NIELSEN NUMBER IS A KNOT INVARIANT
ALEXANDER FEL’SHTYN

ABSTRACT. We show that the Nielsen number is a knot invariant via representation
variety

1. INTRODUCTION

We briefly describe the few basic notions of Nielsen fixed point theory(see [2]). We
assume X to be a connected, compact polyhedron and f : X — X to be a continuous
map. Let p : X — X be the universal cover of X and f : X — X a lifting of f, i.e.
po f fop. Two hftlngs f and f' are called conjugate if there isay € I' = m (X)
such that f/ = yo fo~~!. The subset p(Fiz(f)) C Fiz(f) is called the fixed point
class of f determined by the lifting class [f].Two fixed points zq and z; of f belong to
the same fixed point class iff there is a path ¢ from zy to x; such that ¢ = f o ¢ (ho-
motopy relative endpoints). This fact can be considered as an equivalent definition of a
non-empty fixed point class. Every map f has only finitely many non-empty fixed point
classes, each a compact subset of X. A fixed point class is called essential if its index
is nonzero. The number of essential fixed point classes is called the Nielsen number of
f, denoted by N(f).The Nielsen number is always finite. N(f) is a homotopy invariant.
In the category of compact, connected polyhedra, the Nielsen number of a map is, apart
from certain exceptional cases, equal to the least number of fixed points of maps with the
same homotopy type as f.

Let us consider a braid representative of a knot and induced map of corresponding repre-
sentation variety(see section 2).We prove in section 3 that the Nielsen number of induced
map is a invariant under Markov moves and so is a knot invariant.

The author came to the idea that Nielsen number is a knot invariant at the Summer
2003, after conversations with Jochen Kroll and Uwe Kaiser. The results of this paper
were reported in the author talk on the International Conference “Knots in Poland”, July
2003 in Bendlewo, Poland. The author would like to thank the Max-Planck-Institute fiir
Mathematik, Bonn for kind hospitality and support.

2. KNOT INVARIANTS VIA REPRESENTATIONS SPACES

We recall firstly the Lin’s construction in [6] for the intersection number of the rep-
resentation spaces corresponding to a braid representative of a knot K in S®. Let
(8%, D%, D?,S?) be a Heegaard decomposition of S* with genus 0, where

S% =D Us: D*, 0D3 =0D® =DInND? =5

Suppose that a knot K C S? is in general position with respect to this Heegaard de-
composition. So K NS? = {z1, -+ ,Tp,y1, -+ ,Yn}, K N D3 is a collection of unknotted,
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unlinked arcs {vi", -+ ,vF} C D3, where 0y, = {z;,y;i} and {7{,--- v} = KN D3
becomes a braid of n strands inside D?. Denote by 8 a corresponding word in the braid
group B,. For the top end points z; of 7;", the bottom end points of {7{", -+, v} give

a permutation of {yy, - ,y,} which generates a map
m: B, —S,,
where 7(/3) is the permutation of {y,---,y,} in the symmetric group of n letters. Let

K = B be the closure of 5. It is well-known that there is a correspondence between a
knot and a braid  with () is a complete cycle of the n letters (see [1]).
There is a corresponding Heegaard decomposition for the complement of a K,

S*\ K = (D3 \ K) Ugsa\iey (D? \ K),
D3I\K=Di\(DiNnkK), S*\K=25*\(S*NnK).

Thus by Seifert-van Kampen theorem we have following diagramm
m(S°\K) — m(D}\K)

! !
m(D3\K) — m(S*\K),

and a corresponding diagramm of representation spaces

R(S2\K) « R(D)\K)

(1) 1 T
R(D?> \K) «— R(S*\K),

where R(X) = Hom(m(X),SU(2))/SU(2) for X = S?*\ K, D3 \ K,S%\ K.

In [7], Magnus used the trace free matrices to represent the generators of a free group
to show that the faithfulness of a representation of braid groups in the automorphism
groups of the rings generated by the character functions on free groups. This is original
idea to have representations with trace free along all meridians which Lin worked in [6]
to define the knot invariant. It has been carried out by M. Heusener and J. Kroll in [3]
for the representation of knot groups with the trace of the meridian fixed (not necessary
zero). Let R(S?\ K) be the space of SU(2) representations p : (5% \ K) — SU(2)
such that

2) i~ (g %) ot~ (g %),

where m,,, m,,,© = 1,2,--- ,n are the meridian circles around z;,y; respectively. Note
that m(S? \ K) is generated by my,,m,,,i = 1,2,---,n and one relation [[;_, m,, =
[T, my,. Corresponding to (1), we have

R(S*\ ) R(D} \ )
(3) 1 1
R(D? \ K)ll — R(S%\ K).

The conjugacy class in SU(2) is completely determined by its trace. So the condition (2)
can be reformulated for p € R(X),

(4) tracep(Im.,]) = tracep([my,]) = 0.
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The space R(S?\ K)l! can be identified with the space of 2n matrices X; - -+, X,,, Y1, -+, Y,
in SU(2) satisfying

(5) trace(X;) = trace(Y;) =0, fori=1,--- n,

(6) X Xy X, =Y, - Yy Y,

Let @, be the space {(Xy, -+, X,,) € SU2)"| trace(X;)=0,i=1,---,n}. Let R*(S*\
K)l be the subset of R(S?\ K)I consisting of irreducible representations. Note that
R*(S?\ K)l = (H, \ S,)/SU(2) in Lin’s notation [6], where

H,={(Xy, -, X, Y1, V) €Q,x Q| Xqi---X,=Y1---Y,},

Sy, is the subspace of H, consisting of all the reducible points. Here H,, \ S, is the total
space of a SU(2)-fiber bundle over R*(S?\ K)l.
Given 8 € B, we denote by I'g the graph of 3 in @, x Q,, i.c.

Fﬁ - {(Xla T >Xna6(Xl)>' T aﬁ(Xn» € Qn X Qn}
As an automorphism of the free group Z[my, ] * Z{my,] - -+ Zm,,|, this element 3 € B,
preserves the word [mg,] - - - [m,]. Thus we have X; --- X,, = B(Xy) - - - #(X,,), or in other
words I'g is a subspace of H,. In fact, for B = K, this subspace I's coincides with
the subspace of representations p : m(S? \ K) — SU(2) in H,, which can be extended
to m (D3 \ K), Iy = Hom(m (D3 \ K),SU(2))ll. Hence the space R*(D3 \ K)ll =
Lg,irre/SU(2) is the irreducible SU(2) representations with traceless condition over D3\ K.
In the special case 0 = id, then I';; represents the diagonal in Q),, X Q,,

Fid:{(Xl7'“ aXnaXla"' 7Xn) GQH XQH}

Since K N D? represents the trivial braid, this space I';; C H, can be identified with
the subspace of representations in Hom(m;(S?\ K), SU(2))l which can be extended to
(D3 \K),ie. Ty = Hom(m (D> \ K), SU(2))l. By Seifert, Van-Kampen Theorem, the
intersection I'y N [y is the same as the space of representations of (S \ K) satisfying
the monodromy condition [i] (see (1)),

TN T = Hom(m (S?\ K), SU(2))1.

Given 3 € B, with 3 = K, there is an induced diffeomorphism (still denoted by 3) from
Q. to itself. Such a diffeomorphism also induces a diffeomorphism f5 : R*(S? \ K)f —
R*(S?\ K)lof the representation variety.

Note that Tz = (I's \ (T N S,))/SU(2) is the image of the “diagonal” T;; under
diffeomorphism fs. By Seifert- van Kampen theorem (3), it is clear that the fixed point
set of fgis

Fix(falres2uoym) = TaNTig = R*(S*\ K).

The oriented submanifolds I's = R*(D3\ K)l T, = R*(D? \ K)1! intersects each other
in a compact subspace of R*(S%\ K)I! from Lemma 1.6 in [6]. Hence we can perturb
fs, or in another words perturb R*(D? \ K) to ﬁ*(Di \ K)! by a compactly support
isotopy so that R*(D3 \ K) intersects R*(D? \ K)I transversally at a finite number of

intersection points. Denote the perturbed diffeomorphism by fg. So its fixed points are
all nondegenerated.
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The Cassgn—Lin invariant of a knot K = (3 is given by counting the algebraic intersection
number of R*(D3 \ K) and R*(D3 \ K), or the algebraic number of Fix(f3),

Aon(K) = Aen(B) = Algebraic(# Fix(fs)) = Algebmz’c(#(ﬁ*(Df’r\K)WmR*(DE\K)M)).

The results proved by Lin in [6] show that the Casson-Lin invariant Acr(K) = A\er(5)
is independent of its braid representatives, i.e. A¢r(f) is invariant under the Markov
moves of type I and type Il on  and is one half of the classical signature of the knot K.

3. NIELSEN NUMBER IS A KNOT INVARIANT

In this article we propose to count fixed points of fz in a Nielsen way - using the classical
Nielsen numbers of f3. Nielsen counting of fixed points is a counting in the presence of
the fundamental group. In order to get an invariant of knots from braids, we have to
verify that Nielsen number N(f3) is invariant under Markov moves. A Markov move of
type I changes 0 € B, to ¢ 'o& € B, for any ¢ € B, and the Markov move of type
IT changes 0 € B, to a;fa € B, 1, or the inverses of these operations. It is well-known
that two braids 3 and (3, has isotopic closure if and only if 3; can be changed to 35 by
a sequence of finitely many Markov moves [1].

Theorem 1. If 3, = B3> = K as a knot, 31 € B, 32 € By, then
N(fs) = N(fs)-

So the Nielsen number N(fg) is a knot invariant.

Proof: We only need to show that for 3 € B, with 3 being a knot K, the Markov
moves of type I and type II on 3 provide either a cojugacy or a isotopy of fz. Hence from
the commutativity and the invariance property under isotopy of the Nielsen numbers, we
get that N(f3) is an invariant of knot K = 3.

Suppose we have the Markov move of type I: change 8 to £~ 3¢ for some & € B,.
The element ¢ in B, induces a diffeomorphism £ : @), — @, is orientation preserving
as observed by Lin in [6]. Note that B, is generated by oy,---,0,_1. For any o, the
induced diffeomorphism aii X O'i:t D Qn X Qp, — @, x @, is an orientation preserving
diffeomorphism. So £ is also a orientation preserving diffeomorphism since orientation
preserving properties are invariant under the composition operation. Hence there is a
homeomorphism

which commutes with the SU(2)-action and
€ x E(R*(S*\ K)1) = R*(S*\ K)!'  (changing variables by & x &),
ExERADEN K)) = RY(D2\ K) (in new coordinate £(X1), -+ ,£(X,)),
¢ x ERYDIN\K)) =R*(D3\ K)!  (in new coordinate £(X), -, £(X,)),

as oriented manifolds. Let g¢ : R*(S?\ K) — R*(S?\ K) be the induced homeomor-
phism, induced from & x £ as coordinate changes . Hence we get a conjugacy relation

e o faoge = fe1pe;
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from changing variables via ge. Note that Fiz(fe-15¢) is identified with Fiz(fz) under
ge. Thus the Markov move of type I preserves the conjugacy class of fg Therefore by
commutativity of the Nielsen number (see [4]) we have,

(7) N(fe-1pe) = N(ge ' o faoge) = N(f3).
It is clear that the argument goes through for the inverse operation of Markov move of

type L.
Suppose we have the Markov move of type II: change (§ to 0,0 € B,.1. Recall that

on(z) = 25,1 <i<n—1,0,(2,) = vprp1x, ' and 0, (2,11) = z,. We need to identify
the Nielsen number from the construction in H, into the one from H, ;. Following Lin
6], there is an imbedding ¢ : @, X Q, — Qn+1 X Qny1 given by

Q(le'“ 7Xn7}/17"' 7Yn) - (le'“ 7Xn7Yn7)/17"' 7Yn7Yn)‘

Such an imbedding commutes with the SU(2)-action and ¢(H,) C H,.1, and induces an
imbedding

G: Hy(=R(S*\ B)) = Hypa(= RE(S*\ 0, 5)1).
Note that the symplectic structure of Hn+1 restrlcted on q(H ) is the symplectic structure
on H,. Under this imbedding, we have §(f3) : Hns1 — Hpniq is given by

(8) (Xh e 7Xn7 X17 o 7Xn) = (X17 e 7Xnaﬂ( n)7ﬁ(X1>7 e 75(Xn>7ﬁ(Xn))
The image of §(f) is invariant under the operation of o,. Also the corresponding diffeo-
morphism f, g is given by

fanﬁ(Xb e aXna Xn—l—la Xla e 7Xn7Xn+l)

(9) = (X1, Xy, B(X1), -+, B(Xo1), B(X0) X1 B(X5) 7 B(Xa)).
Thus we have
GRY(DEN\P) Cc RY D2\ 0, D), GRH(DI\B)) € R (DL 0, 8)1.
The fixed points of f,, 3 are elements
B(X) =X, 1<i<ng; B(Xp)XpB(Xn) ' =X, B(X,) = Xpaa,
which is equivalent to 3(X;) = X;,1 <i < n, i.e.

Fix(f,,5) = Fiz(q(fs)) = Fix(fs).

Then there is a (Hamiltonian) isotopy ¢y : n+1( (Hpt1 \ Sny1)/SU(2)) — AnH
between ¢y, = ¢(fz) by (8) and ¢y, = f,.5 (9)(see [5, 6] for the explicit constructions).
So we have

(10) N(fou5) = N(9(f5)) = N(f3)-
The first equality is from the invariance property of Nielsen numbers under the isotopy
1y and the second from the natural identification. We can similarly prove that

N(forrp) = N(f3)-

Remark 2. It is known for a long time, that the problem of computation of Nielsen
numbers is a very difficult problem. By this reason, we strongly believe that the Nielsen
number N(fs) is a new knots invariant, which cannot be reduced to the known knots
invariants, as it happened in the case of the Casson-Lin invariant of knots.
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Example 3. “Pillowcase”. For n = 2 the irreducible variety R*(S?\ K)l/ is a 2-sphere
with four cone points deleted(see [6]). So, in this case the space R*(S? \ K)I is non-
simply-connected and the Nielsen number N(f3) is not trivial(not 0 or 1) for general

3.

It is a important problem to find a non-simply-connected examples of the space R*(S?\
K) for n > 2.
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