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A Metric Characterization of Manifolds with Boundary

by

Conrad Plaut

Introduction

This paper eharaeterizes -top61ogical spaees admitting the

strueture of a smooth manifold with boundary as precisely those

finite dimensional spaces admitting a (metrieally) complete inner

metric of bounded eurvature. In proving the most interesting

half of this equivalenee-that a finite dimensional space of

bounded curvature is a manifold with boundary-the boundary

points are characterized in terms of geodesie completeness. In

consequence, the Hopf-Rinow Theorem ean be completely generalized

to the elass of toplogical manifolds (without boundary) of

bounded curvature.'

An inner metric space (X,d) is a metric space X with

distance cl such that for all X, y E X, d(x, y) is the infimum of

the lengths ef curves a joining x and y in X. Such spaces are

currently of interest I due, in part, to recent work (e. g., [F] I

[FY], [GLP] I [GP]. [GPW], [GW]. [P)) on the Gremov-Hausdorff

cenvergence ([G]) cf Riemannian manifolds: A limit cf Riemannian

spnces inherits an inner metric structure and, depending on the

nature of the spaces converging tc i t I various other geometrie



properties. These properties and their topological implications

are treated here abstractly, supporting the point of view that

much of what is true for limits of Riemannian spaces is directly

a result of the geometry they possess, not the (presumably) more

special fact that they are limits.

Such an approach can be fruitful. The proof of the

Convergence Theorem for Riemannian mani felds gi Yen in [P] and

[GW] lIses convergence of harmonic coordinates to obtain

coordinates and a Riemannian metric in the limit space; however,

this theorem also follows easily from earlier general results on

the existence of smooth Riemannian metrics for inner metric

spl1ces of bounded cllrvature ([N]). In fact, one can show without

difficlllty, and using only basIc properties cf the distance

function, that n lind t of Riemannilln manifolds of curvature

uniformly bounded sbove end below, volume bounded below, and

diameter bounded above, has again curvature bounded above aod

below (in the metric sense recalled below) , and satisfies a

geodesie completeness condition. (General conditions under which

bOllnded curvature and geodesie completeness are preserved in a

limit of inner metric spaces can be found in [PD]). These three

properties sllffice to apply the resliits of [N] and reach the same

conc.lusion as in [Gh'] and [PJ, i.e., that such a limit is a

smooth munifold with C"Ci metric (with respect abstractly

constructed harmonie coordinates!).

A natural problem to undertake now is to use these

techniques of "metric geometry" to obtnin information about

class n-dimensional Riemannian

Gromov-lInusdort'f

Grove-Petersen-Wll

limits

([GPW] )

of spHces

of
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manifolds (i .e. I with eurvuture und volume bounded below, and

diameter bounded above). In particular I i t has been conjectured

that such 1 imi ts are topolog ical mani folds (in [GPW] they are

shown I for n ~ 5 I to be homology manifolds admi tting a

resolution). This conjecture remains unsolved ,and the main

diffieultYI from ametrie geometry perspeetive, is that, without

the uniform upper curvature bound on the class I both the upper

curvature bound and the geodesie completeness condition are lost

in the limit. The present work treats the ease of spaces having

eurvature bounded above and below, without geod~sic completeness.

Work on spaces without an upper curvature bound i8 in progress.

The failure of geodesie completeness is treated in this

paper by introducing the notion of "geodesie terminal" to mean a

point at which same geodesie !lsteps" (a "geodesie" is an

arclength parameterized curve which is loeally distanee

minimiz.i ng). Such points do not I cf course I exist in the

Riemannian ease I but in 1 imi ts 0 f Ri emannian spaces geodesie

terminals can even oeeur in the interior cf a manifold with inner

metric (2.5).

The following is a summary of the main results in this

paper. For de fini t ions, see Chapter 1. For the remainder of

this paper, the single ward complete will refer to metric

completeness (as distinct from geodesie completeness).
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Theorem A. Let X be a complete, locally compBct inner

metric space of locally bounded cllrvatllre (above and below).

Then the following are eqllivBlent:

a) X is finite dimensional,

b)the spBce of directions Bt some point in X is precompBct,

c) the set ~ of geodesic terminals is nowhere dense, and

d) X is 8 m8nifold with boundary Bnd BX = ~.

Corollary B. Let M be a topologicl1l manifold and d be an

inner metric on M of locally bounded curva ture. Then the

following are equivalent:

a) (M, d) 1s complete,

b) (M, d) is geodesically complete,

c) there exists a point p € M such that each geodesic

stBrting at p is defined on all of R+, and

d) every closed, bounded subset of M is compact.

Corollary C. A locally compBct, infinite dimensional inner

metr,ic space of locally bounded curvature has B dense set of

geodesie terminals.

The Ilnormal" coordinates used to prove Theorem A are not in

general smooth at the boundary.

"smoothed:"

However I the boundary can be

Theorem D. A topo1ogicBl spBce X admits the structure of B

smooth mani fold wi th boundary i fand only i f X possesses B

complete metric of locally bounded curvature.

There exist "f1at H spaces (curvnture bounded above and be10w

by 0) having dense geodesie terminals (2.7). and geodesically

4



complete spaces of curvature ~ 0 which are also infinite

dimensional (2.8).

The special case ~ ~ 0 (i.e. X is geodesically complete) was

first considered in [Be], where i t is proved that X is in fact

smooth wi th a continuous Riemann ian metric (smoothness of this

metric is the result of [N]).

Some of the examples in

c} q cl) in the main theorem

Chapter 2 and the implication

were included in my doctoral

dissertation. I would like to thank my thesis advisor Karsten

Grove for his help both before and after my thesis was written.

1. Metric Geometry

Among the several different theories of bounded curvature

A few of the basies

in this ehapter are

radius,tl defined at

for metric spaces, the theory presented

appropriate for the purposes of this paper.

are reca1led below. The on1 y new eoneepts

those of " geodesic terminal" and "comparison

the end.

in [Rl is most

Throllghout this paper, curves will always be assumed to be

parameterized proportional to arclength. If <X is a curve in X

from x to y sueh tha t .{( Cl:) ~ cl (x, y), where t( Cl:) denotes the

length of a, then Cl: i8 ealled a minimal curve. A geodesie is a

curve

on an

1 which ia locally minimal;

interva 1 I, then for every

specifieally, if 1 is defined

t E there exists an interval

J ~ [t-o,t+Öl, Ö > 0, such that 11 J()I i8 a minimal curve. In

this paper, 1 will always denote a geodesie from x to y.
xy
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Under the assumptions of metric completeness and local

compactness, every pair of points in X can be joined by at least

one minimal curve, and every closed and bounded subset of X is

compact.

In all curvature discussions in this paper, the value of

-1/2K will be taken to be ro if K ~ O.

A triple (a;b,c) in X is a set of three points a, b, c E X

such that a :I- band a :I- c. For ftny K, let Sf.: denote the

(complete) dimension two, simply connected Riemannian space form

of constant curvature K. If (a;b,c) is a tripie such that

d(a,b) + d(b,c) + d(c,a) < 2rr/!K, then there is a uniquely

determined (up to congruence in Sf.:) triangle TK(a.;b,c) in SK

having sides of length d(a,b), d(b,c), and d(c,a). Let aK(a;b,c)

denote the angle corresponding to a in TK(a;b,c).

Definition 1.1. An open set U in X is sBid to be B region

of curvature ~ K (resp. ~ K) if for e\'ery triple (B;b,cJ in V,

a) (a;b,c) has a representative in SK' and

b) i f a :I- band a :I- c and "1ab' "'1 ac are minimal curves, then

the distance between any points x on l'ab Bnd y on "'1
ac

is ~

(resp. ~) the distance between the corresponding points x' and

6



Theorem 1.2. Let U be a region of curvature ~ K in X. Then

a) If "ab and "1
ao

lie then for any number K,

1im Oo.:--K(a;l b(S).l (t)) exists, and i5 independent of both K
8, t-> a &C

and the parameterizations of the curves; this n.umber is ca11ed

b) The triangle inequality ho1ds for ang1es.

c) If lab and c lie in U, then for all x on i'ab strictly

between a and b, a(l ,1 ) + a(l ,1 ) = rr.
xa xc xc xb

d) If lab and c 1ie in V, x lies on i'ab strictly between a

and b, Rnd d(c,x) = d(c,i'ab)' then et.("1 xra ,"1 xc ) = a(lxo'Y xb ) = rr/2.

In a region of curvature bounded above, conditions a) and b)

still hold, hut c) and d) fail in general (2.3).

Aspace X is said to have cur,~ature 10ca11y bounded be10w

(resp. above) if each x E X is contained in a region of curvature

bounded below (resp. above) by some number K possi bl y dependent

on x. X is snid simpJy to huve .loclIJ.ly bOllnded cllrvature if X

has curvllture locally bounded above and below. I f X has

curvat\lrc locally bounded below , two geodesics have angle 0 if

end only if they coincide on their maximal domein of definition.

The angle is therefore e bona fide metric on the space S cf all
p

unit geode8ics of maximal domain starting at a point p E X,

called the space of directions at p.

A point x E X i8 called a branch point if there exist

distinct points a, b,' c different from x and minimal curves i'ab
'

Y
ac

such that x lies on both i' b end i' I
a BC

the two curves coincide

between a end X, and d(a,x) = d(b,x). At the branch point x, the

geodesie 1
ax

"branches" to form two distinct geodesics i' and
ab

i'ac A region of curvature ~ K contains no branch points.
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A subset A of X i3 called strictly convex if every pair of

points in A is joined by n unique minimal curve, and that curve

lies entirely in A. If r < TC/2/K, 'and B(x,r) is compact and

contained in a region of curvature ~ K, then B(x, r/2) is

strictly convex. Bence, in a locally compact space of curvature

locally bounded sbove, every point is contained in a strictly

convex neighborhood.

The fol,lowing lemma is weIl known ([CE]) snd not difficult

to prove. It is used frequently in this paper, both explicitly

and implicitly.

Lemma 1.3. For a triBngle ABC in SK having side lengths

-112< 1l'K ,the distance BG is a monotone increasing function of

the angle at A, on [G,n}.

In a region U of curvature .$ K (resp. ~ K) I the following

equivalent conditions hold, whenever the given geodesics exist in

U:

Al. If (a;b,c) is B triple in U such thBt b '# c, then

ct.("'t
ab

, "'t
ae

) .$ (resp ~) ct.K(a;b,c).

A2. If (a;b,c) 1s a triple such that b ~ c, and ABC denotes

the uniquely determined triangle in SK with AB = d'(a, b), AC =
at A, and side BG of minimal length,

then d(b, c) ~ (resp. $) BG.

An inner metric space X 15 geodesically complete if every

geodesie in X hus u unit pnrameterization defined on all of IR.

8



Definition 1.4. A point x E X is called the terminal of B

geodesi c Y i f "I canna t be extended beyond x (as a geadesic).
ax ax

More generally, a point 1s called B geodesic terminal if it is

the terminal of same geodesic.

In the metrically complete case, geodesie completeness is

eqlllvlllent to the absence of geodesic terminals; it i8 therefore

both simple and convenient to have a not ion of geodesie

completeness fer an arbitrary open set:

Definition 1.5. If X is a complete inner metric space, an

open set U ~ X 1s Bald to be geodesically complete if U has no

geodesic terminals.

Definition 1.6. Ir x lies in a region of curvBture S K, the

upper comparison radius for K at x is defined to be

K
C (x) = sup (r : B(x,r) is a reg.ion of curvBture ;S; K}.

If x. is not contBined B region of curvature S K,
K

then c (x) is

defined to be O.

for 8.11 K.

A point x is cBl1ed B singularity if cK(x) = 0

K ..:
d(x,y)1'he inequality c (x) ::!::. c (y) - holds for nIl x, y E

X, and shows that
K

is either everywhere infinitec or a

continuous from into the non-negative reals; if
K

ismap X c

positive on X, X is said to have curvBture S K. F · 11 cK(X)1na y,

..:
will denote jnf c (x), the llpper compBrison radius of X.

xEX

By reversing· the inequalities in the above definitions, one

can similarly define, for any K, the lower comparison radius

space X.

= inr cK(x)),
xEX

and curvature ~ K for the whole
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Example 2. 1 •

2. Examples

If M is a Riemannian manifold, then the

distance induced by the Riemannian metric is by definition.........an

inner metric. If the sectional curvature k on M satisfies k S V,

u
then c (x) > 0 for all x; if k ~ L, then by Toponogov's theorem,

It is not known if there exist inner metric

spaces having curvature ~ L end cL(X) < 00. Such spaces could not

be limits of Riemannian manifolds with curvature uniformly

bounded below ([ap], [PD]).

Example 2.2. If X is an arbitrary metric space and Y C X is

finitely path connected (every x, y E Y can be joined by a

rectifiable curve in V), the induced inner metric dr(x, y) on Y

is the infimum of the lengths (in the metric cf X) of all curves

connecting x end y in Y. This metric is topologically equivalent

to the n8ual induced metric, hut in general, dl(x, y) ~ d(x, y).

In particular, cvery finitely path connected metric space has an

inner metric. If N is a Riemannian submanifold cf a Riemannian

manifeld M, the induced inner metric is simply the usual distance

associated with the i.nduced Riemannian metric on N.

Example 2.3.
3

In ~ , let X be the union of the (x,y)-plane

with the z-axis, and let d be the induced inner metric from ~3.

Then X is geodesically complete, co(X) = 00 (so X is strietly

convex), and co(x) > 0 except at the origin (which i8 a branch

point) . This example illustrates that the local euelidean

strueture of an otherwise "niee" space i8 easily destroyed by a

single point at which curvature is not bounded below. There i8

no known analogous example for the upper curvature bound.

10
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that the angle between the z-axis and any geodesie in the plane

through the origin is n.

Example 2.4.
/

Let X be an n-sphere (n ~ 2), wi th an open

"cap" sliced off along some latitudinal "circle" above the

equator. Then the boundary circle becomes a "new" geodesie in

the induced inner metric, and every point on it is a branch point

find a geodesie terminal. The lower curvature bound of the

original sphere has heen destroyed. The original upper curvature

bound also no longer holds.

If the slice is made along 01' below the equator , the

remuining closed disk i5 strictly convex and retains the con5tant

curvature of the sphere, and points on the equator all become

geodesie terminals.

Example 2.5. Let XI be a flat cone with the apex smoothly

rounded off at some positive distance C
I

from the end t with

c -) 0 and the ""ide end smoothly capped (to make the space a
1 '

compact Riemannian manifold). Then the limit X cf these spaces

isa cone (wi th the wi de end rounded of f), wh ich has curvature

bounded above and belew by 0 around I but exclud ing, the apex.

The apex is a singularity and a geodesic terminal, since it is

nlways shorter to pass uround the cone than through the apex.

Theorem 3.10 shows that such isolated, "interior" terminals do

not occur ""hen the eurvature i5 locally bounded.

Example 2.6. Let f [a,b] -) [0,(0) be a smooth funetion

Assume furthermore that) O.= 0 and rl
(a, b)

f(e) = 1, where C = (a + b) / 2 , and that f is symmetrie about C,

such that f(a)

i. e., for all 0 S 6 ;S; c a , f(a + 6) = f(b 6) • For any

11



eompaet Riemannian manifold X the {-suspension SfX is the metric

compIe t ion 0 f t he war p e d procl 1Ie t ([ BO], [ 0]) (a I b) x r X.

therefore obtained hy attaehing, to (a,b) xe X, a point at a x X

und one at b x X; Sr X is elearly hOlllcomorphie to the topologieal

su spens ion 0 f X. Furthermore I e x X is a totally geodesie

isometrie cmbedding cf X in SeX, Rince f'(c) = O. 'fhe i nduced

jnner metrie on (a,u) x X c S X
f r 1.5 simply the U511Ul distance

n5soeiated with the warped produet metrie.

If Sn denotes the uni t n-sphere I n :2:. 2, then Sn minus two

poles is homeomorphic to
n-1

x S . With the indueed

Riemannian metrie, the fibers of this product are isometrie to

spheres of radius sin t , t € (O,n).

n
to S •

n-1
Henee SsinS is isometrie

Understanding thc eurvature of [-suspensions. is a subtle

problem; a.lthough the CUI~vature 01' the \Vurped product is easily

computed, eurvature at the end points mllst generally be verified

direetly by triangle comparison. For example, the

sine-suspensi.on of n non-simply conneeted spnce of constant

curvature 1 has again constant curvature 1 on the warped product,

but the curvature is not bounded at the end points (3.14).

Example 2. 7 • An infinite (Hilbert) cube, the product of

closed intervals ef lengths 1/2, 1/4, .. " ., can be easily verified

te have curvature bounded abeve and below by 0. (To de this,

consider i t as a Gromov-Hausdorf f 1 imi t 0 f f ini te cubes, note

that CO = ro for eaeh finite eube, and apply the results of [PD]

to obtain the same comparison radius for the limit; or embed the

00
spaee in ~ , with the flat Euclidean metric). The "faces" of the

cube are all geodesic terminals, and form a dense set.

12



Example 2.8.

radius 1/2, 1/4,

An infinite torus, the product of spheres of

(und dimension ~ 1), is a geodesically

complete space of non-negative curvature. Note that if all the

spheres are I-dimensional, the resulting infinite torus is a

Gromov-Hausdorff limit of flut finite tori, but, by Theorem 3.10

cannot have curvature locally bounded above. The lass of upper

curvature bound in the limit can occur in this case because the

injectivity radius, end hence
o

c , tends to 0 (LPDl).

3. Finite Dimensional Spaces of Locally Bounded Curvature

If X i8 aspace of Cllrvnture locally bounded below and there

exists a point x E X with at most two directions, it is easy ta

show that X is homeomorphic to an interval or a circle. Same of

the lemmas below fnil for this trivial case, and to avoid special

exceptions in the statements, the direction space at each point

will be assumed, Hhen nccessary, to have at least three elements.

Definition 3.1. Let X be B spBce of curvBtllre loca11y

bounded be1ow. The tangent space T
p

at a point P € X is the

metric space obtained from S x IR+ by identifying a.11 points of
p

the form (1, 0) (and denoting the resll1ting point by 0) with the

following metric, where the cla5s of (1, t) in the identification

5pace 15 denoted t'l:

O(t'l, s·ß)
2 2 1/2

= (t + 5 - 2st·cos 0(1, ß)) •

. For each 1 ES, let T(l)-: SUP {s
p

1(s) is definedJj that

is, "'I terminates at )'(T("'I») if T(")') < 00, and has no terminal if

13



T(Y) Twill be called the terminal map on s .
p

The

exponelltial map is defined by exp (s'Y) = Y(8), for all s S T(Y).
p

Exp is, by A2 (resp. Al), continuous (resp. open) on the
p

intersection of its domain of definition with any B(O, r) such

that exp (B(O, r)) is contained in a region of eurvature :i!: K
p

(resp. :s; K). Furthermore, exp is a radial isometry, and
p

preserves the angle between rad ial geodes ies (i. e., starting at

p). If X is complete and has locally bounded curvature, then any

sequence of geodesics whose directions are Cauchy and whose

lengths have a positive lower bound has a limit which is again a

geodesic; in this case i8 continuous on its domain of

definition, and T : S -) ~ U ro i5 upper semicontinuous.
p

The following theorem 1s arestatement of some cf the

re5ults of [Be); by the comments of Chapter 1 it should be clear

t ha t ~he asstlmpt ion gi yen in [:Be], tha t Xis n "B1I semann G- space"

([B]) of bounded cllrvature, can be redllced to the hypothesis

given below. [PD) contains a short proof of Theorem 3.2, and

nnother is indicated at the end of the proof of Proposition 3.7.

Theorem 3. 2. Let X be a complete, locallJT compact inner

metric 5pace. If R{p, r) i5 a strictly convex, geodesically

complete region of curvature bounded llbove and below, then T is
p

isometrie to some Euelidean space, lind exppI B (0. r) is a

homeomorphism.

Without geodesie completeness, the situation is somewhat

less simple. In particular, finite dimensionality is not

guaranteed by loesl eompactness, nor is the direction space

always compact. SUPPo5e X i5 a complete, locally compact inner

14



metric space of locally bounded curvature. Let S be the metric
p

completion of S j then elements of the metric completion T of T
p p p

can clearly be written in the form tl, where 1 ES, t E R+, and
p

Q}' = O.

if «(l,
1

:;: (X(}'" + For any distinct

}'" ""2 E Sp' the span sp {""" 12 } ~ Tpof ""1' 1 2 is the set of all

t1 such that one of 1" 1
2

, 1 is between the other two. In

of

then

~ T
p

spanthe

.... ,

1,

. ,. .,
>ks ,

p

subset

••• , Y
k

such that if 0,

is the smallest

-
given distinct 1

1
, ••• , ""k E

containing 1
1

,

general,

sp {Ci, y} c sp (1
1

, ••• I The elements 1
1

, 111 ... , 1
k

are seid

to be independent if:; does not lie in sp (1
'j+1 l'

for

any j. 'l'he notions of angle :( not as a metric!) and betweeness

can be genel'slized to the ::;pnce T in the obviolls way; e.g., far
p

... , t > Q, sp {t Y ,
k 1 1

= sp (1
1

, .... I

Lemma 3.3. Suppose p lies in a region of curvature ~ K in a

complete, locBlly compact inner metric space X. Let tr i) and

{fll} be Cauchy sequences in S •
p

Then given any positive s.
I

-> 0

=T('1
l
),andthato suchand t

1
-)

d(Yi(Si)' 'li(t 1 )), then

t ~ ~(l) 0 ("'1 J' '1 1 ) := ! i- ~oo co s - 1 {( s ~ + t ~ - d~) / 2' Si' t i } •

Proof. Given any C > 0, choose a j such that for all i > j,

For any such i and s ~

min {T(}'i)' T(l
j
)} and t .s min {T('1

j
), T(TJ

j
)}, let Wi(s, t)

denote the representa tive in SK of the wedge formed by 1 i 1(0, B]

and n I-'i [0, tJ '

}' I und
j [0,8]

and WJ ( S,

Il J
1(Q,ll)'

t) denote

Curvature

that o f the wedge formed by

15



and d(l1 i (t), 11
J
{t» are both smaller than the distance between

the endpoints of a werlge in SK having sides of lengths s snd t,

wi th angle c/2. The di ffe rence between the angles ef Wi (s, t)

and WJ(s, t) is therefore ~ E, and the lemma foliows.

For 3.4 - 3.7 and 3.9, let B = B(p, r) be a strictly convex

region of curvature :i!: k and ~ K in a locally cempact, complete

inner metric space X.

Lemma 3.4. For e \'e I'J' 11
1

, 5
p

llnd B € T1
2

) J ,

there exists some C E Sp between 11
1

, 11
2

such thBt a(C, D
1

) = B.

Furthermore, if a(11
1

, 11
2

) < rr, C is unique.

Proof. Since S
p

is dense in S
p'

for the first part of the

lemma it suffices to show the following: Given minimal curves

"1 pb
and 1 in B and a 1 ' a

2 > 0 such that a
1

+ 8
2 = a

3 =pe

a("1 , )' pe ) , then fer each c ) 0 there exists a minimal curve "1
pb

starting at p such that

la("1 , )' ) - a
1

I $ c, and
pb

1a ( )' "1 ) - a
2

I ::s; C.
pe

8
3

< n. Für all i = 1, 2, 3, ... let b
i

denote

- I
"1 (2 ) t and 0: [0,1] -) B be minimal from

pe I

a uni t

Suppose first that

- i
)'Pb(2 ), c. denote

1

b
l

to cI' Set ß

from p to d
i

=

=

0:. (ß) •
1

and let

Since

be

< rr,

minimal curve

<

d(p, b
i

) + d(p, Ci) for sufficiently large i, which implies p i;

O:i(ß) and )'i is nonconstant.

Let Ti be a triangle in SK having vertices P, Bi' and D
i

,

with d(P, Bi) = d(p, b
l

), d(P, D
i

) = d{p, d
1
), and d(B

i
, D

i
) =

Let XI denote the angle of Ti st X. Then by

definition of the angle (using S~), 1im X • a .
.... T->(1,) i 1

16
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the sbove statement now follows, for < 1(, from

0:(1 pb' 1 i ) + 0:(1 , 1 ) ~ 0: ( 1 , 1 ) :::: 8
3

If s3 :::: 1f, ehoose a
1 pe pb pe

minimal eurve 1 in a third directien. Without lass of

generality, assume 8 1
S rr/2 and a; :::: a( 1 , l' ) ~ n/2. Applyingpb

the sbove ease to the eurves lpb and l' with a~ = a
1

and a; =
a; - a; produees the required new minimal eurve.

Te prove the last part of the lemma, suppose again that a
3

(

1[, and assume that, eontrary to uniqueness, there exists a 0 > 0

and, for k :::: 1, 2 J sequences :{"i I k} 0 f mi nimal eurves starting at

p such that

10: ( "'i , "i
lk

) a 1 I s - I- 2 ,pb

1(;(( "'i , 1 i k ) a
2

1
- 1- s 2 ,

pe

with (;((li1' "'i i2) > 0 for all i. The lengths of the eurves ean be

shortened without affecting the above assumptionsj assume

In the plane, choose points P, B, C,

and T such that B, C, snd T are collinear, PB :::; d(p, b), PC =

d(p, c) J (X(PB, pe) = a snd (X(PC, PT) = a
2

Define r
1

=
1

t . PB / PT and SI = t . PC / PT; by removing a few terms ene can
i 1

8ssume that the points "'i (si) and )'Pb(r i ) all lie in B(p, r) .
pe

Let D
1

, \11' \21 be the minimal eurves in B(p, r) from"'i (r) topb i

The assumptions on

1 (s 1 ) )
pe

is

arbitrarily elose to d(l (r.), 1 (s,)) for large i.pb I pe 1
Choosing a

'and applying Al proves that t!~oo a('1 1 J \kl) :::: O. From the

triangle inequal i ty i t follows tha t l' 0:('"T ~~oo '::0 11 I
Let

2 ,t , 2
21

be unit minimal curves in Ski with commen endpoint y and

17



other endpoints Zu und Z21 ' respectively, such that .t{ 2
1

i ) =

t( C' 11 ) t t{ 2 2 i ) = t(C'21)' and 0:( Zu ' 2
21

) = ('({C li ' \21) • Then 0 =
tim d (zu' ZZI) / .t(2 l ~ lim d()'1i(t i ), )'2 i ( t i ) ) / .t( C1 i ) =->(1) 1 I 1 - >(1)

} ~ ~oo d ( )' 1 1 ( t i ), 1 2 i ( t i ) ) . ( XT / BT) / t I • This last limit beins 0,

ho we ver, impli e s t hat +! Tal 0: ( 1 1l' )' 7. i) = 0, a co nt r a"d i c t ion.

The proof of the following lemma is essentially the same as

the proof of the uniqueness part of Lemma 3.4 (the case

a( '1 1 ' r;3) ~ TI below follows fr.om the absence of branch points).

Lemma 3.5.

Wl.'th o:(n
t

, r/
3

) = 0:(-'1 ;;)
'I l' ".. '

Lemma 3.6. Let 1 t '
... , 1" E 5 be distinct and, setting

p

a = a (11 ' "1 j ), suppose 0: + a = (X < n. Then there exist
1 j 12 23 13

unit vectors v E ~3 such that cx (v I ' v ) = cx 1 j , and a choice ofi j

v" any two of v
1

, \-'2' v
3

determines the remB.ining Vi'

Froof.
3

There exist Xl E ~ \ 0 such that X"~ X
2

, and X
3

are

colinear, with

and 0:(OX
3

, Choose suchE: S
p

o such thatt -)
j.

und positive4 I.. ,. . ,1 ,=i

prove the first

be the unique

be minimal fromB

0:'
2j

To

1] -)r0 ILet ßj
i k

= 1 11j (sllj)' and let

from p t.o X;j = .ß~3(<<t2/o'3)'curve

lIt
j

·X
i

ll ;s; T(1
1j

).

lij(sij) to x llj
=

minimal

part of the lemma, i t suffices, by Lemma 3.3, to show that

lim 0:(0:' ,
2J

i. e. , that lim d(x;j' =

Curvature ~ K and the definition of the angle (applied to

representatives in imply thut lim

18



In a silllilflr wo.y, curvature ~ k now implies that

l.-im d(x;J' x
4J

} / t.l ~ X2 X.. ,

be proved in the same way, reversing the curvature bounds.

The last part of the lemma is elementary linear algebra.

Proposition 3.7. If "'( 1,' ••• J "'(m E Sp are independent I then

SI' {r1 ' ...... , y }
m

is isomet.rie Lo '.he e,i oSlIre of Rn open convcx

radial cone in ~m.

Proof.

sp {y 1 I

a

open

ente

a convex

isometricallyEt

the

{t '1eachtaking

Vs ing Lemmas 3.4 and 3.5. one can now eas i ly map

closure C
2

ofisometrically onto

incone

radial ray.
- -

Nete that if "'(land 1
2

lie in Sand have
p

extensions

past p as geedesics ,
2

then the image of this map i5 all of ~ .

Suppose such a map ~ has been inductively constructed from

sp Ci 1 I .... , Y
k

) ente the the clesure eil of a cenvex epen cone in

In IR k
+

1
there exists some unit vector V

k+l
such that

('((ti • yk+ 1 ) ::: « (v 1 I V K+ 1 ) for all 1 5: i s k. Note that if 1 E

{«, 1k + 1 } Ci 1 I lk}
- thesp for some ('( € sp .0lil l1li , n S

I;' I
then « i5

unique such element of sp {1 1 • ,. •• I Y
k

} n S . For if 1 E
P

{a,
Yk+1}' with a "I- 0:' , 1 k + 1

E sp {o:, a/}, and hence "'(k+1
Esp I

sp {~ •.. I ~k}' a contradiction., 1 I ,

One can new extend ~ to the union C of the spans

all 0: E sp {~
, 1 ' te an

which i5

mapinjective

IRk + 1
•inradial cone

.... • t

opena convex

for

onto the clesure of

This extension i5 actually anan isometry on each sp {o:, 1
11

+ 1 } •

isometry: Given ß E sp {a, Y
k

+
1
}. with ä E sp {Y

t
• .... , and

.... ,

and v.. = Ip ( ('( l .

C E sp (1 t
'

v
1

::: /fl(C) , V
3

Yk } n sp'
= qqy

k
+

t
) I

apply Lemma 3.6 to C, fi, 1
11

+
1

, 0:. with

The unique uni t vector

19



v E ~k+1 determined by these choices is the only unit vector in
2

k+ 1 - - - -
~ to satisfy 0:(v

1
• v

2
) = 0:((, ß) and 0:(v

2
• v

3
) = 0:((3, )'k+1)'

and so mllst coincide with I/'(ß); i.e., o:(ß, a) = 0:(v
2

• v,,} =

«( 1/'( ß). f{I( ä) ) . Now suppose ß and C are arbi t rary elements of C.

Then -e E sp

special ease shows

Ci). wi th -0: E

0:)

sp (i 1 ' ••• , 1k 1.

= O:(q>(ß), q>(a». and

The above

repeating

In a similar fashion, the map tp can now be extended to an

isometry on the union C' of the all sp {~. -e} with ß. CE C. One

need only show that if f/ E sp {13, Cl n sp {ß', C'}, then the

extensions defined using the two di fferent spans coincide i but

this follows from Lemma 3.6 as in the above argument. If )' E C'

is strictly between any two elements of C', then the fact that C

is the closure of a eonvex open cone implies that f{I(l) i8

contained an open Eucl idean subset contained in rp( C' ) . In

add i tion, for any element J1 E C' there are arbi t rarily elose

elements strictly between J1 and some other element; in

otherwords, the interi.or points of I.{I( C') are dense in cp( C' ) •

Since cp( C') is a convex eone by construction. C' satisfies the

requirements of the inductive step.

Finally. C' sp 111 • 111 , This follows from the

fact tha t, si nce cp( C) has non-empty interior, every element of

IR
k

+
1

( )lies in the span of some two elements of rp C . Suppose '1 E

sp {ß, Cl, with ß, C E C' n S •
p

As before IP can be extended as

an isometry to C' u sp {ßt Cl. But then ~(D) lies in the span of

some cp(ä), f/l(1) E cp(C). Since cp i8 an isometry, f/ lies in

sp {a, 1} and so DE C'. This completes the inductive step.

If, in addition, = ~k ,

20
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then C
k+1 __ I)k+1.

eontinuation past p, ~ Theorem 3.2 ean now be

proved. If U is geodesieally eomplete, eaeh geodesie starting at

p is defined for at least length r, and so loeal eompaetness

implies S is eompaet, and T = T
p p p

Finally, eompaetness of S
p

implies that T is spanned by at most finitely many elements, so
p

T = ~n for some n.
p

The spaee sp (1
1

, .... • t "'1 ) will now be identified with its
m

image in Euelidean spaee. For example, given any (x, ß E S
P

and

S E [0, 1 ] , s'(X + (l-s)·(j will denote the unique element of S
p

between ~ and ~ such that (X(~, (s·~ + (l-s)'~)) = s'a(~, ~).

It is not obvious at this stage that, if S eontains m
p

independent elements, T (and let alone
- 1 (B(p, r ) ) ! )exp

p p

eontains an open subset of IRm
(e. g. , sp {"'1 t ' ..... , 1 } \ T eould

m p

be dense in sp (y 1 ' ,. 0lil ,. , "1 }).
m

Definition 3.8. Let X be Bn inner metric space and x E X.

Then B subset A C X is said to be transverse to x if each minimal

geodesie stBrting at x intersects A in at most one point.

Note that if, in the above definition, x and A both lie in a

strietly eonvex set C, one need only eonsider minimal eurves in

c.

Lemma 3.9. Suppose 1
1

, . .. , 1 E S are independent.
m p

Then

for every C > 0 there exists a subset Ce of Sp homeomorphic to an

open subset of sn- 1
whieh is (-elose to sp ... ,. , n S

p

such tha t the map T has a pos i ti ve lower bound on Ce'

Proof. Reeall that subsets X und Y of ametrie space are

(-elose (in the Hausdorff sense) if X is in an e-neighborhood

21



of Y, and vice versa.

The case m = 1 follows from the fact that S is dense in S .
p p

For m = 2, choose a
1

, (X2 E Sp such that for all s € [0, 1], the

angle between the 1 ine La from 0 through S '(Xl + (1-s) '(X2 end the

line from 0 through 5."'1 1 + (1-5)')' i5
2

< E: / 2. Let

ß : [0, 1] -) B be the minimal curve from (X (t) to ('(2(t), for
t 1

all t such that the endpoints are defined, and let C be the
s. t

unit minimal curve from p to ßt(s). From the proof of Lemma 3.4,

for each s E [0, 1] there exists a maximal 0(8) E (0, r] such

thet for all t ~ 0(8), the angle between C and L i5.s; E: / 2.
11 • t 6

For any fixed t. es s -) s', L -) Land r -) rand so
• 6 a' '-a,t '-s'.t'

e [0, 1] -) (0, r] is continuous, with a positive maximum.

Hence for any fixed positive T < o( s), {C a • T 5 E (0, 1 ) }

sntisfies the requirements for CI::'

Now suppose m > 2. For any k, set

C
ic = { t

1
"'1 1 + ... + tlc"'lk t

l
+ + t k = 1 } ,

and suppose there exist homeomorphisms 9"1 C -) B whose
m-I

images are transverse to p, with the following property: For any

let
i

be the unit minimal from l(Ji (a) in Ba E C
lI'l-I'

0: curve p to
0

and ßa
be the unit vector on the radial line from 0 to a. Then

0:(0:
i ßa

) i8 uniformly small for all C and sufficiently
a'

a E
rn-I

large i. In particular, for large i, the interior of

{)' E S
p

)'(s) € 9J
1

(C
m

_
1
), s ) O} satisfies the requirements for

Let ß1
E S such that 0: (ß 1 ' "'Im ;S; 1 / i end Ti =

p

min {T( ßi ) , 1 / i} . For eny a, b E Cm- I'
there exists an I ) 0

such that for all i ::: I, ß i (T i ) i5 transverse to {'PI(a), 'P1(b)}.

If otherwise, there would exist i k
-) co and minimal curves from

22



through both Ifl
i

(a):and f(ll (b).
k k

Sut then by Lemma 3.3,

'1
m

WOllld lie in sp {lim 1fJ1(a), 1im Ifl.(b)}, and hence in
1

... ,"} },
m-1

a contradicticn. Furthermore, the choice of

minimal such I is an upper semicontinuous function cf Cm~1 x C
m

_
1

into the positive integers , since if 8
j

-) a and b
j

-) b, then

far any i, the limit of minimal curves from ßi(T
i

) through both

IJlj(a
j

) and tpl(b
j

) is a minimal curve from ß
j
('f

1
) through both

Ip i ( a) and f{J i ( b ) .

One can therefore choose I > 0 such that for all i > I,

lfJ
i

(C
m

_
1

) is transverse to ßi(T
i
), and tpi can be extended to a

homeomorphism on C
m

by + + t '1 )
m In = ,. (t ),

m

where ,. is the geodesic from l.(Ji (t1r1 + + t r ) to ß
i
(Ti) •

1Il'I-1 m-1

large i.

By Lemma 3.3, fer any a E C and ( ) 0, there exists a K > 0 such
m

that for all i > K, 0:(0:
i

ß ) < As in the abeve argument, the8 I
( .

a

choice cf a minimal such K for each a E C is upper
III

semicentinuous; in words ,
i

ßa) is uniformly smaLlether 0:(0: , fer
a

Finally, ~i(Cm) i5 transverse to p for large enough i,

by an argument similar to the proof in the above paragraph. This

completes the proof of the inductive step, und the lemma.

Theorem 3.10 . Let (X, d) be a camplete, locally compact

.inner metric space ,,,i th lacally bounded Cllrvature.

following are equivalent:

a) X i5 finite dimensional.

Then the

b) At same point p E X the space

precompac t .

of directions S
p

is

c) The set ~ of geodesic terminals in X is nowhere dense.

d) Xis li mani fold wi th bound8 ry I lind ax = fj.
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Proof. For any p EX, let B(p, r) be a strictly convex

region of curvature ~ k and ~ K, and 1
1

,

elements of S .
p

• ,. • t y be independent
n

a) * b). Choose E small enough that the set CE of Lemma 3.9

is non-empty. Then ex p
p

is ( a homeomorphism) defined on

{t-y : y E CE' t ( E}, which i9 an open radial cone in ~n; i.e. I

B(p, r) contains a subset of dimension n. In other words, if X

is finite dimensional s
p

is spanned by at most finitely

elements. By Proposition 3.7, T is isometrie to a closed ,
p

convex Euc.1 idean cone, and S is a closed
p

(and hence compact)

subset of the unit sphere.

b) .. c). For all i , let CI be from Lemma 3.9 for C = - i2 ,

and let C = for some i, t (" min {T (y) t r} } .

Then C is an open dense subset of B(p, r) homeomorphic to an open

subset of Euclidean space.
-1

For any z E C. exp (C)
z

is open in T
z

and homeomorphic to an open set in ~n; in particular, there is an

open n-ball B(O. P) c T
z

contained in - 1
exp (C).

z
This implies

that T is in fact isometrie to IR
n

, or, equivalently, that z is
2:

not a geodesie terminal. All geodes ic terminals in B (p, r)

therefore lie in B(p. r) \ C, a nowhere dense set.

Let Y be the subset of all points y E X such that for some

p > 0, the geodesie terminals in B(YI p) are nowhere dense. Y is

obviously open, and also closed: Let w E Y, and suppose B(w, p)

is a strictly convex region of curvature ~ K and ~ k. There

exists in B(w, pIZ) a point y E Y and hence a point z which is

contained in a geodesically complete open ball; i. e. , S is
z

precompact. But then by the preceding paragraph the geodesie

terminals in the ball B(z, p/2), which is a strictly convex
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region of curvature ~ K and ~ k, are nowhere dense. It follows

that w E Y. Finally, since the set" of geodesic terminals is

nowhere dense in a region of every point, ~ is nowhere dense in

all of X.

c) • d). Let x E X and choose a strictly convex region V of

curvature S K and ~ k containing x, and a point p E V \ ~. Since

~ is nowhere dense, there exists a ball B = B(p, r) C V such that

B is geodesically complete (and strictly convex). By Theorem

aisand~n , eX P p I 8 (O.r)

let 1 denote the unique minimal
q

to

For all q E V,

homeomorphicis3.2, T
p

homeomorphism.

curve from p to q.

The main step in the proof i8 showing that if x is a

terminal of a geodesic in V starting at p, then x is a boundary

point, and if x is not such a terminal, it i8 an interior point.

upperisTroapthepreviously,arguedAs S -)
p

semicontinuotls; fit any v E S such that exp (tv) E V for all t E:
p p

[0, T(v)], T is lower semicontinuous (and hence continuous), as

the following claim shows.

Claim 3.11. Tf for some v E Sand c > 0, exp (tv) E V for
p p

all t E {O,e}, then 1im inf T(w) ~ e.
w->v

Proof. Let y = exp (cv). Note that Ty = sp {Y1' .. .. , "'1 }
n

for some 1
"

• • • I 'I .
n

For i f S contained m > n independent
y

elements, Lemma 3. 9 would impl y tha t V, and hence T ,
p

would

contain a set homeomorphic to an open subset cf ~m
I a

contradiction to elementary dimension theory. Likewise, since T
p

is of dimension n, T i8 spanned by at'least n elements.
y

~ 1
Let U = exp. (B(p, r)); then by Invariance of Domain U is

y
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open in l' c IR".
y

Let S (c + C) 'denote the interseetion of T wi th
y

the (n-l)-sphere in IR" eentered at 0 in of radius e + C. For

same small c, 5(c+c) n U eontains an (n-l)-disk !I such that

(e+()'v lies in the intericr cf :». Let S denote the (n-l)-sphere

in T whieh is the union of ~ with" ~ll radial lines from a ~ to
y

o.

The set Z = - 1exp
p

(exp
y

(S) ) isa topolog ieal (n-1)-sphere

eontaining ev such that for all t E [0, c), tv lies in the

n-dimensional ball bounded by Z. In particular, i f a( v, w) is

small, then the radial line through w must interseet Z near ev.

In other words, exp (tw) is defined for t not mueh smaller than
p

c. This completes the proof of the claim.

5uppose now that x i8 a terminal of the minimal curve "'I •
x

Let D = {w E T
p

w = T(v)'v, v € S t
P

and a (exp (tw),"'1 ))
x

< (},

where E i5 chosen, using the eontinuity of T, s~all ~nough that

exp (tw) € V, for all w E D and t E 10,1]. The continuity of T

shows fu rthe rmo re tha t 0 i 5 a topolog ieal ( n -1 ) - ball, and that

D' = (tw : w € D und t E (0, Ilwll J) i5 homeomorphic to a boundary

ball in n-dimensional half-spaee. Finally, exp (D') i8 an open

subset eontaining x; for if x' i8 suffieiently elose to x, then

0:(1 , 1 ) < € and d(x' ,p) > r/3.
x x'

By definition, the terminal of

"'I
p

' lies in exp (0), and so x' E exp (0').

If X is not a terminal of 1 , then Claim 3.11 shows that
x

nearby points are also not terminals, and so the exponential map

provides a neighborhood cf x hemeomorphie to an .open subset ef

Euclidean spaee.

X has now been shown to be a mani feld wi th boundary, and

ax = 5"', where 5"' is the set ef terminals x with the following
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property: in some strictly convex region V of curvature bounded

above and below containing X, there is a minimal curve J
px

with

P € V \ ". Since aX is closed, the proof of the theorem will be

eomplete if it is shown that eaeh point z € ~ is Z = lim Zt' with

Choose a region V eontaining Z with curvature bounded

above and below, and pick q E V so that Z is a terminal of a

minimal eurve 1 starting at q. Now eheose points qi -) q such

that qi € V \ ~, and let l i denete the unique geodesie starting

from q" with maximal domain cf definition.
I

Then as in the proof

o f the upper semi -eon ti nu i ty 0 f the mnp T, as i -) 00, the

geodesies must have terminals zl
'

and Zl -) Z.

d) <:} a) is a elassical result. I The proof of Theorem 3.10 is

naw complete.

Corollary 3.12. Let M be R topologicRl n-manifold and d be

8n inner metric on N of ,local1y bOllnded curvature.

following are equivalent:

a) (M, d) is (metrically) complete,

b) (N, d) is geodesica.lly complete,

Then the

c) there exists a point p E H such that exp is defined on
p

all of Rn J and

d) e\'ery closed, bounded subset of N i s compac t.

Proof. a) .. b) If M i9 a manifold (without boundary)

having a eomplete inner metric then by Theorem 3.10, ~ = a M = 0,

which i9 equivalent to geodesie eompleteness in the metrically

eomplete ease (cf. Chapter 1). The proofs cf the remaining

implications are e9sentinlly the same as in the classical

Hopf-Rinow theorem.
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If the geodesie terminals ~ in aspace X are nowhere dense

in the

Theorem

neighborhood of some

3.10 implies that ,.

point

i8

p, then S
p

nowhere dense

is compact,

in all of

and

x.

Equivalently:

Corollary 3.13. If (X, d) is an infinite dimensional,

complete, locally compact space of locally bounded curvature,

then the set ~ of geodesie terminals is dense in X.

Corollary 3.14. If X 1s a compact Riemannian manifold such

thBt S[X hBs bounded curvature for some f, then X is homeomorphic

to B sphere.

Proof. The only possible terminals in S[X are the end

points of the suspension, which form a nowhere dense subset of

On the other hand X has dimension n ;a 1 t end two points

cannot form a boundary of the ( n+ 1 ) -mani fold X x
[

(a, b). By

Theorem 3.10 the end points eannot be terminals, and so S[X is a

manifold. Finally, it i8 a standard topologjeal result that the

suspension 0 f aspace X i8 a mani fold i f end only i f X is

homeomorphie to a sphere.

Any f ini te dimensional space ean be embedded in Euel idean

spaee, and so completeness end f ini te d imens ional i ty together

imply loeal compactness. Theorem 3.10 therefore implies that any

finite dimensional space X with a complete metric of locally

bounded curvature i8 a topologi~al manifold with boundary. More

generally, sinee the indueed inner metric on a eonvex subset C of

X i8 the same the original metrie of C (as a subset of X), the

following eorollary holds (in the Riemannian ease this was proved

by Cheeger and Gromoll, cf. [CE], Chapter 8).
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Corollary 3.15. Jf X is a finite dimensional, complete

inner metric space of loca11y bounded curvl1ture, then every

closed, convex subset of X is a manifold with boundary.

In general the boundary of aspace of bounded curvature need

not be smooth in the "normal" coordinates of the type constructed

in Theorem 3.10: A square in the plane with the induced inner

metric i9 flat, but in no choice of normal coordinates i8 the

boundary smooth.

Lemma 3.15. Let X be a fini te dimensional complete inner

metric spllce of loeally bounded curvature.

trBnsverse to every interior point.

Then a X is

Froof. Suppose x E a X and let Y
ax

be minimal. There

exists a point p on Y end a strictly convex region B(p, r) of
ax

contained in a Euclidean neighborhood, a contradiction.

curvature bO\lnued above and below containing x.

de f ined beyond x, then Cl aim 3. 11 would impl y tha t

homeomorphism on an open set containing x', that

If Y were

- 1
isexp

p
a

is, x i8

In other

words, every geodesie terminates if it hits the boundary, and so

cannot intersect the boundary twice.

Definition 3.16. Suppose ,B = B(p, r) i5 a strictly convex

region of curvature bounded above and below, lind A, A' c B Bre

transverse to p. Then A and A' are said to be r-equivalent in B

if there is a (po5sibly not continuous) bijection lfJ A -> A'

such that R Rnd ~(a) lie on the same radial geodesic from p. The

radial distance S (A
r

distances d(a, ~(a)).

A') i5 defined to be the supremum of the
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Lemma 3.17. Let U = B(p, r) Bnd V = B(q, 5) be strictly

convex regions of Clll'Vatrlre vounded 8bove and below. 511ppose A

1s B compact subset of U n V such that A 1s transverse to both p

and q • . Then there exists an C > 0 such that if A' c U n V 1s

r-equivalent

to q.

to A in U and () (A,
r

A' ) < C, then A' is transverse

Proof. The set C = {}' € s
p

}'(t) E A fer seme t} is

compact. If }'(s), a(t) E A, there exists some 0 ) 0 such that

far all C E (-5, <5), (Y(s+C'), a(t+C')} is transverse to q. For if

otherwise, ene could find t
J

-) 0 with geedesics ß
J

to q starting

at q passing through both }'(s+t
l

) and a(t+t
1
). Hut 1im ß

1
would

be a minimal curve in V starting at q and passing through bath

}'( s) snd a( t), a contradiction. A si milIar argument shows that

the function whieh assigns to each element of C x C the infimum

of all such 5 i5 lower semicontinuoll5, und therefore has a

positive minimum on C x C; this minimum i8 the desired number C.

Theorem 3. 18. A topol og i cli.l splice X admi ts the 5 truc t ure of

a smooth mani fold wi th boundary i fand only i f X possesses B

complete metric of loclilly boünded curvBture.

Proof. 8uPPo8e X is a smooth manifo.ld with boundary. Endow

the interior of X with a Riemannian metric whieh i8 a produet

metric near the boundnry. Extend the metric (distance) to all of

X by continui ty. Then X is isometrieally embedded as a eonvex

subset of the Riemannian manifold X obtained by adding a small

open eollar (wi th the product metric) to X along the boundary.

In particular, all angle comparisons in X can be carried out in

X, whieh has locally bounded sectional curvature, and hence
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locally bounded curvature in the present sense.

Conversely, suppose X is finite dimensional with a complete

inner metric of locally bounded curvature. For simplicity,

assume ~ is compact, end let (B1(X
1

, r
1
)}, 1 .:s:: i;s; k, be a cover

of X by balls whose closures lie in strictly convex regions of

curvature bounded sbove and below, with Xi Eint X for all i. By

the results of [Be]. the sets Bi have Cl overlap on their

interiors. The terminal rnap Tl S -) (0, 00] was shown to be
x

1

continuous on T~l( (0, r 1] ) in the proof of Theorem 3.10. Ul =
T~l( (0, r 1 ) ) is an open subset of the unit sphere S x

1

homeomorphic to W
1 = B, n a X via the map qJ (v) =1

exp 0 T,(v)·v. One can ehoose a smooth rnap ,. : U1
-) (0, r)

x 1
1

having a contin0uS extension equel to Tl "'on S \ U
l

such that,
x

1

on U l '
'.f < Tl end '.f approximates Tl neer enough that the

1 1.

following holds: Let D
l

= ("1('-1("1}) l E U, } , thet is, D, is

obtained by "pushing" W
t

inward along radial geodesics starting

at Xl by the amount T - 5" 1 •. D
1

is r-equivalent to Wl' and so by
1

Lemma 3. 17, if ,. is chosen elose enough to T 1. f
D 1

n ß( is
1

still transverse to r
l

for all i such that D1
Cl Bi '# 0. The set

Xl = X \ ( )' ( t ) : t ) ,.
1(}'}' }' E U1}

is homeomorphic to X and has smooth boundary in B
1

• Let B; be an

open subset of B
1

such that B~ c B
1

and {B~ t B
2

, ••• , Bk} covers

X. Let T 2 be the "terminal" map for Xl' i. e. I for each "1 E S X '

2

Tz (l) = t provided let} E a Xli end Tz(l) = co if no such t

exists. Since a Xl Cl B
2

is transverse to r zl Tz is well-defined

and continuous.

sphere S homeomorphic
x z

=
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exp 0 T 2 { V } • V •
x

2
The overlap between B

1
and B

2
is C

1
on their

interiors,

that T
2

is

and a X
1

smooth

n B
1

on Y

n B
2

C in t

= 'P;1(a X
1

n

n

n

this impl ies

Setting y' =

one can now choose a smooth approximation ~
2

ofT 2 on U
2

which agrees wi th T 2 on y', and so that the new

mani fold wi th boundary, X
2

, constructed as above, has boundary

whose intersection with any BI is transverse to r
1

, and which is

smooth in B~ u B
2

• This inductive procedure can be continued for

a fin i te number of steps to obtai n a mani fold wi th boundary X
k

contained in, and homeomorphic to, X, such that the restrictions

of {BI} are C
1

coordinates for Xk •

In the noncompact case, one can use the above procedure to

"smooth Qut tt B{p, 2) for some point p. On can then cover B(p, 3)

by B(p, 1 .5) and a finite number of open sets which do not

intersect B(p, 1 ) . A C
1

structure can now be constructed on

B(p, 3 ) which agrees w.i th the previolls smooth structure on

S(p, 1 ) . This process can now be continued for a countable

number of steps to pul a C
1

structure on all of X.
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