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A NOTE ON SUPERSINGULAR ABELIAN VARIETIES

CHIA-FU YU

Abstract. It is shown that any supersingular abelian variety is isogenous to a

superspecial abelian variety without increasing field extensions. We construct

superspecial abelian varieties which are not defined over finite fields. Endo-

morphism algebras of supersingular elliptic curves over an arbitrary field are

also investigated.

1. Introduction

Let p be a prime number. In this note we discuss endomorphism algebras and
fields of definition for isogenies of abelian varieties in characteristic p. Let k denote a
field of characteristic p and k̄ an algebraic closure of k. Recall that an elliptic curve
over k is supersingular if it has no non-zero k̄-valued p-torsion points. An abelian
variety over k is supersingular if it is isogenous over a product of supersingular
elliptic curves over k̄; it is said to be superspecial if it is isomorphic to a product of
supersingular elliptic curves over k̄. The following well-known result due to Deligne,
Shioda and Ogus (cf. [4, Section 1.6, p. 13]) is important for studying supersingular
abelian varieties.

Theorem 1.1. For any integer g ≥ 2, there is only one isomorphism class of
g-dimensional superspecial abelian varieties over k̄.

Particularly any g-dimensional superspecial abelian variety over k̄ is defined over
Fp if g > 1 (and over Fp2 if g = 1 due to Deuring). For convenience of discussion,
we say an abelian variety A over k trained if there is an abelian variety A0 over a
finite field k0 ⊂ k and a k-isomorphism A0 ⊗ k ' A. Do not confuse this with the
weaker property that the field of moduli of A is a finite field.

Consider the following two statements:

(A) Any supersingular abelian variety over k is isogenous to a superspecial
abelian variety over k (without increasing a field extension).

(B) Any superspecial abelian variety is trained.

A main result of this note shows the following.

Theorem 1.2. Statement (A) holds.

It is well known that not every supersingular abelian variety over k or even
over k̄ is trained. Theorems 1.1 and 1.2 suggest that Statement (B) is false in
general. Otherwise every supersingular abelian variety would be isogenous to a
product of supersingular elliptic curves over the same ground field. We confirm
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this by constructing counterexamples to Statement (B) (Section 3). This answers
negatively to a question in [14, (Q), p. 912]. Our construction relies on some fine
arithmetic properties of definite quaternion Q-algebras and an explicit computation
of Galois cohomology.

A related topic is a theorem of Grothendieck, which states that if A is an abelian
variety with smCM over a field k ⊃ Fp, then there is a finite field extension k1/k, an
abelian variety A0 over a finite field k0 ⊂ k1 and a k1-isogeny ϕ : A⊗kk1 ∼ A0⊗k0k1;
see [5, pp. 220/221], [6, Theorem 1.1] and [13, Theorem 1.4]. An abelian variety A
is said to have smCM if its endomorphism algebra End0(A) = End(A)⊗Q contains
a commutative semi-simple Q-subalgebra of degree 2 dimA. The conditions “up to
isogeny” and “up to a finite extension” in Grothendieck’s theorem are necessary.
For example, a geometric generic supersingular abelian surface is not defined over
a finite field. Our counterexamples to Statement (B) also show that the condition
“up to a finite extension” is necessary.

Galois descent and Theorem 1.1 play important roles in the proof of Statement
(A). The theory also allows us to compute the endomorphism algebras of abelian
varieties twisted by 1-cocycles, not just classifying them. This leads to the follow-
ing result about endomorphism algebras of supersingular elliptic curves, over an
arbitrary field of characteristic p. It differs sightly from well-known results where
k is a finite field that Q also occurs in the endomorphism algebras in question.

Let Bp,∞ denote the (unique up to isomorphism) quaternion Q-algebra ramified
exactly at {p,∞}.

Theorem 1.3.

(1) If p 6≡ 1 (mod 12), then there is a supersingular elliptic curve E over a
field k of characteristic p so that End0(E) = Q.

(2) If p ≡ 1 (mod 12), then for any supersingular elliptic curve E over an
arbitrary field k of characteristic p, one has End0(E) 6= Q; i.e. End0(E) is
a semi-simple Q-subalgebra of degree 2 or 4 in Bp,∞ .

The proof of Theorem 1.3 (1) is given by an explicit construction, which depends
on a construction of some Galois field extensions. The involved inverse Galois
problem (IGP) is fortunately rather easy to solve.

Our proof of Theorem 1.3 (2) also gives all possible Q-algebras that can occur as
the endomorphism algebras of supesingular elliptic curves. However, all of them,
no matter these curves are trained or not, occur in the endomorphism algebras of
those over finite fields.

For the convenience of the reader, we make the following table of isogeny classes
and endomorphism algebras of supersingular elliptic curves over finite fields (cf. [10,
Chapter 4]). Here E denotes a supersingular elliptic curve over Fq, q = pa, ζn :=
exp(2πi/n) ∈ C and π is the Frobenius endomorphism of E, which is represented
by a Weil q-number.

a is even

π ±pa/2 pa/2ζ4, p ≡ 3 (mod 4) ±pa/2ζ6, p ≡ 2 (mod 3)

End0(E) Bp,∞ Q(
√
−1) Q(

√
−3)

a is odd

π
√
qζ4 ±

√
2aζ8 ±

√
3aζ12

End0(E) Q(
√
−p) Q(

√
−1) Q(

√
−3)
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2. Proof of Statement (A)

We will prove the following result.

Proposition 2.1. Let A be a supersingular abelian variety over a field k of char-
acteristic p. There exists a superspecial abelian variety C over k and a k-isogeny
A→ C.

Lemma 2.2. Let A be as in Proposition 2.1. There is a finite purely inseparable
extension field L/k and an L-isogeny AL = A⊗K L→ B, where B is a superspecial
abelian variety over L.

Proof. This is a known fact; a proof is provided for the reader’s convenience.
Let k′ be the perfect closure of k. It suffices to show that there is a k′-isogeny
ϕ : Ak′ → B for a superspecial abelian variety B over k′ because kerϕ is defined
over a finite extension L of k in k′ and hence both B and ϕ are defined over L.
Let M be the covariant Dieudonné module of A. It is known that M is contained
in a superspecial Dieudonné module M ′ over k′. Therefore there is an (necessarily
superspecial) abelian variety B over k′ and a k-isogeny ϕ : Ak′ → B which realizes
the chain of Dieudonné modules M ⊂M ′.

Lemma 2.3. Let A1 and A2 be two abelian varieties over k and L/k a primary
field extension (i.e. k is separably algebraically closed in L). Then we have the
isomorphism

Homk(A1, A2)
∼−→ HomL(A1,L, A2,L).

Proof. See [1, Lemma 1.2.1.2]. A key ingredient is that the Hom-scheme
Homk(A1, A2) → Spec k is unramified. This follows from the rigidity of endo-
morphisms of abelian schemes.

We briefly recall the theory of Galois descent. Let K/k be a finite Galois ex-
tension and Gal(K/k) the Galois group. Let X0 be a quasi-projective variety over

k. Suppose X is a quasi-projective variety over K and f : X0 ⊗k K
∼−→ X is a

K-isomorphism. For any elements σ, τ ∈ Gal(K/k), define fτ,σ = τ(f) ◦ σ(f)−1 :
σX

∼−→ τX so that the following diagram commutes

X0 ⊗k K
σ(f)−−−−→ σXy=

yfτ,σ
X0 ⊗k K

τ(f)−−−−→ τX.

Clearly the relation fσ1,σ2
◦ fσ2,σ3

= fσ1,σ3
holds for any σ1, σ2, σ3 ∈ Gal(K/k). If

we put

aσ := fσ,1 = σ(f) ◦ f−1 : X
∼−→ σX

then we have

aστ = σ(aτ ) ◦ aσ : X
aσ−−−−→ σX

σ(aτ )−−−−→ στX,

i.e. {aσ} forms a 1-cocycle.
Weil’s theorem on Galois descent [11] says that if Y is a quasi-projective variety

over K, and for any σ ∈ Gal(K/k), there is an isomorphism aσ : Y
∼−→ σY
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satisfying the 1-cocycle condition, then there is a variety Y ′0 (necessarily quasi-
projective) over k and a K-isomorphism η : Y ′0 ⊗K ' Y such that aσ = σ(η) ◦ η−1
for all σ ∈ Gal(K/k).

Suppose that X = X0 ⊗ K for a quasi-projective variety X0 over k. Then for
any 1-cocycle {ξσ}σ∈Gal(K/k) ∈ Z1(Gal(K/k),Aut(X)), there is a quasi-projective

variety X ′0 over k and a K-isomorphism η : X ′0⊗K
∼−→ X such that ξσ = σ(η)η−1

for all σ ∈ Gal(K/k). The construction from {ξσ} to X ′o induces a bijection be-
tween the Galois cohomology H1(Gal(K/k),Aut(X)) and the set E(K/k,X0) of
k-isomorphism classes of K/k-forms of X0.

Let End(X ′0) (resp. End(X ′0 ⊗ K)) denote the monoid of endomorphisms f :
X ′0 → X ′0 over k (resp. f : X ′0 ⊗K → X ′0 ⊗K over K). The isomorphism η above
induces an isomorphism α : End(X ′0 ⊗ K) → End(X) by α(a) := ηaη−1, i.e. the
following diagram commutes

X ′o ⊗K
η−−−−→ Xya yα(a)

X ′o ⊗K
η−−−−→ X.

We express σ(α(a)) in terms of α(a) as follows

σ(α(a)) = σ(η)σ(a)σ(η)−1 = σ(η)η−1[ησ(a)η−1]ησ(η)−1 = ξσ · α(σ(a)) · ξ−1σ .

Thus, α(σ(a)) = ξ−1σ · σ(α(a)) · ξσ. In other words, if α sends an element a to a′,
then it sends the element σ(a) to ξ−1σ · σ(a′) · ξσ. Therefore, the map α induces the
following isomorphism

End(X ′0) = {a ∈ End(X ′0 ⊗K) | σ(a) = a,∀σ ∈ Gal(K/k)}
∼−→ {a′ ∈ End(X) | ξ−1σ σ(a′)ξσ = a′,∀σ ∈ Gal(K/k)}.

(2.1)

We now can show the following key lemma.

Lemma 2.4. Let L/k be a finite purely inseparable extension field and B a super-
special abelian variety B over L of dimension g ≥ 2. Then there exists an abelian
variety B′ over k and an L-isomorphism B′L ' B.

Proof. Take any superspecial abelian variety A over k of dimension g. For
example let A = Eg ⊗Fp k, where E is a supersingular elliptic curve over Fp.
By Theorem 1.1 there is a finite field extension K over L and a K-isomorphism
ϕ : BK ' AL⊗LK. By Lemma 2.3 the isomorphism ϕ is defined over the maximal
separable extension Ls of L in K. Replacing K by Ls and Ls by its Galois closure
we may assume that K is finite Galois over L. We review B as a K/L-form of AL
and there is a corresponding 1-cocycle {ξσ} of Gal(K/L) with values in Aut(AK).
Let ks be the maximal separable field extension of k in K; it is the field generated
by sufficiently high p-th powers of elements of K over k. Then K/ks is a purely
inseparable field extension of degree [L : k], L and ks are linearly disjoint over
k, and the restriction gives an isomorphism Gal(K/L) ' Gal(ks/k). Identifying
Gal(K/L) with Gal(ks/k), and Aut(AK) with Aut(Aks) due to Lemma 2.3, we
regard {ξσ} as a 1-cocycle of Gal(ks/k) with values in Aut(Aks). By Galois descent
there is an abelian variety B′ over k corresponding to {ξσ}. As B′L and B give rise
to the same 1-cocycle, they are isomorphic.



A NOTE ON SUPERSINGULAR ABELIAN VARIETIES 5

Proof of Proposition 2.1 There is nothing to prove if g = dim(A) = 1; we may
assume that g ≥ 2. By Lemma 2.2, there is a superspecial abelian variety B over
a finite purely inseparable field extension L/k and an L-isogeny AL → B. By
Lemma 2.4 there is a superspecial abelian variety C over k and an L-isomorphism
B ' CL. Thus, there is an L-isogeny ϕ : AL → CL. By Lemma 2.3 ϕ is defined
over k.

3. Counterexamples to Statement (B)

3.1. We shall construct counterexamples to Statement (B). More precisely, for
each prime p, we find a supersingular elliptic curve over a field k ⊃ Fp which is not
trained.

We need some fine arithmetic results of definite quaternion Q-algebras; for ex-
ample see [12, Proposition 3.1, p. 145]. Let H be a definite quaternion Q-algebra,
O a maximal order in H and G = O×. Then G is a cyclic group of order 2, 4 or 6
except when H = B2,∞ or H = B3,∞.

When H = B2,∞ = (−1,−1/Q), the class number h(O) = 1. Thus, any maximal
order is conjugate to O and the mass formula gives #G = 24. We also have

G = E24 =

{
±1,±i,±j,±k, ±1± i± j ± k

2

}
When H = B3,∞ = (−1,−3/Q), the class number h(O) = 1. Similarly, any

maximal order is conjugate to O and the mass formula gives #G = 12. The group
G is the dihedral group D12 of order 12 in this case.

Let E0 be a supersingular elliptic curve over Fp2 with Frobenius morphism πE0 =

−p. The endomorphism algebra End0(E0) is isomorphic to Bp,∞, and End(E0) is

a maximal order in End0(E0) = Bp,∞. Put G = Aut(E0).
Let m > 1 be an integer with m | p2 − 1 and ζm ∈ F×p2 an element of order

m. Set k := Fp2(T ) and K := Fp2(T 1/m), where T is a variable. Then K/k is a

cyclic extension with Galois group Gal(K/k) = 〈σm〉, where σm(T 1/m) = ζmT
1/m.

Since all endomorphisms of E0 ⊗ Fp are defined over Fp2 , the group Gal(K/k) acts
trivially on G = Aut(E0 ⊗K).

The set E(K/k,E0 ⊗ k) of K/k-forms of E0 ⊗ k is isomorphic to

(3.1) H1(Gal(K/k), G) ' Hom(Gal(K/k), G)/G ' Hom(Z/mZ, G)/G,

where G acts Hom(Z/mZ, G) by conjugation.
Take m = 3 if p = 2 and m = 2 if p is odd. Then the set E(K/k,E0⊗k) contains

a non-trivial class as G contains an element of order 3 or 2 according as p = 2 or p is
odd. Now take an elliptic curve E/k in a non-trivial class. We claim that E is not
defined over Fp2 . Suppose contrarily that there is an elliptic curve E′0 over Fp2 and a

k-isomorphism E′0⊗k ' E. Since E⊗kK
∼−→ E0⊗Fp2 K, there is a K-isomorphism

ϕ : E′0⊗Fp2 K
∼−→ E0⊗Fp2 K. Clearly K/Fp2 is primary, by Lemma 2.3 ϕ is defined

over Fp2 . This gives an isomorphism E ' E′0 ⊗ k ' E0 ⊗Fp2 k, a contradiction.

3.2. Endomorphism algebras End0(E). Let p = 2 and m = 3. By (3.1) let
ξ ∈ Hom(Z/mZ, G) represent the 1-cocycle with ξσm = ω, where ω ∈ G is an
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element of order 3. Let E ∈ E(K/k,E0 ⊗ k) be a member corresponding to {ξσ}.
By (2.1) we have

End0(E) ' {a ∈ End0(E0 ⊗K) | ξ−1σ σ(a)ξσ = a, ∀σ ∈ Gal(K/k)}.
Therefore, End0(E) is isomorphic to the centralizer of Q(ω) in B2,∞ and End0(E) '
Q(ω).

Let p be an odd prime and m = 2. Let ξ ∈ Hom(Gal(K/k), G) represent the
1-cocycle with ξσ2

= −1, and E the corresponding elliptic curve over k. By (2.1)
again we get End0(E) ' Bp,∞.

4. Proof of Theorem 1.3

4.1. Part (1): case p = 2, 3. We shall need some results arising from the inverse
Galois problem. A useful result is that any finitely generated infinite field L over its
prime field is Hilbertian (cf. [8, p. 298]), that is, the Hilbert irreducibility theorem
for L holds. In particular the rational function field Fq(T ) is Hilbertian.

Let E0/Fp2 and k = Fp2(T ) be as in Section 3. Let p = 2 andQ = {±1,±i,±j,±k} ⊂
G := Aut(E0) = E24 the quaternion subgroup of order 8. We know that there is
a generic Galois extension L/k(s) with Galois group Q (see [3, Theorem 6.1.12,
p. 140]), where s is a variable. By the Hilbert irreducibility theorem there is a
finite Galois extension K/k with Galois group Q. Choose an isomorphism ξ :

Gal(K/k)
∼−→ Q ⊂ G and let E ∈ E(K/k,E0 ⊗ k) be the member corresponding

to the 1-cocycle {ξσ} (noting that Gal(K/k) acts trivially on G). By the same
computation as in Section 3.2, End0(E) is isomorphic to the centralizer of Q in
B2,∞. Clearly Q(Q) = B2,∞ and End0(E) = Q.

Now p = 3. Similarly using the Hilbert irreducibility theorem there is a finite
Galois extension K/k with Galois group D12; see [3, Remark, p. 29]. Choose

an isomorphism ξ : Gal(K/k)
∼−→ D12 = G and let E ∈ E(K/k,E0 ⊗ k) be the

member corresponding to the 1-cocycle {ξσ}. In the same way as before End0(E)
is isomorphic to the centralizer of D12 in B3,∞ and hence End0(E) = Q.

4.2. Part (1): case p > 3. Since p 6≡ 1 (mod 12), p ≡ 3 (mod 4) or p ≡ 2
(mod 3). Put m = 4 if p ≡ 3 (mod 4) and m = 6 if p ≡ 2 (mod 3) (choose any
m ∈ {4, 6} when p ≡ 11 (mod 12)). There is a supersingular elliptic curve E0 over
Fp with Aut(E0⊗Fp2) = Cm = 〈η〉, where Cm is the cyclic group of order m and η
is a generator. For example, let E0 be the elliptic curve defined by y2 = x3 − x or
y2 = x3 + 1. Let k = Fp(T ) and ζm ∈ F×p2−1 an element of order m. Note m|p2 − 1

and m - p − 1, thus ζm 6∈ F×p . Put K = Fp2(T 1/m) and k2 = Fp2(T ). Then K/k
is finite Galois with Galois group D2m of order 2m, which is generated by τ and c,
where

c(ζm) = ζ−1m , c(T 1/m) = T 1/m, τ(T 1/m) = ζmT
1/m, τ ∈ Gal(K/k2).

We may identify Gal(k2/k) = Gal(Fp2/Fp) = {1, c} and have c(η) = η−1.
Define a 1-cocycle {ξσ} ∈ Z1(Gal(K/k), Cm) by

ξτ i = ηi, ξcτ i = η−iα, ∀ i = 0, . . . ,m− 1,

where α is any element in Cm, and let E be the corresponding elliptic curve over
k = Fp(T ). Then

End0(E) ' {a ∈ End0(E0 ⊗K)|ξ−1σ σ(a)ξσ = a, ∀σ ∈ Gal(K/k)}.
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Put σ = τ , then a ∈ Q(η). Put σ = c, then c(a) = a. Thus, End0(E) = Q.

4.3. Part (2). Theorem 1.3 (2) will follow from the following two lemmas.

Lemma 4.1. If p > 3 and the base field k contains Fp2 , then the endomorphism
algebra of any supersingular elliptic curve E over k is not equal to Q.

Proof. We know that any supersingular j-invariant is contained Fp2 and that
any elliptic curve E′ over an algebraically closed field of characteristic p has a
model defined over Fp(j). There is a finite Galois extension K/k, a supersingular
elliptic curve E0 over Fp2 and a K-isomorphism E ⊗ K ' E0 ⊗Fp2 K, that is E

is a K/k-form of E0 ⊗ k. Replacing E0 by a form of itself and increasing K if
necessarily we may assume that End0(E0) ' Bp,∞. Since all Fp-endomorphisms of

E ⊗ Fp is defined over Fp2 , the group Gal(K/k) acts trivially on End(E0 ⊗K). As
p > 3, the automorphism group G = Aut(E0) is abelian and H1(Gal(K/k), G) '
Hom(Gal(K/k), G). Let ξ ∈ Hom(Gal(K/k), G) be the 1-cocycle corresponding to
E. Similarly, End0(E) is isomorphic to the centralizer of the image of ξ. It follows
that End0(E) ' Bp,∞ or Q(ζm) according as Im(ξ) ⊂ {±1} or Im(ξ) = Cm with
m = 4, 6.

Lemma 4.2. Assume that p ≡ 1 (mod 12) and k 6⊃ Fp2 . Then for any supersin-

gular elliptic curve E over k, one has End0(E) ' Q(
√
−p).

Proof. Replacing k by a subfield of itself we may assume that k is finitely
generated over Fp. The algebraic closure Fq of Fp in k has cardinality q = pa of an
odd power of p.

Since j(E) ∈ Fq ∩ Fp2 = Fp, there is a supersingular elliptic curve E0 over Fp, a
finite Galois extension K/k, and a K-isomorphism E⊗K ' E0⊗K (see the proof of
Lemma 4.1). Particularly E is a K/k-form of E0⊗k. The Frobenius endomorphism
πE0

of E0 satisfies π2
E0

= −p as p > 3. Since the Frobenius endomorphism of

E0 ⊗ Fq is not in Q, one has End0(E0 ⊗ Fq) = Q(πaE0
) = Q(

√
−p). By Lemma 2.3,

End0(E0 ⊗ k) = End0(E0 ⊗ Fq) = Q(
√
−p). Our assumption of p implies that

Aut(E0 ⊗K) = {±1} (see [2, Table 1.3, p. 117 ]), which is contained in the center
of End(E0 ⊗K). Finally by (2.1) one has

End0(E) ' {a ∈ End0(E0 ⊗K) | σ(a) = a, ∀σ ∈ Gal(K/k)}

= End0(E0 ⊗ k) ' Q(
√
−p).

(4.1)
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