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Introduction

This paper characterizes .topological spaces admitting the
structure of a smooth manifold with boundary as precisely those
finite dimensional spaces admittingra (metrically) complete inner
metric of bounded curvature. In proving the most interesting
half of this equivalence—that a finite dimensional space of
bounded curvature is a manifold with boundary—the boundary
points are characterized in terms of gecdesic completeness. In
consequence, the Hopf-Rinow Theorem can be completely generalized
to the <c¢lass of toplogical manifolds (without boundary) of

\
bounded curvature.’

An inner metric space (X,d} 1is a metric space X with
distance d such that for all x, y € X, d(x, y) is the infimum of
the lengths of curves « joining x and y in X. Such spaces are
currently of interest, due, in part, to recent work (e.g., [F],
{rY], I[GLP], I[GP], [GPW], [GW], [P]) on the Gromov-Haus&orff
convergence ([G]) of Riemannian manifolds: A limit of Riemannian
spaces inherits an inner metric structure and, depending on the

nature of the spaces converging toe it, various other geometric



properties. These properties and their topological implications
are treated here abstractly, supporting the point of view that
much of what is true for limits of Riemannian spaces is directly
a result of the geometry they possess, not the (presumably) more
special fact that they are limits.

Such an approach c¢an be fruitful. The proof of the
Convergence Theorem for Riemannian manifolds given in [P] and
[GW] uses convergence of harmonic coordinates to obtain
coordinates and a Riemannian metric in the limit space; however,
this theorem also follows easily from earlier general results on
the existence of smooth Riemannian metrics for inner metric
spaces of bounded curvature ([N]). In fact, one can show without
difficulty, and using only basic properties of the distance
function, that a 1limit of Riemannian manifolds of curvature
uniformly bounded above &nd below, volume bounded below, and
diameter bounded above, has again curvature bounded above and
below (in the metric sense recalled below), and satisfies a
geodesic completeness condition. {General conditions under which
bounded curvature and geodesic completeness are preserved in a
limit of inner metric spaces can be found in [PD]). These three
ﬁroperties suffice to apply the results of [N] and reach the same
conclusion as in {GW] and [P}, i.e., that such a limit is a
smooth manifold with ¢% metric ({(with respect abstractly
constructed harmonic coordinates!).

A natural problem to undertake now is to use these
techniques of "metric geometry" to obtain information about
Gromov-Hausdorftf limits of spaces in the more general

Grove-Petersen-Wu ([GPW]) class of n-dimensional Riemannian



A

manifolds (i.e., with curvature and volume bounded below, and
diameter bounded above). In particular, it has been conjectured
that such limits are topological manifolds (in [GPW] they are
shown, for n 2 5, to be homology manifolds admitting =a
resolution}. This conjecture remains unsolved, and the main
difficulty, from a metric geometry perspective, is that, without
the uniform upper curvature bound on the c¢lass, both the upper
curvature bound and the geodesié completeness condition are lost
in the limit. The present work treats the case of spaces having
curvature bounded above and below, without geodesic completeness.
Work on spaces without an upper curvature bound is in progress.

The failure of geodesic completeness is treated in this
paper by introducing the notion of "geodesic terminal” toc mean a
peint at which some geodesic "stops" (a "geodesic” is an
arclength parameterized curve which . is locally distance
minimizing). Such points do not, of course, exist in the
Riemannian case, but in 1limits of Riemannian spaces geodesic
terminals can even occur in the interior of a manifold with inner
metric {2.5),.

The following is a summary of the main results in this
paper. For definitions, see Chapter 1. For the remainder of
this paper, the single word complete will refer to metric

completeness (as distinct from geodesic completeness).



Theorem A. Let X be a complete, locally compact inner
metric space of locally bounded curvature (above and below).
Then the following are equivalent:

a) X is finite dimensional,

b)the space of directions at some point in X is precompact,

c) the set T of geodesic terminals is nowhere dense, and

d) X is a manifold with boundary and 98X = w,

Corollary B. Let M be a topological manifold and d be an
inner metric on M of locally bounded curvature. Then the
following are equivalent:

a) (M, d) is complete,

b) (M, d) is geodesically complete,

¢) there exists a point p € M such that each geodesic
starting at p is defined on all of E+, and

d) every closed, bounded subset of M is compact.

Corollary C. A locally compact, infinite dimensional Iinner
metric space of locally bounded curvature has a dense set of

geodesic terminals,

The "normal"” coordinates used to prove Theorem A are not in

general smooth at the boundary. However, the boundary can be
"smoothed:"
Theorem D, A topological space X admits the structure of a

smooth manifold with boundary if and only if X possesses a

complete metric of locally bounded curvature.

There exist "flat”" spaces {curvature bounded above and below

by 0) having dense geodesic terminals (2.7), and geodesically



complete spaces of curvature 2 0 which are also infinite
dimensional (2.8).

The special case T = # (i.e. X is geodesically complete) was
first considered in [Be], where it is proved that X is in fact
smooth with a éontinuous Riemannian metric (smoothness of this
metric is the result of [N]).

Some of the examples in Chapter 2 and .the implication
c} 2 d) in the main theorem were included in my doctoral
dissertation. I would like to thank my thesis advisor Karsten

Grove for his help both before and after my thesis was written.

1. Metric Geometry

Among the several different theories of bounded curvature
for metric spaces, the theory presented in [R] is most
appropriate for the purposes of this paper. A few of the basics
are recalled below. The only new concepts in this chapter are
those of "geodesic terminal" and "cémparison radius,"” defined at
the end.

Throughout this paper, curves will always be assumed to be

parameterized proportional to arclength. If « is a curve in X
from x to y such that £{(«x)}) = d(x,y), where {(a) denotes the
length of «, then « is called a minimal curve, A geodesic is a

curve ¥ which is locally minimal; specifically, if ¥ is defined
on an interval I, then for every t € I there exists an interval
J = [t-5,t+8], & > 0, such that Yhﬂl is a minimal curve. In

this paper, rxy will always denote a geodesic from x to y.



Under the assumptions of metric completeness and local
compactness, every pair of points in X can be joined by at least
one minimal curve, and every closed and bounded subset of X is
compact.

In all curvature discussions in this paper, the vglue of
K'’? will be taken to be ® if K < 0.

A triple (a;b,c) in X is a set of three points a, b, ¢ € X
such that a # b and a # c. For any K, let SK denote the
(complete} dimension two, simply connected Riemannian space form
of constant curvature K. If {a;b,c} is a triple such that
d(a,b) + di{b,c) + d(c,a}) < 2n/YK, then there is a uniquely
de£ermined {up to congruence in SK) triangle TK(a;b,c) in Sx

having sides of length d(a,b), d(b,c), and d{c,a). Let ak(a;b,c)

denote the angle corresponding to a in TK(a;b,c).

Definition 1.1. An open set U in X iIs said to be a region
of curvature S K (resp. 2 K) if for every triple (a;b,c) in U,

a) (a;b,c) has a representative in S, and

b) if a # b and a # ¢ and Yoor ¥, 8re minimal curves, then
the distance between any points x on Yab and y on 7. is s
(resp. 2) the distance between the corresponding points x' and

y' in T}(a;b,c).



Theorem 1.2. Let U be a region of curvature 2 K in X. Then
a) If ¥ and ¥ lie 1in- U, then for any number K,

ab ao

£%T_>Dag(a;rab(s),7=c(t)) exists, and 1is independent of both K
and the parameterizations of the curves; this number is called
the angle between Vab and YBC, denoted G(Yab.Yec).

b) The triangle Inequality holds for angles.

c) If Yab and ¢ lie in U, then for all x on ?ab strictly
between a and b, G(Txa,yxc) + G(Yxc,Yxh) =7,
d} If 1. and c¢ lie in U, x lies on Yo strictly between a

and b, and dfc,x) = d(c,¥ ), then «(Y ¥ ) =a(y ,¥ ) ="7n/2.

xXc xb

In a region of curvature bounded above, conditicons a) and b)
still hold, but ¢) and d} fail in general (2.3).

A space X 1is said to have curvature locally bounded below
{resp. above) if each x € X is contained in a region of curvature
bounded below (resp. above) by some number K possibly dependent
on X. X is said simply to have Jlocally bounded curvature if X
has curvature 1locally bounded Above and below. If X  has
curvature locally bounded below, two geodesics have angle 0 if
and only if they coincide on their maximal domain of definition.
The angle is therefore a bona fide metric on the space Sp of all
unit geodesics of maximal demain starting at a point p € X,
called the space of directions at p.

A point x € X 1is called a branch point if there exist
distinct points a, b, ¢ different from x and minimal curves Yab,
Y. such that x lies on both LI and Voo the two curves coincide
between a and x, and d(a,x) =:d(b,x). At the branch point x, the
geodesic 1., "branches" to form two distinct geodesics L and

Tac. A region of curvature 2 K contains no branch points,



A subset A of X is called stfictly convex if every pair of
points in A is joined by a unique minimal curve, and that curve
lies entirely in A. If r < H/Z/_, ‘and E(x,r) is compact and
contained in a region of curvature s K, then B(x, r/2) is
strictly convex. Hence, in a locally compact space of curvature
locally bounded above, every peint Is contained in a strictly
convex neighborhood.

The following lemma is well known (|[CE]) and not difficult
to prove. It is used frequently in this paper, both explicitly

and implicitly.

Lemma 1.3. For a triangle ABC 1in SK having side lengths
-1/2 . . . , .
< K , the distance BC is & monotone 1increasing function of

the angle at A, on [0O,n].

In a region U of curvature s K (resp. 2 K), the following
equivalent conditions hold, whenever the given geodesics exist in

U:

Al. If (a;b,c) is a triple in U such that b # ¢, then

(Y yac) £ (resp 2) ﬁx(a;b,c).

ab’

A2, If (a;b,c) is a triple such that b # ¢, and ABC denotes
the uniquely determined triangle in Su with AB = d(a, b), AC =
d(a,c), angle a(]ab, Iac) at A, and side BC of minimal length,

then d(b, ¢) 2 (resp. s) BC.

An inner metric space X is geodesically complete if every

geodesic in X has a unit parameterization defined on all of R,



Definition 1.4. A point x € X is called the terminal of a
geodesic LI if ¥,, cannot be extended beyond x (as a geodesic).
More generally, a point is called a geodesic terminal if it is

the terminal of some gecodesic.

In the metrically complete case, geodesic completeness is
equivalent to the absence of geodesic terminals; it is therefore
both simple and convenient to have a notion of geodesic

completeness for an arbitrary open set:

Definition 1.5. If X is a complete inner metric space, an
open set U S X is said to be geodesically complete if U has no

geodesic terminals.

Definition 1.6. If x lies in a region of curvature s K, the
upper comparison radius for K at x is defined to be

cK(x) = sup (r : B(x,r}) is a region of curvature < K},
If x is not contained a region of curvature S K, then cK{x) is
defined to be 0. A point x 1is called a singularity if cK(x) = 0

for all K.

The inequality cx(x) b3 cK(y) - d{x,y) holds for all x, y €

K, . . ..
X, and shows that ¢ is either everywhere infinite or a

. , . . K .
continuous map from X into the non-negative reals; if ¢ is

. . . K
positive on X, X is said to have curvature S K, Finally, c (X)

. K : , .
will denote inf ¢ (x), the upper comparison radius of X.
x€EX

By reversing the inequalities in the above definitions, one
can similarly define, for any K, the lower comparison radius

cK(x) (with CK(X) = inf cx(x)), and curvature 2 K for the whole
xE€EX

space X.



2. Examples

Example 2.1. If M is a Riemannian manifold, then the
distance induced by the Riemannian métric is by definitiom_an
inner metric. If the sectional curvature k on M satisfies k s U,
then cu(x) > 0 for all x; if k 2 L, then by Toponogov's theorem,
c (M) = o ([K]). It is not known if there exist inner metric
spaces having curvature 2 L and cL(X) < ®, Such spaces could not
be limits of Riemannian manifolds with curvature uniformly

bounded below ([GP], [PD]).

Example 2.2. If X is an arbitrary metric space and Y ©€ X is
finitely path connected (every x, y € Y can be Jjoined by a
rectifiable curve in Y}, the induced inner metric dI(x, y) on Y
is the infimum of the lengths (in the metric of X) of all curves
connecting x and y in Y. This metric is topologically equivalent
to the usual induced metric, but in general, dl(x, y) 2 di{x, y).
In particular, every finitely path connected metric space has an
inner metric. If N is a Riemannian submanifold of a Riemannian
manifold M, the induced inner metric is simply the usual distance

associated with the induced Riemannian metric on N.

Example 2.3. In Ra, Yet X be the union of the (x,¥y)-plane
with the z-axis, and let d be the induced inner metric from Ra.
Then X is geodesically complete, co(X) = ® (g0 X is strictly
convex}, and co(x) > 0 except at the origin (which is a branch
point}. This example illustrates that the local euclidean
structure of an otherwise "nice" space is easily destroyed by a
single point at which curvature is not bounded below. There is

no known analogous example for the upper curvature bound. Note

10



that the angle between the z-axis and any geodesic in the plane

through the origin is =n.

Example 2.4. Let X be an n-sphere (n 2 2), with an open

1" "

cap sliced off along some latitudinal ‘"circle" above the
equator, Then the boundary circle becomes a "new" geodesic in
the induced inner metric, and every point on it is e branch point
and a geodesic terminal. The lower curvature bound of the
original sphere has been destroyed. The original upper curvature
bound also no longer holds.

If the slice is made along or below the equator, the
remaining closed disk is strictly convex and retains the constant

curvature of the sphere, and points on the equator all become

geodesic terminals.

Example 2.5. Let Xi be a flat cone with the apex smoothly
rounded off at some positive distance € from the end, with
61—> 0, and the wide end smoothly capped (toc make the space a
compact Riemannian manifold). Then the limit X of these spaces
is a cone (with the wide end rounded off}, which has curvature
bounded above and below by OIaround, but excluding, the apex.
The apex 1is a singularity and a geodesic terminal, since it 1is
always shorter to pass around the cone than through the apex.
Theorem 3.10 shows that such isoclated, "interior" terminals do

not occur when the curvature is locally bounded.

Example 2.6. Let £ : (a,b] —> {0,®) be a smooth function
such that f{(a) = 0 and fl(a'b) > 0. Assume furthermore that
f{c) = 1, where ¢ = (a + b) / 2, and that f is symmetric about ¢,
i.e., for all 0 £ 8 £ ¢ - a, fla + 8) = f(b - &), For any

11



compact Riemannian manifold X the f-suspension SfX is the metric
completion of the warped product ([BO], [0O]} {(a,b)} x. X. 5.X is
therefore obtained by attaching, to (a,b) X, X, a point at a X X
and one at b x X; er is clearly homeomorphic to the topological.
suspension of X, Furthermore, ¢ x X 1is a totally geocdesic
isometric ecmbedding of X in er. since f'(c) = 0. The induced
inner metric on (a,b) X X c sfx is simply the usual distance
associated with the warped product metric.

If 8" denotes the unit n-sphere, n 2 2, then s" minus two
poles 1is homeomorphic to (0,m}) X S“-1, With the induced
Riemannian metric, the fibers of this product are isometric to

n-1

spheres of radius sin t, t € {(0,m), Hence S“nS is isometric

n

to S .

Understanding the curvature of f-suspensions. is a subtle
problem; although the curvature of the warped product is easily
computed, curvature at the end points must generally be verified
directly by triangle comparison. For example, the
sine-suspension of a non-simply connected space of constant
curvature 1 has again constant curvature 1 on the warped product,

but the curvature is not bounded at the end points (3.14).

Example 2.7. An infinite {(Hilbert) cube, the product of
closed intervals of lengths 1/2, 1/4, ..., can be easily verified
to have curvature bounded above and below by 0. (To do this,

consider it as a Gromov-Hausdorff 1limit of finite cubes, note
that cO = ® for each finite cube, and apply the results of [PD]
to obtain the same comparison radius for the limit; or embed the
space in Rw, with the flat Euclidean metric). The "faces" of the

cube are all geodesic terminals, and form a dense set.

12



Example 2.8. An infinite torus, the product of spheres of
radius 1/2, 1/4, ... (and dimension 2 1), is a geodesically
complete space of non-negative curvature, Note that if all the
spheres are 1-dimensional, the resulting infinite torus 1is a
Gromov-Hausdorff limit of flat finite tori, but, by Thecrem 3.10
cannot have curvature locally bounded above. The loss of upper
curvature bound in the limit can occur in this case because the

injectivity radius, and hence cD, tends te O (LPD]).

3. Finite Dimensional Spaces of Locally Bounded Curvature

1f X is a space of curvature locally bounded below and there
exists a point x € X with at most two directions, it is easy to
show that X igs homeomorphic to an interval or a circle. Some of
the lemmas below fail for phis trivial case, and to avoid special
exceptions in the statements, the direction space at each point

will be assumed, when necessary, to have at least three elements.

Definition 3.1. Let X be a space of curvature locally
bounded below. The tangent space Tp at a point p € X is the
metric space obtained from Sp x R* by identifying all points of
the form (¥, 0) (and denoting the resulting point by () with the
following metric, where the class of (¥, t) in the identification
space 1s denoted t-y:

S(ty, s'f) = (tz + 52 - 2st-cos «(Y, B)}1’2.

_For each 7y € SP, let T{Y) = sup {s : ¥(s) is defined}; that

is, ¥ terminates at Y(T(y})) if T(y) < ®, and has no terminal if

13



T{y) = @, T will be called the terminal map on Sp. The
exponential map is defined by expp(s~7) = ¥(s), for all s S T(Y).
Expp is, by A2 (resp. Al), continucus (resp. open) on the

intersection of its domain of definition with any B(0, r) such

that expp(B(O, r}} is contained in a region of curvature 2z K

(resp. S K). Furthermore, expp is a radial isometry, and
preserves the angle between radial geodesics (i.e., starting at
p). If X is complete and has locally bounded curvature, then any

sequence of geodesics whose directions are Cauchy and whose
lengths have a positive lower bound has a limit which is again a
geodesic; in this case expp is continuous on its domain of
definition, and T : Sp —> R v ® ig upper semicontinuous.

The following theorem 1is a restatement of some of the
results of [Be]; by the comments of Chapter 1 it should be clear
that the assumption given in [Be], that X is a "Busemann G-space"
{{B]) of bounded curvature, can be reduced to the hypothesis
given below, [PD] contains a short proof of Theorem 3.2, and

another is indicated at the end of the proof of Proposition 3.7.

Theorem 3.2. Let X be a complete, locally compact Inner
metric space. I'f B(p, r) is a strictly convex, geodesically
complete region of curvature bounded above and below, then T; is
isometric to some Fuclidean space, and eprB(OJ) is a

homeomorphism.

Without geodesic completeness, the situation is somewhat
less simple. In particular, finite dimensionality is not
guaranteed by local compactness, nor 1is the direction space

always compact. Suppose X is a complete, locally compact inner

14



metric space of locally bounded curvature. Let gp be the metric

completion of Sp; then elements of the metric completion fp of Tp

can clearly be written in the form t?, where 7 € §p, t € R+, and

0y = 0. For any 7 is said to be between 71and

). For any distinct

€ §p, the span sp {71, 72} < Tpof 71, ¥, is the set of all

tY such that one of 71, ¥ 7 is between the other two. In

2'

general, given distinct 71, ey ?u € gp, k > 1, the span of

71, ceen ¥, is the smallest subset sp {71, ey ﬂ} < Tp

such that if «, ¥ € sp {71, Ceey 7k}, then

containing Tir eveen ¥,

sp {a, ¥} € sp {71, ey i}. The elements 71, ««.y ¥, are said

to be independent if ?“ does not lie in sp {?1, ey .fj} for

1

any J. The notions of angle {(not as a metric!) and bhetweeness
can be generalized to the space ’[‘p in the obvious way; e.g., for

t t. > 0, sp {t‘l?,ll ---utk-ik}:SP {—7.1, ---|7}-

1t M "

Lemma 3.3. Suppose p lies In a region of curvature 2 K in a
complete, locally compact Iinner metric space X. Let {71} and
{r]i} be Cauchy sequences in Sp. Then given any positive s, -2 0

and t:l —> 0 such that s, s T”l) and t, < T(ni), if di =

d()’i(si), ni(t‘)), then

n) = i11_1‘%) c:c's-‘I [(s2 + tz - d?) / 2'si'ti].

%-i a”i’ i i 1

T

Proof. Given any € > 0, choose a j such that for all i > j,
0‘(7], 1,) < €/2 and a(nj, n) < e/2. For any such i and s =
min {T(¥ ), T(Yj)} and t S min {T(n ), T(T?J)}, let W (s, t)

dencte the representative in SK of the wedge formed by 7il[o .l

and nii and WJ(S, t) denote that of the wedge formed by

{o,t1’

'L and UJI

Mo, el ). Curvature 2 K implies d(Ti(s), Yj(s))

[0,t]

15



and d(ﬂl(t)1 nj(t)) are both smaller than the distance between
the endpoints of a wedge in SK having sides of lengths s and t,
with angle ¢/2. The difference between the angles of wi(s, tf

and Wj(s, t) is therefore S €, and the lemma follows.

For 3.4 - 3.7 and 3.9, let B = B{p, r) be a strictly convex
region of curvature 2 k and £ K in a locally compact, complete

inner metric space X.

Lemma 3.4. For every ﬁl, n, € Ep and a € [0, a(ﬁi, ﬁz)],

2

there exists some E € Ep between ﬁi, nz such that &(E, ﬁl) = a.

Furthermore, if 0(61, ﬁz) <%, T is unique.

Proof. Since Sp is dense in gp, for the first part of the
lemma it suffices to show the following: Given minimal curves
Ypb and ch in B and a, a, > 0 such that a, + a, = a, =
al?pb, nw)' then for each € > 0 there exists a minimal curve Y

starting at p such that

|a(¥pb. T} - a1l £ ¢, and
laety , ¥}y - a_l s €,
pc 2
Suppose first that a, < T, For all 1 =1, 2, 3,... let b1 denote
7pb(2"), c. denote rpc(z"), and @ : [0,1] —> B be minimal from
bi to c - Set f§ = £11/£m:l and lét 7, be a unit minimal curve
from p to di = Gi{B). Since a, < T, d(bi, cl) <

d{p, bi) + d(p, ci) for sufficiently large i, which implies p #
“1(5) and ¥, is nonconstant.

Let T1 be a triangle in Sx having vertices P, Bi, and Di,

with d(P, Bi) = d{(p, bi), d(p, Di) = d{p, dn)’ and d(Bi, Di) =
(bl, dl). Let X, denote the angle of T‘ at X. Then by
definition of the angle (using SK), é@m X, = a, . Al now implies

16



that }i@w G(nm.<1‘) < a,. Similarly, }é?m G(nm, ?i) < a,, and
the above statement now follows, for a, < n, from
G(Ypb, 1)+ «ly, rpc) 2 ﬂ(rpb, Tpc) = a,. If a, = n, choose a
minimal curve ¥’ in a third direction. Without loss of
generality, assume a, s n/2 and a; = a(rpb, Yy 2 mn/2, Applying
the above case to the curves Ypb and Y, with a; = a, and a; =
a. - a’ produces the required new minimal curve.

3 1

To prove the last part of the lemma, suppose again that a, <

n, and assume that, contrary to uniqueness, there exists a & > 0
and, for k = 1, 2, sequences WYik} of minimal curves starting at
p such that

r)-alszr

I(‘(}’p Ik 1

b
i

laty 0 ¥, ) - el s 20,

with a(Y ., ¥,,) > $ for all i. The lengths of the curves can be

i2
shortened without affecting the above assumptions; assume
tfy“) = t(riz) = t, —> 0. In the plane, choose points P, B, C,

and T such that B, C, and T are collinear, PB = d{p, b}, PC

d{p, c), «(PB, PC) = a, and a(PC, PT) = a,. Define r. =
t,- PB / PT and s, = t,+ PC / PT; by removing a few terms one can
assume that the points 7pc(51) and pr(ri) all lie in B(p, r).
Let N C“, C2i be the minimal curves in B{p, r) fron ?pb(ri) to
ch(si), in(tl), and 721(t1)’ respectively. The‘assumptions on

)} is

the 7y , imply that d(?pb(rl), vt o+ dly (), ch(sl

arbitrarily close to d(‘ip (ri), ch(si)) for large 1i. Choosing a

b

representative of the triple (¥ (v ); ¥, (t), ¥ (s)) in 8,

‘and  applying Al proves that lim, «(n,, ¢ ) = 0. From the

ki

triangle inequality it follows that Jlim o(T ., C, ) = O. Let

21

Z zZ be unit minimal curves in Sk, with common endpoint y and

11’ 2i

17



other endpoints =z and z

. ,,» respectively, such that ‘C(Z“) =

‘C(c“). £(ZZI) = IC(CZI), and a(zll' Z ) B “(C“, C )- Then 0 =

2i 21

Fimy dlz ,, z,) / &z ) = limg dly (), v, (t)) / &L ) =

};uglm d”n(ti)’ 72i(t1)]'(XT/BT) / t. This last limit being O,

however, implies that {,i%, 0(7“, Y..) = 0, a contradiction.

2i

The proof of the following lemma is essentially the same as

the proof of the uniqueness part of Lemma 3.4 {(the case

0‘(']1, F’:a) = 1 below follows from the absence of branch points).

Lemma 3.5. If 7, ﬁz, Fia, 54 € Ep and ﬁz is between ﬁ13"'":’

n., and between 1, and 0., with «(n., n.) = afn., n.), then n. =
3 1 4 1 1 4 3

3
M,
Lemma 3.6. Let ?1, ey 74 € g‘p be distinct and, setting
a” = (x(‘xi, YJ), suppose « ., + &, = & < T, Then there exist
R 3 i
unit vectors v, € R™ such that Ot(vi, vj) = txlj, and a choice of

v, any two of Vi v

. v, determines the remaining v,.

2' '3 {

3
Proof. There exist X € R™ \ 0 such that X,» X

27
colinear, with c((f)_)‘(-l, ﬁz) = A s a(ﬁz, ﬁ:') = o
a{b")_(—“ ‘(‘)?4) = and a(-(ﬁ(-g, ﬁ4) = g, Choose YiJ € SP such
that ‘JU -> Ii, i=1, ..., 4, and positive tj‘ —> 0 such that
s,, = Bt X s T(y, ). Let B/, : [0, 1] —=> B be minimal from
Xy, = YU(SU) to X, = 7”(5”), and let 0:'2j be the unique
minimal curve from p to \:ZJ = ~B:3(a12/d13). To prove the first

part of the lemma, it suffices, by Lemma 3.3, to show that

x. )/ t =

lim ot(azj, a )} = (!(OXZ, 0X ); i.e., that lim d(xzj, 4 ;

4] 4
X2X4.
Curvature 2 K and the definition of the angle (applied to

representatives in Sx) imply that lim (t(ﬁig, B‘J“)
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a(Xlxa, X1X4). In a similar way, curvature £ k now implies that

x .}/ t, s X_X, can

lim d(xzj, X Y ; X4

41) / tj -3 X2X4. Now lim d(x]

be proved in the same way, reversing the curvature bounds.

The last part of the lemma is elementary linear algebra.

Proposition 3.7. If 71, . € Sp are independent, then

., Y } Is isometric Lo Lhe closure ol an open convex
m

. . m
radial cone in R,

Proof. Using Lemmas 3.4 and 3.5, one can now easily map
sp {71. 72} isometrically onto the closure C2 of a convex open
cone in Rz. taking each {tYy : t € R’} isometrically onto a
radial ray. Note that if ?land 72 lie in Sp and have extensions
past p as geodesics, then the image of this map is all of RZ.

Suppose such a map ¢ has been inductively constructed from

— —_— k ,
sp [71, ey Yk} onto the the closure C of a convex open cone in
Rk. In Rk+1 there exists some unit vector Vil such that
0(7“ 7k+1) = “(Vi' vK+1) for all 1 £ i s k. Note that if 7y €
sp {«, ?k+1} for some « € sp {?1, RPN ?u} n §P' then « is the
unique such element of sp {71, ey 7k} n gp. For if ? €
sp {a, "}'k”}, with « # «a', 7“1 € sp {«, a'}, and hence ?un €
sp {?1, e ey 7k}, a contradiction.

One c¢can now extend @ +to the union € of the spans

sp {a, 7k+1} for all « € sp {71, ey 7k} to an injective map

. . k+1 .
onto the closure of a convex open radial cone in R , which is

an isometry.on each sp {E. 7 This extension is actually an

k+1]'

isometry: Given B € sSp {E, ?k+1}' with o« € sSPp {71, ey 7k}, and
T € sp {?1, ey 7k} n Ep, apply Lemma 3.6 to (, P, ?k+1, «, with
v, = ¢(E), v, = w(?hd), and v, = pla), The unique unit vector
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K+ . . . . .
v, € R’ determined by these choices is the only unit vector in

k+1 . = ' - -
R to satisfy alv,y, v,) = «fC, B) and alv,, v ) = (B, ¥ ),
and so must coincide with @(B); i.e., «(f, «) = a(vz. v4) =
a(p(B), ola)). Now suppose B and C are arbitrary elements of C.
Then { € sp {7 &}, with « € sp {71, . 7k}. The above

k+1

special case shows that «(B, «) al@(B), ¢(«x)), and repeating

the argument shows a«(B, C) = o(¢o(B), ¢(C)).

In a similar fashion, the map ¢ can now be extended to an
isometry on the union ¢’ of the all sp [F, f} with ﬁ, f € C. One
need only show that if n € sp {B, C} n sp (B, '}, then the
extensions defined using the two different spans coincide; but
this follows from Lemma 3.6 as in the above argument. If 7 € ¢’
is strictly between any two elements of C', then the fact that C
is the closure of a convex open cone implies that @(7¥) is
contained an open Euclidean subset contained in ®(C’). in
addition, for any element ﬁ € ¢’ there are arbitrarily close
elements strictly between ¢ and some other element; in
otherwords, the interior points of ¢@(C") aré dense in @(C’').
Since ¢(C') is a convex cone by construction, C’ satisfies the
requirements of the inductive step.

Finally, C' = sp (Y., ..., ¥ This follows from the

lu'l}'

fact that, since ¢(C) has non-empty interior, every element of
kel , ) -

R**" lies in the span of some two elements of ¢(C). Suppose N €

sSp [B, f}, with ﬁ, E € C’' n gp. As before ¢ can be extended as

an isometry to C’ U sp {E, T}. But then @(7) lies in the span of

some @{a), @(¥) € e¢(C). Since ® is an isometry, 0N lies in
sp {E, 7} and so ﬁ € C'. This completes the inductive step.
, . x K
If, in addition, C = R, Yo,y € TP. and ¥ . has a
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. . 1 k+1
continuation past p, then Ck+ = R, Theorem 3.2 can now be

proved. If U is geodesically complete, each geodesic starting at
p is defined for at least length r, and so local compactness
implies Sp is compact, and Tp = ?p. Finally, compactness of Sp

implies that Tp is spanned by at most finitely many elements, so

Tp = R" for some n.
: The space sp {71, v sey 7m] will now be identified with its
image in Euclidean space. For example, given any «, B € gp and

s € [0, 1], s'@ + (1-8)'f will denote the unique element of §p
between a and B such that «(a, (s-a + (i-s)-B)) = s-a(a, B).

It is not obvious at this stage that, if Sp contains m

-1

independent elements, Tp (and let alone eXPp_ (B{(p, r}}!)
contains an open subset of R" {e.g., sp {71, Cee s ?m} \ Tp could
be dense in sp {71. ey 7m}).

Definition 3.8. Let X be an inner metric space and x € X.

Then a subset A ¢ X is said to be transverse to x if each minimal

geodesic starting at x intersects A in at most one point.

Note that if, in the above definition, x and A both lie in a

strictly convex set C, one need only consider minimal curves 1in

C.

Lemma 3.9. Suppose 71, v ey ?m € Ep are Iindependent. Then

for every € > o there exists a subset Ce of Sp homeomorphic to an
- 1 - » — —

open subset of S which 1is €-close to sp {71, ‘oo 1m} n Sp

such that the map T has a positive lower bound on CE.

Proof, Recall that subsets X and Y of a metric space are

€-close (in the Hausdorff sense) if X is in an €-neighborhood
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of Y, and vice versa.
The case m = 1 follows from the fact that Sp is dense in §p.

For m = 2, choose « o € Sp such that for all s € [0, 1], the

1’ 2

angle between the line L_ from 0 through s-a + {1-s):a, and the
line from O through IR P (1-S)'72 is < € J 2, Let
B

all t such that the endpoints are defined, and let C' N be the

. [0, 1] —=> B be the minimal curve from a1(t) to az(t), for
unit minimal curve from p to ﬁt(s). From the proof of Lemma 3.4,
for each s € {0, 1] there exists a maximal &(s) € (0, r] such

that for all t £ &(s), the angle between C' . and La is s € / 2.

For any fixed t, as s —> s’, L, => L, and Cht - Cr’t, and so
e [0, 1] =-> (0, r] is continuous, with a positive maximum.
Hence for any fixed positive T < &(s}, {CB’T : 8 € (0, 1)}
satisfies the requirements for Cc‘
Now suppose m > 2, For any k, set
C, = {t;ﬁ1 oo+ tﬁk Pt L. bt = 1),

and suppose there exist homeomorphisms wi : Cm_1 —> B whose
images are transverse to p, with the following property: For any
a € Cm-x’ let a: be the unit minimal curve from p to Ql(a) in B
and Ba be the unit vector on the radial line from 0 to a. Then

q(a:, Ba} is uniformly small for all a € Cm-1 and sufficiently

large 1. In particular, for large 1, the interior of
{(v € Sp : Yi(s) € wi(Cm_ll, s > 0} satisfies the requirements for
CE'

Let ﬂt € Sp such that H(B‘, 7m) £ 1 / i and T, =
min {T(ﬁ‘), 1 /7 i}. For any a, b € C_ ., there exists an I > 0

such that for all i 2 I, Bi(Tl) is transverse to {¢l(a), @l(b)}.

If otherwise, there would exist ik —> @ and minimal curves from
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B|(T1 ) through both wi(a):and W‘(b). But then by Lemma 3.3,
K k k X

7m would lie in sp (lim wl(a), lim wi(b)}, and hence in

sp [;1, ey ;m_j}, a contradiction. Furthermore, the choice of

minimal such I is an upper semicontinuous function of Cm_‘l X Cm_1
into the positive integers, since 1if aJ —> a and bj —> b, then
for any i, the limit of minimal curves from Bl(Ti) through both
wi(aj) and w‘(bj) is a minimal curve from B‘(Ti) through both
¢, (a) and ¢ (b).

One can therefore choose I > 0 such that for all i > I,

¢i(0m_1) is transverse to Bi(Tl)’ and wi can be extended to a
homeomorphism on Cm by letting ¢s(t171 P tmrm) = Y(tm),
where ¥ is the geodesic from ¢‘(t111 . tn-17m-1) to BL(Ti).

By Lemma 3.3, for any a € Cm and € > 0, there egists a K > 0 such
that for all i > K, a(a;. ﬁa) < €, As 1in the above argument, the
choice of a minimal such K for each a € Cm is upper
semicontinuous; in other words, u(a;, Ba) is uniformly small for
large 1i. Finally, ¢1(Cm) is transverse to p for large enough i,

by an argument similar to the proof in the above paragraph. This

completes the proof of the inductive step, and the lemma.

Theorem 3.10. Let (X, d) be a complete, locally compact
inner metric space with locally bounded curvature. Then the
following are equivalent:

a) X Is finite dimensional.

b) At some point p ’E X the space of directions Sp is
precompact.

c) The set § of geodesic terminals in X 1s nowhere dense.

d) X is a manifold with boundary, and 8X = 9.
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Proof, For any p € X, let B{(p, r}) be a strictly convex
region of curvature £ k and z K, and 71, ey 7n be independent
elements of §p.

a) * b). Choose € small encugh that the set CE of Lemma 3.9
is non-empty. Then expp is {(a homeomorphism) defined on

{t-y : ¥y €C t < €}, which is an open radial cone in Rn; i.e.,

et
B(p, r) contains a subset of dimension n. In other words, if X
is finite dimensional §p is spanned by at most finitely
elements. By Proposition 3.7, ?p is 1isometric to a closed,
convex Euclidean cone, and §n is a closed (aﬁd hence compact)
subset of the unit sphere.

b) & c}. For all i, let C, be from Lemma 3.9 for ¢ = 2 ,
and let C = exp {ty + 7 € Cl for some i, t < min {T(7), r}}.
Then C is an open dense subset of B(p, r) homeomorphic to an open
subset of Euclidean space. For any z € C, exp;i(C) is open in Tz
and homeomorphic to an open set in Rn; in particular, there is an
open n-ball B(0, p) < Tz contained in exp;1H3L This implies
that T, is in fact isometric to R", or, equivalently, that z is
not a geodesic terminal, All geodesic terminals in B(p, r)
therefore lie in B(p, r) \ C, a nowhere dense set.

Let Y be the subset of all points y € X such that for some

p > 0, the geodesic terminals in B(y, P) are nowhere dense., Y is
obviously open, and also closed: Let w € ?, and suppose B(w, P}
is a strictly convex region of curvature £ K and 2 k. There

exists in B(w, p/2) a point y € Y and hence a point z which is
contained in a geodesically complete open ball; i.e., Sz is

precompact. But then by the preceding paragraph the geodesic

terminals in the ball B{z, p/2), which is a strictly convex
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region of curvature s K and 2 k, are nowhere dense. It follows
that w € Y. Finally, since the set ¥ of geodesic terminals is
nowhere dense in a region of every point, J is nowhere dense in
all of X.

c) » d)., Let x € X and choose a strictly convex region V of
curvature £ K and 2 k containing x, and a point p € V \ 7, Since

9 is nowhere dense, there exists a ball B = B(p, r) € V such that

B is geodesically complete (and strictly convex). By Theorem
’ . n . .

3.2, Tp is homeomorphic to R, and ehppIBULr) is a

homeomorphism. For all q € VvV, let Yq denote the unique minimal

curve from p to q.

The main step in the proof is showing that if x is a
terminal of a geodesic in V starting at p, then x is a boundary
point, and if X is not such a terminal, it is ‘an interior point.
As argued previously, the map T : Sp -> R* is upper
semicontinuous; at any v € Sp such that expp (tv) € V for all t €

[0, T(v)], T is lower semicontinuocus (and hence continuous), as

the following claim shows.

Claim 3.11. If for some v € Sp and ¢ > 0, exp, (tv) € V for

all t € [0,c], then lgy)gnf T{w} 2 c.

Proof. Let ¥ = exp (cv). Note that ?y = sp {71, ey rn}
for some ?1. ey rn. For if gy contained m > n independent
elements, Lemma 3.9 would imply that V, and hence Tp. would
contain a set homeomorphic to an open Subset of Rm, a

contradiction to elementary dimension theory. Likewise, since ’I‘p

is of dimension n, Ty is spanned by at least n elements.

-1
Let U = expi(B(p, r}); then by Invariance of Domain U is
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open in Ty c R". Let S{c + £) denote the intersection of Ty with
the (n-1)-sphere in R" centered at 0 in of radius c + €. For
some small €, S{(c+€) n U contains an ({(n-1)-disk P such that
(c+e) v lies in the interior of ?. Let S denote the (n-1)-sphere
in Ty which is the union of 3 with all radial lines from @ ? to
0.

The set Z = exp;1 (expy (S)) is =a topological (n-1)-sphere
containing c¢v such that for all t € [0, c¢), tv lies in the
n-dimensional ball bounded by Z. In particular, if af{v, w)} is
small, then the radial line through w must intersect Z near cv.
In other words, expp (tw) is defined for t not much smaller than
¢c. ‘This completes the proof of the claim.

Suppose now that x is a terminal of the minimal curve Yx.
Let D = {w € Tp : w = T(v)'v, v € SP, and a(exp (tw),Yx)) < €},
where € is chosen, using the continuity of T, small enough that
exp (tw) € V, for all w € D and t € [0,1]. The continuity of T
shows furthermore that D is a topological (n-1)-ball, and that
D' = {tw : w € D and t € (0, lwli}} is homeomorphic to a boundary
ball in n-dimensional half-space. Finally, exp (D) is an open
subset containing x; for if x’ is sufficiently close to x, then
G(YX. ¥,.,) < € and di{x',p) >.r/3. By definition, the terminal of
LI lies in exp (D), and so x' € exp (D" ).

If x is not a terminal of 7:’ then Claim 3.11 shows that
nearby points are also not terminals, and so the exponential map
provides a neighborhood of x homeomorphic to an open subset of
Euclidean space.

X has now been shown to be a manifold with boundary, and

39X = J', where 7' is the set of terminals x with the following
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property: in some strictly convex region V of curvature bounded
above and below containing x, there is a minimal curve pr, with
P €V \ 7. Since 9X is closed, the proof of the theorem will be
complete if it is shown that each point z € T is z = lim Z with
z € 7. Choose a region V containing 2z with éurvature bounded
above and below, and pick q € V so that 2z is a terminal of a
minimal curve )Y starting at q. Now choose points a, -=> q such

that q, € V \ ?, and let 71 denote the unique geodesic starting

from a;, with maximal domain of definition. Then as in the proof
of the upper semi-continuity of the wmap T, as i —> ®, the
geodesics must have terminals z and z, —> z.

d) # a) is a classical result. ' The proof of Theorem 3.10 is

now complete.

Corollary 3.12. Let M be a topological n-manifold and d be
an Inner metric on M of locally bounded curvature. Then the
following are equivalent:

a) (M, d) is (metrically) complete,

b) (M, d) Is geodesically complete,

c) there exists a point p € M such that exp, is defined on
all of R", and

d) every closed, bounded subset of M is compact.

Proof. a) = b) If M is a manifeold (without boundary)
having a complete inner metric then by Theorem 3.10, § = 8 M = @,
which 1is equivalent to geodesic completeness in the metrically
complete case {cf. Chapter 1). The proefs of the remaining
implications are essentialfy the same as in +the classical

Hopf-Rinow theorem.
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If the geodesic terminals ¥ in a space X are nowhere dense
in the neighborhood of some point p, then SP is compact, and
Theorem 3.10 implies that J 1is nowhere dense in all of X,

Equivalently:

Corollary 3.13. If (X, d) 1is an 1infinite dimensiocnal,
complete, locally compact space of 1locally bounded curvature,

then the set ¥ of geodesic terminals is dense in X.

Corollary 3.14. If X is a compact Riemannian manifold such
that SrX has bounded curvature for some f, then X is homeomorphic

to a sphere.

Proof. The only possible terminals 1in SfX are the end
points of the suspension, which form a nowhere dense subset of
SrX. On the other hand X has dimension n 2 1, and two points
cannot form a boundary of the {(n+l)-manifold X X (a,b). By
Theorem 3.10 the end points cannot be terminals, and so er is a
manifold. Finally, it is a standard topological result that the
suspension of a space X is a manifeld if and only if X 1is
homeomorphic to a sphere.

Any finite dimensional space can be embedded in Euclidean
space, and so completeness and finite dimensionality together
imply local compactness. Theorem 3.10 therefore implies that any
finite dimensional space X with a complete metric of 1locally
bounded curvature is a topologibal manifold with boundary. More
generally, since the induced inner metric on a convex subset C of
X is the same the original metric of C (as a subset of X), the

following corollary holds {(in the Riemannian case this was proved

by Cheeger and Gromoll, cf. [CE], Chapter 8).
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Corollary 3.15. If X is a finite dimensional, complete
inner metric space of locally bounded curvature, then every

closed, convex subset of X is a manifold with boundary.

In general the boundary of a space of boynded curvature need
not be smooth in the "normal" coordinates of the type constructed
in Theorem 3.10: A square in the plane with the induced inner
metriec is flat, but in ne choice of normal coordinates is the

boundary smooth.

Lemma 3.15. Let X be a finite dimensional complete inner
metric space of locally bounded curvature. Then @ X 1is

transverse to every interior point.

Proof. Suppose X € 9 X and let Y,, be minimal. There
exists a point p on Tax and a strictly convex region B(p, r) of
curvature bounded above and below containing x. If ¥ were
defined beyond x, then Claim 3.11 would imply that exp;1 is a
homeomorphism on an open set containing x; that 1is, x is
contained in a Euclidean neighborhood, a contradiction. 1In other
words, every geodesic terminates if it hits the boundary, and so

cannot intersect the boundary twice.

Definition 3.16. Suppose B = B{p, r) is a strictly convex
region of curvature bounded above and below, and A, A° © B are
transverse to p. Then A and A’ are said to be r-equivalent in B
if there is a (possibly not continuous) bijection ¢ : A —> A
such that a and ¢(a) lie on the same radial geodesic from p. The
radial distance 5r(A , A') Is defined to be the supremum of the

distances d(a, ¢(a)).
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Lemma 3.17. Let U = B(p, r) and V = B{q, s) be strictly
convex regions of curvature bounded above and below. Suppose A
is a compact subset of Un V such that A is transverse to both p
and g. | Then there exists an € > 0 such that if A" ¢ U n V is

r-equivalent to A in U and 6r(A, A') < €, then A’ is transverse

to q. .

Proof. The set C = ({y € Sp : ¥(t) € A for some t} is
compact. If y{s), a(t) € A, there exists some & > 0 such that
for all € € (-8, 8}, {y(s+L), «(t+C)} is transverse to q. For if
otherwise, one could find tl —> 0 with geodesics ﬁl to q starting
at q passing through both 7(s+t‘) and G(t+tl). But lim Bi would
be a minimal curve in V starting at g and passing through both
¥{(g8) and «(t), a contradiction. A similar argument shows that
the function which assigns to each element of C X C the infimum

of all such & is lower semicontinuous, and therefore has a

positive minimum on C X C; this minimum is the desired number €.

Theorem 3.18. A topological space X admits the structure of
a smooth manifold with boundary if and only if X possesses a

complete metric of locally bounded curvature.

Proof, Suppose X is a smooth manifold with boundary. Endow
the interior of X with a Riemannian metric which is a product
metric near the boundary. Extend the metric {distance) to all of
X by continuity. Then X is isometrically embedded as a convex
subset of the Riemannian manifold i obtained by adding a small
open collar (with the product metric) to X along the boundary.

In particular, all angle comparisons in X can be carried out in

X, which has 1locally bounded sectional curvature, and hence
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locally bounded curvature in the present sense.

Conversely, suppose X is finite dimensional with a complete
inner metric of locally bounded curvature. For simplicity,
assume X is compact, and let {Bi(xl, r‘)}, 1 £1i £ k, be a cover

of X by balls whose closures lie in strictly convex regions of

curvature bounded above and below, with x, € int X for all i. By
1 .
the results of [Be], the sets Bi have C overlap on their
interiors. The terminal map T1 : SR -> (0, ®] was shown to be
1

continuous on T;1((0, r1]) in the proof of Theorem 3.10. U1 =
111((0, r )) is an open subset of the wunit sphere S

1
homeomorphic to W1 = B, n a3 X via the map ¢1(v) =
exp ='H(v)-v. One can choose a smooth map 71 O VO (0, r)

1

having a continous extension equal to Tl\on Sx \ U1 such that,
1 .

on U1. 71 < 'I‘1 and 51 approximates T1 near enough that the

following holds: Let D1 = {7(31(7)) : Yy € Uj}, that 1is, D1 is

obtained by "pushing" W, inward along radial geodesics starting

at X, by the amount T1 - 51._ D1 is r-equivalent to w1, and so by

Lemma 3.17, if 51 is chosen c¢lose enough to T1, D1 n Bn is

still transverse to r for all i such that D, n B, # ¥. The set

X, = X\ {y(t) : t > T (y), v €U}
is homeomorphic to X and has smooth boundary in Bl. Let B; be an
open subset of B, such that §; < B, and {B;, B,y «.us Bk} covers
X. Let T, be the "terminal” map for X, i.e., for each ¥ € sz,
T, (¥) = t provided ¥(t) € 8 X, and T,(y) = ® if no such t
exists. Since 9 X1 n B2 is transverse to T T2 is well-defined
and continuous, U2 = T;1((0, rz)) is an open subset of the unit

sphere S homeomorphic to W, = 'BZ n @ X, via the map ¢ (v) =
2
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exp,_ ° Té(v)-v. The overlap between B1 and B2 is C' on their
2

interiors, and 8 X1 n B1 n B2 C int B, n int B,; this implies

that T2 is smooth on Y = 4%1(8 X, 0 B1 n Bz). Setting Y’ =
w;j(a X, 0 B; ! Bz), one can now choose a smooth approximation 52
of T2 on U, which agrees with T2 on Y, and so that the new
manifold with boundary, Xz, constructed as above, has boundary
whose intersection with any Bi is transverse to T and which is
amooth in B; U Bz' This inductive procedure can be continued for
a finite number of steps to obtain a manifold with boundary Xk
contained in, and homeomorphic to, X, such that the restrictions
of {Bl} are c! coordinates for X,

In the noncompact case, one can use the above procedure to
"smooth out" B{p, 2) for some point p. On can then cover B(p, 3)
by B(p, 1.5) and a finite number of open sets which do not
intersect B{p, 1). A C1 structure can now be constructed on
B(p, 3) which agrees with the previous smooth structure o¢on

B(p, 1). This process can now be continued for a countable

1
number of steps to put a C structure on all of X.

References

[B] Busemann, H. The Geometry of Geodesics, Academic Press,
New York, 1955.

[Bel Berestovskii, V.N. Introduction of a Riemann structure
into certain metric spaces, Siberian Math. J., 16 (1975),
499-507.

[BO} Bishop, R.L. and O'Neill, B. Manifolds of negative

curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49,

[CE] Cheeger, J., and Ebin, D. G. Comparison Theorems 1in
Riemannian Geometry, North Holland, Amstepdam, 1975,

32



[F]

[FY]

(Gl

[GLP]

[GP]

{GPW]

[GW]

(K]

[N]

(o]

{P]

[(PD]

[R]

Fukaya, K. A boundary of the set of the Riemannian
manifolds with bounded curvatures and diameters, J. Diff.
Geo., 28 (1988), 1-21,

Fukaya, K. and Yamaguchi, T. Almost non-positively
curved manifolds, preprint.

Gromov, M. Groups of polynomial growth and expanding
maps, Publ. Math. I.H.E.S. 53 (1981), 53-78.

Gromov, M., Lafontaine, J., and Pansu, P. Structure
Métrique pour les Variétés Riemanniennes, Cedic/Fernant
Nathan, Paris, 1981.

Grove, K. and Petersen, P. Manifolds near the boundary
of existence, preprint.

Grove, K., Petersen, P., and Wu, J.Y. Geometric
finiteness theorems via controlled topology, Bull. Amer.
Math, Soc. 20 (1989), 181-183.

Greene, R.E. and Wu, H. Lipschitz convergence of
Riemannian manifolds, Pacific Math. J. 131 (1988},
119-141.

Karcher, H. Riemannian Comparison Constructions,
preprint. )
Nikolaev, I. G. Smoothness of the metric in spaces with

bilaterally bounded curvature in the sense of A. P,
Aleksandrov, Siberian Math J. 24 (1983) 247-263.

0O’'Neill, B. Semi-Riemannian Geometry with Applications
to Relativity, Academic Press, New York, 1983.

Peters, S. Convergence of Riemannian manifolds,
Compositio Math. 62 (1987), 3-16.

Plaut, C. Riemannian Geometry of Non-Riemannian Spaces,
dissertation, University of Maryland, 1989.

Rinow, W. Die Innere Geometrie der Metrischen R;ume,
Springer-Verlag, Berlin, 1961.

Max Planck Institut fur Mathematik

Bonn

Ohio State University

Columbus

33



