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1. Introduction

Our concern is with

Y = G/H

a semisimple irreducible real symmetric variety (space).1

Our concern is with

L2(Y )

the space of square integrable function on Y with respect to a G-
invariant measure. This Hilbert space has a natural splitting

L2(Y ) = L2
mc(Y ) ⊕ L2

mc(Y )⊥

into most-continuous part and its orthocomplement. There is a Schwartz
space S(Y ) ⊂ L2(Y ) of rapidly decaying functions. With Smc(Y ) =
L2

mc(Y ) ∩ S(Y ) and Smc(Y )⊥ = L2
mc(Y )⊥ ∩ S(Y ) one has

S(Y ) = Smc(Y ) ⊕ Smc(Y )⊥ .

Our concern is with the parameter space of generic real horocycles

Ξ = G/(M ∩ H)N

where MAN is a minimal σθ-stable2 parabolic subgroup of G.
Write BC∞(Ξ) for the space of bounded smooth functions on Ξ. In

this paper we verify the following facts:

• The map

R : S(Y ) → BC∞(Ξ), f 7→

(
gMHN 7→

∫

N

f(gnH) dn

)

is well defined. (We call R the (minimal) Radon transform)
• R|Smc(Y )⊥ = 0.
• R|Smc(Y ) is injective.

Acknowledgement: The above results were, in essence, communicated
to me by Simon Gindikin during my stay at IAS in October 2006. I
am happy to acknowledge his input and the hospitality of IAS.

1This means G is a connected real semisimple Lie group, H is the fixed point
group of an involutive automorphism σ of G such that there is no σ-stable normal
subgroup H ⊂ L ⊂ G with dim H < dim L < dim G.

2
θ is a Cartan involution commuting with σ.
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2. Real symmetric varieties

2.1. Notation

The objective of this section is to introduce notation and to recall
some facts regarding real symmetric varieties.

Let GC be a simply connected linear algebraic group whose Lie alge-
bra gC we assume to be semi-simple. We fix a real form G of GC: this
means that G is the fixed point set of an involutive automorphism σ
of GC and that g, the Lie algebra of G, yields gC after complexifying.

Let now τ be a second involutive automorphism of GC which we
request to commute with σ. In particular, τ stabilizes G. We write

HC := Gτ
C and H := Gτ

for the corresponding fixed point groups of τ in G, resp. GC. We note
that HC is always connected, but H usually is not; the basic example of
(GC, G) = (Sl(2, C), Sl(2, R)) and (HC, H) = (SO(1, 1; C), SO(1, 1; R)
already illistrates the situation.

With G and H we form the object of our concern

Y = G/H ;

we refer to Y as a real (semi-simple) symmetric variety (or space).
Henceforth we will denote by yo = H the standard base point in Y .

At this point it is useful to introduce infinitesimal notation. Lie
groups will always be denoted by upper case Latin letters, e.g. G,
H, K etc., and the corresponding Lie algebras by lower case German
letters, eg. g, h, k etc. It is convenient to use the same symbol τ for the
derived automorphism dτ(1) of g. Let us denote by q the −1-eigenspace
of τ on g. Note that q is an H-module which naturally identifies with
the tangent space Tyo

Y at the base point.
From now we will request that Y is irreducible, i.e. we assume that

the only τ -invariant ideals in g are {0} and g. In practice this means
that G is simple except for the group case G/H = H × H/H ' H.

We recall that maximal compact subgroups K < G are in one-to-one
correspondences with Cartan involutions θ : G → G. The correspo-
nence is given by K = Gθ. We form the Riemann symmetric space

X = G/K

of the non-compact type and denote by xo = K the standard base
point. As before we write θ for the derived involution on g. We let
p ⊂ g be the −1-eigenspace θ and note that the K-module p identifies
with Txo

X.
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According to Berger, we may (and will) assume that K is τ -invariant.
This implies that both h and q are τ -stable. Let us fix a maximal
abelian subspace

a ⊂ q ∩ p .

We wish to point out that a is unique modulo conjugation by H ∩ K,
see [3], Lemma 7.1.5. Set A = exp(a).

Our next concern is the centralizer ZG(A) of A. We first remark that
there is a natural splitting

ZG(A) = A × M .

The Lie algebra of M is given by

m = zg(a) ∩ a⊥

where a⊥ is the orthogonal complement of a in g with respect to the
Cartan-Killing form κ of g. We write Mns for the noncompact semisim-
ple part of M and note that

(2.1) Mns ⊂ H

(cf. [3], Lemma 7.1.4). Set

MH = M ∩ H = ZH(A) .

Let m = mh + mq is the splitting of m into +1 and −1-eigenspace and
note that mh is the Lie algebra of MH . Then (2.1) implies that mq ⊂ k

and MQ = {m ∈ M | τ(m) = m−1} is compact. Moreover:

M = MHMQ where MQ ⊂ K and MH ∩ MQ discrete .

We turn our attention to the root space decomposition of g with
respect to a. For α ∈ a∗ , let

gα = {X ∈ g | (∀Y ∈ a) [Y, X] = α(Y )X}

and set
Σ = {α ∈ a∗ \ {0} | gα 6= {0}} .

It is a fact, due to Matsuki and Rossmann, that Σ is a (possibly re-
duced) root system, cf. [3], Prop. 7.2.1. Hence we may fix a positive
system Σ+ ⊂ Σ and define a corresponding nilpotent subalgebra

n :=
⊕

α∈Σ+

gα .

Set N := exp(n). Note that τ(n) = θ(n). We record the decomposition
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g = a ⊕ m ⊕ n ⊕ τ(n) .

We shift our focus to the real flag manifold of G associated to A and
Σ+. We define

Pmin := MAN

and note that Pmin is a minimal θτ -stable parabolic subgroup of G.
The open H-orbit decomposition on the flag manifold G/Pmin is es-

sential in the theory of H-spherical representations of G. In order
to describe this decomposition we have to collect some facts on Weyl
groups first.

Let us denote by W the Weyl group of the root system Σ. The Weyl
group admits an analytic realization:

W = NK(a)/ZK(a) .

The group W features a natural subgroup

WH := NH∩K(a)/ZH∩K(a) .

Knowing W and WH , we can quote the Matsuki-Rossmann decompo-
sition of G into open H × Pmin-cosets:

(2.2) G
.
= qw∈WH\WHwPmin ,

where
.
= means equality up to a finite union of strictly lower dimen-

sional H × Pmin-orbits.

2.2. Horocycles

This small section is devoted to horocycles on the symmetric variety
Y . By a (generic) horocycle on Y we understand an orbit of a conjugate
of N of maximal dimension (i.e. dim N). The entity of all horocycles
will be denoted by Hor(Y ). We remark that G acts naturally on it.

Next our concern is with an appropriate parameter space for Hor(Y ).
We introduce the G-manifold

Ξ = G/MHN

and regard the map

E : Ξ → Hor(Y ), ξ = gMHN 7→ E(ξ) = gN · yo .

As N ∩ H = {1}, the map is defined. Moreover, E is G-equivariant
and one establishes as in [?] or [?] that E is a bijection.
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3. Schwartz space and the definition of the Radon

transform

3.1. Schwartz space

To begin with we shall define the Schwartz space on Y . We recall
that

(3.1) G = KAH

and often refer to (3.1) as the polar decomposition of G (with respect
to H and K). Accordingly every g ∈ G can be written as g = kgaghg

with kg ∈ K etc. It is important to notice that ag is unique modulo
WH . Therefore the prescription

‖gH‖ := | log ag| (g ∈ G)

is well defined for | · | the Killing norm on p. An alternative, and often
useful, description of ‖ · ‖ is as follows

(3.2) ‖y‖ =
1

4

∣∣log
[
yτ(y)−1θ(yτ(y)−1)−1

]∣∣ (y ∈ Y ) .

For u ∈ U(g) we write Lu for the corresponding differential operator
on Y , i.e. for u ∈ g

(Luf)(y) =
d

dt

∣∣
t=0

f(exp(−tu)y) ,

whenever f is a differentiable function at y. With these preliminaries
one defines

S(Y ) = {f ∈ C∞(Y ) | ∀u ∈ U(g) ∀n ∈ N

sup
y∈Y

Θ(y)(1 + ‖y‖)n|(Luf)(y)| < ∞}

where Θ(gH) = φ0(gτ(g)−1)−1/2 and φ0 Harish-Chandra’s basic spher-
ical function.

It is not to hard to see that S(Y ) with the obvious family of defining
seminorms is a Fréchet space. Moreover S(Y ) is G-invariant and G
acts smoothly on it. We note that S(Y ) ⊂ L2(Y ) is a dense subspace.

We move from Y to Ξ and recall that

(3.3) G = KAMHN
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and remark that the A-component a(g) of an element g ∈ G is unique.
For our analysis discussion of Ξ a less sophisticated space will suffice:

BC∞(Ξ),

the G-Fréchet module of smooth and bounded functions.

3.2. Definition of the Radon transform

We state the result.

Theorem 3.1. Let f ∈ S(Y ). Then the following assertions hold:

(i) The integral
∫

N
f(nH) dn is absolutely convergent.

(ii) The prescription

gMHN 7→

∫

N

f(gnH) dn

defines a function in BC∞(Ξ).

It follows from the theorem that the map

R : S(Y ) → BC∞(Ξ), f 7→ R(f); R(f)(gMHN) =

∫

N

f(gnH) dn

is defined and G-equivariant. We refer to R as the (most-continuous)
Radon transform of the symmetric space Y .

The proof of the theorem is a familiar and rather standard exercise
in technical matters (see [4], Thm. 7.2.1 for a similar result and in
particular p. 232 - 233). Thus we will confine ourselves with a sketch
based on the main example.

Proof. Let us confine ourselves to the basic case of Y = G/H =

Sl(2, R)/SO(1, 1) with A the diagonal group and N =

(
1 R
0 1

)
.

(i) For x ∈ R and nx =

(
1 x
0 1

)
we have to determine ax ∈ A such

that nx ∈ KaxH. We use (3.2) and start:

zx := nxτ(nx)
−1 =

(
1 x
0 1

)
·

(
1 0
−x 1

)
=

(
1 − x2 −x

x 1

)

and hence

yx := zxθ(zx)
−1 =

(
1 − x2 −x

x 1

)
·

(
1 − x2 x
−x 1

)

=

(
(1 − x2)2 + x2 ∗

∗ 1 + x2

)
.
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For |x| large we have log |yx| = | log yx|. Furthermore up to an irrelevant
constant

|yx| = [tr(yxyx)]
1

2 ≥
1

2
[(1 − x2)2 + x2 + 1 + x2]

≥
1

2
[x4 + 1]

Therefore, for |x| large

‖nx‖ ≥
1

4
log(x4/2 + 1/2)

From Harish-Chandra’s basic estimates of φ0 and our computation
of zx we further get that

Θ(nx) ≥ |x| .

Therefore for f ∈ S(Y ) we obtain that x 7→ |f(nxH)| growths slower
than 1

|x|·| log x|N
for any fixed N > 0 and |x| large. This shows (i).

(ii) Let f ∈ S(Y ) and set F := R(f). From the proof of (i) we know
that F is smooth. It remains to see that F is bounded. From (3.3)
we see that it is enough to show that F |A is bounded. We do this by
direct computation. For t > 0 we set

at =

(
t 0
0 1/t

)
.

Then

atnx =

(
t tx
0 1/t

)

and thus

zt,x := atnxτ(atnx)
−1 =

(
t tx
0 1/t

)
·

(
t 0

−tx 1/t

)

=

(
t2(1 − x2) −x

x 1/t2

)
.

With that we get

yt,x = zt,xθ(zt,x)
−1 =

(
t4(1 − x2)2 + x2 ∗

∗ 1/t4 + x2

)
.

For t ≥ 1 we conclude that

‖atnx‖ & log

({
c1t

4 for |x| ≤ 1/2,

c2t
4x4 − c3 for |x| ≥ 1/2 .

)
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and for |t| < 1 one has

‖atnx‖ ≥ log |x| .

From that we obtain (ii). �

4. The kernel of the Radon transform: discrete spec-

trum

In this section we show that the discrete spectrum of L2(Y ) lies in
the kernel of R. In fact we shoe even more: namely RSmc(Y )⊥ = 0.

Recall our minimal θτ -stable parabolic subgroup

Pmin = MAN .

In the sequel we use the symbol Q for a θτ -stable parabolic which
contains Pmin. There are only finitely many. We write

Q = MQAQNQ

for its standard factorization and observe:

• MQ ⊃ M ,
• AQ ⊂ A,
• NQ ⊂ N .

Next we let

L2(Y ) =
⊕

Q⊃Pmin

L2(Y )Q

where L2(Y )Q stands for the part corresponding to representations
which are induced off from Q by discrete series of MQ/MQ ∩ H.

Let S(Y )Q = L2(Y )Q ∩ S(Y ). We observe that:

(4.1) S(Y )Q ⊂ L2(Y )Q is dense .

Indeed this can be deduced from the fact that S(Y )Q is stable under
convolution with function from L1(G) of appropriate rapid decay.

For the extreme choices of Q there is a special terminology:

L2(Y )disc := L2(Y )G and L2(Y )mc := L2(Y )Pmin

and one refers to the discrete and most continuous part of the square-
intergrable spectrum. Likewise we declare S(Y )disc and S(Y )mc.

Theorem 4.1. R(S(Y )disc) = {0}.
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Proof. The proof is the same as for the group, see [4], Th. 7.2.2 for a
useful exposition.

Let f ∈ S(Y )disc. We have to show that R(f) = 0. By standard
density arguments we may assume that f belongs to a single discrete
series representation and that f is K-finite. Let

V = U(gC)f

be the corresponding Harish-Chandra module and set T := R|V .
Then T factors over the Jacquet module j(V ) = V/nV . We recall that
j(V ) is an admissible finitely generated m + a-module. Hence

dimU(a)T (f) < ∞ .

Consequently

T (f)(aMHN) =
∑

µ

aµpµ(log a) (a ∈ A)

where µ runs over a finite subset in a∗
C and pµ is a polynomial (see [4],

8.A.2.10). From T (f) ∈ BC∞(Ξ) we thus conclude that T (f) = 0 as
was to be shown. �

As a consequence of the previous theorem we obtain the main result
of this subsection.

Theorem 4.2. Let Q ) Pmin. Then R(S(Y )Q) = {0}.

Proof. If Q = G, then this part of the previous theorem. The general
case will be reduced to that. So suppose that Pmin ( Q ( G. We first
observe that

N = NQ o NQ

with {1} 6= NQ ⊂ MQ. Accordingly we have

(4.2) R = R1 ◦ R2

with R1 =
∫

NQ
and R2 =

∫
NQ . Let now f ∈ S(Y )Q. Without loss of

generality we may assume that f corresponds to a wave packet which is
associated to a single discrete series σ of MQ/MQ∩H. By the previous
theorem we conclude that R2(f) = 0 and this completes the proof. �

5. Restriction of the Radon transform to the most-

continuous spectrum

The objective of this section is to show that R is faithful on the
most-continuous spectrum.
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We recall a few facts on the spectrum of L2(Ξ) and the most-continuous
spectrum on Y and start with the ”horocyclic picture”. The homoge-
neous space Ξ carries a G-invariant measure. Consequently left shifts
by G in the argument of a function on Ξ yields a unitary representation
, say L, of G on L2(Ξ); in symbols

(L(g)f)(ξ) = f(g−1 · ξ) (f ∈ L2(Ξ), g ∈ G, ξ ∈ Ξ) .

It is important to note that the G-action on Ξ admits a commutating
action of A from the right

ξ · a = gaMN (ξ = gMHN ∈ Ξ, a ∈ A);

this is because A normalizes MHN . Therefore the description

(R(a)f)(ξ) = aρ · f(ξ · a) (f ∈ L2(Ξ), a ∈ A, ξ ∈ Ξ)

defines a unitary representation (R, L2(Ξ)) of A which commutes with
the G-representation L.

For each λ ∈ a∗
C let us set

L2(Ξ)λ := {f : G → C | • f measurable,

• f(·man) = a−ρ−λf(·) ∀man ∈ Pmin,

•

∫

K

|f(k)|2 dk < ∞}

Likewise we write C∞(Ξ)λ for the smooth elements of L2(Ξ)λ. The
disintegration of L2(Ξ) is then given by

L2(Ξ) =

∫ ⊕

ia∗
L2(Ξ)λ dλ .

One obtains the inclusion

S(Ξ) ⊂

∫ ⊕

ia∗
C∞(Ξ)λ dλ .

The decomposition of L2(Ξ)λ into irreducible G-modules is now very
simple. We observe that M acts on Ξ from the right and hence induces
a unitary representation on L2(Ξ)λ by

(Rλ(m)f)(ξ) = f(ξ · m) (m ∈ M, f ∈ L2(Ξ)λ, ξ ∈ Ξ) .

Note that Rλ is trivial on MH , that MH is an (infinetisimal) factor of
M and that M/MH is compact. Thus the MH-spherical unitary dual

M̂/MH of M is discrete and each σ ∈ M̂/MH gives rise to a module
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L2(Ξ)σ,λ

which consists of of those elements of L2(Ξ)λ which transform under
Rλ as σ . Consequently

L2(Ξ)λ =
⊕

σ∈M̂/MH

L2(Ξ)σ,λ .

In the next step we recall the Plancherel decomposition for the most
continuous spectrum (cf. [1]).

Some generalities upfront. For a representation π of a group L on
some topological vector space V we denote by π∗ the dual representa-
tion on the (strong) topological dual V ∗ of V .

Let σ ∈ M̂/MH and Vσ a unitary representation module for σ. For
thechnical reasons it is now more convenient for us to work with the
opposite parabolic Pmin = MAN with N = θ(N).

For λ ∈ a∗
C we define

Hσ,λ := {f : G → Vσ | • f measurable,

• f(·man) = aρ+λσ(m)−1f(·) ∀man ∈ Pmin,

•

∫

K

〈f(k), f(k)〉σ dk < ∞} .

The group G acts on Hσ,λ by displacements from the left and the so-
obtained Hilbert representation will be denoted by πσ,λ. Sometimes it
is useful to realize Hσ,λ as Vσ-valued functions on N ; we speak of the
non-compact realization then. Define a weight function on N by

wλ(n) = a−2 Re λ

where a ∈ A is determined by n ∈ KaN . Then the map

Hσ,λ → L2(N, wλ(n)dn) ⊗ Vσ, f 7→ f |N

is an isometric isomorphism.
We remark that:

• πσ,λ is irreducible for generic λ.
• πσ,λ is unitary for λ ∈ ia∗.
• The dual representation of πσ,λ is canonically isomorphic to

πσ∗,−λ; the dual pairing is given by

〈f, g〉 :=

∫

N

(f(n), g(n))σ dn
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for f ∈ Hσ,λ, g ∈ Hσ∗,−λ and (, )σ the natural pairing between
Vσ and V ∗

σ .
• For increasing Re λ the decay rate of smooth vectors H∞

σ,λ (in
the non-compact model) increases.

Next we wish to recall the H-fixed elements in the distribution mod-
ule (H∞

σ,λ)
∗. We first set for each w ∈ W/WH

V ∗(σ, w) := (V ∗
σ )wMHw−1

and then

V ∗(σ) :=
⊕

w∈W/WH

V ∗(σ, w) .

For each w we denote by

V ∗(σ) → V ∗(σ, w), η 7→ ηw .

the orthogonal projection. In the sequel we will use the terminolgy
Reλ >> 0 if

(Reλ − ρ)(α∨) > 0 ∀α ∈ Σ+ .

Then, for Re λ >> 0 the description

j(σ∗,−λ)(η)(g) =

{
aρ−λσ∗(m−1)ηw if g = hwman ∈ HwMAN ,

0 otherwise .

defines a continuous H-fixed element in Hσ∗,−λ. We may meromorphi-
cally continue j(σ∗, ·) in the λ-variable and obtain, for generic values
of λ the identity

j(σ∗,−λ)(V (σ∗)) = ((H∞
σ,λ)

∗)H .

For a smooth vector v ∈ Hσ,λ and η ∈ V (σ∗) we obtain a smooth
function on Y = G/H by setting

Fv,η(gH) = 〈πσ,λ(g
−1)v, j(σ∗,−λ)(η)〉 .

The Plancherel theorem for L2(Y )mc, see for instance [1], then asserts
the existence of a meromorphic assignment

a∗
C → Gl(V ∗(σ)), λ 7→ C(σ, λ)

such that the map

⊕̂
σ∈M̂/MH

∫ ⊕

ia∗
+

Hσ,λ ⊗ V (σ∗) dλ → L2(Y )mc
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which for smooth vectors on the left is defined by

∑

σ

(vσ,λ ⊗ η)λ 7→

(
gH 7→

∑

σ

∫

ia∗
+

Fvσ,λ,C(σ,λ)η(gH) dλ

)

extends to a unitary G-equivalence.

Theorem 5.1. R restricted to S(Y )mc is injective.

Proof. By the G×M -equivariance of the Radon transform it is sufficient
to prove injectivity for the restriction to

∫ ⊕

ia∗
+

Hσ,λ ⊗ V (σ∗) dλ .

So let us fix σ. To begin with we first observe that R is defined stalkwise
provided λ � 0 is large enough. In fact let λ � 0 and let φ ∈ C∞

c (N)⊗
Vσ ⊂ H∞

σ,λ (we use the non-compact model now). Let η ∈ V ∗(σ) and
note that j(σ∗,−λ)η is a continuous function on N with polynomial
growth. Accordingly

R(Fφ,η)(aMHN) =

∫

N

∫

N

(φ(ann′), j(σ∗,−λ)(η)(n′))σ dn′ dn

is defined for all a ∈ A. Thus in the large parameter range, R is a well
defined integral operator. In particular it is faithful there, Naturally
the faithfulness extends analytically by standard arguments. �

Remark 5.2. It is not hard to show that

R

(
S(Y ) ∩

∫ ⊕

ia∗
+

Hλ,σ ⊗ C(σ, λ)−1V ∗(σ, w) dλ

)
⊂

∫

iwWHa
∗

+

C∞(Ξ)σ,λ dλ

for all w ∈ W.
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