T-—-)+O(T).
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Appendix C
Let f,g : [0,00) — R be two functions. Set

Zn(z g(n) ifz 2 1

G($)={o ifz<l.

PropPOSITION C-1. (Partial Summation) For any 0 < a < b,

Y. f(me(n) = FBDGUED) - f(lal + 1)G(la) + Y- (f(n) = f(n +1)) G(n).

a<n<h a<n<b-1

If f(u) € C'{a,b], then

b
3" f(n)g(n) = F(B)G() — f(a)Gla) - ] () G(x) du.

a<n<b

PROOF: The first formula is simple. Substitute g(n) = G(n) — G(n — 1) in the sum. This
gives

(5] (5]
Z f(n)g(n) = Z f(n)G(n) — Z f(n+1)G(n)
a<n<b n=fa}+1 n=[a]
[5]~-1
= f([BDG([b]) — f(fa] + 1)G(fa]) + Z (f(n) = f(r+1))G(n)
n=[a]+1
= f(BDG(®) - f(lal + VG(a) + Y (f(n) = f(n+1))G(r). B
a<n<b-1

Now assume f € C'[a,b]. Then f(n) — f(n +1) = — [ f'(u)du. Since G(z) = G(n)
is constant for z € [n,n + 1), one can write
n+1
G (fm) = fn+ 1) == [ Gw)f (Wi
Thus,

L]}
S f(n)g(n) = FAIGE) - f(la] +1)G(a) - /[ BRCOICIC

a<n<b

Furthermore,

[t

b [a)+1 b
G(u)f (w)du = G(u)f'(u)du G(uw) f'(uw)du G(uw) f'(u)du.
jﬂ (w)f'(u) [ ()f()+f[a]+l()f() +/m()f()
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For the first resp. third integral, one has G(u) = G([a]) = G(a) resp. G(u) = G([H]) =
G(b). Thus,

[ b
[, G = [ 6 Wi -6 (Hlal +1) - ) - GO () = SN
Combining this equation with (C-2) gives the formula to be proved. i

Setting ¢ = 1 implies G{u) = [¢]. Thus,

S ) = W) - ol f(a) ~ [ [ ()

a<n<b

Replacing [], [a], [u]} by b — %(b) — 2,6 — (a) — 2,u — ¥(u) —  and using the formula

b b
[ = prwdu= e -3) - @)a-3)- [ fwi

proves one version of the Euler-Maclaurin summation formula:

S fm)= / F(w)du — $(b)F(b) + () f(a) + / p)f (wdu.  (C-3)

a<n<b

In order to apply integration by parts k > 1 times to this formula, a technique that
can be used for analytic continuation of certain Dirichlet series, one needs a sequence of
functions ¢,...,¢k such that ¢} = ¢;_1 and ¢} = ¢. In addition, one must obviously

assume f € C*¥*1[a,d]. For purposes of these notes, one imposes the following conditions
upon f :

f(u + 4v) is holomorphic if u >0 and  lim f*¥(u) =0 for each k > 1. (C-4)

To construct the antiderivatives starting with 1, one defines the Bernoulli polynomials as
follows.

Define the functions ¢;(u) by expanding in a Laurent series at 0 the function

e 1 o~ di(u) i-1
1577 ; i (C-5)
so that
q&,-.('u) = Res, =g (z" ¢ )
2! e?—1



In addition, define the numbers By, Bs,..., by setting for |z| € (0, 2~),

-1 1
eF—-1 =z 2 poe (2¢)!

1 1 1)-'Bi i,
LIy

Define
0-2"(“) = ¢2i(u) + (_l)iBf t= 1,2,.
02041(8) = bais (u) i=0,1,....
The B; resp. o; are the Bernoulli numbers resp. polynomials.

An explicit description of the ¢;(u) can be determined by multiplying the Laurent series
in (C-5) by the series expansion for ¢** and extracting the coefficient of 1/z. One finds

o) =i Eoim1 (1 i—2_ (1 i—d k=1 i—2k
di(u) =u St +(2)Blu (4)3211 +...+(-1) (2k)Bu +.

Now expand out these polynomials in trigonometric series when u is restricted to [0, 1].

PROPOSITION C-6. Foru € [0,1] and k =1,2,...,

(1) au(u) = (~1)**12. (21;)12“(’;’(1?)72’:4).
sin(2jmu)

(2) $aes(u) = (—1)FF12- 2k + 1)1 ey

j=1

PROOF: As in the proof of Proposition A-4, one has

. 1 e¥? dz had e¥? dz
Jim 5 /;m — Z Res;=anxik (e‘ — 12—,,) . (C-7)

k=—0c0

Forn>1
e? 1

=0 uniformly in z.
Cm

Thus, the left side of (C-7) equals 0. By definition, ¢,(u)/n! equals the residue at z = 0.
A simple calculation now proves (1), (2). &

m
m—oo ¥ —1 27

Remark. One denotes by ¢;(u),s = 2,3,... the periodic function defined by the series
in (1), (2). Similarly, one sets &;(u),t > 2, to be the periodic functions defined, using the
same formulae as in the definitions of o;(u), but using the ¢, instead. These functions
must agree with the corresponding ¢;(u) for u € [0,1]. Also, one sets #,(u) to equal the
series corresponding to (2) with k£ = 0. This just gives a new notation for ¢(u). One then
notes that ¢,(u) =u ~ 1 only if u € (0,1). N

The following properties are easily verified.
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ProprosITION C-8.
(1) Fori=1,2,...,and u € [0,1], @ipq(u) = (i + 1)@;(u);
(2) im,_,pn- al(u) =1/2, limy_n+ ¢, (u) =—-1/2.

Given a < b, set M = [a] + 1, N = [b]. Then, using the notation ¢, in place of ¢ in
(C-4), one has

N b _ _ b
> 1 = [ fwiu+ B @f@) - FOIO) + [ H@F Wi, (©9)
M a a

where a resp. b is now understood to be any number in (M — 1, M) resp. (N, N +1).

Now assume that f satisfies the decay at infinity condition (C-4). Then (C-9) can be
extended as follows. First, one can let b — oco. The resulting summatory formula is:

% f(n) = fM f(u)du + ,(a)f(a) + ] F(w)d, (u)du.
Now let a /' M. By (C-8)(2), gl(a) — 1/2. Thus,

;fn)—/ F(u)du + L2 ] F(u)F (u)du

For any b > a one uses (C-8)(1) to write

b '
[ rea=1 (“"’52(“)

/ £ ) du

Again, (C-4) implies that one can take the limit as 5 — co and obtain, after simplification,

S im= [ s+ 100 - LODBOD 2 [ o145, (i,
M

Continuing this k times yields

had oo ' v (k=1) -
> sy = [ " fdu+ L OO _ SO0B00 (s SEDODF00)

L S [ O, (C-10)

71



REFERENCES

[A] V. 1. Arnold, Remarks on the stationary phase and Cozeter numbers, Russian Math. Surveys 28
(1973), 19-48.

[Ati) M. Atiyah, Resolution of singularities and division of distributions, Comm. Pure and Appl. Math.
23 (1970), 145-150.

[Be-Ge] J. Bernstein and S. Gelfand, Meromorphy of the function P*, Functional Analysis and Appl.
3 (1969), 84-86.

[Be] J. Bernstein, The analytic continualion of generalized functions with respect to a parameter, Func-
tional Analysis and Applications 6 (1972), 26-40.

[Bo] S. Bochner, Zeta functions and Green’s funclions for linear partial differential operators of elliptic
type with constant coefficients, Ann. of Math. 57 (1953), 32-56.

[{CdV] Y. Colin de Verdiere, Nombre de points entiers dans une famille homothetigue de domains de
R., Ann. Ec. Norm. Sup. 10 (1977), 559-576.

(Ep] P. Epstein, Zur Theorie allgemeiner Zetafunctionen, Math. Annalen 56 (1903), 615-644.
[G-S] I. Gelfand and G. Shilov, “Les Distributions t. 1,” Dunod, 1972.

[H8] L. Hérmander, “Analysis of Linear Partial Differential Operators II,” Grundlehren Series, Springer-Verlag,
1983.

[Ig] J-1 Igusa, “Lectures on Forms of Higher Degree,” Tata Institute Lecture Notes Series, Springer-Verlag,
1978.

[Kr] E. Kratzel, “Lattice Points,” Mathematics and its Applications (East European series), Kluwer
Acad. Publishers, 1988,

[La-1] E. Landau, Zur analytischen Zahlentheorie der definiten quadratischen Formen (Uber die Git-
terpunkte in einem mehrdimensionalen Ellipsoid), Sitzungsber. Kgl. Preuss. Akad. Wiss. 31 (1915),
458-476.

[La-2] E. Landau, Uber die Anzahl der Gitierpunkte in gewissen Bereichen (Zweite Abhandlung), Kgl.
Ges. d. Wiss. Nachrichten. Math-Phys. Klasse. (Gottingen) 2 (1915), 209-243.

{Li-1] B. Lichtin, Generalited Dirichlet Series and B-functions, Comp. Math. 65 (1988), 81-120.

[Li-2] B. Lichtin, On the Moderate Growth of Generalized Dirichlet Series for Hypoelliptic Polynomials,
Compositio Math. 80 (1991), 337-354.

[Li-3] B. Lichtin, The asymptotica of a laltice point problem determined by a hypoelliptic polynomial
{to appear in Proc. of Conference on D-modules and Microlocal Geomeiry, Lisbon 1990, de Kluyler
publ.).

[Li-4] B. Lichtin, Volumes and Lattice points- a proof of a conjeciure of L. Ehrenpreis, (to appear in
Proc. of International Cong. on Singularities, Lille 1991).

[Li-5] B. Lichtin, Some Formulae for Poles of |f(z,y)|*, Amer. J. of Math. 107 (1985), 130-162.

[Lnd] E. Lindelof, “Le Calcul de Résidus et ses applications & la Theorie des Fonctions,” Chelsea
Publishing Co., 1947.

[Ma-1] K. Mahler, Uber einen Satz von Mellin, Mathematische Annalen 100 (1928), 384-398.

72



[Ma-2] K. Mahler, Zur Fortsetzbarkeit gewisser Dirichletacher Reihen, Mathematische Annalen 102
(1929), 30-48.

[R) B. Randol, A lsttice point problem I, Trans. AMS 121 (1966), 257-268.

[Sa] P. Sargos, Prolongement meromorphe des séries de Dirichlet associées d des fractions rationelles
de plusieurs variables, Ann. Inst. Fourier 33 (1984), 82-123.

[Sh] T. Shintani, A remark on Zeta functions of Algebraic Number fields, “Automorphic Forms- Pro-
ceedings of the Bombay International Colloquium,” Tata Institute of Fundamental research, 1979,
pp. 255-260.

[Ti-1] E. C. Titchmarsh, “The Theory of the Riemann Zeta-Function,” Second edition, Oxford University
Press, 1986.

[Ti-2] E. C. Titchmarsh, “The Theory of Functions,” Second edition, Oxford University Press, 1939.

[Va] A. Varcenko, Newton polyhedra and estimation of oscillating sntegrals, Functional Analysis and
Applications 10 (1976), 13-38.

73



