Elliptic genera of level N

for complex manifolds

F. Hirzebruch

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-StraBe 26
D -5300 Bonn 3

MPI/88-24



et

ELLIPTIC GENERA OF LEVEL N FOR COMPLEX MANIFOLDS

Friedrich Hirzebruch
Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Str. 26

D-5300 Bonn 3

Federal Republic of Germany

My lecture at the Como Conference was a survey on the theory of elliptic
genera as developed by Ochanine, Landweber, Stong and Witten. A good
global reference are the Proceedings of the 1986 Princeton Conference
[1]. In this contribution to the Proceedings of the Como Conference I
shall not reproduce my lecture, but rather sketch a theory of elliptic
genera of level N for compact complex manifolds which I presented in
the last part of my course at the University of Bonn during the Winter-
semester 1987/88. For a natural number N > 1 the elliptic genus of
level N of a compact complex manifold M of dimension d 1is a modu~
lar form of weight d for the group FI(N). In the cusps of TI(N) the

genus degenerates either to xy(H)/(1+y)d where -y 1is an Nth—root of

unity different from 1 or to x{M,K ") where K 1is the canonical
d

line bundle and 0 <k < N. Here x (M) = 2 xP(M)yP with

p=0
d
(M) = x(M.0P) = E (-1)%P'9 is the x,genus introduced in [13] and
q=0 '

x{(M,K~ ") 1is the genus with respect to the characteristic power series

x—x . e—(k/N)-x

1-e

which equals the holomorphic Euler number of M with coefficients in

the line bundle L¥ provided K = LM (see [13]).
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For N =2 the genus is expressible in Pontrjagin numbers and hence de-
fined for an oriented differentiable manifold M. The only possible

value of -y 1s -1 and the genus degenerates in the two cusps to

xl‘(u)/zd = sign(M)/2?  (dimg N = 2d)

or to

x(H.Kl/z

A
) = A(M) .
Only recently I realized that Witten in [19] studied also complex mani-

folds. His discussion includes the genus studied here, at least if one

restricts attention to the cusps with specialization x{M.K ).

In this report I shall also try to give an account of the rigidity theo-
rem for complex manifolds with circle actions which for N = 2 are due
to Taubes [18] and Witten with a new exposition by Bott [9]. These rigi-
dity theorems hold if the first Chern class of M 1is divisible by N,

i.e. if a holomorphic line bundle L with LN = K exists.

The results in this paper hold also for manifolds with a stable almost
complex structure and for circle actions which preserve this structure.
For simplicity we have formilated the results for complex manifolds
only.

I would like to thank the students of my course Thomas Berger and Rainer
Jung for writing notes. Many thanks to Nils-Peter Skoruppa who lectured
several times in my course when I was away and with whom I had helpful
discussion on modular forms. After my course I had intensive discussions
with Michael Atiyah on the rigidity theorem in Oxford and also with Don
Zagier at the Max-Planck-Institut.
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1. In the following N is a fixed natural number >1, the "variable”
x runs through the complex numbers, H 1s the upper half plane, T € H

and q = ezwiT. For a lattice L in C we consider the elliptic func-

tion g{x) with divisor N:O - Nra where a« € C 1is an N-division
point (a € L, Na € L). The function g 1is uniquely determined by L
and a (regarded as element of C/L) if we demand that the power series

of g 1in the origin begins with xN. The function f(x) = g(x)l/N is
uniquely defined if we request f{x) = x + higher terms. The function f
is elliptic with respect to a sublattice L' of L whose index in L
equals the order of a as element of C/L. For w € L the function
f(x+w)}/f(x) 1s constant and equals an N-th root of unity. After multi-
plying L with a non-vanishing complex number we can assume that

(1) L = 2ri(Zr + Z) and
0¢a=2w1['§¢+§] with 0O (k<N and 0¢ & <N

To write down a product development for f(x) in the case that L and

a are as in (1) we introduce the entire function

(2) *(x) = (1-e %) 1—1r (1-q"e ) (1-q"e¥)/(1-4™)2
n=

which has zeros of order 1 in the points of L. The function &(x)
equals the WeierstraB sigma-function for L up to a factor of the form

exp(blx + b2x2). It can be proved easily that

k
(3) f(x) = e’_‘x¢(x)¢(—a)/¢(x—a)

Namely, it suffices to check

-x —2wiT
e

(x+2riT) = -e ®(x).

For this replace in (2) the exponential e* by A and then substitute

A by Aq to see that the factor - A_lq_l comes out. In fact, we have

(for € = e271/N)



(4) f(x+2m1) = C56(x)

f(x+2wiT)= f-ef(x)

The function f(x) as belonging to L and a (see (1)) degenerates
for q — 0 to a function f_(x).

We have
£x) =M% L (1) for k>0
(5)
£(x) = (1-e ¥)(1-e)/(1-e"™) for k = O.
For reasons which are apparent from the introduction we put % = -y

for k =0 and have in this case

£,(x) = (1 X)(14y)/(14ye ™) with -y = ¢ 2 1.

The involution x — —x+a interchanges the zeros and poles of f(x)}.

Therefore,
f(x)f(-x+a),

which is elliptic for L, 1is in fact a constant # 0. We write the

constant as 0_2. Then c2N depends only on L and the chosen n-divi-

sion point as point of C/L. If the lattice and a are normalized as in
(1), then

{(k/N)a-a

¢(~a)2 =2

f(x)(fx+a) = e

and

(6) A o o-a)™Hg ¢



The coefficients of the power series developments of f(x)}/x, x/f(x)

and xi(xx determine each other. If one replaces in such a series x
by Ax, one obtains the corresponding function for the lattice R-IL

and the n-division point A-la. Therefore the coefficient of x' in any
of these series’ as function of the pair L, ¢ with a € C/L 1is homo-

geneous of degree -r. Also c2N i1s such a function of L and a. It

is homogeneous of degree -2N and is related to Dedekind’'s n—-function.

If the pair L,a 1is chosen as in (1), then the coefficients of f(x)/x
are indeed modular forms of weight r for the subgroup consisting of

the matrices ra b

c d] of SLz(Z) which satisfy

Be)fE) - (] mea m

Also 02N is a modular form of weight 2N for this group. (It still
has to be shown that these forms are holomorphic in the cusps.” See the

next section.)

2. The classification of pairs L,a where L 1is a lattice in € and
a € C/L with Na = 0 (but a # 0), up to multiplication by some complex

number A # 0, leads to the introduction of the modular group

FI(N)={[‘23]€SL2(Z)|cEOmodN.aE_dElmodN}

If we assume that the N-divison point has order N in C/L, then the

classes of pairs L,a are in one-to-one correspondence with the points

of the modular curve M/FI(N) where [2 :] acts on H by

aT+b
cT+d




This follows from the fact that each pair L,a 1is equivalent to a pair
of type (1) with a = 2mi/N (i.e. k =0, & = 1) . The coefficients of

r X f(x) _f'(x)
x in = x X§ (x) are modular forms of weight r for FI(N).

It remains to show that such a coefficient is holomorphic in each cusp

of H/FI(N). Transforming f(x) (taken for the lattice (1) with

= 2ri/N) to a cusp gives a function f(x) for some a = 2Wi(%T + %}
and the same lattice. The formulas (2) and (3) show immediately that
the q development of each coefficients of f(x) has only non-negative
povwers of q, fractional if k > O, but then a suitable root of q is
the local uniformizing variable at the cusp.

The coefficients e, of x %L%i% are the Eisenstein series . Thelir

q-developments (for k =0 and & = 1) for example can be read off from

(N E xq e E xg e
(x) 1- q 1—q NeX
n=0 n=1

E_Es_ _E_q_

1-(q"e n= 1-¢ qex

Furthermore, c2N (see (6)) 1is a modular form of weight 2N. For more
detailed formulae concerning these g-developments in the case N = 2

see [20]. For N > 2 and N # 4 the number of cusps of FI(N) equals

e(d)e(.

N

d/N

where ¢ 1is Euler’s function. Each cusp can be represented by several

division points a as in (1).

3. Let Hd be a compact complex manifold. The Chern classes ¢y of

Md are elements of the 2i-dimensional cchomology group H21(Hd.2). Let

¢ be the total Chern class of Hd split up formally



d

(8) c =§ oy = (14x)(14%5) . .. (14x)
1=0

where X{+Xgs. .. Xy can be regarded as 2-dimensional cohomology classes

d
in some manifold fibred over Hd (see [13]. § 13.3). Let Q(x) be a
fixed power series in the indeterminate x starting with 1 whose

coefficients are in some commutative ring containing Z. Then

is the genus of Hd with respect to the power series Q where in (9)
the symmetric expression Q(xl)Q(x2)...Q(xd) is written in terms of the
Chern classes in view of (8) and the 2d-dimensional component of this
expression is evaluated on Hd (compare [13], § 10.2). We define the

elliptic genus wN(Hd) by using the power series

X xP(x—«a
(10) A0 = Fy = $pocay

where a =27i/N and f(x) is taken for the pair L.a with

L = 2ni(Z7+Z). We put again { = e2vi/N_

Theorem. The elliptic genus ¢N[Hd) is a modular form of weight d

for the group FI(N). If one represents a cusp of FI(N) by

2,,1(%.,”%) with 0k <N and O & <N, then the value of ¢y (M,)
in this cusp equals

x(M KMy if k>0

and )(y(Hd)/(1+y)d if k=0 and -y = (°.

The theorem follows from the remarks in section 2 and from (5) by re-

calling, that x(Hd.K I) is the genus for the power series

> S e-(k/N)x

l—e_x



and xy(](d)/(l-l-y)d is the genus for the power series

X _ (14ye X)/(14y) .

1-e ¥

see [13].

A genus can be defined also by a power series Q{x) not beginning with
1 (we assume Q(0) = a, # 0). The definition is done by equation (9)

again. Then aalQ{aox) gives the same genus with a normalized power

series (i.e. the constant term equals 1). We now define $ﬁ(ﬂd) using

the power series

(11) 8(x) = %%"L), @ = 2wi/N.

Theorem. The elliptic genus ;N(Hd) is a modular function for FI(N)
if d = 0 mod 2N. We have

oy(My) = G (M) (@(-2)) ™ = Fr(My)ec

The result follows from the preceding theorem and the consideration in

section 1 and 2 which show that ¢(—a)-d = cd is a modular form for

FI(N) of weight d.
If d 1is not divisible by 2N, then

;N(Hd)zrv(d.zri)

is a modular function (where (d,2N) 1is the greatest common divisor of

d and 2N).One simply applies the theorem to the 2N/(d,2N)~th power of
M

"
The function ;N has poles in the cusps represented by (1) with k > O.

The order of the pole is given by (6). Let us restrict to the case that
N 1is a prime. For N =2 we have 2 cusps represented by (k.2) = (0,1)



and (k.2) = (1.0). For N odd, we have 2 - E%l cusps. There are N1

2
cusps represented by (k,2) = (0,8) and 1 ¢ & ¢ H%L and N1 cusps

2
represented by (k,&) = (k,0) and 1 ¢k ¢ !%l. In the first kind of

cusps the q development of ;N("&) begin with the constant term

xy(Hd) with y = —Ce. in the latter case it starts with

X(Hd.Kk/N) . E-k(N-k)d/2N

where E is a local uniformizing parameter for this cusp of H/FI(N).

(We have HN =q 1in {(6)).

4. For a complex vector bundle W of dimension r the exterior powers

Aiw and the symmetric powers SiW are well-defined vector bundles.
Their Chern classes can be calculated from those of W. If ¢

are the Chern classes of W (where ¢ is in the (2i)-dimensional

i
cohomology of the base space) and if we write formally

c=1+ C) *+Cy+..tC = (l+x1)(1+x2)...(1+xr)

then the Chern character (in the rational cohomology of the base space)
is given by

1, X2 *r

chiW) =e " +e "+...+ e

Over the rationals ¢ and ch determine each other. For the exterior

powers we write with some indeterminate t

T
i
A (W) = 2 Alw .t
1=0

i

and for the symmetric powers
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a0
i
S(M) = ) s«
1=0

i

Then we have for the Chern character

T X
(12) ch(AW) =TT (1+te)
i=1
T X
(13) ch(SW) =TT (1-te)!
1=1

formula (12) was often used in [13]. Formula (13) 1is, of course, a
special case of the general method to calculate the Chern classes

associated to given vector bundles by representations [7].

Following Witten's idea (see [19]) we write the elliptic genus ;N(Hd)'
or rather its q—development in the standard cusp. in the form

(14) oMy = ) X, (Mg R )"
n=0

Here, as before, -y =( = ezwi/N. Furthermore Rn is a virtual vector

bundle associated to the complex tangent bundle of Hd by a virtual re-
presentation of GL(d,C) (with coefficients in Z({)).

For a vector bundle W the polynomial xy(Hd.W) *is defined in [13]. We
have, if T 1is the tangent bundle of M

"
d

X, (Mg.W) = 2 x(M . APT* ® W)yP
p=0

We now can specify the Rn in (14). Let us recall that $N(Hd) is the
genus belonging to the power series (11)
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(15) Qx) =

l1-e n=1 l-qne

Therefore (by (12) and {13))

n

o«
00 L
(16) YR =TTA T -TTAa_ T-TTs (T+T19
=0 n=1 yq n=1 y q n=1 q

2wi/N

(with -y = { = e ).

We have

% -1
Ry=1. R = (1-0)T + (1-C7)T

Modulo the ideal (1-C) of Z({). the elliptic genus $(Ha) equals the

Euler-Poincare number e(Hd).

According to Witten's philosophy (compare also [2] and [3]) if we had a
xy—operator on the loop space iﬂd of Hd. we could try to calculate

(or define) its equivariant xy—genus for the natural Sl-action on ¥M
2rir

d
with q€8' (q=¢e"", 1 €R) by the Atiyah-Bott-Singer ([4]. [6])
fixed point theorem (fixed point set Hd (constant loops) in QHd). The
result for the equivariant xy-genus xy(ﬁﬂd.q) would be that it i1s the
genus with respect to the power series

2 1+ ne—x
x T —H=—

n=—=o l—qne X

This does not make sense as a power series in q, but formal manipula-

tions bring it to the form (15) provided (-y)d = 1. Observe that (15)

is a meromorphic function in the two variables x and q where

(x.q) € € and |q| < 1.
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5. The genus ;N(Hd) has in the standard cusp a development whose
coefficients are integral. They are elements of Z({). See formula (14).
In the cusps (represented by (1) with O <( k < N) this is not so. The

coefficients are of the form

x(My KN @ ¥ )

where Wn is a virtual vector bundle associated to the tangent bundle
by a virtual representation of GL(d,C) with coefficients in Z({).
The Wn can be calculated using (3). These coefficients are in general
of M, is divi-

1 d
sible by N they are integral. This divisibility condition is equiva-

not integral. If, however, the first Chern class ¢

lent to the existence of a holomorphic complex line bundle with

LN = K and the coefficients

k
x(My.L* @ W_)

become "Riemann-Roch numbers™ [13] which are integral

Theorem. If the first Chern class ¢4 of the complex manifold Hd is
divisible by N, then the coefficients of the q-developments of the

genus $N(Hd) in all cusps {given by {1)) are integral (€ Z({)): for

the elliptic genus ¢N(Hd) the coefficients are integral in a cusp with
k > 0, in the cusps with k = 0 they become integral after multiplica-

tion with (1-()d.

%

6. Let Hd be a compact complex manifold together with an action of

the circle S1 on Hd by holomorphic maps. We write elements of the

2riz

circle as A =e where z € R/Z. The group S1 acts on the virtual

bundles Rh (see (16)). It also acts on the "cohomology group"

(17) HY(M . APT" 8 R )
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vwhich is in fact a formal direct sum of cohomology groups
Hq(Hd.ApT* ® W) with coefficients in Z({). Since s! acts, we get

from (17) (considered equivariantly) a character of Sl. i.e. a finite
Laurent series in A. Taking alternating sums over q in (17) gives us

a character

: 3
x(lld.ApT ® R .2\)

and finally
d
X, (Mg R A) = E x(M;. APT @ R_.\)yP
p=0
and
(18) PN =) x (M R A"
n=0

It may be more convenient to return to our elliptic genus N with
characteristic power series Q{x)} (see (10)) and consider it equivari-
antly
(19) oy (M, ) = G (M, A)d(~a)

N*"qd’ N d°’

n
= )(y(Hd.Sn.)\)q
n=0

where the Sn are virtual bundles {(coefficients in Q({)). We can cal-

culate wN(Hd.R) using the Atiyah-Bott-Singer fixed point theorem

(holomorphic Lefschetz theorem [6]. p. 566). Before doing this some re-
1

marks concerning the fixed point set Hg of the action are necessary.



T
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1
The set Hg is a smooth submanifold of Hd being a disjoint union of

connected submanifolds of various dimensions. For each fixed point p ,

the circle acts in the tangent space Tp ., hence integers Mo My

are defined such that 7\€Sl acts by the diagonal matrix
m m, m

(A ATl d) . For each r € Z we consider those m, which are

equal to r. This leads to the eigenspace Er of Tp. Of course, Eo
S
is the tangent space in p of the connected component of M to which

d

P belongs. The numbers m (well defined up to order) depend

1°°°" .md
S1
only on the component of M q Over each component we have eigenspace

bundles, also denoted by Er'

The characteristic power series of the elliptic genus N is given in
(10) in the form Q(x) = x/f(x). For the fixed point theorem we need
1/7f(x). We put

= - S(xa)
(20) F(x) = 1/f(x) = IO ED)
We shall now give a formula for ¢N(Hd.7\) using the holomorphic
Lefschetz theorem writing it down in short hand form which will need

some explanation

1
(21) (M N) = (e F(x +2mim z) .. .F(x #+2mim z) )3 ]
where e is the product over these Xy for which m = 0. Recall
A= e21riz. Formula (21) has the following meaning. For each component of

the fixed point set, € is the Euler class (highest Chern class) of
its tangent bundle E_., the formal roots of the total Chern class of E
are the Xq with m,o= 0. The X with m,
roots of the total Chern class of the eigenspace bundle Er over the
component. Thus for EO one uses in the above product xF(x) = Q(x)
and for Er (r # 0) the function F(x+2mirz) which for rz € ZT+Z has

no pole for x =0 (and we use a general z) and hence is a power

0
=T #0 are the formal

series in x. Then one evaluates the expression in (21) on the component
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and adds over all components. Observe that the rotation numbers
(ml..... d) depend on the component and also the meaning of the Xy
which are the formal roots of the total Chern class restricted to the

component. According to (4) our function F(x) has the property
(22) F(x+2wi) = F(x), F(x+2wit) = {F(x)

where { = eZwi/N.

It follows immediately that ¢N(Hd.k) can be extended to an elliptic

function in z (with A = e2viz) for the lattice Z-Nr+Z. More pre-
cisely:
1
Let v Dbe an index for the connectedness components (Hg )U of the
1
fixed point set Hg . Then according to (21)
(23) (Mg A) = ) oy (Mg N),

v
where wN(Hd.A)U is an elliptic function for the lattice ZNT+Z

1
associated to (Hg )U. Indeed,

(24) oy(Mgha), = oy (Mg o2 (07D

={ - d‘Pﬂ(Hd';\)U

The exponent m+...4my depends on v, even the residue class of the

exponent mod N depends on v 1in general.

Definitign: The Sl-action on Hd is called N-balanced if for the com—

1
ponents (Hﬁ )U of the fixed point set the residue class of m +...+m

: 1 d
modulo N does not depend on u. If the action is N-balanced, the com—

mon residue class of m1+...+md is called the type of the action and

denoted by t.
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¥e have proved

Theorem. For an N-balanced Sl—ggglgg_gi_gggg t on the complex mani-
fold Hd' the equivariant elliptic genus wN(Hd,A) with A = e2wiz is

an elliptic function for the lattice Z°Nt + Z which satisfies

2ri(z+T))

(25) Py(Mq-Aa) = o (M. e

(t‘PN(Hd')\)

Remark Of course, ¢y can be regarded as a function of r and z. In
v 1t is a modular form of weight d. In fact, N is a2 meromorphic
Jacobi form on FI(N) of weight d and index 0. (see [11]).

7. We now shall approach the rigidity theorems which under certain con-
ditions state that the finite Laurent series’ xy(Hd.Rn.A) (see (16)

and (18)) do not depend on A. (Recall -y = e2wi/N)_ This rigidity

means that the elliptic function ¢N(Hd.k) of the preceeding theorem is
a constant (see (19}), i.e. we have to show that it has no poles. The
rigidity results were not included in my course at the University of
Bonn. When Michael Atiyah came to Bonn in February 1988 he explained to
me Bott's approach [9] and that it is rather close to our old paper [5]
and we discussed it in Oxford in March. I did not study Taubes®' paper
[18] in detail, but rather looked in Bott's report [9]. Then I carried
out the proof for the level N case during my visit in Cambridge
(England) in March 1988 as a guest of Robinson college.

Let us consider ¢N(Hd.k) as a function of A and q. It is meromor-

phic for A € ¢ and lal < 1. According to {21) it can have poles only
for mz € Zv+Z where m 1s a rotation number #0 occuring for one of

1
the components of Hﬁ . Of course, mz €Zr + Z means A" = qn where

n € 7. ¥e have
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(26) oMy A) = ) ¢ (A)a"”
n=0

with cn(k) a finite Laurent series {compare (18).(19)). The meromorphic

function ¢ (M,.A can have poles only on the curves A" = qn. If
N''d

(A.q) does not lie on such a curve, then the series (22) converges. If

2wik/r
AO = e
n

cisely on the curves AT = q with m=O0Omod r and n = 0. But still

is a primitive r—th root of unity, then (Ko.q) lies pre-

ay(¥gng) =) e (g)a”
n=0

converges for |q| ¢ 1, because this q—development can be calculated

A
from the fixed point set Hdo of AO’ namely

oq(My0y) = (egF(x +2mim k/r). . . (F(x #2mim k/r))[M)]

where € is now the product over those x for which m, EO0O mod r

J J

and where we interpret the formula in a similar way as in (21). If

lal] < R < 1, then there is a neighborhood U of AO in € such that

no point (A,q) with A €U - {Ao} and |q|] <R lies on one of the

-

curves A" = qn. We know that z cn(k)qn converges for A €U and

n=0
|q| < R.

It is not immediately clear that our elliptic function ¢N(Hd.h) is
holomorphic in XO and has there the value wN(Hd.AO) calculated from
the fixed point set of AO' But in fact ¢N(Hd.k) is holomorphic for
AN€EU and |q| <R and (26) (for this range of A and q) is the
power series development of a holomorphic function in two variables with

respect to one of the variables. In particular, there is no pole for

A= AO' We conclude this from the following lemma.



L

- 18 -

Lemma. Suppose g(A.q)} 1is a meromorphic function in the two complex
variables A,q where A € UC C* and q € DR where DR is the open
disc around the origin of positive radius R. Assume that Ao €U and

h(A.q) = (A—Ao)mg(k.q) (with m 2 O, m € Z) 1is holomorphic in U x DR'
If

(27) g(A.q) = ) c (A )a"
n=0

in (U - {Ao}) x DR vhere cn(R) is a finite Laurent series, then
g(A.q) 1is holomorphic in U x DR and (27) holds in U x DR'

Proof: The holomorphic function g(A.q) has a development in U x DR

of the form

«©

h(A.q) = ) d (A"
n=0

where the functions dn(k) are holomorphic in U. Since

-m
cn(h) = (A - Ro) dn(k) for A # A, and ii: cn(k) = cn(k we see
0

0 0)

that the d (A) are divisible by (A - A,)".

Actually, we did not need the above discussion of the fixed point set of

Ro and the convergence of (26) for A = AO'

An Sl—action is semi-free (i.e. the fixed point set of any A € Sl.

1
A # 0, equals Hg ) if and only if all non-vanishing rotation numbers

1

m equal 1. Therefore, for a semi—-free action, Hg can have poles

n

only for A =q with n € Z.

Theorem. For an N-balanced semi-free Sl—action of type t on the com-

plex manifold Hﬁ' the equivariant elliptic genus wﬂ(Hd.A) does not
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depend on A. It equals the elliptic genus cpN(Hd). If t# 0 mod N,
then ¢N(Hd) = 0. (Compare [14] and [16].)

Proof: By the lemma, there is no pole for A = 1. Because of (25) there

are no poles for X\ = qn.

(25).

The vanishing of ¢N(Hd) follows also from

8. Let Md be a complex manifold with first Chern class c, € H2(Hd.1)
divisible by N. The importance of this condition was already apparent

in section 5. We choose a holomorphic line bundle L with LN = K. Now

suppose we have an Sl-action on M,. Consider the N-fold covering

d
Sl—--bS1 with 1.1'—)7\=p.N. Then u acts on Hd and K through A.

This action can be lifted to L. If p is a fixed point of the given

Sl—action with rotation numbers my Mg, My, then p acts in the fi-
bre Lp by u_(m1+"'+md). However, if p=( = ezﬂi/N. then it opera-
tes trivially on Hﬁ. The action of { 1in each fibre of L 1is by

multiplication with (_t, where t 15 a residue class mod N which does

not depend on the base point of the fibre. (Assume that Hd is con-

nected.) It follows that the action is N-balanced of type t (see the
definition in section 6).

The condition c = 0 mod N implies a stronger property than N-balanced.

Let Gm Cc S1 be the group of mth roots of unity. The fixed point set

1

of Gm is a submanifold of Hd which includes Hg and is strictly

larger if and only if there is a rotation number divisible by m. We de-

note the fixed point set of Gm by Hg. There 1is the map S1 —ﬂ'Sl

N

with p—A=pu which we considered before. Hence any p € S1 with

pmN =1 operates trivially on “2' however it operates on every fibre

Lp (p € Hﬁ) by multiplication with some mN-th root of unity which

only depends on the connected component of ME which contains p. Since



1 -(m1+. . .+m1)
1L acts on Lp (for pEl(i) by u where the m.1 are

the rotation numbers of the action in p, it follows that the residue
class of m o+ Hmy mod mN depends only on the connected components of

1
H‘; and not on the components of Hg contained in them.
1
Let X be a connected component of Hs and (Hg )U a component of
1
Hg contained in X with rotation numbers LI P Over X the

tangent bundle T of Hd splits into vector bundles ~E‘.k where

k=0,1,...,m1 and the action of Gm in AE‘.k is by multiplication

with A° {f A€ G . Of course, fa'o is the tangent bundle of X. Over

1
(Hﬁ )v we have

{28) Ek = z Er (see section 6)

r=k mod m

We write the rotation numbers in the following form

(29) m, =1~im+ki where k1 =0,1,...,m1
m1

Since the integer Eki =2 k dim ﬁk depends only on X, we see that
k=0

lznzl-Er1 mod mN depends only on X. Hence, Eri mod N depends only on X

1
and not on the components (Hﬁ )v contained in it. We put

(30) 21‘1 = t(m.X) mod N

Of course, t(l.Hd) is the tpye t of the action (for connected Hd).
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8. Let Hd be a compact complex manifold with < = 0 mod N. We assume
that we have an Sl—action and wish to show that the elliptic function

¢N(Md.k) has no poles. Let X be a connected component of ME (see
section 8). We define

(31) ey(X.A) = ) op(MyN),
v

1
where the summation is over those connected components (Hg )U which

are contained in X (see (23)). This is a short hand notation. Do not

1
confuse (31) with the elliptic genus of X. Let (Hﬁ )U have the rota-

tion numbers m.,....m,. According to (21) we have

1 d’

1
(32) oy(MyN) | = (e F(x +2mim 7). . F(xg+2minz))[ (6 ) ]

Let s be an integer and replace in {32) the variable z by =z + ﬁ%

s/m) s/m)

(in other words. replace A by A°q is again

an elliptic function in 2z for the lattice Z*Nv+Z. It follows from
(22). (29) and (30) that

. then ¢N(Hd.kq

s/m
)

(33) en(MyAa )

d k 1
gst(m.X).(eo T:T‘F(xj+2w.im z + 2ri Eal T)[Mi )u]

i=1 J

If we write down the gq-development of the right hand side of (33) (with

fractional powers of q) we see that wN(X.AqSIm) is of the form
o
s/m n/m
(34) py(X.2a ) = ) x (X.§ . A)q
n=0

where the Sn are virtual equivariant bundles constructed from the

bundles Ek over X. For m =1 we come back to (19}.



The elliptic function (34) has no poles for |A| = 1. We use again the

lemma in section 7.

10. We are now able to prove the rigidity theorem.

Theorem. Let Hd be a compact complex manifold with first Chern class

¢4 € H2(Ha.l) divisible by N. Suppose an Sl—actign on Hd is given.
Then _the equivariant elliptic genus ¢N(Hd.k) does not depend on

A es'. It equals the elliptic genus g (M) = #y(¥;.1). If the type t

of the action is # O mod N, then wN(Hd) = 0.

Proof. lLet m be a natural number 2 1 and Rim = qn. Then A 1is of

s/m

the form A = koq where Rg =1 and s = in. We have

s/m s/m)

) = 2 en (X250
X

¢N(Hd.R0q

where the summation is over all the connected components of Hg. Since
the elliptic function {(34) has no poles for A,, the result follows. The

vanishing @N(Hd) =0 for t Z0 mod N follows again from (25).

11. We want to point out some applications of the rigidity theorem.

If we develop in a cusp (1) with k > O, we get a different version of
the rigidity theorem (compare [19]). In particular, we get that

x(Hd.Lk.A) does not depend on A for k=1,...,N-1, in fact

x(Hd.Lk) = 0. This is a well-known result ([12],[15]). For N = 2 and

A
k =1 it corresponds to the theorem in [5] on the A-genus.

The elliptic genus of level N 1is strictly multiplicative in fibre

bundles with a manifold Hd with cl(Md) Z=0mod N as fibre and a com-



pact connected Lie group G of automorphisms of Ma as structure group
{compare [14] and [16]).

This we wish to apply, for example, to the compact irreducible hermitian
symmetric spaces G/U studied in [7] § 16. There we gave a formula for
the coefficient A(G/U) 1in

¢,(C/V) = MG/) * &

where g 1s a positive generator of the infinite cyclic group H2(G/U).

Take a system WieooaWy of positive complementary roots for G/U (see
[7]). Here d 1is the complex dimension of G/U. The roots WiseoeaWy
are linear forms in XveeoXg where ¢ = rank(U) = rank(G), the
Xj.+.-..X, can be identified with a base of Hl(T.l) where T is the

maximal torus of U. Without proof we state the following result which

is equivalent to the strict multiplicativity of the elliptic genus for
G/U~bundles.

Theorem. Let F(x) = f’(x)_1 be the elliptic function introduced for

level N (see section 1). Let Wineoo oWy be positive complementary

roots for the irreducible hermitian symmetric space G/U. Suppose
A(G/U) = 0 mod N. Then

(35) Y Fo(n))F(o(wy)). . .F(o(wy)) = ¢y(G/U).
o€W(G)/W(U)

Here W{G), W(U) are the Weyl groups. (An element o € W(U) permutes
WieeoaWy Therefore the sum over the W(U)-cosets is well-defined.)

The formula (35) is an identity in the & variables XveeaX The sum

2
is a constant, i.e. does not depend on these variables anymore.

The rigidity theorem in section 10 also gave a vanishing result. We give

an example: Consider the Grassmannian

¥(m.n) = U(m+n)/(U(m) x U{(n})
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We use the notation of [7]. As a system of positive roots of U(m+n), we
take

(-xi+xj | 1<¢1<§<m+n}.
The complementary roots v are given by 1 <1 <{m and

m+1<Jj<m+ n. Their sum equals

m mn
(36) zwr=-n§xi+m2 X =
i=1 J=mt+1
m m+n
-(m + n) z X, +m 2 xJ
i=1 J=1
m mn
¥e put - E X, =8 and 2 x‘j = 0. Then g becomes the positive
i=1 J=1

generator of H2(W(m.n),l) whereas 9, vanishes if regarded as element
of this cohomology group. Therefore,

A(W(m,n)) = m + n.

We also see from (36) that W(m,n) admits an N-balanced circle action
of type m if m+ n =0 mod N. We obtain

Proposition The elliptic genus ¢N(W(m.n)) vanishes if

m+n=E0mdN and m# O mod N. For the complex projective spaces
Pn(ﬂ:) ¥(n.,1) we have

n

¢y(P(C)) =0 if n+ 1 =0 modN.

12. The elliptic function f defined in section 1 satisfies a
differential equation

(37) (? P o+ a (F )N ey () 4 ey



1 N 2N
= ;ﬁ +agnf with ag =c (see section 1)

where the aj are modular forms of weight J for FI(N). (if
a = 2ri/N in (1)). The polynomial

P(E) = £ +af 4.+ a F+ay

has the following properties:
1) ay 1 =0

2) If P'(F) = O, but £ # 0, then P(F)2 = 4a,

The property 2) implies that the values at the critical points § with
E #0 are all equal up to sign. In this case, the polynomial might be
called almost - Cebycev. Theodore J. Rivlin wrote to me that polynomials
with essentially such properties occur in the literature under the name
Zolotarev-polynomials. Also their relation to elliptic functions 1is
known (see for example [10]). I plan to write a separate paper on these
matters. For N =2 the differential equation is of the form

W2 2 4
(£)° =1 -af" +af,

very well known for the elliptic genus of level 2 (see [14]).
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