Mutation of knots

by
C. Kearton

MPI/87-47

Max-Planck-Institut
für Mathematik
Gottfried-Claren-StraBe 26
D-5300 Bonn 3
West Germany

AMS classification: 57M25

Abstract. In general, mutation does not preserve the Alexander module or the concordance class of a knot.

For a discussion of mutation of classical links, and the invariants which it is known to preserve, the reader is referred to $[L M, A P R, M T]$. Suffice it here to say that mutation of knots preserves the polynomials of Alexander, Jones, and HOMFLY, and also the signature. Mutation of an oriented link k can be described as follows. Take a diagram of k and a tangle T with two outputs and two inputs, as in Figure 1.

Fig. 1

Fig. 2

Fig. 3

Rotate the tangle about the east-west axis to obtain Figure 2 , or about the north-south axis to obtain Figure 3, or about the axis perpendicular to the paper to obtain Figure 4. Keep or reverse all the orientations of T as dictated by the rest of k. Each of the links so obtained is a mutant of k.

The reverse k^{\prime} of a link k is obtained by reversing the orientation of each component of k. Let us adopt the
convention that a knot is a link of one component, and that $k+1$ denotes the connected sum of two knots k and 1 .

Lemma. For any knot k, the knot $k+k^{\prime}$ is a mutant of $\mathrm{k}+\mathrm{k}$.

Proof. Shrink one of the summands in $k+k$ to a small knot, and arrange a diagram of $k+k$ to have a tangle as in Figure 5.

Fig. 5

Fig. 6

Rotate about the axis perpendicular to the page, to obtain Figure 6, which represents $k+k^{\prime}$. Note that whatever convention we make about orientations, we always obtain k+k' .
Q.E.D.

By a result of C. Livingston [L], there exist knots k which are not concordant to their reverses k ' . It follows at once that $k+k$ is not concordant to $k+k$, and hence that mutation does not preserve the concordance class in general. I should like to thank Cameron Gordon for reminding me of Livingston's result.

In [K] there is an example of a knot k, in fact the pretzel knot ($25,-3,13$), whose Steinitz-Fox-Smythe row ideal class ρ does not satisfy $\rho^{2}=1$. The row ideal class of k^{\prime}, as pointed out in [K], is τ, the column ideal class of k. Of course, $\rho \tau^{\circ}=1$, and so we see that the row ideal class of $k+k$ is $\rho^{2} \neq 1$, whereas the row ideal class of $k+k^{\prime}$ is $\rho \tau=1$. Thus we have an example in which the knot module of $k+k$ is not isomorphic to that of $k+k^{\prime}$. Another example can be obtained, from [BHK, § 4], and other examples can be found using [B] and number theory tables.

I wish to thank the Max-Planck-Institut für Mathematik, where this paper was written, for their hospitality. Also I wish to acknowledge the support of the Royal Society through their European Science Exchange Programme, and of the SERC through a travel grant.

References

APR :	R.P. Anstee, J.H. Przytyck, D. Rolfsen: Knot polynomials and generalized mutation (Preprint).
B :	E. Bayer: Unimodular Hermitian and Skew-Hermitian Forms, Jour. Algebra 74(1982), 341-373.
BHK :	E. Bayer, J.A. Hillman, C. Kearton: The factorization of simple knots. Math. Proc. Camb. Phil. Soc. 90 (1981), 495-506.
K :	```C. Kearton: Noninvertible knots of codimension 2. Proc. Amer. Math. Soc. 40(1973), 274-276.```
LM :	W.B.R. Lickorish, K.C. Millett: A polynomial invariant of oriented links, Topology 26(1987), 107-141.
L :	C. Livingston: Knots which are not concordant to their reverses, Quart. Jour. Math. Oxford 34(1983), 323-328.
MTI :	H.R. Morton, P. Traczyk: Knots, skeins and algebras (Preprint).

