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1. Introduction

Our concern is with
Y =G/H
a semisimple irreducible real symmetric variety (space).!
Our concern is with
L2(Y)
the space of square integrable function on Y with respect to a G-
invariant measure. This Hilbert space has a natural splitting

LAY) = Lo (Y) ® Ly, (V)"

into most-continuous part and its orthocomplement. There is a Schwartz
space S(Y) C L*(Y) of rapidly decaying functions. With S,,.(Y) =
L2 (Y)NS(Y) and Spe(Y)t = L2 (V)L N S(Y) one has

S(Y) =8ne(Y) @ Sme(Y) .
Our concern is with the parameter space of generic real horocycles
E=G/(MNH)N

where M AN is a minimal o6-stable? parabolic subgroup of G.
Write BC*°(Z) for the space of bounded smooth functions on =. In
this paper we verify the following facts:

e The map
R:SY)— BC®(=), f— <gMHN — /Nf(gnH) dn)

is well defined. (We call R the (minimal) Radon transform)
[ ] R|Smc(Y)J' = O
® Rlg,..(v) is injective.

Acknowledgement: The above results were, in essence, communicated
to me by Simon Gindikin during my stay at TAS in October 2006. I
am happy to acknowledge his input and the hospitality of TAS.

!This means G is a connected real semisimple Lie group, H is the fixed point
group of an involutive automorphism ¢ of G such that there is no o-stable normal
subgroup H C L C G with dim H < dim L < dimG.

20 is a Cartan involution commuting with o.
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2. Real symmetric varieties

2.1. Notation

The objective of this section is to introduce notation and to recall
some facts regarding real symmetric varieties.

Let G¢ be a simply connected linear algebraic group whose Lie alge-
bra gc we assume to be semi-simple. We fix a real form G of G¢: this
means that G is the fixed point set of an involutive automorphism o
of G¢ and that g, the Lie algebra of G, yields g¢ after complexifying.

Let now 7 be a second involutive automorphism of G¢ which we
request to commute with o. In particular, 7 stabilizes G. We write

He:=G¢ and H:=G"
for the corresponding fixed point groups of 7 in G, resp. G¢. We note
that Hc is always connected, but H usually is not; the basic example of
(Ge, G) = (S1(2,C),S1(2,R)) and (Hc, H) = (SO(1,1;C),SO(1, 1;R)
already illistrates the situation.
With G and H we form the object of our concern

Y =G/H;
we refer to Y as a real (semi-simple) symmetric variety (or space).
Henceforth we will denote by y, = H the standard base point in Y.

At this point it is useful to introduce infinitesimal notation. Lie
groups will always be denoted by upper case Latin letters, e.g. G,
H, K etc., and the corresponding Lie algebras by lower case German
letters, eg. g, b, € etc. It is convenient to use the same symbol 7 for the
derived automorphism d7(1) of g. Let us denote by g the —1-eigenspace
of 7 on g. Note that q is an H-module which naturally identifies with
the tangent space 7, Y at the base point.

From now we will request that Y is irreducible, i.e. we assume that
the only 7-invariant ideals in g are {0} and g. In practice this means
that G is simple except for the group case G/H = H x H/H ~ H.

We recall that maximal compact subgroups K < G are in one-to-one
correspondences with Cartan involutions 6 : G — G. The correspo-
nence is given by K = G?. We form the Riemann symmetric space

X =G/K

of the non-compact type and denote by x, = K the standard base
point. As before we write € for the derived involution on g. We let
p C g be the —1-eigenspace 6 and note that the K-module p identifies
with T, X.



4 BERNHARD KROTZ

According to Berger, we may (and will) assume that K is 7-invariant.
This implies that both h and q are 7-stable. Let us fix a maximal
abelian subspace

aCqnyp.
We wish to point out that a is unique modulo conjugation by H N K,
see [3], Lemma 7.1.5. Set A = exp(a).
Our next concern is the centralizer Z5(A) of A. We first remark that
there is a natural splitting

2&;@4)::_A x M .
The Lie algebra of M is given by

m = 3q(a) N at
where at is the orthogonal complement of a in g with respect to the

Cartan-Killing form « of g. We write M, for the noncompact semisim-
ple part of M and note that

(2.1) M, C H
(cf. [3], Lemma 7.1.4). Set
My=MnH=2Zy(A).

Let m = m;, + m, is the splitting of m into +1 and —1-eigenspace and
note that my, is the Lie algebra of My. Then (2.1) implies that m, C ¢
and Mg = {m € M | 7(m) = m~'} is compact. Moreover:

M = MuyMqg where Mg C K and My N Mg discrete.

We turn our attention to the root space decomposition of g with
respect to a. For o € a* | let

g ={Xeg|(Weaq) [V, X]=aY)X}
and set
Y={aeca"\{0}[g” #{0}}.
It is a fact, due to Matsuki and Rossmann, that X is a (possibly re-

duced) root system, cf. [3], Prop. 7.2.1. Hence we may fix a positive
system X7 C ¥ and define a corresponding nilpotent subalgebra

n:= @go‘.

aext

Set N := exp(n). Note that 7(n) = 6(n). We record the decomposition
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g=admond7(n).

We shift our focus to the real flag manifold of GG associated to A and

Y. We define
Poin := MAN

and note that P, is a minimal #7-stable parabolic subgroup of G.

The open H-orbit decomposition on the flag manifold G/ Py, is es-
sential in the theory of H-spherical representations of G. In order
to describe this decomposition we have to collect some facts on Weyl
groups first.

Let us denote by W the Weyl group of the root system Y. The Weyl
group admits an analytic realization:

W = NK(G)/ZK(CL) .
The group W features a natural subgroup

WH = NHOK(a>/ZHﬂK(a) .
Knowing W and Wy, we can quote the Matsuki-Rossmann decompo-
sition of G into open H X P,;,-cosets:

(22) G = HwEWH\WHmein7

where = means equality up to a finite union of strictly lower dimen-
sional H X P;,-orbits.

2.2. Horocycles

This small section is devoted to horocycles on the symmetric variety
Y. By a (generic) horocycle on Y we understand an orbit of a conjugate
of N of maximal dimension (i.e. dim N). The entity of all horocycles
will be denoted by Hor(Y'). We remark that G acts naturally on it.

Next our concern is with an appropriate parameter space for Hor(Y).
We introduce the G-manifold

==G/MyN
and regard the map

E:=Z—Hor(Y), {=gMyN — E(§) =gN -y,.

As NN H = {1}, the map is defined. Moreover, F is G-equivariant
and one establishes as in [?] or [?] that E is a bijection.
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3. Schwartz space and the definition of the Radon
transform

3.1. Schwartz space

To begin with we shall define the Schwartz space on Y. We recall
that

(3.1) G =KAH

and often refer to (3.1) as the polar decomposition of G (with respect
to H and K'). Accordingly every g € G can be written as g = kyazh,
with k, € K etc. It is important to notice that a, is unique modulo
Wy Therefore the prescription

lgH|| == [logay| (g9 € G)

is well defined for | - | the Killing norm on p. An alternative, and often
useful, description of || - || is as follows

32l = [los ) 0r) )| wev).

For u € U(g) we write L,, for the corresponding differential operator
onY, ie. foru€g

(L) (W) = 5]y Flexp(~tu)y)

whenever f is a differentiable function at y. With these preliminaries
one defines

SY)={feC™®Y)|YVuel(g) YneN
zgg@(y)(l + Iy [(Luf)(y)] < oo}

where O(gH) = ¢o(g97(g)~1)~1/? and ¢y Harish-Chandra’s basic spher-
ical function.

It is not to hard to see that S(Y') with the obvious family of defining
seminorms is a Fréchet space. Moreover S(Y') is G-invariant and G
acts smoothly on it. We note that S(Y') C L*(Y) is a dense subspace.

We move from Y to = and recall that

(3.3) G = KAMyN
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and remark that the A-component a(g) of an element g € G is unique.
For our analysis discussion of = a less sophisticated space will suffice:

BC>(2),

the G-Fréchet module of smooth and bounded functions.

3.2. Definition of the Radon transform

We state the result.

Theorem 3.1. Let f € S(Y). Then the following assertions hold:

1) The integral nH) dn is absolutely convergent.
(i) gral [ y g
(ii) The prescription

gMHNH/]Vf(gnH) dn

defines a function in BC*(Z).
It follows from the theorem that the map

R:S(Y) = BC®3), [ R(f); R(f)(gMuN) = /N f(gnH) dn

is defined and G-equivariant. We refer to R as the (most-continuous)
Radon transform of the symmetric space Y.

The proof of the theorem is a familiar and rather standard exercise
in technical matters (see [4], Thm. 7.2.1 for a similar result and in
particular p. 232 - 233). Thus we will confine ourselves with a sketch
based on the main example.

Proof. Let us confine ourselves to the basic case of Y = G/H =

S1(2,R)/SO(1,1) with A the diagonal group and N = ((1) ﬂf)

(i) For z € R and n, = 1 we have to determine a, € A such

that n, € Ka,H. We use and start:

o (-0

and hence

_ 1—2%2 —x 1—2% z
Yo 1= Zaf(2:) l:( x 1)( —x 1)

(1 =2+ a? *
- * 1+2%)
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For |z| large we have log |y.| = | log y,|. Furthermore up to an irrelevant
constant
1 1 2\2 2 2
[9o] = [tr(yaye))? 2 SI(1 = 2°)" +a” + 1 +27]
1
> [zt +1
2 5 [z* + 1]

Therefore, for |z| large

1
Inall = 7 log(a*/2 +1/2)

From Harish-Chandra’s basic estimates of ¢y and our computation
of z, we further get that

O(n,) > |z|.

Therefore for f € S(Y') we obtain that z +— |f(n,H)| growths slower
than m for any fixed N > 0 and |z| large. This shows (i).

(ii) Let f € S(Y) and set F' := R(f). From the proof of (i) we know
that F' is smooth. It remains to see that F' is bounded. From (3.3)
we see that it is enough to show that F|4 is bounded. We do this by

direct computation. For ¢ > 0 we set

= (é 1(}75) '
Ny = ((t) lt/xt)

2 = a7 (am,) = (é fft) ' (—ix 1(/)15)
()

With that we get

Then

and thus

_ 41— 2%)% 4+ 22 *
Yt = Zt,w‘g(zt@) t= ( ( *> 1/t4 + 22

For t > 1 we conclude that

oyttt for |z] < 1/2,
.| 2105 (17, =y
ettt — g for x| > 1/2.
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and for |t| < 1 one has
laine|| > log [z

From that we obtain (ii). O

4. The kernel of the Radon transform: discrete spec-
trum

In this section we show that the discrete spectrum of L?(Y) lies in
the kernel of R. In fact we shoe even more: namely Rg, vy = 0.
Recall our minimal #7-stable parabolic subgroup

Phin = MAN .

In the sequel we use the symbol @) for a O7-stable parabolic which
contains P,;,. There are only finitely many. We write

Q = MqgAgNg
for its standard factorization and observe:
° MQ DM,
° AQ C A,
° NQ C N.

Next we let

LY)= @ LYV
QD Pmin
where L?(Y)q stands for the part corresponding to representations
which are induced off from @ by discrete series of Mg/Mg N H.
Let S(Y)g = L*(Y)o NS(Y). We observe that:

(4.1) S(Y)g C L*(Y)q is dense.

Indeed this can be deduced from the fact that S(Y)¢ is stable under
convolution with function from L(G) of appropriate rapid decay.
For the extreme choices of ) there is a special terminology:
L*(V)aise = L*(Y)g and  L*(Y)ye := L*(Y)p,,,
and one refers to the discrete and most continuous part of the square-
intergrable spectrum. Likewise we declare S(Y)gisc and S(Y)me.

Theorem 4.1. R(S(Y )aisc) = {0}.
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Proof. The proof is the same as for the group, see [4], Th. 7.2.2 for a
useful exposition.

Let f € S(Y)aise- We have to show that R(f) = 0. By standard
density arguments we may assume that f belongs to a single discrete
series representation and that f is K-finite. Let

V =U(ge)f

be the corresponding Harish-Chandra module and set 7' := R|y.
Then T factors over the Jacquet module j(V) = V/nV. We recall that
j(V) is an admissible finitely generated m + a-module. Hence
dimU(a)T(f) < 0.
Consequently

T(f)(aMyN) = Za“pu log a) (a € A)

where p runs over a finite subset in af and p, is a polynomial (see [4],
8.A.2.10). From T'(f) € BC*(Z) we thus conclude that T'(f) = 0 as
was to be shown. O

As a consequence of the previous theorem we obtain the main result
of this subsection.

Theorem 4.2. Let Q D Ppin. Then R(S(Y)g) = {0}.

Proof. If ) = G, then this part of the previous theorem. The general
case will be reduced to that. So suppose that Py, C Q C G. We first
observe that

N = Ng x N¢
with {1} # N9 C Mg. Accordingly we have

(42) R = R]_ o RQ
with Ry = fNQ and Ry = [yq- Let now f € S(Y)q. Without loss of

generality we may assume that f corresponds to a wave packet which is
associated to a single discrete series o of Mg/MgN H. By the previous
theorem we conclude that Ro(f) = 0 and this completes the proof. [

5. Restriction of the Radon transform to the most-
continuous spectrum

The objective of this section is to show that R is faithful on the
most-continuous spectrum.
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We recall a few facts on the spectrum of L?(Z) and the most-continuous
spectrum on Y and start with the "horocyclic picture”. The homoge-
neous space = carries a G-invariant measure. Consequently left shifts
by G in the argument of a function on = yields a unitary representation
,say L, of G on L*(Z); in symbols

(L) NH)E)=flg7" & (fel*2).9eGE€E).

It is important to note that the G-action on = admits a commutating
action of A from the right

£-a=gaMN (E=gMyN € Z,a € A);

this is because A normalizes My N. Therefore the description

(R(a)f)(§) =a”- f(§-a)  (fE€L*(E),a€AEEE)
defines a unitary representation (R, L?(Z)) of A which commutes with

the G-representation L.
For each A € af. let us set

L*(2)y :={f:G — C|e f measurable,
o f(-man) =a"*f(-) Yman € Py,

. /K\f(k:)|2 dk < 0o}

Likewise we write C*(Z), for the smooth elements of L?(Z)y. The
disintegration of L?(Z) is then given by

®
L*(E) = / L*(Z)y dX.
One obtains the inclusion

(S5}
S(E)C/ C®(Z), dA.

—_
—

The decomposition of L?*(Z), into irreducible G-modules is now very
simple. We observe that M acts on = from the right and hence induces
a unitary representation on L?*(Z), by

(RA(m)f)(§) = f(-m)  (meM,feL*)hE€Z).
Note that Ry is trivial on My, that My is an (infinetisimal) factor of
M and that M /My is compact. Thus the Mpy-spherical unitary dual

]\/[//J\YH of M is discrete and each o € ]\m gives rise to a module
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L*(Z)g
which consists of of those elements of L?*(Z), which transform under
Ry as o . Consequently

EHN= P LEon.
ael\m
In the next step we recall the Plancherel decomposition for the most
continuous spectrum (cf. [1]).
Some generalities upfront. For a representation m of a group L on
some topological vector space V we denote by 7* the dual representa-
tion on the (strong) topological dual V* of V.

L —

Let 0 € M/My and V, a unitary representation module for o. For
thechnical reasons it is now more convenient for us to work with the

opposite parabolic Py, = MAN with N = §(N).
For A € ag we define

Hon:={f:G—V,|e f measurable,

o f(-mam) = a"o(m)7 f(-) Yman € Py,

. /K (F(R). F(R))o dk < 00}

The group G acts on H, » by displacements from the left and the so-
obtained Hilbert representation will be denoted by 7, . Sometimes it
is useful to realize ‘H, \ as V,-valued functions on N; we speak of the
non-compact realization then. Define a weight function on N by
w)\(n) — a—2Re>\

where a € A is determined by n € KaN. Then the map

Hor — L*(N,wx(n)dn) @ V,, f+ f|n
is an isometric isomorphism.
We remark that:
® 7, is irreducible for generic A.
® T, is unitary for \ € ia*.
e The dual representation of 7, ) is canonically isomorphic to
e+ —x; the dual pairing is given by

(fg) = /N (f(n), g(n)), dn
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for f € Hyx, g € Ho —x and (, ), the natural pairing between
Ve and V.

e For increasing Re A the decay rate of smooth vectors Hg, (in
the non-compact model) increases.

Next we wish to recall the H-fixed elements in the distribution mod-
ule (H3%,)*. We first set for each w € W/ Wy

V* (o, w) 1= (V)M

o

and then

V*(o) := @ V*(o,w).
weW /Wu
For each w we denote by

Vi(o) = Vi(o,w), n—nw.

the orthogonal projection. In the sequel we will use the terminolgy
ReA >> 0 if

(ReA —p)(a¥) >0 VaeXt.
Then, for Re A >> 0 the description

a?ro*(m Y, if g = hwman € HwMAN |
0 otherwise .

(", =) ()(g) = {

defines a continuous H-fixed element in H,« _y. We may meromorphi-
cally continue j(co*,-) in the A-variable and obtain, for generic values
of A the identity

3@, =NV (") = (H2))"

For a smooth vector v € H,, and n € V(o*) we obtain a smooth
function on Y = G/H by setting

Fv,n(gH) = <7TU,A(9_1)U>j(U*7 _)‘)(77» :

The Plancherel theorem for L?(Y )., see for instance [1], then asserts
the existence of a meromorphic assignment

agz — GI(V*(0)), A C(o,N)
such that the map

—

S
* 2
@Uem / . Hop @ V(0*) dX — L*(Y)me



14 BERNHARD KROTZ

which for smooth vectors on the left is defined by

D (ver @ )x <9H = / Foppctonm(9H) d/\>
> Jia

g

extends to a unitary G-equivalence.
Theorem 5.1. R restricted to S(Y )me 1s injective.

Proof. By the G'x M-equivariance of the Radon transform it is sufficient
to prove injectivity for the restriction to

@
Hop @V (") dA.
tal
So let us fix 0. To begin with we first observe that R is defined stalkwise
provided A > 0 is large enough. In fact let A > 0 and let ¢ € C*(N)®
Vo C HZ, (we use the non-compact model now). Let n € V*(o) and
note that j(o*, —\)n is a continuous function on N with polynomial
growth. Accordingly

R(Fy) (aMyN) = /N /N (élann), j(o", ~N) () (n'))o dn’ dn

is defined for all @ € A. Thus in the large parameter range, R is a well
defined integral operator. In particular it is faithful there, Naturally
the faithfulness extends analytically by standard arguments. O

Remark 5.2. It is not hard to show that
®
R (5(3/) A My @ Clo )V (o, w) dA) c / C(Z)or d
'”LUWHCli

for allw e W.

P ¥
Za+
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