RADON TRANSFORM ON REAL SYMMETRIC VARIETIES: KERNEL AND COKERNEL

BERNHARD KRÖTZ

Date: May 15, 2007.

1. Introduction

Our concern is with

$$Y = G/H$$

a semisimple irreducible real symmetric variety (space).¹

Our concern is with

 $L^2(Y)$

the space of square integrable function on Y with respect to a G-invariant measure. This Hilbert space has a natural splitting

$$L^{2}(Y) = L^{2}_{\mathrm{mc}}(Y) \oplus L^{2}_{\mathrm{mc}}(Y)^{\perp}$$

into most-continuous part and its orthocomplement. There is a Schwartz space $\mathcal{S}(Y) \subset L^2(Y)$ of rapidly decaying functions. With $\mathcal{S}_{\mathrm{mc}}(Y) = L^2_{\mathrm{mc}}(Y) \cap S(Y)$ and $\mathcal{S}_{\mathrm{mc}}(Y)^{\perp} = L^2_{\mathrm{mc}}(Y)^{\perp} \cap S(Y)$ one has

$$\mathcal{S}(Y) = \mathcal{S}_{\mathrm{mc}}(Y) \oplus \mathcal{S}_{\mathrm{mc}}(Y)^{\perp}$$
.

Our concern is with the parameter space of generic real horocycles

$$\Xi = G/(M \cap H)N$$

where MAN is a minimal $\sigma\theta$ -stable² parabolic subgroup of G.

Write $BC^{\infty}(\Xi)$ for the space of bounded smooth functions on Ξ . In this paper we verify the following facts:

• The map

$$\mathcal{R}: \mathcal{S}(Y) \to BC^{\infty}(\Xi), f \mapsto \left(gM_H N \mapsto \int_N f(gnH) \ dn\right)$$

is well defined. (We call \mathcal{R} the (minimal) Radon transform)

- $\mathcal{R}|_{S_{\mathrm{mc}}(Y)^{\perp}} = 0.$
- $\mathcal{R}|_{S_{\mathrm{mc}}(Y)}$ is injective.

Acknowledgement: The above results were, in essence, communicated to me by Simon Gindikin during my stay at IAS in October 2006. I am happy to acknowledge his input and the hospitality of IAS.

¹This means G is a connected real semisimple Lie group, H is the fixed point group of an involutive automorphism σ of G such that there is no σ -stable normal subgroup $H \subset L \subset G$ with dim $H < \dim L < \dim G$.

 $^{^{2}\}theta$ is a Cartan involution commuting with σ .

2. Real symmetric varieties

2.1. Notation

The objective of this section is to introduce notation and to recall some facts regarding real symmetric varieties.

Let $G_{\mathbb{C}}$ be a simply connected linear algebraic group whose Lie algebra $\mathfrak{g}_{\mathbb{C}}$ we assume to be semi-simple. We fix a real form G of $G_{\mathbb{C}}$: this means that G is the fixed point set of an involutive automorphism σ of $G_{\mathbb{C}}$ and that \mathfrak{g} , the Lie algebra of G, yields $\mathfrak{g}_{\mathbb{C}}$ after complexifying.

Let now τ be a second involutive automorphism of $G_{\mathbb{C}}$ which we request to commute with σ . In particular, τ stabilizes G. We write

$$H_{\mathbb{C}} := G_{\mathbb{C}}^{\tau}$$
 and $H := G^{\tau}$

for the corresponding fixed point groups of τ in G, resp. $G_{\mathbb{C}}$. We note that $H_{\mathbb{C}}$ is always connected, but H usually is not; the basic example of $(G_{\mathbb{C}}, G) = (\mathrm{Sl}(2, \mathbb{C}), \mathrm{Sl}(2, \mathbb{R}))$ and $(H_{\mathbb{C}}, H) = (\mathrm{SO}(1, 1; \mathbb{C}), \mathrm{SO}(1, 1; \mathbb{R}))$ already illistrates the situation.

With G and H we form the object of our concern

$$Y = G/H;$$

we refer to Y as a real (semi-simple) symmetric variety (or space). Henceforth we will denote by $y_o = H$ the standard base point in Y.

At this point it is useful to introduce infinitesimal notation. Lie groups will always be denoted by upper case Latin letters, e.g. G, H, K etc., and the corresponding Lie algebras by lower case German letters, eg. \mathfrak{g} , \mathfrak{h} , \mathfrak{k} etc. It is convenient to use the same symbol τ for the derived automorphism $d\tau(1)$ of \mathfrak{g} . Let us denote by \mathfrak{q} the -1-eigenspace of τ on \mathfrak{g} . Note that \mathfrak{q} is an H-module which naturally identifies with the tangent space $T_{q_0}Y$ at the base point.

From now we will request that Y is irreducible, i.e. we assume that the only τ -invariant ideals in \mathfrak{g} are $\{0\}$ and \mathfrak{g} . In practice this means that G is simple except for the group case $G/H = H \times H/H \simeq H$.

We recall that maximal compact subgroups K < G are in one-to-one correspondences with Cartan involutions $\theta : G \to G$. The corresponence is given by $K = G^{\theta}$. We form the Riemann symmetric space

$$X = G/K$$

of the non-compact type and denote by $x_o = K$ the standard base point. As before we write θ for the derived involution on \mathfrak{g} . We let $\mathfrak{p} \subset \mathfrak{g}$ be the -1-eigenspace θ and note that the K-module \mathfrak{p} identifies with $T_{x_o}X$.

BERNHARD KRÖTZ

According to Berger, we may (and will) assume that K is τ -invariant. This implies that both \mathfrak{h} and \mathfrak{q} are τ -stable. Let us fix a maximal abelian subspace

$$\mathfrak{a} \subset \mathfrak{q} \cap \mathfrak{p}$$
.

We wish to point out that \mathfrak{a} is unique modulo conjugation by $H \cap K$, see [3], Lemma 7.1.5. Set $A = \exp(\mathfrak{a})$.

Our next concern is the centralizer $Z_G(A)$ of A. We first remark that there is a natural splitting

$$Z_G(A) = A \times M$$
.

The Lie algebra of M is given by

$$\mathfrak{m} = \mathfrak{z}_\mathfrak{a}(\mathfrak{a}) \cap \mathfrak{a}^\perp$$

where \mathfrak{a}^{\perp} is the orthogonal complement of \mathfrak{a} in \mathfrak{g} with respect to the Cartan-Killing form κ of \mathfrak{g} . We write M_{ns} for the noncompact semisimple part of M and note that

$$(2.1) M_{ns} \subset H$$

(cf. [3], Lemma 7.1.4). Set

$$M_H = M \cap H = Z_H(A) \,.$$

Let $\mathfrak{m} = \mathfrak{m}_h + \mathfrak{m}_q$ is the splitting of \mathfrak{m} into +1 and -1-eigenspace and note that \mathfrak{m}_h is the Lie algebra of M_H . Then (2.1) implies that $\mathfrak{m}_q \subset \mathfrak{k}$ and $M_Q = \{m \in M \mid \tau(m) = m^{-1}\}$ is compact. Moreover:

 $M = M_H M_Q$ where $M_Q \subset K$ and $M_H \cap M_Q$ discrete.

We turn our attention to the root space decomposition of \mathfrak{g} with respect to \mathfrak{a} . For $\alpha \in \mathfrak{a}^*$, let

$$\mathfrak{g}^{\alpha} = \{ X \in \mathfrak{g} \mid (\forall Y \in \mathfrak{a}) \ [Y, X] = \alpha(Y)X \}$$

and set

$$\Sigma = \{ \alpha \in \mathfrak{a}^* \setminus \{0\} \mid \mathfrak{g}^{\alpha} \neq \{0\} \}.$$

It is a fact, due to Matsuki and Rossmann, that Σ is a (possibly reduced) root system, cf. [3], Prop. 7.2.1. Hence we may fix a positive system $\Sigma^+ \subset \Sigma$ and define a corresponding nilpotent subalgebra

$$\mathfrak{n} := \bigoplus_{lpha \in \Sigma^+} \mathfrak{g}^lpha$$
 .

Set $N := \exp(\mathfrak{n})$. Note that $\tau(\mathfrak{n}) = \theta(\mathfrak{n})$. We record the decomposition

4

$$\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{n} \oplus au(\mathfrak{n})$$
 .

We shift our focus to the real flag manifold of G associated to A and Σ^+ . We define

$$P_{\min} := MAN$$

and note that P_{\min} is a minimal $\theta \tau$ -stable parabolic subgroup of G.

The open *H*-orbit decomposition on the flag manifold G/P_{\min} is essential in the theory of *H*-spherical representations of *G*. In order to describe this decomposition we have to collect some facts on Weyl groups first.

Let us denote by \mathcal{W} the Weyl group of the root system Σ . The Weyl group admits an analytic realization:

$$\mathcal{W} = N_K(\mathfrak{a})/Z_K(\mathfrak{a})$$

The group \mathcal{W} features a natural subgroup

$$\mathcal{W}_H := N_{H \cap K}(\mathfrak{a})/Z_{H \cap K}(\mathfrak{a}).$$

Knowing \mathcal{W} and \mathcal{W}_H , we can quote the Matsuki-Rossmann decomposition of G into open $H \times P_{\min}$ -cosets:

(2.2)
$$G \doteq \coprod_{w \in W_H \setminus \mathcal{W}} H w P_{\min},$$

where \doteq means equality up to a finite union of strictly lower dimensional $H \times P_{\min}$ -orbits.

2.2. Horocycles

This small section is devoted to horocycles on the symmetric variety Y. By a *(generic) horocycle* on Y we understand an orbit of a conjugate of N of maximal dimension (i.e. dim N). The entity of all horocycles will be denoted by Hor(Y). We remark that G acts naturally on it.

Next our concern is with an appropriate parameter space for Hor(Y). We introduce the *G*-manifold

$$\Xi = G/M_H N$$

and regard the map

$$E: \Xi \to \operatorname{Hor}(Y), \ \xi = gM_H N \mapsto E(\xi) = gN \cdot y_o.$$

As $N \cap H = \{1\}$, the map is defined. Moreover, E is G-equivariant and one establishes as in [?] or [?] that E is a bijection.

3. Schwartz space and the definition of the Radon transform

3.1. Schwartz space

To begin with we shall define the Schwartz space on Y. We recall that

$$(3.1) G = KAH$$

and often refer to (3.1) as the polar decomposition of G (with respect to H and K). Accordingly every $g \in G$ can be written as $g = k_g a_g h_g$ with $k_g \in K$ etc. It is important to notice that a_g is unique modulo \mathcal{W}_H . Therefore the prescription

$$||gH|| := |\log a_q| \qquad (g \in G)$$

is well defined for $|\cdot|$ the Killing norm on \mathfrak{p} . An alternative, and often useful, description of $\|\cdot\|$ is as follows

(3.2)
$$||y|| = \frac{1}{4} \left| \log \left[y\tau(y)^{-1}\theta(y\tau(y)^{-1})^{-1} \right] \right| \quad (y \in Y).$$

For $u \in \mathcal{U}(\mathfrak{g})$ we write L_u for the corresponding differential operator on Y, i.e. for $u \in \mathfrak{g}$

$$(L_u f)(y) = \frac{d}{dt} \Big|_{t=0} f(\exp(-tu)y) \,,$$

whenever f is a differentiable function at y. With these preliminaries one defines

$$\mathcal{S}(Y) = \{ f \in C^{\infty}(Y) \mid \forall u \in \mathcal{U}(\mathfrak{g}) \; \forall n \in \mathbb{N} \\ \sup_{y \in Y} \Theta(y)(1 + ||y||)^n | (L_u f)(y) | < \infty \}$$

where $\Theta(gH) = \phi_0(g\tau(g)^{-1})^{-1/2}$ and ϕ_0 Harish-Chandra's basic spherical function.

It is not to hard to see that $\mathcal{S}(Y)$ with the obvious family of defining seminorms is a Fréchet space. Moreover $\mathcal{S}(Y)$ is *G*-invariant and *G* acts smoothly on it. We note that $\mathcal{S}(Y) \subset L^2(Y)$ is a dense subspace. We move from *Y* to Ξ and recall that

We move nom I to $_$ and recall that

$$(3.3) G = KAM_HN$$

and remark that the A-component a(g) of an element $g \in G$ is unique. For our analysis discussion of Ξ a less sophisticated space will suffice:

 $BC^{\infty}(\Xi),$

the G-Fréchet module of smooth and bounded functions.

3.2. Definition of the Radon transform

We state the result.

Theorem 3.1. Let $f \in \mathcal{S}(Y)$. Then the following assertions hold:

- (i) The integral $\int_N f(nH) dn$ is absolutely convergent.
- (ii) The prescription

$$gM_HN \mapsto \int_N f(gnH) \ dn$$

defines a function in
$$BC^{\infty}(\Xi)$$
.

It follows from the theorem that the map

$$\mathcal{R}: \mathcal{S}(Y) \to BC^{\infty}(\Xi), \ f \mapsto \mathcal{R}(f); \ \mathcal{R}(f)(gM_HN) = \int_N f(gnH) \ dn$$

is defined and G-equivariant. We refer to \mathcal{R} as the *(most-continuous)* Radon transform of the symmetric space Y.

The proof of the theorem is a familiar and rather standard exercise in technical matters (see [4], Thm. 7.2.1 for a similar result and in particular p. 232 - 233). Thus we will confine ourselves with a sketch based on the main example.

Proof. Let us confine ourselves to the basic case of $Y = G/H = Sl(2, \mathbb{R})/SO(1, 1)$ with A the diagonal group and $N = \begin{pmatrix} 1 & \mathbb{R} \\ 0 & 1 \end{pmatrix}$.

(i) For $x \in \mathbb{R}$ and $n_x = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ we have to determine $a_x \in A$ such that $n_x \in Ka_xH$. We use (3.2) and start:

$$z_x := n_x \tau (n_x)^{-1} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix} = \begin{pmatrix} 1 - x^2 & -x \\ x & 1 \end{pmatrix}$$

and hence

$$y_x := z_x \theta(z_x)^{-1} = \begin{pmatrix} 1 - x^2 & -x \\ x & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 - x^2 & x \\ -x & 1 \end{pmatrix}$$
$$= \begin{pmatrix} (1 - x^2)^2 + x^2 & * \\ * & 1 + x^2 \end{pmatrix}.$$

BERNHARD KRÖTZ

For |x| large we have $\log |y_x| = |\log y_x|$. Furthermore up to an irrelevant constant

$$|y_x| = [\operatorname{tr}(y_x y_x)]^{\frac{1}{2}} \ge \frac{1}{2}[(1 - x^2)^2 + x^2 + 1 + x^2]$$
$$\ge \frac{1}{2}[x^4 + 1]$$

Therefore, for |x| large

$$|n_x|| \ge \frac{1}{4} \log(x^4/2 + 1/2)$$

From Harish-Chandra's basic estimates of ϕ_0 and our computation of z_x we further get that

$$\Theta(n_x) \ge |x|$$

Therefore for $f \in \mathcal{S}(Y)$ we obtain that $x \mapsto |f(n_x H)|$ growths slower than $\frac{1}{|x| \cdot |\log x|^N}$ for any fixed N > 0 and |x| large. This shows (i). (ii) Let $f \in \mathcal{S}(Y)$ and set $F := \mathcal{R}(f)$. From the proof of (i) we know that F is smooth. It remains to see that F is bounded. From (3.3) we see that it is enough to show that $F|_A$ is bounded. We do this by direct computation. For t > 0 we set

$$a_t = \begin{pmatrix} t & 0 \\ 0 & 1/t \end{pmatrix}$$
.

Then

$$a_t n_x = \begin{pmatrix} t & tx \\ 0 & 1/t \end{pmatrix}$$

and thus

$$z_{t,x} := a_t n_x \tau (a_t n_x)^{-1} = \begin{pmatrix} t & tx \\ 0 & 1/t \end{pmatrix} \cdot \begin{pmatrix} t & 0 \\ -tx & 1/t \end{pmatrix}$$
$$= \begin{pmatrix} t^2 (1 - x^2) & -x \\ x & 1/t^2 \end{pmatrix}.$$

With that we get

$$y_{t,x} = z_{t,x}\theta(z_{t,x})^{-1} = \begin{pmatrix} t^4(1-x^2)^2 + x^2 & * \\ * & 1/t^4 + x^2 \end{pmatrix}.$$

For $t \geq 1$ we conclude that

$$||a_t n_x|| \gtrsim \log \left(\begin{cases} c_1 t^4 & \text{for } |x| \le 1/2, \\ c_2 t^4 x^4 - c_3 & \text{for } |x| \ge 1/2. \end{cases} \right)$$

and for |t| < 1 one has

$$||a_t n_x|| \ge \log |x|.$$

From that we obtain (ii).

4. The kernel of the Radon transform: discrete spectrum

In this section we show that the discrete spectrum of $L^2(Y)$ lies in the kernel of \mathcal{R} . In fact we shoe even more: namely $\mathcal{R}_{\mathcal{S}_{\mathrm{mc}}(Y)^{\perp}} = 0$.

Recall our minimal $\theta \tau$ -stable parabolic subgroup

$$P_{\min} = MAN$$

In the sequel we use the symbol Q for a $\theta\tau$ -stable parabolic which contains P_{\min} . There are only finitely many. We write

$$Q = M_Q A_Q N_Q$$

for its standard factorization and observe:

•
$$M_Q \supset M$$
,
• $A_Q \subset A$,

• $N_Q \subset N$.

Next we let

$$L^2(Y) = \bigoplus_{Q \supset P_{\min}} L^2(Y)_Q$$

where $L^2(Y)_Q$ stands for the part corresponding to representations which are induced off from Q by discrete series of $M_Q/M_Q \cap H$. Let $\mathcal{S}(Y)_Q = L^2(Y)_Q \cap \mathcal{S}(Y)$. We observe that:

(4.1)
$$\mathcal{S}(Y)_Q \subset L^2(Y)_Q$$
 is dense.

Indeed this can be deduced from the fact that $\mathcal{S}(Y)_Q$ is stable under convolution with function from $L^1(G)$ of appropriate rapid decay.

For the extreme choices of Q there is a special terminology:

$$L^{2}(Y)_{\text{disc}} := L^{2}(Y)_{G}$$
 and $L^{2}(Y)_{\text{mc}} := L^{2}(Y)_{P_{\text{min}}}$

and one refers to the *discrete* and *most continuous* part of the squareintegrable spectrum. Likewise we declare $\mathcal{S}(Y)_{\text{disc}}$ and $\mathcal{S}(Y)_{\text{mc}}$.

Theorem 4.1. $\mathcal{R}(\mathcal{S}(Y)_{\text{disc}}) = \{0\}.$

9

Proof. The proof is the same as for the group, see [4], Th. 7.2.2 for a useful exposition.

Let $f \in \mathcal{S}(Y)_{\text{disc}}$. We have to show that $\mathcal{R}(f) = 0$. By standard density arguments we may assume that f belongs to a single discrete series representation and that f is K-finite. Let

$$V = \mathcal{U}(\mathfrak{g}_{\mathbb{C}})f$$

be the corresponding Harish-Chandra module and set $T := \mathcal{R}|_V$. Then T factors over the Jacquet module $j(V) = V/\mathfrak{n}V$. We recall that j(V) is an admissible finitely generated $\mathfrak{m} + \mathfrak{a}$ -module. Hence

$$\dim \mathcal{U}(\mathfrak{a})T(f) < \infty$$

Consequently

$$T(f)(aM_HN) = \sum_{\mu} a^{\mu} p_{\mu}(\log a) \qquad (a \in A)$$

where μ runs over a finite subset in $\mathfrak{a}^*_{\mathbb{C}}$ and p_{μ} is a polynomial (see [4], 8.A.2.10). From $T(f) \in BC^{\infty}(\Xi)$ we thus conclude that T(f) = 0 as was to be shown.

As a consequence of the previous theorem we obtain the main result of this subsection.

Theorem 4.2. Let $Q \supseteq P_{\min}$. Then $\mathcal{R}(\mathcal{S}(Y)_Q) = \{0\}$.

Proof. If Q = G, then this part of the previous theorem. The general case will be reduced to that. So suppose that $P_{\min} \subsetneq Q \subsetneq G$. We first observe that

$$N = N_O \rtimes N^Q$$

with $\{\mathbf{1}\} \neq N^Q \subset M_Q$. Accordingly we have

$$(4.2) \mathcal{R} = \mathcal{R}_1 \circ \mathcal{R}_2$$

with $\mathcal{R}_1 = \int_{N_Q}$ and $\mathcal{R}_2 = \int_{N^Q}$. Let now $f \in \mathcal{S}(Y)_Q$. Without loss of generality we may assume that f corresponds to a wave packet which is associated to a single discrete series σ of $M_Q/M_Q \cap H$. By the previous theorem we conclude that $\mathcal{R}_2(f) = 0$ and this completes the proof. \Box

5. Restriction of the Radon transform to the mostcontinuous spectrum

The objective of this section is to show that \mathcal{R} is faithful on the most-continuous spectrum.

RADON TRANSFORM

We recall a few facts on the spectrum of $L^2(\Xi)$ and the most-continuous spectrum on Y and start with the "horocyclic picture". The homogeneous space Ξ carries a G-invariant measure. Consequently left shifts by G in the argument of a function on Ξ yields a unitary representation , say L, of G on $L^2(\Xi)$; in symbols

$$(L(g)f)(\xi) = f(g^{-1} \cdot \xi) \qquad (f \in L^2(\Xi), g \in G, \xi \in \Xi).$$

It is important to note that the G-action on Ξ admits a commutating action of A from the right

$$\xi \cdot a = gaMN \qquad (\xi = gM_H N \in \Xi, a \in A);$$

this is because A normalizes $M_H N$. Therefore the description

$$(R(a)f)(\xi) = a^{\rho} \cdot f(\xi \cdot a) \qquad (f \in L^2(\Xi), a \in A, \xi \in \Xi)$$

defines a unitary representation $(R, L^2(\Xi))$ of A which commutes with the G-representation L.

For each $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ let us set

$$L^{2}(\Xi)_{\lambda} := \{ f : G \to \mathbb{C} \mid \bullet \ f \text{ measurable}, \\ \bullet \ f(\cdot man) = a^{-\rho - \lambda} f(\cdot) \ \forall man \in P_{\min}, \\ \bullet \ \int_{K} |f(k)|^{2} \ dk < \infty \}$$

Likewise we write $C^{\infty}(\Xi)_{\lambda}$ for the smooth elements of $L^{2}(\Xi)_{\lambda}$. The disintegration of $L^{2}(\Xi)$ is then given by

$$L^{2}(\Xi) = \int_{i\mathfrak{a}^{*}}^{\oplus} L^{2}(\Xi)_{\lambda} \, d\lambda$$

One obtains the inclusion

$$\mathcal{S}(\Xi) \subset \int_{i\mathfrak{a}^*}^{\oplus} C^{\infty}(\Xi)_{\lambda} \, d\lambda \, .$$

The decomposition of $L^2(\Xi)_{\lambda}$ into irreducible *G*-modules is now very simple. We observe that *M* acts on Ξ from the right and hence induces a unitary representation on $L^2(\Xi)_{\lambda}$ by

$$(R_{\lambda}(m)f)(\xi) = f(\xi \cdot m) \qquad (m \in M, f \in L^{2}(\Xi)_{\lambda}, \xi \in \Xi)$$

Note that R_{λ} is trivial on M_H , that M_H is an (infinetisimal) factor of M and that M/M_H is compact. Thus the M_H -spherical unitary dual $\widehat{M/M_H}$ of M is discrete and each $\sigma \in \widehat{M/M_H}$ gives rise to a module

$$L^2(\Xi)_{\sigma,\lambda}$$

which consists of of those elements of $L^2(\Xi)_\lambda$ which transform under R_λ as σ . Consequently

$$L^2(\Xi)_{\lambda} = \bigoplus_{\sigma \in \widehat{M/M_H}} L^2(\Xi)_{\sigma,\lambda}.$$

In the next step we recall the Plancherel decomposition for the most continuous spectrum (cf. [1]).

Some generalities upfront. For a representation π of a group L on some topological vector space V we denote by π^* the dual representation on the (strong) topological dual V^* of V.

Let $\sigma \in M/M_H$ and V_{σ} a unitary representation module for σ . For the chnical reasons it is now more convenient for us to work with the opposite parabolic $\overline{P_{\min}} = MA\overline{N}$ with $\overline{N} = \theta(N)$.

For $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ we define

$$\begin{aligned} \mathcal{H}_{\sigma,\lambda} &:= \{ f: G \to V_{\sigma} \mid \bullet \ f \text{ measurable,} \\ \bullet \ f(\cdot m a \overline{n}) &= a^{\rho + \lambda} \sigma(m)^{-1} f(\cdot) \ \forall m a \overline{n} \in \overline{P_{\min}}, \\ \bullet \ \int_{K} \langle f(k), f(k) \rangle_{\sigma} \ dk < \infty \} \,. \end{aligned}$$

The group G acts on $\mathcal{H}_{\sigma,\lambda}$ by displacements from the left and the soobtained Hilbert representation will be denoted by $\pi_{\sigma,\lambda}$. Sometimes it is useful to realize $\mathcal{H}_{\sigma,\lambda}$ as V_{σ} -valued functions on N; we speak of the non-compact realization then. Define a weight function on N by

$$w_{\lambda}(n) = a^{-2\operatorname{Re}\lambda}$$

where $a \in A$ is determined by $n \in Ka\overline{N}$. Then the map

$$\mathcal{H}_{\sigma,\lambda} \to L^2(N, w_\lambda(n)dn) \otimes V_\sigma, \ f \mapsto f|_N$$

is an isometric isomorphism.

We remark that:

- $\pi_{\sigma,\lambda}$ is irreducible for generic λ .
- $\pi_{\sigma,\lambda}$ is unitary for $\lambda \in i\mathfrak{a}^*$.
- The dual representation of $\pi_{\sigma,\lambda}$ is canonically isomorphic to $\pi_{\sigma^*,-\lambda}$; the dual pairing is given by

$$\langle f,g \rangle := \int_N (f(n),g(n))_\sigma \ dn$$

for $f \in \mathcal{H}_{\sigma,\lambda}$, $g \in \mathcal{H}_{\sigma^*,-\lambda}$ and $(,)_{\sigma}$ the natural pairing between V_{σ} and V_{σ}^* .

• For increasing Re λ the decay rate of smooth vectors $\mathcal{H}^{\infty}_{\sigma,\lambda}$ (in the non-compact model) increases.

Next we wish to recall the *H*-fixed elements in the distribution module $(\mathcal{H}^{\infty}_{\sigma,\lambda})^*$. We first set for each $w \in \mathcal{W}/\mathcal{W}_H$

$$V^*(\sigma, w) := (V^*_{\sigma})^{wM_H w^{-1}}$$

and then

$$V^*(\sigma) := \bigoplus_{w \in \mathcal{W}/\mathcal{W}_H} V^*(\sigma, w)$$

For each w we denote by

$$V^*(\sigma) \to V^*(\sigma, w), \quad \eta \mapsto \eta_w.$$

the orthogonal projection. In the sequel we will use the terminolgy $\operatorname{Re} \lambda >> 0$ if

$$(\operatorname{Re} \lambda - \rho)(\alpha^{\vee}) > 0 \quad \forall \alpha \in \Sigma^+ \,.$$

Then, for $\operatorname{Re} \lambda >> 0$ the description

$$j(\sigma^*, -\lambda)(\eta)(g) = \begin{cases} a^{\rho-\lambda}\sigma^*(m^{-1})\eta_w & \text{if } g = hwma\overline{n} \in HwMA\overline{N} \,, \\ 0 & \text{otherwise} \,. \end{cases}$$

defines a continuous *H*-fixed element in $\mathcal{H}_{\sigma^*,-\lambda}$. We may meromorphically continue $j(\sigma^*,\cdot)$ in the λ -variable and obtain, for generic values of λ the identity

$$j(\sigma^*, -\lambda)(V(\sigma^*)) = ((\mathcal{H}^{\infty}_{\sigma,\lambda})^*)^H.$$

For a smooth vector $v \in \mathcal{H}_{\sigma,\lambda}$ and $\eta \in V(\sigma^*)$ we obtain a smooth function on Y = G/H by setting

$$F_{v,\eta}(gH) = \langle \pi_{\sigma,\lambda}(g^{-1})v, j(\sigma^*, -\lambda)(\eta) \rangle .$$

The Plancherel theorem for $L^2(Y)_{\rm mc}$, see for instance [1], then asserts the existence of a meromorphic assignment

$$\mathfrak{a}^*_{\mathbb{C}} \to \operatorname{Gl}(V^*(\sigma)), \ \lambda \mapsto C(\sigma, \lambda)$$

such that the map

$$\widehat{\bigoplus}_{\sigma \in \widehat{M/M_H}} \int_{i\mathfrak{a}_+^*}^{\oplus} \mathcal{H}_{\sigma,\lambda} \otimes V(\sigma^*) \ d\lambda \to L^2(Y)_{\mathrm{mod}}$$

which for smooth vectors on the left is defined by

$$\sum_{\sigma} (v_{\sigma,\lambda} \otimes \eta)_{\lambda} \mapsto \left(gH \mapsto \sum_{\sigma} \int_{i\mathfrak{a}^*_+} F_{v_{\sigma,\lambda},C(\sigma,\lambda)\eta}(gH) \ d\lambda \right)$$

extends to a unitary G-equivalence.

Theorem 5.1. \mathcal{R} restricted to $\mathcal{S}(Y)_{mc}$ is injective.

Proof. By the $G \times M$ -equivariance of the Radon transform it is sufficient to prove injectivity for the restriction to

$$\int_{i\mathfrak{a}_+^*}^{\oplus} \mathcal{H}_{\sigma,\lambda} \otimes V(\sigma^*) \ d\lambda \ .$$

So let us fix σ . To begin with we first observe that \mathcal{R} is defined stalkwise provided $\lambda \gg 0$ is large enough. In fact let $\lambda \gg 0$ and let $\phi \in C_c^{\infty}(N) \otimes V_{\sigma} \subset \mathcal{H}_{\sigma,\lambda}^{\infty}$ (we use the non-compact model now). Let $\eta \in V^*(\sigma)$ and note that $j(\sigma^*, -\lambda)\eta$ is a continuous function on N with polynomial growth. Accordingly

$$\mathcal{R}(F_{\phi,\eta})(aM_HN) = \int_N \int_N (\phi(ann'), j(\sigma^*, -\lambda)(\eta)(n'))_\sigma \, dn' \, dn$$

is defined for all $a \in A$. Thus in the large parameter range, \mathcal{R} is a well defined integral operator. In particular it is faithful there, Naturally the faithfulness extends analytically by standard arguments.

Remark 5.2. It is not hard to show that

$$\mathcal{R}\left(\mathcal{S}(Y)\cap\int_{i\mathfrak{a}_{+}^{*}}^{\oplus}\mathcal{H}_{\lambda,\sigma}\otimes C(\sigma,\lambda)^{-1}V^{*}(\sigma,w)\ d\lambda\right)\subset\int_{iw\mathcal{W}_{H}\mathfrak{a}_{+}^{*}}C^{\infty}(\Xi)_{\sigma,\lambda}\ d\lambda$$

for all $w \in \mathcal{W}$.

References

- E. P. van den Ban and H. Schlichtkrull, The most continuous part of the Plancherel decomposition for a reductive symmetric space, Ann. Math. 145 (1997), 267–364
- [2] T. Oshima and J. Sekiguchi, Eigenspaces of Invariant Differential Operators on an Affine Symmetric Space, Inventiones math. 57 (1980), 1–81
- [3] H. Schlichtkrull, Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Progress in Math. 49, Birkhäuser, 1984
- [4] N. Wallach, Real Reductive Groups I, Acad. Press, 1988

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, D-53111 BONN, EMAIL: KROETZ@MPIM-BONN.MPG.DE