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TWISTED BURNSIDE-FROBENIUS THEORY FOR ENDOMORPHISMS

ALEXANDER FEL’SHTYN AND EVGENIJ TROITSKY

Abstract. We prove that the number R(ϕ) of ϕ-conjugacy (or Reidemeister) classes of an
endomorphism ϕ (and its iterations) of a group G from several classes of groups (including
polycyclic) is equal to the number of fixed points of the induced map ϕ̂ (respectively, its

iterations) of an appropriate subspace of the unitary dual Ĝ, when R(ϕ) <∞ (respectively,
R(ϕn) <∞). This implies Gauss congruences for Reidemeister numbers.

In contrast with the case of automorphisms, studied previously, we have a plenty of
examples, even among groups with R∞ property.

Introduction

The Reidemeister number or ϕ-conjugacy number of an endomorphism ϕ of a group G is
the number of its Reidemeister or ϕ-conjugacy classes, defined by the equivalence

g ∼ xgϕ(x−1).

They play an important role in several fields of Mathematics, including Algebraic Geometry
and Dynamics (see e.g. an exposition in [16, 23] and basic sources [44, 1, 29, 32, 9]).

An important problem in the field is to identify the Reidemeister numbers with numbers
of fixed points on an appropriate space in a way respecting iterations. This opens possibility
of obtaining congruences for Reidemeister numbers and other important information.

For the role of the above “appropriate space” typically some versions of unitary dual can
be taken. This desired construction is called the twisted Burnside-Frobenius theory (TBFT),
because in the case of a finite group and identity automorphism we arrive to the classical
Burnside-Frobenius theorem on enumerating of (usual) conjugacy classes.

In the case of automorphism this problem was solved for polycyclic-by-finite groups in
[16, 23]. Preliminary and related results, examples and counter-examples can be found in
[11, 8, 9, 15, 17, 12, 14, 47, 49].

The importance of obtaining the present results namely for endomorphisms is justified by
a plenty of examples (in contrast with the case of automorphisms) (see, in particular, 1.1,
1.4, and 6.4 below).

A related fact is that, in contrast with TBFT for automorphisms, TBFT for endomor-
phisms is weakly connected with the theory of R∞-groups (see e.g. Example 6.4). A group
is called R∞ if any its automorphism has infinite Reidemeister number. This was the subject
of an intensive recent research and for many groups this property was established, see the
following partial bibliography and the literature therein: [10, 36, 18, 19, 46, 30, 13, 2, 26, 4,
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20, 33, 37, 40, 38, 6, 21, 27, 28, 43, 7, 5, 22, 31, 48]. In some situations the property R∞ has
some direct topological consequences (see e.g. [28]).

Decision problems for twisted conjugacy classes of endomorphisms of polycyclic groups
were studied in [42].

The paper is organized in the following way.
In Section 1 we show how drastically the theory of twisted conjugacy classes for endomor-

phisms differs from the theory for automorphisms.
In Section 2 we introduce and investigate a dual object for a pair (G,ϕ).
In Section 3 we prove Gauss congruences for Reidemeister numbers.
In Section 4 we discuss proof of twisted Burnside–Frobenius theorem for endomorphisms

of any finite group.
Section 5 is technical.
In Section 6 we proof the twisted Burnside–Frobenius theorem for endomorphisms of

polycyclic groups. We finish the paper with a series of examples of R∞ groups admitting
endomorphisms with finite Reidemeister numbers .
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1. Preliminaries

First of all, let us make the following observation, showing how drastically the Reidemeister
numbers world for endomorphisms differs from the Reidemeister world for automorphisms.

Proposition 1.1. For any group G there exists an endomorphism ϕ : G→ G with R(ϕ) <
∞, namely R(ϕ) = 1.

Proof. Take ϕ to be the trivial map ϕ(g) = e for any g ∈ G. �

This observation can be enforced.

Proposition 1.2. Suppose, ϕ : G → G is an endomorphism and K := Kerϕ. Then all
Reidemeister classes are some unions of K-cosets.

Proof. Let g1 and g2 be in a K-coset, i.e. g1g
−1
2 = k ∈ K. Then g1 = kg2 = kg2ϕ(k−1). �

Using Lemma 1.9 we immediately obtain

Corollary 1.3. The map pϕ : G→ G/K gives a bijection of Reidemeister numbers.

Corollary 1.4. Any endomorphism with finite image has a finite Reidemeister number.

Definition 1.5. Denote by Ĝ the unitary dual of G, by Ĝf the part of the unitary dual

formed by irreducible finite-dimensional representations, and by Ĝff the part of Ĝf formed
by finite representations, i.e. representations that factorize through a finite group.

Definition 1.6. Let us call o.t. commutant the operator theoretical commutant of a set D of
bounded operators on a Hilbert space, i.e. the subset of the algebra of all bounded operators
on this space, formed by all operators that commute with all elements of D. Denote it DF.
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Lemma 1.7. A representation is irreducible if and only if the o.t. commutant of the set of
representing operators is formed just by scalar operators [34, Theorem 2, p. 114].

In particular, if ρ is irreducible and ϕ is an epimorphism, ρ ◦ ϕ is also irreducible.

Lemma 1.8. If representations π and ρ of G are equivalent, then π ◦ ϕ and ρ ◦ ϕ are
equivalent for any endomorphism ϕ : G→ G.

Proof. Indeed: use the same intertwining operator. �

The following statement is well known

Lemma 1.9. Suppose, ϕ : G→ G is an endomorphism and H ⊂ G is a normal ϕ-invariant
subgroup, then p : G→ G/H induces an epimorphism of Reidemeister classes.

Proof. Indeed, suppose, p(g′) = p(g̃)p(g)p(ϕ(g̃−1)). Then it is equal to p(g̃gϕ(g̃−1)). �

Also, we need the following

Lemma 1.10. Any Reidemeister class of ϕ is ϕ-invariant.

Proof. Indeed, ϕ(x) = x−1xϕ(x). �

The following fact can be extracted from [25, Prop. 1.6].

Lemma 1.11. In the above situation R(ϕ|H) 6 R(G) · |C(ϕG/H)| where C(ϕG/H) is the fixed
point subgroup for the induced map ϕG/H : G/H → G/H.

The following statement is well known in the field.

Lemma 1.12. A right shift by g ∈ G maps Reidemeister classes of ϕ onto Reidemeister
classes of τg−1 ◦ ϕ, where τg is the inner automorphism: τg(x) = gxg−1.

Proof. This follows immediately from the equality

xyϕ(x−1)g = x(yg)g−1ϕ(x−1)g = x(yg)(τg−1 ◦ ϕ)(x−1).

�

2. Dual object for a pair (G,ϕ)

Definition 2.1. We will call a representation ρ a ϕ̂-f -point, if ρ is equivalent to ρ ◦ φ (we
avoid to say that it is a fixed point, because we can not define the corresponding dynamical
system).

Definition 2.2. An element [ρ] ∈ Ĝ (respectively, in Ĝf or Ĝff ) is called ϕ-irreducible if
ρ ◦ ϕn is irreducible for any n = 0, 1, 2, . . . .

Denote the corresponding subspaces of Ĝ (resp., Ĝf or Ĝff ) by Ĝϕ (resp., Ĝϕ
f or Ĝϕ

ff ).

In some important cases these subspaces coincide with the entire spaces:

Proposition 2.3. (1) If G is abelian, Ĝ = Ĝf = Ĝϕ = Ĝϕ
f .

(2) If ϕ is an epimorphism, Ĝ = Ĝϕ and Ĝf = Ĝϕ
f

Proof. The first statement immediately follows from the fact that a representation of an
abelian group is irreducible if and only if it is 1-dimensional.

The second one follows from Lemma 1.7 keeping in mind that ϕn is an epimorphism if
and only if ϕ is. �
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Evidently continuous (w.r.t. the topology of weak containment) maps ϕ̂n : [ρ] 7→ [ρ ◦ ϕn]
are defined for both subspaces (generally not a homeomorphism!) and ϕ̂n = (ϕ̂)n Thus we
obtain a dynamical system as the corresponding action of the semigroup N0 = {0, 1, 2, . . . }
(we will reserve N for {1, 2, . . . }).

The key observation is the following one:

Lemma 2.4. Let [ρ] ∈ Ĝ be an ϕn-f-point for some n ≥ 1, i.e. the representations [ρ] and

[ρ ◦ ϕn] are equivalent. Then [ρ] ∈ Ĝϕ.

Proof. By Lemma 1.8 we obtain

ρ ∼ ρ ◦ ϕn ∼ · · · ∼ ρ ◦ ϕkn ∼ . . .

In particular, all they are irreducible. Now consider an arbitrary m and choose k such that
m ≤ kn. Then Im ρ◦ϕm ⊇ Im ρ◦ϕkn and (Im ρ◦ϕm)F ⊆ (Im ρ◦ϕkn)F. It remains to apply
Lemma 1.7 and conclude that ρ ◦ ϕm is irreducible. �

Corollary 2.5. So, we have no dynamical system generated by ϕ on Ĝ (resp, Ĝf , or Ĝff)
generally, but we have the well-defined notion of a ϕ̂n-f-point.

The corresponding well-defined dynamical system exists on Ĝϕ (resp, Ĝϕ
f , or Ĝϕ

ff) and its
n-periodic points are exactly ϕ̂n-f-points.

Definition 2.6. Denote the number of ϕ̂n-f -points by F(ϕ̂n).

3. TBFT implies congruences

Definition 3.1. We say that TBFT (resp., TBFTf , TBFTff ) takes place for an endomor-
phism ϕ : G→ G and its iterations, if R(ϕn) <∞ and R(ϕn) coincides with the number of

ϕ̂n-f -points in Ĝ (resp., in Ĝf , Ĝff ) for all n ∈ N.
Similarly, one can give a definition for a single endomorphism (without iterations).

Definition 3.2. Denote by µ(d), d ∈ N, be the Möbius function, i.e.

µ(d) =

 1 if d = 1,
(−1)k if d is a product of k distinct primes,
0 if d is not square− free.

Theorem 3.3. Suppose, TBFT (resp., TBFTf or TBFTff) takes place for an endomor-
phism ϕ : G→ G and its iterations. In particular, R(ϕn) <∞ for any n. Then one has the
following congruences for Reidemeister numbers:∑

d|n

µ(d) ·R(φn/d) ≡ 0 mod n

for any n.

Proof. This follows from 2.5 and the general theory of congruences for periodic points (cf.
[45, 50]).

More precisely, let Pn be the number of periodic points of least period n of the dynamical
system of 2.5. Then R(ϕn) = F(ϕ̂n) =

∑
d|n
Pd. By the Möbius inversion formula,∑

d|n

µ(d)R(ϕn/d) = Pn ≡ 0 mod n,

since each orbit brings to Pn just n points. �
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Remark 3.4. In [24] it is shown that TBFTf and TBFTff are equivalent for finitely gen-
erated groups (see also [49]).

4. TBFT for endomorphisms of abelian and finite groups

For these classes all irreducible representations are finite-dimensional. That is why TBFT
is the same as TBFTf . In [11] using Pontryagin duality the following statement was proved.

Proposition 4.1. TBFTf holds for any endomorphism of an abelian group.

For polycyclic groups below we need also

Proposition 4.2. TBFTff holds for any endomorphism of an abelian group.

Proof. Indeed, in an abelian group

xϕ(x−1)yϕ(y−1) = (xy)ϕ((xy)−1), (xϕ(x−1))−1 = x−1ϕ(x),

xgϕ(x−1)(ygϕ(y−1))−1 = (xy−1)ϕ((x−1y)).

This shows that the Reidemeister class of e is a subgroup H, and the other classes are
H-cosets. Being a Reidemeister class, H is ϕ-invariant (see Lemma 1.10 above) and the
factorization p : G→ G/H gives a bijection of Reidemeister classes. The induced action on

G/H is trivial, as well as on Ĝ/H. The fixed representations ρ ◦ p, where ρ runs over Ĝ/H,
are desired finite representations. �

Theorem 4.3 (cf. [11]). Let ϕ : G→ G be an endomorphism of a finite group G. Then the

Reidemeister number R(ϕ) coincides with the number of ϕ̂-f-points on Ĝ, i.e. TBFT is true
in this situation.

Proof. Let us note that R(ϕ) is equal to the dimension of the space of ϕ-class functions (i.e.
those functions that are constant on Reidemeister classes). They can be also described as
fixed elements of the action a 7→ gaϕ(g−1) on the group algebra C[G]. For the latter algebra
we have the Peter-Weyl decomposition

C[G] ∼=
⊕
[ρ]∈Ĝ

EndVρ, ρ : G→ U(Vρ),

which respects the left and right G-actions. Hence,

R(ϕ) = +
[ρ]∈Ĝ

dimTρ, Tρ := {a ∈ EndVρ | a = ρ(g)aρ(ϕ(g−1) for all g ∈ G}.

Thus, if 0 6= a ∈ Tρ, a is an intertwining operator between the irreducible representation
ρ and some representation ρ ◦ ϕ. This implies that ρ is equivalent to some (irreducible)
subrepresentation π of ρ◦ϕ (cf. [39, VI, p.57]). Hence, dim ρ = dimπ, while dim ρ = dim ρ◦ϕ.
Thus, π = ρ ◦ ϕ, and is irreducible. In this situation dimTρ = 1 by the Schur lemma.
Evidently, vice versa, if ρ ∼ ρ ◦ ϕ then dimTρ = 1. Hence,

R(ϕ) = +
[ρ]∈Ĝ

{
1, if ρ ∼ ρ ◦ ϕ
0, if ρ 6∼ ρ ◦ ϕ = number of ϕ̂-f -points.

�
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5. Technical lemmas

We will need the following

Lemma 5.1. Let ρ be a finite representation. It is a ϕ-f-point if and only if there exists a
non-zero ϕ class function being a matrix coefficient of ρ.

In this situation this function is unique up to scaling and is defined by the formula

(1) TS,ρ : g 7→ Tr(S ◦ ρ(g)),

where S is an intertwining operator between ρ and ρ ◦ ϕ:

ρ(ϕ(x))S = Sρ(x) for any x ∈ G.

In particular, TBFTff is true for ϕ if and only if these matrix coefficients form a base of
the space of ϕ-class functions.

Proof. First, let us note that (1) defines a class function:

TS,ρ(xgϕ(x−1) = Tr(Sρ(xgϕ(x−1))) = Tr(ρ(ϕ(x))Sρ(g)ρ(ϕ(x−1)) = Tr(Sρ(g)).

If S 6= 0, then ρ(a) = S∗ for some a ∈ `1(G), and Tr(SS∗) 6= 0. Thus, the ϕ-class function is
non-zero. On the other hand, any matrix coefficient of ρ, i.e. a functional T : End(Vρ)→ C
has the form g 7→ Tr(Dρ(g)) for some fixed matrix D 6= 0. If it is a ϕ-class function, then
for any g ∈ G, or similarly, a ∈ `1(G),

Tr(Dρ(a)) = Tr(Dρ(xaϕ(x−1))) = Tr(ρ(ϕ(x−1))Dρ(x)ρ(a)).

Since ρ(a) runs over all the matrix algebra, this implies D = ρ(ϕ(x−1))Dρ(x), or ρ(ϕ(x))D =
Dρ(x), i.e. D is the desired non-zero intertwining operator.

The uniqueness up to scaling follows now from the explicit formula and the Shur lemma.
The last statement follows from linear independence of matrix coefficients of non-equivalent

representations. �

Lemma 5.2. A group G satisfies TBFTff for an endomorphism ϕ : G → G if and only if
there exists a ϕ-equivariant factorization of G onto a finite group F , such that Reidemeister
classes on G map onto distinct classes on F .

Proof. Let ρ1,. . . ρk be all finite ϕ-f -representations, F1, . . .Fk, Fi = ρi(G) the corresponding
finite groups. Suppose, g ∈ Ker ρi =: Ki. Then ρ(ϕ(g)) = Sρ(g)S−1 = SS−1 = e. Hence,
Ki is a normal ϕ-invariant subgroup. Define K := ∩Ki. It is still a normal ϕ-invariant
subgroup of finite index. Let F := G/K. By Lemma 1.9 the Reidemeister number of the
induced map ϕF satisfies R(ϕF ) ≤ R(ϕ). On the other hand, ρi define disjoint irreducible
ϕF -f -representations of F . By Lemma 5.1 this implies R(ϕF ) ≥ R(ϕ). Thus, G → F gives
a bijection of Reidemeister classes.

The opposite statement follows from Lemma 5.1 and Theorem 4.3. Indeed, if p : G→ F is
the mentioned epimorphism with r = R(ϕ) = R(ϕF ), then by Theorem 4.3 we have exactly r
pairwise non-equivalent irreducible unitary ϕF -f -representations ρ1, . . . , ρr of F . Then ρi ◦ p
play the same role for G. Finally G can not have “additional” ϕ-f -representations by linear
independence in Lemma 5.1. �

We can enforce this statement.
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Lemma 5.3. Let ϕ : G → G be an endomorphism with R(ϕ) < ∞. Suppose there exists
a (not necessarily equivariant) factorization p of G onto a finite group F , such that Reide-
meister classes on G map onto distinct subsets (not necessarily classes) on F . Then G has
TBFTff for ϕ.

Proof. For F characteristic functions of any sets are matrix coefficients of some (finite)
representations. Thus, characteristic functions of Reidemeister classes on G are matrix
coefficients of some finite representations (coming from F ). Lemma 5.1 completes the proof.

�

Lemma 5.4. Let ϕ be an endomorphism of a group G with R(ϕ) <∞. Then G has TBFTff

for ϕ if and only if the right shifts of all Reidemeister classes form a finite number of subsets
of G.

Proof. First, let us note, that if we have a bijection for Reidemeister classes of ϕ, then we
have a bijection for Reidemeister classes of any τg ◦ ϕ by Lemma 1.12.

Now the “only if” direction is evident, because these sets are pre-images of some sets in
finite F .

Suppose, there are finitely many shifts. This means, that the stabilizers under right shifts
of any Reidemeister class of ϕ have finite index. Since R(ϕ) < ∞, their intersection is a
subgroup H in G of finite index. By Lemma 1.12, its elements stabilize Reidemeister classes
of any τg ◦ ϕ.

Suppose, h ∈ H, then

ygϕ(y−1)zhz−1 = y(gz)z−1ϕ(y−1)zhz−1 = y(gz)(τz−1 ◦ ϕ)(y−1)hz−1

= x(gz)(τz−1 ◦ ϕ)(x−1)z−1 = xgϕ(x−1).

Thus, H is normal (and ϕ-invariant, if ϕ is an automorphism). The projection G→ G/H =:
F maps Reidemeister classes of ϕ to disjoint sets in F . Indeed, if h ∈ H, then for any g,

e · h = xe(τg ◦ ϕ)(x−1).

This means, that H entirely is in the Reidemeister class of e of any τg ◦ ϕ. By Lemma 1.12
this means that all Reidemeister classes of φ are formed by H-cosets and we are done.

It remains to apply Lemma 5.3. �

Lemma 5.5. Suppose, G has only finitely many inner automorphisms and an endomorphism
ϕ : G→ G with R(φ) <∞. Then G has TBFTff for ϕ.

Proof. By Lemma 1.12, the number of right shifts of Reidemeister classes is not more than
R(φ) · |Inn(G)|. It remains to apply Lemma 5.4. �

Lemma 5.6. Let ϕ : A → A be an endomorphism of a finitely generated abelian group A
with R(ϕ) <∞. Then the number of fixed elements C(ϕ) on A is finite.

Proof. The torsion subgroup is finite and totally invariant. Factorizing we reduce the problem
to the case of Zn by Lemma 1.9. In this case we will show that ϕ has only the trivial
fixed element 0. By [11] in this case det(Id−ϕ) 6= 0, considered as n × n integer matrix.
Diagonalising this matrix by left and right multiplication by unimodular matrix (as it was
done e.g. in [3]) we see that it can not have (non-zero) eigenvector with eigenvalue zero, i.e.
there is no non-trivial ϕ-fixed point. �
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6. TBFTff for endomorphisms of polyciclic groups

Consider a polycyclic group G. Its (finite) derived series is formed by fully invariant
subgroups Gi with abelian quotients Ai = Gi/Gi+1. The key difference from a general
finitely generated solvable group is the following: all Gi and Ai are finitely generated (see
[41] for details). Let Gn 6= {e}, Gn+1 = {e}.

We will argue by induction. For the basis of this induction let us observe that for the
abelian group Gn and any its automorphism with finite Reidemeister number we have TBFTf

by Prop. 4.1. Now suppose by induction that same is true for Gi+1 and prove it for Gi.
Denote Gi+1 =: H, Gi =: Γ, Ai =: A.

Consider an endomorphism ϕ : Γ → Γ with R(ϕ) < ∞ and induced endomorphisms
ϕH : H → H and ϕA : A → A. Then by Lemma 1.9 R(ϕA) < ∞ and by Lemma 5.6 the
number of fixed elements of ϕA on A is finite. Thus, by Lemma 1.11 R(ϕH) < ∞. Let
H0 ⊂ H be a normal ϕ-invariant subgroup of finite index such that H → H/H0 gives a
bijection on Reidemeister classes (see Lemma 5.2). This means that classes of ϕH are some
unions of H0 cosets. Consider automorphisms τg : H → H, τg(h) = ghg−1. g ∈ G, and
define H1 := ∩g∈Γτg(H0). All subgroups in the intersection have the same finite index in H.
Since H is finitely generated, H1 also has a finite index. By construction, H1 is normal in
Γ. Also,

ϕ(τg(h0)) = ϕ(g)ϕ(h0)(ϕ(g))−1 = τϕ(g)(ϕ(h0)), h0, ϕ(h0) ∈ H0,

i.e. ϕ(τg(H0)) ⊂ τϕ(g)(H0). Hence, H1 is ϕ-invariant and H1 ⊂ H0, thus H1 can play the
same role as H0 with an additional property of being normal in Γ. In particular, classes of
ϕH are some unions of H1 cosets. The same is true for intersections of Reidemeister classes
of ϕ with H (because they are unions of some classes of ϕH). This means that Γ → Γ/H1

separates these classes, i.e. the classes which map on the Reidemeister class of e ∈ A under
Γ → A. Similarly we can find subgroups H2, . . . HR(ϕA) which separate classes over other
classes of A. For this purpose, suppose g ∈ Γ be over some other class of A. Then the classes
of τg ◦ϕ (with the same finite Reidemeister number) that intersect with H are obtained from
the classes under consideration by a shift by g. Then a group Hg

1 constructed for τg ◦ϕ|H in
the same way as H1 for ϕH , will separate these classes. Moreover, it will be τg ◦ ϕ-invariant
for this specific g and normal in Γ, i.e. τg′-invariant for any g′ ∈ Γ. Taking g′ = g−1 we
see that Hg

1 is ϕ-invariant. Taking the (finite !) intersection of H1, Hg
1 ,... we obtain a

ϕ-invariant subgroup H ′ ⊂ H, which is normal in Γ, and p : Γ→ Γ/H ′ = Γ′ gives a bijection
on Reidemeister classes. F := p(Γ) ⊂ Γ′ is a finite normal subgroup and Γ′/F ∼= A.

Thus, Γ′ is finitely generated finite-by-abelian group, and it has finitely many inner auto-
morphisms. Lemma 5.5 completes the proof of the following statement.

Theorem 6.1. Let ϕ : G → G be an endomorphism of a polycyclic group with R(ϕ) < ∞.
Then TBFTff is true for ϕ.

Remark 6.2. The results of this section can be extended to some virtually polycyclic groups
(under supposition of some polycyclic subgroup to be ϕ-invariant).

More precisely the following statement can be proved by word-by-word rewriting of the
above argument.

Theorem 6.3. Let G be an almost polycyclic group admitting a fully invariant polycyclic
subgroup of finite index. Then TBFTff is true for any endomorphism ϕ : G → G with
R(φ) <∞.
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Let us illustrate this theorem by the following

Example 6.4. In [31] seven series of almost polycyclic (polycyclic-by-finite) groups with the
property R∞ (any automorphism has infinite Reidemeister number) were found. They have
a fully invariant polycyclic subgroup of finite index ([31, Remark 2.1], [35]). Thus, they are
covered by Theorem 6.3.

On the other hand, they evidently have endomorphisms with finite Reidemeister number
(see Prop. 1.1 and Cor. 1.4).
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in R. Thompson’s group F . Pacific J. Math. 238, No. 1, 1–6, 2008.

[3] Robin B. S. Brooks, Robert F. Brown, Jingyal Pak, and Douglas H. Taylor. Nielsen
numbers of maps of tori. Proc. Amer. Math. Soc. 52, 398–400, 1975.

[4] J. Burillo, F. Matucci, and E. Ventura. The conjugacy problem in extensions of Thompson’s
group F. e-print, 2013. arXiv:1307.6750.
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