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On the group of homotopy equivalences of a manifold

Hans Joachim Baues

The group £(X) of homotopy equivalences of a space X is the set of homotopy classes of homotopy
equivalences X — X . The group structure is induced by map-composition. The group £(X), i.e. the
group of automorphisms of the homotopy type of X, can be regarded as the homotopy symmetry group
of the space X . In the literature there has been a lot of interest in the computation of such groups,

compare for example the excellent survey article of M.Arkowitz [2].

This paper is concerned with the structure of £{M) in case M is a closed, compact, oriented manifold,
or more generally a Poincaré-complex. The computation of this group is an important step for the
diffeomorphism classification of manifolds by surgery, (40]. The group £(M) is aiso important for Cooke’s
theory [17] of replacing homotopy actions by actions. Stiil there is little known on the group £(M) in
the literature, only very specific examples are computed, see {2]. This paper contains on the one hand
general results on the structure of the group £(M), see §1,...,§5, on the other hand our methods are
used for explicit computations, see §6,...,§10.

Let e be a small open cell of the simply connected m-dimensional manifold M and let M=M-—¢ be
the complement. The inclusion f: S™~! C M of the boundary is the attaching map for M. One has
the fundamental extension of groups, see (1.3),

EMIM) >—> EM) —>» E(M,+f)

Here £(M M.d' ) is the subgroup of £(M) consisting of all elements which can be represented by an
orientation preserving map M — M under M . This group s abelian and an &( M , & f)-module where
5(1’\.4, +f) is the group of elements in 8(1\:1) compatible with the attaching map up to sign. We now
describe some of our explicit computations of groups £{M) and of fundamental extensions for such

groups. For a product of spheres, 5™ x S®, we determine £(5" x S*) completely:
Theorem($.3): For n > | one has the split extension of groups
T.eT, »>— &8 x8") —» G,

where T;, is the torsion subgroup of II;;415"%! and where G, is the subgroup of Gl2(Z) in
(6.1). The direct sum T, &7, is a G,-module in a canonical way, see (6.3). In (6.2) the group
T, is listed for n < 10.

This result has a remarkable history in the literature which we describe in §6. Only the splitting for n
odd was missing. In (6.5) we consider the groups £(S™ x S™) for m > n. A computation of such groups



is achieved for certain products S™ x $" | see theorem (6.7). In fact, we consider the ¢-fold connected

sum

g8 xS = (8™ xSM)#.. . #(S" xS

and describe the fundamental extension for £(¢S™ x S*) for 2<n<m < 2n~2, ¢ > 1, in theorem
(7.9). As a special case we get the following solution:

Corollary(7.10): For SP"x §" = S®x &%, 5% xS, S8 xS%, S8 x S8, §%x S8,

510 x $® one has an isomorphism of groups

E(qS"' X Sn) = Gq(”, “lasyo)

Here the right hand side is the algebraicly defined group in (7.8) depending only on the data
in the list of (7.10). For example for ¢5° x S® we have e = ~1, n = Z/24, @' = Z[6, 7y =
Z[2, my=(Z[2)®, and ®: 7 ® 7 = Z /2 — =3 is the inclusion of the first summand Z/2

tn Y.

For a general connected sum M of products of spheres we descritbe £{M), up to an extension problem,
in terms of homotopy groups of spheres, see theorem (7.6). The next result computes E(M) for a large

class of highly connected manifolds completely. It can be applied to the connected sum M = ¢ 5™ x ™.

Theorem(8.14): Let M be an (n — 1)-connected 2n-dimensional manifold which is

almost parallelizable, » > 2. Then one has the fundamental extension

Ho(M)®T, > EM) —» Aut(by)

where 6p is the extended intersection form of M and where T, = Tor Hany; (S"*1!). This
extension is split if in addition n isodd or n € {2,6} . For the canonical structure of H,(M}®T,
8s an Aut{8y)-module see (8.14).

In theorem (8.14) we obtain a more general result for Poincaré-complexes. In the final section we compare
diffeomorphisms of a manifold and homotopy equivalences; for almost parallelizable (n — 1)-connected

2n-manifolds we describe the image of the canonical homomorphism
¢ UDiff(M) —  E(M)

in terms of the J-homomorphism, see theorem (10.3). For the Hopf-dimensions 4,8 and 16 we get the

following result where we do not assume that M is almost parallelizable.

Theorem (9.3) and (9.5): Let M be an (n — 1)-connected 2n-dimensional manifold
with n € {2,4,8}. Then one has the fundamental extension

EMIM) >—> EM) —m» Aut(fpr)



which is split for n = 2. Here £(M |1‘\:! ) is the following Z /2-vectorspace:

Kerwy: H(MY® Z /2 — Z[2 forn=2,

ML HiM)Y®Z/[2 for n =4,

M o

EMIM) (He(M)® Z [2)? forn=8, w#0,
(He(M)® Z/2)® forn=8, w=0.

The map wy is given by the second Stiefel-Whitney class of M and we set w # 0 if the
intersection form of M is odd and w = 0 otherwise. For the intricate structure of £(M|M) as
an Aut(pr)-module see (9.5).

Hence this theorem determines £(M) for n = 2 completely and for n = 4,8 up to an extension
problem. The case n = 2 of the theorem is the main result in a recent paper of Cochran-Habegger [18];

the computation of S(M[ﬂ./f) for n = 2 was already achieved in {11]. As a simple application we get, see

(9.1):

Corollary: For the projective planes MePs, C'Fy, TPy and for the Cayley plane Ca one

has the isomorphisms
E(RP) = 0 ,

ECP) = ZJ2
E(HPy) = Z[2 |
E(Ca) > Z/[20Z[2
The group E(IRP;) is treated in [9]. The new ”quadratic algebra” developed in [13] is crucial for the

proofs. Along the way we correct a collection of errors in the literature on the group £(M). It is

impossible to describe here all the new results obtained in this paper, the theorems in this introduction

are applications and illustrations of our new techniques for the computation of £(M). For example we
get the surprising general result:

Theorem(3.5); Let M be an {n—1)-connected manifold of dimension m < 3n—-2, n >
2, and assume the attaching map for M vanishes under suspension, i.e. £ f~0. Then one has
an isomorphism of £(M,=+f)-modules

EMIM) = Im{S: OpM —— U EM)
where ¥ is the suspension homomorphism.

We also compute £(M 11{4 ) for the delicate dimension m = 3n—1 and for connected sums M = Mo#M, .

Moreover we abtain a criterion for the existence of a splitting of the fundamental extension, see §(5).

Further applications will appear in [15].
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§(1) The fundamental extension for £(M).

Let n > 2 andlet M be an (n—1)-connected closed manifold of dimension m = 2n+k or more generally
let M be an (n — 1)-connected Poincaré-complex of dimension m = 2n + k, k£ > 0. Poincaré-duality
and homology decomposition {24] show that

(1.1) M = Mup”

is obtained by attaching a cell €™ where M has the homotopy type of a finite CW-complex with trivial
(n — 1)-skeleton and dimension n+k&. For k¥ < n we see by the Freudenthal suspension theorem that M
is homotopy equivalent to a suspension A4 where A is a finite CW-complex with trivial (n —2)-skeleton
and dim(A) = n+k —1; (below we mainly deal with the case k < n or equivalently dim(M) < 3n ).

The coaction u: M — MV S™ is obtained by the contraction of the boundary of a small cell in €™ toa
point. This is the usual coaction for the mapping cone C; of the attaching map f since by (1.1) we have
M = C; . We denote by [X, V] the set of homotopy classes of basepoint preserving maps X — V where
we assume that V is 1-connected and X is well pointed, for example a manifold or a CW-complex. The
coaction pu yields an action of the homotopy group II,,(M) on the homotopy set [M,M],

(1.2) M, M]x On(M) -+ MM,

which carries a pair (z,a) to £+ a = (z,a)u. Clearly £(M) is the subgroup of units in the monoid
[M, M], the neutral element is given by the identity 1 = 1ps. Let &(M M.J ) be the subgroup of £(M)
consisting of all elements which can be represented by orientation preserving maps M — M which
restrict to the identity of M , or equivalently which are maps under M. Moreover let £ (f:l ,£f) be the
group of all pairs z = (z,¢) € S(}ff[) x {+1,—1} for which z,: Hm..lﬁ'a! — l'lm..lﬂ./f satisfies z,f =¢f.



Here f € IIm_lfl:J is the homotopy class of the attaching map. We also write € = deg z, clearly degz
1s determined by z € S(;’;'I) if 2f # 0. The next result describes a crucial property of the group £(M)

which we could not find in the literature.

(1.3) Proposition: For a 1-connected Poincaré-complex M one has the short exact sequence of
groups
(a) 0 — EMIM) — EM) S &M,f) — 0

Here E£(M ULI ) is an abelian group which is endowed with a surjective homomorphism of groups
(b) 1*: Mn(M) —>  E(M|M)

defined by 17 (&) = 1p + éur. The map i: 1"..4' — M is the inclusion and + is given by the action
(1.2). Moreover the structure of £(M|!c.f) as a left E(ﬂ:{,if)-module in the extension (a) can be
described by the following formula where a = 17 (a) € E(M|M) and z € E(M,+f),

{c) z-a = 1T(deg(z) - z.(a))
Proof: By the cellular approximation theorem the inclusion i induces a bijection i,: [A.J ) M ] =

[1{4, M]. Therefore the restriction map #*(i.)™': [M,M] — [1{4, ]t.l] is well defined. We now define
r in (a) by r(y) = (i)"Y (y),e) with w.[M] = £[M] for the fundamental class [M] € H,(M).
Each map Cy — C; is principal in the sense of (V.2) in [8]. Therefore r is surjective and a cofiber
sequence argument shows that (a) is exact. Moreover 1%t is a surjective homomorphism by (V.1.4)
and (V.3.4) in {8]. Finally we obtain formula {c) since any map ¥ € [M,M], with r(Z) = z and
¢ = deg(z): S™~!' — S§™~1 | is principal of the form C(g,z, H,G), see (V.2.1)[8], so that the coaction
p satisfies (ZV e)u = pZ. Recall that z-a is defined by T-a- (7). b

The fundamental extension (a) in (1.3) leads to three problems for the computation of £(M): First
one has to compute the group 8(1\'4,&:_{'), then one has to compute 11, M and the kernel of 1* in (b,

and finally one has to solve the extension problem for (a).



§(2) Poincaré-complexes of suspension-type.

We say that a manifold or a Poincaré-complex M is of suspension-type if the space M in (1.1) has the

homotopy type of a suspension, M~X A, For example a product S™ x S™ of two spheres is of suspension

type. The next lemma yields many examples.

(2.1) Lemma: Let M be an (n—1)-connected Poincaré-complex of dimension m < 3n. Then M
is of suspension type. Moreover the connected sum M = My#M; of manifolds My, M; , which are

both of suspension type, is again of suspension type.

By (1.3) we see that the group E(Mlﬁ:f) is a quotient of the homotopy group ]'lm(ft.{f). We now describe
the relations for the quotient in case M is of suspension type. To this end we need the Whitehead-product,
[u,v] € [EUAV, X] for u € [EU, X], v € [EV, X] and the James-Hopl-invariants 7,8 € [EU, EB"] for
B € [EU,LB]. Here BN is the n-fold simash product BA.. AB and the James-Hopl-invariant is defined

with respect to the lexicographical ordering from the left, see [7]. Moreover we use for the one point

union U VV the partial suspension , m > 2,

E:ll,a(Uv V);r —_ Hm(EU v V)g

Here Hi(U V V)2 denotes the kernal of r.: Hp(U V V) — O (V) where r=(0,1): UVV ~— V is the
retraction. Using the cone CU of U/ and the pinch map 7q: CU — CU/U = TU we obtain E by the
composition
Opot(UVV)e = B, (CUVV,UVYV)
l(wuvl).

a(SUVV,V) = Na(SUVV),
compare (I1.11.8){8]. Let i, resp. iz be the inclusion of U, resp. V, into U VV. We define the
difference operator

V:Ono1(EA) — N, 1(ZAVEA); by
V{f) = =f(i2}+ [ ia+3)
The next theorem is based on results in the book algebraic homotopy [8].
(2.2) Theorem: Let M be a 1-connected Poincaré complex of suspension type with M =34
and let f: S™~! — XA be the attaching map. Then 1% in (1.3)(b) induces an isomorphism
S(Mffdj > HOn(ZA)/T  where
J =T =ImV(1,f)+Imf,
Here fu: Tn(S™!) — ,»(ZA) is induced by f and V{1, f) is the homomorphism
V(L f): [£%4,ZA] — N,(ZA)

which is defined by the formulas
V{L,f) = (EVf)(1)
= §o(Zf) + [ IErf) + [&1,1(Twsf) +



Here | = 1g4 is the identity of ¥4 and the sum is taken over all summands w, o (7, f), n > 1,

with wy = € and wy, = [wp-1,1] for n > 2.
Clearly wq o (Xvaf) is trivial if n is sufficiently large since %A is 1-connected.

Remark: Recently Aubry-Lemaire [4] showed that E(MIJ\.J ) is a finite group in case M is ratio-
nally formal and not rationally equivalent to a sphere, II1 M = 0. For example if M is (n—1)-connected
and 2n < dim(M) < 3n, n > 2, with H,M 3 0 then Aubry-Lemaire’s result shows that S(MM.J) is
finite. On the other hand we also can use {2.2) in this case to obtain an explicit characterization of the
group E(Mlz{J)

Proof of (2.2): We use the exact sequence (I1.13.10)[8)] for the case ¥ = T = x. This shows
that the subgroup i.ImV(1, f) C OL(M) is the isotropy group of the action (1.2) for 15 € [M, M].
Therefore the isomorphism in (2.2) is obtained by the equation

ImV(LO+Imf, = ImV(l, f)+ Keri. {1)

Now Keri, is obtained by the following cornmutative diagram for the mapping cone Cy = M,
Uy (CS™1VEA S VvEAL) = x,(S™'VEA),

[exr0e |
Mm1(Cy, £4) = m(B4) S MG
Here the bottom row is exact and by (V.7.6)[8] (where we set D = %) we see that (7, 1). is surjective
since m > 3. Hence we get

Keri. = Im(f,1). = fullnS™ 4 [f, 1] 0,(25™2AA) (2)

On the right hand side we use the Hilton-Milnor formula for the computation of I, (S™"! VX A4), . Now
we show for a € [[,,(S™~1AA) that [f,1].a € ImV(1,f). This proves (1). For this we observe that
a=X""23 with 8 € lI;(EA) since A is 1-connected. Thus we get

filla = [f1]oZ"%8

= [f’ﬂ] = i[ﬁsﬂ
= ([0S 48,1, 115 0f +..) @)
= *V(I, /) with £ = [5,1] (4)

In (3) we use the Barcus-Barratt formula (I1.3.4)[7] and in (4) we use the second formula for V(1, f)
in (2.2). This formula is obtained by the left distributivity law for f*(i + i;) which is described in
(11.2.8)[7} and more generally in {19} in case A is not a co-H-space. Here we use the rules for the partial
suspension E in section (3.1){5]. i

We now describe an important property of Poincaré complexes of suspension type which was observed
by Stocker, see (6.1)[38]. For this we have to use Spanier-Whitehead duality. For finite CW-complexes
U, Vet

U,V = tm{U,V]E0,ov]=. .}



be the group of stable maps U/ — V. We have the stabilization [/, V] — {U,V}. A map u: §* —
UAV 1s a duality map if for any finite CW-complex X the induced function

ux: {U,X} — {S* XAV}

(2.3)
ux{f} = A{SAlyHu}

is an isomorphism, see (2,5,8){36].

(2.4) Lemma [38]: Let A be a connected finite CW-complex and let f: $™~1 — £ A be a map,
m>4. Then M =EAU;e™ is a Poincaré complex if and only if

Sy f: S — E2AAA = DAATA

is a duality map.

The lemma characterizes all simply connected Poincaré complexes of suspension type. In particular for a

Poincaré complex M = EAUy ¢™ the space LA is self dual with respect to Spanier-Whitehead duality.



§(3) Y.-reducible Poincaré-complexes.

Following James [23] we shall say that a pointed space Y is reducible if there is a map f: S* — Y
inducing isomorphisms of reduced homology groups I;'q for all ¢ > n. We say that ¥ is LT -reducible

if the r-fold suspension XTY is reducible.

(3.1) Remark: A finite complex Y is S-reducible (stably reducible} if ¥ is X" -reducible for
sufficiently large n, compare [3]. Using results of Atiyah [3] and Spivak [37] we have the following
implications. A Poincaré-complex M is §-reducible if and only if its Spivac-normal fibration is stably
trivial. In particular a closed differentiable manifold M is S-reducible if and only if its normal bundle

or equivalently its tangent bundle is [J -trivial. This shows that an S-parallelizable manifold is also
S -reducible.

We now consider X -reducible Poincaré-complexes.

(3.2) Lemma: Let M = M Uy €™ be a 1-connected Poincaré-complex. Then the following prop-
erties are equivalent
(2) M is E-reducible,
(b) there is a homotopy equivalence EM~E(S™ v j‘l:{) ,
{c) the suspension of f is homotopically trivial, £ f~0.

Clearly a product M = 5™ x S™ of spheres is ¥-reducible. Moreover the connected sum of I -reducible

Poincaré complexes is again ¥ -reducible. In addition we have the following examples.

(3.3) Lemma: Let n >3 and let M be an (n—1)-connected (2n)-man1fo]d which is differential, or
more generally for which M is differential. Then M is D-reducible if M is stably parallelizable (or
equivalently parallelizable). In particular M is Z-reducible if n=3,5,6,7(8), i.e. I1,-150 =0.

The lemma follows from (8.10)(2) below, see the remark following the proof of (8.22).

(3.4) Lemma: Let M be a simply connected closed differential manifold of dimension m = 4 or
m = 5. Then M is X-reducible if and only if the second Stiefel-Whitney class w, vanishes. In

particular each simply connected 5-dimensional Brieskorn manifold is ¥ -reducible.

The next result computes the group £(M |1l.4 ) of the fundamental extension for a large class of Poincaré

complexes.

(3.5) Theorem: Let M be an (n — 1)-connected Poincaré complex of dimension m < 3n —2 and

assume M is Z-reducible. Then one has the isomorphism of E(ﬁl,:hf) -modules
E(M|M) = I, (M)

where the right hand side is the image of the suspension &: l]m(ft.f!) — II,,,.;_I(EA.I). More pre-
cisely one has Ker1t = Ker L for 1t in (1.3).



This theorem is a consequence of the more general result (3.7) below. For this we use the EHP-sequence
(in its extended form if m = 3n — 2), see James [22}, Baues [14](7.9).

For the delicate dimension m = 3n — 1 we need the following condition (*) which, in particular, is

satisfied for £-reducible 1-connected 5-dimensional Poincaré-complexes, see [15].

(3.6) Definition: We say that f: §™~1 — ¥4 satisfies condition (*) if the equation
(*) Ker[1,1]la+ KerZ+Imuga = [I,oNAAA

holds. Here we use the homomorphisms [1,1].: T BAAA — T,ZA4, Z: I,,R4AA4 — [, S24AA,
Ura: [EQA,EA] — IR XAAA, txpa(f) = (f/\l,{) o (Zv2f).

(3.7) Theorem; Let M be an (n—1)-connected Poincaré-complex of dimension m = 2n+k <
3n, n > 2. Asin (2.1) we may assume that M = XA Uy e™. If M is E-reducible and if for

m = 3n — 1 condition () is satisfied for f then one has an isomorphism
EMIM) = M. (SA)/W .

1
Here W is the subgroup generated by all compositions S LA Z YA 2 <t <4, where
w' is any {-fold Whilehead-product of the identlity 1g4 .

Proof: We consider the following commutative diagram where X is an {n — 2)-connected finite

CW-complex and where u is the stabilization of v f, which is a duality map by (2.4).

e

[£24,2X] E [S7,ZXAA]
lz’ 1:

T4, 23 X] [S™HL EXATA] 0]
= B

{£4,X} =5 {S™ XAZA}

Here uy is defined as in (2.3) and Tgx carries an element £ € [E24,ZX] to (EAA)(Eyaf) where
A denotes the identity 14. The homomorphism I in the diagram is surjective by the Freudenthal-
suspension theorem. Moreover £? in (1) is surjective by the Freudenthal theorem for X = AAA and
X = ANAAA. We also observe that ¥ in the diagram is an isomorphism for n > 2, for n = 2 the
homomorphism X is still an isomorphism for X = AAA or X = AAAAA. For n=2 and X = A the

kernal of ¥ is given by the image of

[lpana, 1nanale: M BAM  — 11,47 . (2)

Since we assume Lf = 0 we see by the extended EHP-sequence that we can write

F = [L1jou+][1,1],1]ov (3)

- 10 -



Here 1 is the identity of A4 and u € Hp_1(XAAA), v € U1 (BAAAAA). Only for m = 3n—1 the

element v might be nontrivial.

We have to show, that the group .7 in (2.2) coincides with the group W in the theorem. Since Xf =0
it is easy to see by (3) and the definition of 7, that one has an inclusion J C W . For this one only
needs the Barcus-Barrat formula for Whitehead-products of the form [a o 8,154]. In our range this
formula yields

[@ofB,1gal = [o15a)(FAA) + [[a, 1z4], alT132(72(B)AA) (4)
compare [BCC]. For example for [€,1] in (2.2) weset £ =aof with a =154 and f=¢.

Next we show the inclusion W C ImV(1,f) = J' C J. For this we first check that woa € J’, see
the definition of w' in (3.7) where we set ¢ = 4. By definition of ¥V we know for any £ = {[1,1],1]o ¢’

that
\%43

I

[{[1,1],1] 0 &', 1] o (Ey2f)

([[1, 1], 1], (€' AA) o (Ev2f) (3)
([, 1], 1], NEe x (€9 with X = AAAAA

is an element in J’. On the other hand (1) shows, that uxx is surjective, hence also w'oa € J' for
all four-fold Whitehead-products. At this point we also use the Jacobi-identity for Whitehead-products.

Now we show in a similar way, that all w® o o are elements in 7’. By definition of V we know for any
§=[1,1]0¢ that V&= (6)+(7),
[[1r1]°E'vl]°(E72f) y (6)
[[[l,l,]of', 1],1]0(273.[) ’ (7)

is an element in J’. Here (7) is of the form w* o a which we have seen to be in J’ too. Therefore by
(4) the element

(6) (1, 1), 1] o (£ AA) 0 (E72f) (8)

([1,1}, lfouxx(¢') withX = AAA

isin J'. Again (1) shows, that here fgy is surjective so that all elements w® o o are in J’ where
w® = [1,1),1].

Finally we show that all elements of the form w? o @ lie in J’. By definition of V we know for any &
that V¢ = (9) + (10),

€, 1o (E92f) (9)
[l 1}, 1] e (Eysf) , (10)

is an element in J’. Here we know that (10) is an element in 7’ by the arguments above since we can
use (4). On the other hand (4) shows (9) = (11) + (12),

[1,1]o{éAd) o (Ev2f) = [1,1]ugalf) (11)
(1,1}, 1]T132 0 (726 AA) o (Ey2f) . (12)

~11 -



Here we also know that (12) is an element in J’ so that therefore (11) is in 7' too. Using condition (*)
for f diagram (1) and (2) show that for X = A any element vy € [S™,EAAA] is of the form

v = Tpalf) +lzam, lzaalon+ A (13)
where A € Ker[1,1],. Therefore [1,1]oy = (11) 4 (14),
[1:1]°[IEMAaIEMA]°n = [[1’1]1[1:1]107] . (14)

The element (14) is of the form w?® o « and hence an element in J’. Terefore also w? oy = [1,1]0y
is an element in 7' for all 4. This completes the proof that W C J’. This proof shows that actually
W =7=1ImV(],f), see (2.2). h

~ 12~



§(4) Connected_sums,

We consider the group £(M|M) in case M = Myf M, is a connected sum of m-dimensional Poincaré
complexes. In this case the space M is the one point union M= Mo Vv M1 The attaching map f
of the m-cell in M is the sum f = iofo — i1 fi where f; is the attaching map in M, and where
iy: M, C MgV M, is the inclusion, 7 € {0,1}. We can use

(4.1) M = MM, = (MoV»M)uy,e™

as the definition of the connected sum of Poincaré complexes.This corresponds to the usual definition
of the connected sum of manifolds. We derive from theorem (3.5) immediately the following ”additivity

rule”.

(4.2) Theorem: Let M, and M, be X-reducible (n — 1)-connected Poincaré complexes of di-
mension m < 3n — 2 and let M = Myf M, be the connected sum. Then one has the cannonical
isomorphism

E(MIM) = E(MolMo) ® E(M|H1)

Proof: Using (3.5) we get E(M|M) = Slu(MoV M) = S, Mo ® Sl My = E(Mo]Mo)
E(M M) b

In general the additivity rule does not hold. For this we consider a connected sum M = My M; where
My 1s E-reducible and M; is not L -reducibie.

(4.3) Theorem: Let Mo and M; be (n — 1)-connected Poincaré complexes of dimension m <
3n—2 and let M = MgfM; be the connected sum where M, is ¥-reducible. The one has the
isomorphism

EM|M) = E(Molifo)/V & E(Mi|M)
Here V 1is the image of the homomorphism
(S2f,)': S[SAMy, Mo — ElMaMo = E(MolMo)

which carries an element Z¢, £ € [21{41, 1{10], to the composition (£€) o (£2f;) where f; is the
attaching map of M, .

We omit the proof since a more general result also for the delicate dimension m = 3n — 1 is proved in
{15].
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§(5) The extension problem.

In the next two results we consider the extension problem in the fundamental extension for £(M) in

(1.3). For this we consider the inclusion

(5.1) M C Upmp SM

as an inclusion of S(A.l, +f)-modules, the action of = € S(A.J,:i:f) on both sides being given by the
formula z -a = deg(z) - (Zz).(a).

(5.2) Theorem: Let M be a 1-connected X-reducible Poincaré-complex and assume S(Mlz':l) >
LI, M as for example in (3.5). Moreover assume the inclusion (5.1) admits a retraction in the
category of £(M,+f)-modules. Then the fundamental extension for £(M) is split.

Proof: We consider the following diagram in the category of groups
E(MM) =ETHMC 1 (3M)

l !

£(M) Z, £(ZM)

| !
gML+f)  E (+1,-1) x £(M)

The assumptions in (5.2) imply that the upper square commutes. The lower square commutes since L’
carries & to the pair (deg(z),Zz). Both columns are extension of groups. The right hand side is split
since M ~5™+! v LM . Hence by the retraction for (5.1) also the left hand side is split. i

The next result can be applied for all (n — 1)-Poincaré complexes of dimension < 3n —2.

(5.3) Theorem: Let M be a 1-connected Poincaré complex of suspension type with f:l = XA
and let the attaching map of M be of the form

f=[,1jou: S™! — TAAA — TA

Moreover assume that X: [A4, 4] — [£A, £A] is injective and the composition

Illl].
—_—

I,.(SAAA) m.(s4) 5 g(um|an

is trivial. Then there is a homomorphism s for which the diagram
E(M)
s
Ew) C EMES)
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commutes. Here £{u) is the subgroup of S(A.J,:L-f) consisting of all £z € £(TA) with z € [4, 4]
and (ZzAz).u=zu.

Proof: For the proof we use the following explicit model w, of the Whitehead product [1,1].
The advantage of w, is its naturality, see (2) below. Let C'A be the reduced cone on A and let
mo: CA — CA/A = £A be the quotient map. Then the product mp x 7y yields the map of pairs

7o X ®o: (CAx CA,CAxCA) — TAxIA TAVIA)

where CAXCA=CAXx AUA x CA. Using the restriction of my x my we get the composition

wa: CAXCA — TAVIEA — %A 1)

where V is the folding map. It is clear that w,4 is natural with respect to pointed maps £: A — B,
that is

(Dwa = waé, €=CExCE (2)
Since we assume that A is well pointed we have a homotopy equivalence h: Z(AAA)~CAxCA and it is
well known that wah = [1,1] is the Whitehead product. We now define the section s in (5.3) as follows.

For = € £(u) we choose a map £;: A —+ A in Top® such that £, represents the homotopy class = .

Moreover we consider the homotopy commutative diagram in Top*

gm=1 df_f_f_f) gm=1

w5 |
CAXCA 35 CAxCA (3)
lw,. Jwa
TA . w4

Here H, is a homotopy & hux(hu) deg(z) which exists since = € £(u). Moreover the bottom square
commutes by (2). Hence we can define the principal map (with canonical G')

s(z) = C(deg(z),Té:,(wa)uH,G) € E(M) (4)

compare (V.2.2)[BAH]. Here s(z) does not depend on the choice of H, since we assume [1,1],17 = 0.
It remains to show that s is a homomorphism, that is s(zy) = (sz)(sy). Here s(z), s(y) and s(zy)
are defined by the choices £,, &, and &, respectively. The composition £-£, need not coincide with
£y - The injectivity of T in (5.3), however, implies that there is a homotopy T': £.£,~€,, .Now consider
the diagrams as in (3) for z, y and zy respectively. These diagrams define an element o € II,,(ZA)
by the addition of tracks

a = (B&lwaHy + waHedegy — waHeyy — (ET)wahu . (5)
Moreover we have s(zy) + a = (sz)(sy). Now (2) shows that « is of the form a = w48 with
.B = é::Hy + H::degy - H;;y —_ Thu (6)

Hence 1% o([1,1]. = 0 implies s(zy) = (sz)(sy). h
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§(6) Products of spheres.

We discuss the group of homotopy equivalences of a product of two spheres. We first consider the product
S™ x S™. Let Ag be the subgroup of Gla(Z) generated by the matrices

0 -1 0 1
and
1 0 1 0
this is the dihedral group of order eight (the group of symmetries of the square). Moreover let Sym be
the infinite subgroup of Gly(Z) generated by

)G ()

Then we define the group G, ,n > 1, by
Ag n even ,

(6.1) G, = Sym nodd, n#1,3,7 ,
GL(Z) n=1,3,7 .

b
For a maitrix A = (a d) € G, we obtain deg(A) € {+1,-1} by
c

ad—be ifnisodd,
deg(A) =

ad + bc if n is even.

Now the fundamental extension for the group £(S™ x 5”) is completely determined by the following

result in which we use the torsion subgroup
(62) Tn = Tor H2n+1(5"+1) = EHQ,—,S"

of the homotopy group I2,41(S"1), n > 1; for small values of n we use the results of [39] to list T}, :

n 1 2 3 4 5 6 7 8 9 10
T 0 Zy Zyvy Z2 0 Zs Loy 3% 3Zy, Z1s
(6.3) Theorem: For n > 1 one has the split extension

0 — T,eT, — &8" x5 — G — 0
Here T, T, =(Z & Z)® T, is a left G,-module by
A-(a®t) = deg(A)-(A-a)®t

for AeGL,a€eZPZ,teT,.
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Remark: The computation of £(S™ x S") has an interesting history in the literature. The case
n = 3 was treated by Metzler-Zimmermann [33] and the case n = 7 was considered by Sawashita
[35]. The case n =even was obtained in a paper [26], [27] by Kahn which, however, contains some odd
"misprints”. A complete solution as in {(6.3) did not. yet appear in the literature. For us theorem (6.3) is
an immediate consequence of (1.3}, (3.5) and (5.2).

Proof of (6.3): For n =odd, or n = 2, or n = 6 the result is a special case of (8.12) below.
For n =even one can define a splitting s directly by the maps fi, fo: S® x 8% — S™ x §* with
filz,y) = (9(y),z) and fao(z,y) = (y,2), here g: S* — S™ is a map of degree —1. The splitting
8: Ag — E(5™ x S™) is given by

0 -1 01
Y O (L R
10 1 0

Next we consider the group £(S™ x S™) with 2 < n < m. Let G, be the set of all triples (u,v,§)
with p,v € {+1,-1} and £ € 0I,,,(S™) satisfying [tn,£] = O for the generator ¢, € [,S”. The set

Gm,n 18 a group by the multiplication law:
(w0, ) (0, v €)= (wu', vV, (vin) 0§ + 4'§)
One readily checks that G is a split extension
(6.4) 0 — Kerftn, ] — Gmn — {+1,-1}x{+1,-1} — 0

The next result describes the fundamental extension for £(S™ x 5°).

(6.5) Theorem: For 2 < n < m one has the extension
0 —_— Hm,n —_— 8(8"1 X Sﬂ) —_— Gm'n — 0

Here Hp n is given by the direct sum

Hm,n Hm+n(5m)/[]]n+lsmnlml & Hm+n(Sn)/[Hm+lsnn"n] )

= Elptn(S™) D ENpn(S™) form<2n—-2.
Moreover Hy n is a left G -module by

(v, 8)-{a} @ {t}) = ;w({(,u(,m)oa}@{(wn)ob-l-.foa})

where a € On1n(S™) and b € 4 n(S™); the curly bracket denotes the corresponding coset (or

the suspension for m < 2n — 2).

Proof: For M = §™ x S§* the group Hp,n = E(M |1't.4 ) was computed independently in [10] and
[35], see also (7.6) below. Since the Whitehead product f = [iy, #2]: S™*"~1 — S™V 8™ is the attaching

- 17 -



map for M one readily obtains the isomorphism G p = E(A.f{,:l:f) which carries (p,v,€) to the map
z: SPVET — SMVS™ with 2t = puiy +i26, 2ip = vip. Here we get deg(z) = pv. Hence the structure
of Hnyn as a8 Gy pn-module is now obtained by (1.3)(c} and the left distributivity law. g

In general the extension problem for £{5™ x S™) in (6.5) is not solved. Sawashita obtained the remarkable

result

(6.6) Theorem [35]: The fundamental extension for £(S® x S®) is not split.

He also computes £(S™ x S%), m > 4, and shows that this group is a split extension if w3¥3: 1,5 —
[,43(5%) is trivial. Here ws € Ms(S®) is the generator of [s(S?) = Z,2 given by the commutator
maps of the group S2. Moreover he shows that the extension for £(S™ x %), m > 3, is always split.
Also the extension for £(S"! x ) is split for nZ3 mod 4 and n # 2,6 since then Ker[t,, _] =0

in {6.4). We now use theorem (5.2) to obtain many new cases for which the extension (6.3) is split.
(6.7) Theorem; Let 2 < n < m < 2n—2 and suppose that
L. EH,H,,,,(S") — El‘[n+m+1(5'"+1)

is injective and the image is a direct surnmand. Then the fundamental extension for £(S™ x S*) in
(6.5) is split. This for example holds for §® x 5%, S5 x S%, S8 x 85, S® x 5%, §% x %, 510 x S%,

Proof: The assumptions imply that LI (S™) = g1 (S™*!) with £ = n+m. Hence the inclusion
(5.1) for M = S™ x 5™ is given by

D1 (™)@ Ek(5™) € Mep(S™H e M (") o 2 (1)

where Z is generated by the Whitehead product [t1,i3] € Mp4(S™F! v §71!). We now choose a
retraction R for ¥ in (6.7) and we define a retraction r of (1) by

rla®bdt) = ad R(ZH) (2)

where a € Ng 1 (S™F), b€ My1(S™HY), t € Z . We claim that r is actually a retraction of 5(1‘\:{, tf)-
modules. For this we observe that R satisfies R(T2b) = b’ since R is a retraction of ¥ in (6.7). For
(1, v,€) € Gy we first get

r(p, v, E)(adbdt) = prr(d @b’ dt') 3)
with ¢ = pa
¥ = vb+ (Z€)a+ U[EE, venta],
t = uvt.
Here we have (since a = Za, )
REY = R(EZb+3%Y%a) = R@WEb) + (2f)a
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so that by (2)

(3) = pv(pa® (R(vEb)+ (E)a)) . (4)
On the other hand we get
(mv,&)-rla@bdt) = (4,v6)Ha® RLd) %)
= wv(pa® (VIREb+ (2€)a))

by the formula in (6.5). This shows that (3) = (5) and hence we obtain the splitting for £(S™ x §*) by
(5.2). b
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§(7) Connected sums of products of spheres.

We describe the fundamental extension for the group £(M) where M is a connected sum of products

of spheres. For this we need the following notation:

(7.1) Definition: We say that a 1-connected CW-space X is spherical if (#) or equivalently (i)
1s satisfied.
(i) There is an index set R and a homotopy equivalence
X ~ \/ S,
reR

where the right hand side is a one point union of spheres 5, = 5%, n, > 2.

(ii) The space X has torsion free homology and the Hurewicz homomorphism h: I[I,X —» HX

is surjective.

For the graded homotopy group I1..X of a spherical space X' we define the graded submodule
(7.2) [LX, H.X] ¢ ILX

as follows. Let s: [.X — II,X be any degree 0 homomorphism with hs = id. Clearly s exists by
(7.1) (7). Then [H.X,FI.]m C I, X is generated by all Whitehead products [, s8] with @ € I X,
B e H.X and |a)+ |8| — 1 = m. Choosing the splitting s of A by the equivalence in (7.1) (i) we get

(7.3) [H-X, f{-X]rn = Z["m-nr+l(x)sir]
reR

where i,: S*~ — X is given by the one point union in (7.1) (¢).

(7.4) Lemma: For a spherical space X the submodule [TI.X, I-I,X] of 1I.X does not depend on
the choice of the splitting s above. Moreover [II,.X,FI.X} 18 an £(X)-submodule of the £(X)-
module II.X .

The lemma can be proved by the Hilton-Milnor theorem. We now consider a connected sum
(75) - M = (8% x §")§(5% x §%)f ... §(S% x Sb)

of products of spheres with ¢ > 1, a, +b, =m, 2<b. <@a,, re{l,...,q}. Clearly M is spherical.

(7.6) Theorem: For a connected sum M of products of spheres as above the group S(J‘l.d ,xf) is

completely determined by homotopy groups of spheres. Moreover one has an isomorphism

E(M|M) = TWu(M)/[NaM, .M,
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of E(A.l, %+ f}-modules where the right hand side is again completely determined by the homotopy
groups of spheres, see (7.2). For example if M is (n — 1)}-connected and dim M < 3n —2 we get

EMIM) = €D (M) @ BNa(Sh)
4

The theorem shows that the group £(M) is computable up to an extension problem once one has enough
knowledge of the structure of homotopy groups of spheres. Clearly theorem (7.6) yields theorem (6.5) as

a special case.

Proof: The Hilton-Milnor theorem shows that 8(1{4', +f} and Hm(}:!) are determined by homo-
topy groups of spheres. The composition in £ (1':4’ ,%f) and the Whitehead product in I..( M ) involve the
distributivity laws of homotopy theory. For this suspension, Hopf invariants and Whitehead products are
needed which we consider as a part of the structure of homotopy groups of spheres. We now show, that
the first isomorphism for E(lei:f) in (7.6) holds. For this we use theorem (2.2}); the second isomorphism

in (7.6) is an immetiate consequence of (3.5). We have

M = TAVEB where
TA = S%v...vS8% (1)
B = Shv.. . vsh

Moreover the attaching map f for M can be chosen to be the sum of Whitehead products

q -
Ylar Bl € Taoy(M) (2)

r=1

where a,: S C A C .{{f and 8,: S* C £B C M are the inclusions. For A; = A, = A and

By = By = B we get the difference element
vf: R — YAVEBVEA; VY,
by

Vi = -if+(@+i)f (3)
g
= 2 (= o b+ 6 + o, (5 + 15)61])

I
M° i

([‘Aar: 'Bﬁr JE= ['Bﬁrv ‘A“r] + ['A“r: ’Bﬁr])

r=1

Here 47, , i3, 7 € {1,2}, denote the corresponding inclusions of £A and LB respectively. Now the

rules for the partial suspension F show E[i4a,, i8] =0 and
g

EVf = Z([Eij,a,,if,,@,]:t[Eigﬂ,,&a,]) . (4)

r=1
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For € = (€4,€8) € [E2AV £?B, LAV £B] we thus get

V(L f)¢) (EVA 1), (3)

g
> (Ea(Ser), infi] % [€8(26,), iacs])
r=1

This implies by (7.3)
Imv(,f) = [ILM, H.Mn (6)

Moreover I'm f, C ImV(1, f) since for the generator 5 € ,,S™~! = Z/2

fon = Z[ar:ﬁrlﬂ (7)

Z{arn:ﬁr] € [“.ﬂ.’f, E’J‘v.’ﬂ

This completes by (5.2) the proof of (7.6). i

As an illustration of (7.6) we consider the example of a g-fold connected sum
(7.7) gS" x 8" = (8" xS ... (8" xS")

The case m = n is treated in the next section §(8) so that we assume n # m. We need the following

types of algebraic groups.

(7.8) Definition: Let Gl,(Z) be the general linear group, the automorphism group of Z?. For
an abelian group IT let 1Y = I&---@H be the ¢g-fold direct sum and let M, (II) be the abelian group of
¢ X g-matrices £ = (£7) with entries ¢ € II. Then M (II) and II? are left and right GI;(Z)-modules
in the usual way. For a subgroup II’ of land for ¢ € {+1,—1} with (1+¢&)II’ CII let

ML, e) C M, (H) (1)

be the subgroup consisting of all matrices £ with £f € I and £ = €& for r £ s. We now define a

group G(II,1',¢) which as a set is the product
G,(LI,e) = MLV e)x Gl(Z) x {+1,-1}. (2)
The group structure is given by
(6, N,8)- (&, M,6") = (FMIEM 14L& NMSS).
Here ‘M is the transpose of M € Gl,(Z). Clearly one has the split extension
ML e) >  GILW,e) ~5 GI(Z)x {+1,-1} (3)

with r(§, N,8) = (N,8), i(€) = (§,1,41). Here 1 € Gii(Z) is the neutral element. The splitting ¢ of
r is o(N,8) = (0,N,6). Next let II; and T3 be abelian groups and let

©: HNel, — Hi ,a®@i—a@A (4)
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be a homomorphisi. Then the direct sum 1] & 113 is a G, (I, [I’, £)-module by the action
(E,N.8)-(a®b) = (N '-a)@sN(EOa+b) (5)
for a € O, b€ 11. Here (4) yields the canonical extension
o M (el — 0of |, (6)
which carries £ @ a to £ © a, with coordinates
¢
(€0a) = Y &0 (7)
r=1
for a=a;®...®a, € 0Y. The action (5) defines the group G (II,I1",e,©) which is the split extension
el > G(IL,Ie0) — GJ(I0ITe) . (8)

Using these algebraic groups we are now ready to describe the fundamental extension for the g-fold
connected sum ¢S™ x S™.

(7.9) Theorem: Let 2<n<m<2n—2 and ¢ > 1. Then one has the extension of groups
Mol >— £G5S™xS") —» G I, e) (1)
where
€ = (—l)n_l )
iI = HmSﬂ 3
' = Ker{[in,itnh 2" 1 0y S — Mpyn_1 5™},
Hy = ZEllpa(S™),
H2 = Eﬂm+n(Sﬂ) .

The G, (IL.II',¢)-module N & 1} in (1) is determined as in (7.7)(5) by the homomorphism

©: InS"®@ZHpupnS™ - Ellpn,S5
which carries £ @ Za to the composition L(£ o a). The extension (1) admits a partial splitting s
for which the diagram

£(gS™ x S™)

s i @)
GL(Z)x {+1,-1} C G,IO,0I¢)

commutes. Moreover the extension (1) is split if in addition
L Ellpgn(S") —  Elppap ()
is Injective and a direct summand; hence in this case we have the isomorphism of groups

E(@S" xSy = GO, I'e®) . (3)
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The next corollary shows explicit examples for which the computation of the group £(¢S™ x S™) is

achieved completely.

(7.10) Corollary: For S™ x §" = S% x S*, §6 x 5%, S8 x S%, S8 x 5%, §% x 5%, S'0 x SF we
have an isomorphism of groups
E(@S™ x 8*) = G 0)
where I1,Il', ¢, © is given by the following list
StxS ¢ I mw 1 Il 0]
S¢xS* -1 Z, O 0 Za 0
S*xS 41 Zy 0 0 Z, 0
B xS 41 Zgy Zy O Z 0
SE xS | Zy Zy £+ (&) 0

xS —1 Ze Zs Zy (Za* £0

§10x 5% -1 0 0 Zyo Z:®Zag 0
The list is obtained by an elaborate inspection of Toda’s book [39]. For §° x S® we obtain ©® # 0
since vg € I1, vpry2 € Iy and 0 # veroryz € 1o, For 5% x S® we get © = 0 since ngnr € 11,
vgri1 € 11y and nenrvsvn = neS4 (V) = ns(Z4 ) movin where ng(E4% )0 = 0.

Proof of (7.9) We use the same notation as in the proof of (7.6). Hence the attaching map for
M=¢5" xS5" is

fi Smin-l ., TAVEB ,ZA=S5S"V...v5™, _
{f =  _lar, B ,EB=8%Vv...v5" (h
where «, and B, are the inclusions of 5™ and S™ respectively. We identify
{qu(Z) = &XA) = &E), 2
M,(I) = [EAXB],

where we use the assumption m < 2n — 2. For a map
(L+nN): ZAVEB -— XAVER

with L € £(ZA), N € £(¥B), n € [EA,LB)] we have (L+n,N) € 8(1\.4,:i:f) if and only if the following
equation holds, § € {+1,-1},
g

Y L+nar, NE] = 6 [or, 8] . (3)

r=1 r=1

This is equivalent to (4) and (5)

Z[La,,Nﬂr] = 6Z[Gj,ﬂj] ) (4)
r=1 F=1
S mar, NGl = 0. (5)

r=1
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For La, =%, Lia, and NG, =3, N[, we thus get equivalently to (4) the equations
YLINJ=6 and Y LINf=0 fors#t (6)
r r f

or equivalently
L = §'N1. (7)

Next let € = N~1.pn. Then we have £a, = ¥, 8,7 and hence (5) is equivalent to

g
0 = Yo B) = D 18E.8] . (8)
r=1 r,
Here we have
[6:67,8:) = Brlin,in](fAS™Y) (9)
and for r < s
[ﬂﬂf:?ﬁ"]-{'[ﬂ" :sﬁs] = [ﬁaaﬁr]{f:/\sﬂ-l + [ﬂr,,@,]f:/\sm_l, (10)
= B BNEASTE - (m1)PTIEASTY) .

Here aAS™~! = A, 2" la with X, € {+1,—1} for all & € O,nS™. Now (9) and (10) show that (8)
is equivalent to £ € M,(H,1I’,e). Hence we get the isomorphism

Gyl I\e) = £(M,]) (1)
which carries (£, N,8) to (6'N~! 4 N¢& N). The multiplication law in E(A.J,:tf) satisfies
(L4, NY{L +9',N) = (LL+nLl 4+ Ny ,NN')

which shows, that (11) is an isomorphism of groups, see (7.8)(2). Using the isomorphism (11) we also get
by (1.3)(c) the formula for the action in (7.8)(5). Now the proof of the first part of (7.9) is complete by
(3.5). We obtain the splitting s in (7.9)(2) by (5.3) and (7). Finally we get the isomorphism (7.9)(3) by
(5.2) similarly as in (6.7). §
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§(8) {n — 1}-connected 2n-manifolds.

We first introduce the "quadratic” algebra which indeed is needed for the metastable range of homotopy

theory, for a more extensive treatment see [13].

(8.1) Definition: A quadratic Z-module

M = (MMM, (1
is a pair of abelian groups M., M,. together with homomorphisms I , P which satisfy
PHP = 2P and HPH = 2H . (2)

A morphism f: M — N between quadratic Z -modules is a pair of homomorphisms f = (f., f..)
which commute with H and P respectively, f.P = Pf.., feeH = Hf.. Let QM(Z) be the category
of quadratic Z -modules which is an abelian category. We identify an abelian gro;II with the quadratic
Z -module = (0 — 0 — II), this yields the inclusion M(Z) C QM(Z) where M(Z) = Ab is the

category of abelian groups (i.e. Z -modules).

(8.2) Definition: Let A be an abelian group and let A be a quadratic Z-module. A
quadratic form A — M is given by a pair of functions a = (a., ®.,) where a..: A x A — M,

18 Z -bilinear and where «a,: A — M, satisfies for a,b € A

acla+b) = a.la)+a.(b)+ Pac(ab) ,
aee(a,a) = Hay(a) , (1)
ee(a, b) = To,.(b,a)

Here T = HP —1 is the mvolution on M., ,i.e. TT =1. Let Homg(A, M) be the set of all quadratic
forms A —— M, this is an abelian group by (a.,a..)+(Be, Bee) = (e + Be, ee + Bec) . Hence we obtain
the quadratic Hom-functor

Homgz: M(Z)”® xMQ(Z) — b (2)

which generalizes the classical Hom-functor of abelian groups. On the other hand we have the

quadratic tensor product

©r: M(Z)xMQ(Z) — Ab 3)

which generalizes the classical tensor product of abelian groups. lere 4 @x M is the abelian group

generated by the symbols e® m, [a,b]® m with a,b€ A, me M., n € M,,. The relations are

(a+bd)@m = a®@m+db®m+[abl® H(m) ,
[a,a}@n = a®P(n) , (4)
[a,]®@n = [badeT(n) ,
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where a ® m is linear in m and [a,b] ® n is linear in each variable a, & and n. We point out that
A®zx M and Homg(A, M) are additivein M.

(8.3) Lemma: Let A be a finitely generated free abelian group. Then one has the isomorphism
X: #A@zM == Homg(A M)

which is natural in A. Here we set # A = Hom(A, Z).

Proof: For a,b € Homg(A, Z) let X(a® m) = & = (a., a..) be given as follows (z,y € A)
ac(z) = a(z)m+ (a(z)(a(z) - 1)/2)PH(m) ,
ace(z,y) = a(z)a(y)H(m)
Moreover X{[a,b]® n) = 8 = (B, Pec) is defined by
Be(x) = a(z)b(z)P(n) ,
Beelz,y) = (a{2)b(y) +a(y)b(z))n

Homotopy groups of spheres yield for m < 3n — 2 the quadratic Z -modules
(8.4) Ma{S") = (Ma(S") Sl (57 1) Mn(S))

where H = v, is the Hopf invariant and where P is induced by the Whitehead product square [tn, ],
that is P(a) = {tn,tn]oa. In I, {S™} we get the involution T= HP —1=(-1)".

(8.5) Lemuna: Let m < 3n —2 and suppose X has the homotopy type of a finite one point union

of spheres S™, n > 2. Then one has issomorphisms
Oa(X) = Hy(X)®zO0n{S"} = Homz(HA"(X),0,{S"})

which are natural in X .

Proof: Let a,b € TIo(X) = H,(X). Then the first isomorphism carries a @ m, resp. [a,b]®n,
to the compositions a o m, resp. {a,b] o n, where [a,b] is the Whitehead product, m € II,(S™),
n € M1,,(S?"~1). The second isomorphism is given by (8.3) since H"(X) = #H,(X). i

In addition homotopy groups of the special orthogonal groups yield the quadratic Z -modules (n > 2)
(8.6) Mn-1{S0n} = (Na180n — Z — W,_,50,)

together with a map

(8.7 J =Tn: Hn-l{SOn} — H2n—1{Sn}
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in Q_M(Z) Here J.. carries | € Z to tan_1 € Man_1(S?" Y 2 Z and J.: 1,150, — M3a_ S is
the J -homomorphism so that H in (8.6) coincides with J.;'HJ.. Moreover P in (8.6) carries 1€ Z
to di, where we use the boundary : I1,5" — H,_1(S0,) of the fibering S™ = SO, 41/S0, .

(8.8) Definition: Let M be a quadratic Z -module with M,, = Z and let A be a finitely
generated free abelian group (i.e. a Z -lattice). We call a quadratic form a: A — M unimodular if
the product a.e: A x A — M., = Z yields an isomorphism D,: A = #A where D, is defined by
Do(x)(y) = (Da(z),y) = acelz,y) for z,y€ A.

(8.9) Remark: Let A be a Z -lattice. Then a pre-n-space in the sense of Wall [40] is the same
as a quadratic form a: A — 0,_;{S0,}, moreover this is an n-space if « is unimodular. Wall shows
that "almost closed differential (n — 1)-connected 2n-manifolds M ” stand in 1-1 correspondence with
” n-spaces a@”, n > 3. The correspondence carries M to a = ax where a.. is the intersection form of
M and where the function a.: H, M — N,-150, assigns to = € I,M = H,M the classifying map

of the normal bundle of an embedded sphere representing =.

We now call two quadratic forms o: A — M and 3: B — M equivalent if there exists an isomorphism
y: A= B with a..(y X y) = 28, and a.y= f..

(8.10) Lemma: Homotopy types of (n—1)-connected Poincaré complexes M of dimension 2n are
in 1-1 correspondence with equivalence classes of unimodular quadratic forms A —~—— Ha,_1{5™}
where A is a Z -lattice, n > 2.

We obtain the correspondence in (8.10) as follows. Let f be the attaching map of M = M Uy e®® and
let A=H., M= H,,Iff. Then we have by (8.5) the natural isomorphism

Meaoi(M) = A@zTa_1{S"} = Hom(*A4, Tz 1{S"}) (1)

which carries f to the quadratic form By: B — Hz,_1{S"} with B =#4 = H"(ﬁ/f). We call Gy the
extended cup product of M . One can check that Gy = (., B..) coincides with the invariant considered
by Kervaire-Milnor in [28]. In fact B.. is the cup product pairing H*M x H*M — H?"(M)=Z
where H"M = B, that is f..(z,y) = ( Uy, [M]), and B, is the cohomology operation considered by

Kervaire-Milnor, see 8.2 [28]. Wall in lemma 8 [40] shows that for a closed differential (n — 1)-connected

2n-manifold M we have

Jay = Dyfu = by (2)
where J is the map in (8.7) and where Dp: HoM — H"M is the inverse of the Poincaré duality
isomorphism N[M]: H*(M) = H,M . Here N[M] can be identified with # Ds = Hom(Dg, Z): ¥4 — A
where Dj is given via .. as in (8.8), this is readily checked by the formula (z Uy, [M]) = (z,yN[M]).

Now the correspondence in (8.10) carries M to the quadratic form
Su = Dyfu = (*D5') fu: A— Ty {S7) (3)

which we call the extended intersection form of A , in fact, é.. in 8ar = (b,,6..) is the classical inter-

section form.
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Proof of (8.10): Let u: M — N be a homotopy equivalence with u,[M] =¢[N], ¢ € {+1,-1}.
Then we get the restriction v: M — N of u with v.f =cf where f and f’ are the attaching maps.
Hence by (1) above we get for z = H,(v) the equation (¥z)*8 =¢f' with =8y and f =fn. In
particular B..(*z x #z) = £, and hence D' = ezD¥z with D' = Dg and D = Dg. Therefore we
get for § = 8pr, & = 8n via (3) the equations (y = z~!)

b = BHAD! = B.H(eyD'*y)!
(eB.¥y)¥ (eyD'#y)~!
BFDY 1yt = syt

On the other hand one gets in a similar way 8.. = ¢6.,(y~! xy~!). Hence §., = &'z and 6,. = €é,.(x x x)

]

so that z is an equivalence. b

The J -homomorphism (8.12) induces the homomorphism
(8.11) Jo: Homg(H, 0,.1{80,}) -— Homg(H,,Us,-1{S"})

which clearly is injective if J, is injective. Hence ays in (8.10)(2) is determined by éas in case J, is
injective; this is actually the case for n =odd or n=6(8), see (8.21) below. Therefore we get:

(8.12) Remark: Let n be odd or n=6(8), n > 3, and let M, M be differential (n — 1)-
connected 2n-manifolds of the same homotopy type. Then for some manifold 7 homeomorphic to §2* ,
M, is diffeomorphic to M2:#T. If n = 3,6, M; is diffeomorphic to M;. This corresponds to theorem
5 of Wall [40], where Wall, however, does not treat the case n=1(8). In this case 7, is still injective as

follows from theorem 1.1 of Adams [1].

Next we determine the group of homotopy equivalences of an (n — |)-connected Poincaré com-
plex M of dimension 2r in terms of the classifying invariant &3 above. For this we need the

group of automorphisms, Aut(§), of a quadratic form 6 = (8,, 6,.): A — M . This is the subgroup

(8.13) Aut(8) C  Aut(A)

consisting of all automorphisms z: A 2 A4 that satisfy 6.z = §, and 6..{zxz) = €b.. with ¢ € {+1,—1}.
We set ¢ = deg(z). If M is an abelian group we have §,, = 0 so that the second equation is redundant.
On the other hand if #: M, — M, is injective we see by the second equation in (8.2)(9) that the first
equation is redundant, that is in this case Aut(8) = {z;6..(z x ) = £6..}.

{8.14) Theorem: Let M be an (n — 1)-connected Poincaré complex of dimension 2n and let
M be Z-reducible, that is £§, = 0 where &,: H,(M) — M2,_15" is given by the extended

intersection form dpr = (8., 8..) of M . Then one has the fundamental extension

HiM)®T, > EM) -5 Aut(6y)

Here T, = Torlizny1(S™*!) is the group in (6.2) and Ha(M) ® T, is an Aut(éar)-module by
z (a®t) =deg(z) z(e) @t for z € Aut(8pr), a € Ho(M) and t € T,,. The homomorphism
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H,, carries an element in £(M) to the induced homomorphism in homology. The fundamental

extension for £(M) above is split if in addition n is odd or n € {2,6}.
Proof: The suspension ¥ induces amap (m<3n—2, n > 2)
T=(L,0): On{S"} — DNnu{S"+} (1)

in QM(Z) where L. = I is the ordinary suspension and where .. = 0 is trivial, compare (8.4). Now
¥ in (1) induces via (8.5) the suspension homomorphism on II,,(X) which is the composition

Ma(X) & Ho(X)®z MfS"} 2% Hopa(SX) @2 M () = Mpia(BX) ()

Here o is the homology suspension o: H,(X) = H,41(2X). Therefore we see by (8.5) that M is
T-reducible if and only if £8, = 0. As in the proof of (8.10) we get

Aut(drr) = E(M,%f) . 3)

Here we use the naturality of the isomorphisms (8.5) and (8.10)(1). By (3) and theorem (3.5) we then
obtain the fundamental extension in (8.14). We now deduce the splitting in (8.14) from theorem (5.2).
For this we consider the inclusion (5.1) which via (8.5) corresponds to the inclusion (A = H, M)

A®g T, {5} B Aoz Mony:{S"+'} (4)
where i is the inclusion of the image of T in (1). In case there is a retraction r in QM(Z), for which
S {S"} —> Mapu{S"™}) o {57 (5)

is the identity, we see that {4) admits the retraction 1 ® r which is natural in A. Hence in this case the
fundamental extension in (8.14) is split by (5.2). The retraction r in (5) exists if and only if tere is a
retraction r. of the inclusion Lll3,(S") C an41S™t! for which r.[tny1,tn41] = 0. This is the case if
and only is n is odd or n € {2,6}, see [39]. h

The construction of the retraction 1 ® r of (4) in the proof above illustrates indeed the usefulness of the
quadratic tensor product in (8.2). Our approach avoids the choice of a basisin H, M ; such a choice would
imply a mess of equations as one can find them in this context often in the literature. Also the following
considerations show the clear advantages of our approach. We describe in more detail the properties
of the quadratic Z -modules M3,_;{S™} and II,_;{50,}. For this we introduce the following list of

indecomposable quadratic Z -modules.
7° = (z 2 zeoz 2 z)
%S

Z_Lz;z)

zh = o——»z—»o)

0 2

(8.15) zh = (zpr &~ oz D z/)

(1,0)
—

ZOZY z D Zoz/”)

zeoz Y9 z 22D

(
(
(
zZt = (z 7z X 7z)
(
( Zo7z)
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We have obvious quotient maps ZF —s» ZF —s» ZT and Z* —» Z* in QM(Z). Some of the
quadratic Z -modules in (8.15) correspond to well known quadratic functors Ab — Ab since there are

natural isomorphisms (A € Ab)

R%A) = ARz Z® = A®A

S?(A) = Az Z® = A®A/{a®b-b®a)
AYA) = ARz Z* = A®A/{a®ad)}

(810) () = Az Zd = A@A/{a®b+b@a)
NA) = ARz Z"

PXA) = AezZ" A(A)/A(A)
Here S%(A) and A%(A4) are the symmetric resp. exterior square. Moreover I' is the quadratic functor of
J.H.C.Whitehead [41] which is part of the free commutative ring with divided powers [20]§13. Moreover
P2(A) is the polynomial construction given by the augmentation ideal A(4) and its third power A(A)?

in the groupring Z{A] of the group A. The sum Z® @ Z* is actually the universal quadratic Z -
module, see [13].

(8.17) Lemma: There are indecomposable quadratic Z -modules S¢, 09 as in (8.15) and abelian
groups Sf, OL such that for n > 2 one has isomorphisms in QM(Z)

]Ig,,_l{S"} = S,? 5] Sy% s I]n—l{SOn} = Or? S Orll‘
More precisely we obtain the following lists in which we describe S¢,09,S%, Ok respectively. We write

”g.d.s” for ”generates a direct summand” and TI$_, denotes the stable (n — 1)-stem. Using results of
Toda in [39]} and Kervaire [29] (see Wall [40]p.171) we get:

My {S7} = ZT n=2
VARV AL n=4
zZy o Z/15 n=8
(8.18) Z o Z /2 n=237
Z¥ens_, n even, n ¢ {2,4,8}
Zial;_, nodd, n g {3,7}, [tn,tn] g.d.5
(K) ZroUs  /{San} nodd, n¢{3,7}, [tn,ta] =2 Lan, an g.d.s

The divisibilities of the Whitehead square in (K') is relevant with respect to the Arf invariant problem,
see [31].

M,-,{S0,} = Z" n=2
z¥ n=4,8
(8.19) ZzZA n=3,7

Z5@M,_,SO neven, n ¢ {2,4,8}
ZY®N,_1,50 nodd, n¢{3,7}

-31 -



For n =4 see lemma 20.10 in [32]. We recall that by results of Bott [16] we have for n > 2:
M,.1S0 = Z/2 n=1,2(8)
(8.20) 0 n=3567(8)
Z na=0(4)

There is a canonical inclusion i§: 0 C S§ which is the identity exept for the case (K) in (8.18).
Moreover we have the homomorphism i%: O — S,’; which is induced by the stable 7 -homomorphism
M,_150 — IS _, . Now the map J, between quadratic Z -modules in (8.7) is given by (n ¢ {2,4,8})

i@k
(8.21) T, 1{S0} = 0900L "¢ $9@SL = I ,{S")
For n € {2,4,8} the map
Jn: Maoi1{SO} = 0 — S9@SE = My,_,{S"}

is the canonical surjection. Here OF — S3 is the identity for n = 2 and the quotient map for
n € {4,8); the second coordinate O — Sk is given by (1,2): Z ® Z — SL for n € {4,8}.

(8.22) Lemma: Each X -reducible (n — 1)-connected Poincaré complex of dimension 2n has the

homotopy type of a closed manifold.

Proof: We obtain the suspension

L Mo {S"} = S%9@St — nOof

n-—1

by dividing out the image of P in S, see (8.14)(1). This shows by inspection that Ker(X) C image J, .

Hence the lemma is a consequence of (8.10)(2). il

On the other hand we have £J, = 0 if 0,_4S0 = 0. Therefore Ker(X) = image J, in this case and
we get by (8.20) the proposition in (3.3).

Since the quadratic [fom functor is additive in the second variable we see that the extended intersection
form &3y and the Wall invariant ap in (8.10) yield by (8.17) quadratic forms

69 H.M — S9 | resp.
(8.23) { aAQ,: M — 08
which we call the quadratic part and homomorphisms between abelian groups
6L H,M — SE | resp.
{ ai‘,: HM — OFf

which we call the linear part. The automorphism group (8.13) then satisfies
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(8.24) Proposition: Let M be an (n — l)-connected Poincaré complex of dimension 2n with

extended intersection form &3 and attaching map f. Then we have isomorphisms of groups

E(M,2f) = Aut(y) = Aut(6%) N Aut(sh)

Clearly we assume H,M # 0. The proposition follows by similar arguments as in the proof of (8.10).
Kahn [26],[27] incorrectlydescribes the quadratic part, resp. linear part, of 63y = Japs so that therefore

his definition of Aut(u,c} in his main result is also incorrect; the correct definition would be (8.24).
For the computation of £(AM |A'4' ) we need the following definitions and facts.

(8.25) Definition: Let A be an abelian group and let M be a quadratic Z -module. Then one

has the natural homomorphism

Aoz M L AgAeM. £ AgzM

with
H@e®m) = a®a® H(m) |,
H(la,b]®n) = a®b®n+b®a®T(n) ,
Pla@b®n) = [a,b®n |,

where T'= HP — 1 is the involution.

Let £X be a one point union of spheres 5™ such that H,XX = A. Then we have for n < 3n — 2 the
commutative diagram

AR M, {S"}) L A@A®NLS™ 2 AezN.{5"})

(8.26) l-_- lg lz

m,5X M, M.SXAX (L., M,.5X

where we use the isomorphism (8.5). The diagram shows that H in (8.25) corresponds to the James-Hopf
invariant 7, and that P corresponds to the map induced by the Whitehead product square [1,1], see
§(2). The Hopf map nm € N1 S™ = Z/2, m > 3, is a generator which induces the following maps
between quadratic Z-modules, where Llls,-1(5") is a subgroup of II5,S5"+!.

(8.97) Mgy {S™) ™25 Mon{s”} @ Z/2@ Tl (S™)

We use these maps in QM(Z) in the following result. As usual we also write A = 1, for the identity of
A.

(8.28) Theorem: Let n >3 and let M be an {n — 1)-connected Poincaré complex of dimension
2n with A = H,M and attaching map fa € A @z H3,-1{S"} 2 2,_1(M). Then the module
E(M|M) is algebraically given by the isomorphism

EMIM) = A®TL{S"}/J
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where J is the following subgroup of A @z [, {S™} = Hzn(ﬂ.{). The subgroup J is generated
by the element (A ® 15,_1){(fa) and by all elements

PA®OH(fM) + (ABna.)E®I)( /M)

with £ € Hom(A4, A® Z/2). Here we use the homomorphisms

A®z Man_1{S"}- A0 42240 A0 Z/2-25A @7 Ton {57}

A®x M2 {34 © Z/20 SMan 15722 4 @2 M2n {5}

A description of S(Mlﬁ.{f) in terms of quadratic Hom-functors is also possible by use of the isomorphism
in (8.5).

Proof of (8.28) We use the description of 7 in (2.2) where
c€[EM,M] = Hom(A,A®TI,4,5")

Here 5, € 1,415™ = Z /2 is the generator. We have the formula
VLE) = Eo(Bf) + [(1)Znf
Eo(2f) + [LIL(AAE:f

Now using (8.26) we obtain the description of J in (8.28). i

For various n the group £(M|A./I) in (8.28) can be computed in a better way. We do this in the next
section for n € {2,4,8}.
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§(9) Manifolds connected with Hopf maps.

We consider (n — 1)-connected Poincaré complexes of dimension 2n for n € {2,4,8}. These are the
cases for which the Hopf invariant problem is relevant. Moreover each such Poincaré complex has the
homotopy type of a topological manifold. As a first example we consider the projective planes. Let

IRPy, €Py, ©@P, be the real, resp. complex, resp. quaterionic projective plane and let Ca be the

Calyley plane. Recall that £(M) in Top/~ is defined with respect to maps which need not to be base

point preserving, let £(M)* be the corresponding group for basepoint preserving maps, i.e. in Top”/~.

{(9.1) Theorem:

E(RPy) = 0 . E(RP) = ZJ2
ECP) = Z/2 :
EQP) = Z/2 ;
E(Ca) = Z[202Z/[2
Proof: For IRP, see [9] 1IIB.18. Moreover £(C'P;) is a special case of (9.3) below since for

M = P, we have E(MII{'I) = 0 and Aut(ép) = Aut(Z) = Z/2. For the manifolds M = QP
and M = Ca, however, the group Aut(8ps) is trivial. In fact the attaching map of M is the Hopf
map vy, resp. og, which is the generator of Z in 115,18" = Z & Z /2" & odd torsion , n = 27,
Hence the extended intersection form (the quadratic part) is given by 6% = (6.,6.0): Z — Z! with
8.(1) = (1,0). Thus we get by (8.2)(1)

6e(_1)

I

—6:(1) + Page(1,1)

= =&(1)+ P(1)

= —{L0)+(2,-1)

= (,-1) €eZoZ/2

so that 6,(—1) # 6.(1). Therefore —1 & Aut(fp). Now the computation of £(M) = £(M|11.d) is a
consequence of (9.6) below. h

We need the definition of the characteristic element of a quadratic form, see for example p.26 [25].

(9.2) Definition: Let A be a Z -lattice and let 8: A x A — Z be a symmetric bilinear map
with odd determinant. Then there exists an element wo € A with B(z,z)= f(z,wo) mod?2 forall z € A.
The element w =wo® 1€ A ® Z /2 is well defined by B and is called the characteristic element of 3.

For example, let §=: H?M x H*M — Z be the cup product pairing of a 1-connected 4-dimensional
Poincaré complex, then the characteristic element of § = U is the second Stiefel-Whitney class ws €
HY M, Z[2)=H*(M)Q Z/2 of M.
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(9.3) Theorem: Let M be a l-connected 4-dimensional Poincaré complex. Then one has the split
extension
Kerwa > &E(M) —» Aut(by)

Here wq: Ho(M)Q® Z /2 — Z /2 is given by the second Stiefel-Whitney class of M . Moreover
Aut(8pr) acts on Kerwy by z-(a®1)=z(a)® 1 for z € Aut{pr), a®@1 € Kerws.

Proof: This result was recently proved by Cochran-Habegger {18]. Originally £(M IA./I ) was com-
puted in Baues [11], clearly this group can be derived from theorem (2.2) above. Then Quinn [34] obtained
the formula £(M |f;l ) = Kerwy, but his proof was not correct. Cochran-Habegger do this calculation
again and also describe an intricate homotopy theoretic proof for the splitting. If wy = 0 we obtain a
new and short proof for the splitting by (8.14) since then M is Z-reducible; in fact for wz = 0 the
extension in (9.3) coincides with the one in (8.14). If w2 # 0 one can use results of Freedman to describe

a splitting as follows:

Freedman [21] shows that there is a closed topological manifold N which has the homotopy type of the
Poincaré complex M. Let IgHomeo(N) be the group of isotopy classes of homeomorphisms of N .

Then Quinn [34] proved that the natural homeomorphism
Hy  ToHomeo(N} -= Aut(fy)

is an isomorphism; in fact, surjectivitv follows from Freedman’s theorem (1.5) Addendum [21] and in-
jectivity can also be proved along the lines of the proof of Kreck’s result theorem 1 in [30]. Using this
isomorphism the canonical forgetful homomorphism IgHomeo(N) — E(N) yields the splitting for the

extension in (9.3). b

For a quadratic Z -module M and an abelian group C let M ® C' be the quadratic Z -module given
by

MeC = (M.®C 8M..e ™M, ()
Then the quadratic tensor product satisfies
AQx(M®C) = (AQzM)®C
For example we have
(9.4) zPeoz)2 = zmPeoz)2 = (Z120 2%z 7120 2)2)

This quadratic Z -module is part of the following commutative diagram in QM(Z) with short exakt
rows and columns

Z/2 = Z/2
Z5QZI? > ZPRZI2 — Z/2 (1)

| l ]

ZAQEI2 > ZTQZ/2 —» Z]2
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For a Z -lattice A the functor A ®x _ , applied to this diagram, yields the following commutative

diagram with exact rows and columns in Ab, see the notation in (8.16).

ARZI2 = AQRZ)2
SUA®Z[2) > PAAVQZI2 2> AQZ/2 (@)

| | I

A2(AQZ[2) >~ T(A)RZ/2 —» ARZ/2
Here i carries y to i(y) =y-y= {y®y} and j corresponds to P in (8.25) that is j(z-y) = P(z®y).
For a homomorphism w € Hom(A, Z/2) = Hom(A® Z /2, Z [2) we get the next push out diagram in
Ab with short exact rows; this diagram defines E4(w).
SHARZ/[2 > PHAVQZ[2 o> AQZ/2
lw- push J'a. H (3)
Zi2 DO Imw) > E4(w) — AQZ/2

Hete w. carries {z @ y} to w(z)- -w(y) for z,y € A where we use the ring structure of Z/2 = 7Z /27Z .
On the other hand we use w also for the following push out diagram which defines Eg{w) for w # 0.

S A0z o Aez/2 85 PA)@Z2@(A®Z/2) —» (A®Z/]2)?
l(w.,o) push J'E- [ (4)
Z[2 > Eg{w) — (A® Z/2)?

Here w, is defined as in (3) and (1,1) carries z to £ @ z. For w =0 we get the quotient map
.=o@lol: PHA)@Z/2 ® (ARZ/2? — Es0) = (A®Z/2)° (5)

where o is defined in (2). We point out that diagram (3),(4) and (5) are in the obvious way diagrams of
Aut(w)-modules with Aut(w) C Aut(A) defined in (8.13).

(9.5) Theorem: Let n =4 or n = 8 and let M be an (n — 1)-connected Poincaré complex
of dimension 2n with extended intersection form &y € Homg(A4, l3,-1{S"}) with A = H, M.
Then 63 determines the element w = wp € Hom(A, Z/2) which is the characteristic class of the
cup product pairing U: [I"M x II"M — Z . Moreover 6y determines the element v = vay €
P%(A) ® Z /2 which is the reduction mod 2 of the attaching map of M. The map o in (9.4)(3)
carries v to the element o(v) € A® Z /2 which is the Poincaré dual of w. With these data we

have the fundamental extension
En(@)/{@.(v)} >— &M) —>» Aut{by)

Here the group E,(w)/{@.(v)} is an Aut(ép)-module via the structure of E,(w) as an Aut(w)-
module, clearly Aut(6yr) C Aut{w).
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If w # 0 then also @.(v) # 0 since o(v) # 0. This shows that one has isomorphisms of Z/2-vector

spaces
HaM)® Z)2 ifn=4

(9.6) EMIM) = (Ha(MY® Z/2)? ifu=8w#0
(Ho(M)® Z/2? ifn=8w=0

This is also an isomorphism of Aut(éa)-modules in case w = 0. We point out that the following 3

conditions are equivalent for M in the theorem:

(1) the intersection form of M is even,

(ii) the characteristic class of the intersection form vanishes, that is w =0,

(iii) the reduction mod 2 of the suspended attaching map vanishes, that is o(v) = 0.
Hence if M is I-reducible then w = 0. and @.(v) =o(r) =0.

Proof of (9.5): Clearly 85 determines the extended cup product and the attaching map fa by
the isomorphisms in (8.10)(1),(2),(3). Recall that for n € {4,8} with n =27 we have

Oye_1{S"} = 2ZFestk (1)
where SL is odd torsion, see (8.18). Hence fa in (8.27) determines the quadratic part
moe Aoz (2)

Here we have A = H,M and #¥A4 = Hom(4,Z) = H"(M). By use of the following commutative
diagram we see that () is the Poincaré dual of w. Let #z € Hom(A, Z). Then we get by naturality

the commutative diagram

AcA EL aexmP 8% ez

1:@: l:@l 1:@1/2

zZow L memP T2F gexz/

H I . (3)
z 2 zezpr LNz
932
Here ¢.¥ is given by the composition
@pE=(1,0: Z@®Z/Y = Z/rtY . zZ/2 (4)

where L = (1,2), since KerL = Im P. Now we know that the cup product H"M x H"M — Z
satisfies the formula

Uy = (z@uHY) (5)
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where fi is the quadratic part in (2). Hence by (3) and (1) we get

(g22)U (qawo) = qrUgqz = qz@z)H ()
(v ® Z/2)(A® 12E)(f3) (6)
(2® Z/[2)(a(v))

where in the first equation we use wg € #4 in (9.2) with w = wp ® 1. This shows that o(v) is in fact

the Poincaré dual of w.

We use diagram (3) also in the following computation of the group J in (8.28). The group Hom(A, A ®
Z [2) in (8.28) is generated by the compositions

E=yqpa: A—Z —Z[2—AQZ/[2 ]

with 2z € #4 and y € Hom(Z /2, A ® Z /2). By Poincaré duality each element : € Z ® A = A 1s of
the form (see(5))

z = (:c@A)Hfg . (8)

We now get the following equations where we compute the generators in 7, see (8.28).

P(AREH(fu) = PAQup)A®T)H[M 9
= P(A®yq)(z ® A)HfF
= P(A®yg)(2)
On the other hand we get
(A®mM)E®ID) M) = (A® M) u® Z/2) (22 ® 12E) 3y (10)

where 9, Z[2=Z[2Q Z /2"t — 115,{S"} is given by (8.27). By (3) and (6) we see that

(122 @ 2E)ff = gz Uqawg (11)
= (g2 @ q2wo)H(fpy)
= (7:® qwn)(z @ AYH(fF)
= (g2 ® q2wo)(2)

Here we also use (5) and (8). Thus (9), (10) and (11) show that 7 in (8.28) is generated by the elements
{ (A®N3a1)/M and
Plyg2® A)z) + (A@m.)(a2®w)(z) = R

where y € Hom(Z /2, A® Z/2), z € Z ® A. We clearly have gqawp = wp = w € Hom(A, Z/2) for w
in (9.5). The operator P in (12) is defined for A ® II3,{S™} as in (8.25). Here we have

(12)

Z¥ e Z/2 for n = 4,

My {5} = { (13)
(ZP @ Z[2)®(Z/20 Z/2) forn =8,

ztez, = (ZrReoz/? 3z %z1r02/2) . (13b)
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The isomorphism (13) carries the bases elements 1 ®0, 0© 1€ Z/2® Z/2 = (ZF ® Z/?2). to Sv'ne,
resp. wvanr for n = 4 and to So'ms, resp. ogmp for n = 8. Here we have [u4,cq]7 = Sv'57 and
[ts,t8)ms = So'nis and Husanr = 57, Hosmis = - (See Prop. 2.2, Lemma 5.4, p.43 bottom 5.11,
Lemma 5.14, p.63 centre in Toda’s book {39].) For n = 8 the generators of the summand Z/2® Z/2

in (13) are €5 and ¥g. This description of generators shows that we get 75,_; by the composition in
QM(2)

Maci: Mot {S"} B> Many{S"}@Z/2 = ZP@2Z/2 C Mu{S"} (14

where we use (1) and the inclusion given by (13). On the other hand we obtain

(Z[2) n=4
Mne: Z[2=Z[2QElgy_1(S") — 8" = { , (15)
(Z[2)* n=38

as follows. We observe that 1 ® v generates Z/2 @ YI;8* and 74, carries this element to
Mm1®vs) = nws = Svpr = 100 € (Z/2)* (16)

(by p.44 center 5.9 in Toda [39]). Moreover 1 ® o generates Z/2 ® L;55% and ns, carries this
generator to (see 7.4 in Toda [39])

H

18.(1®09) = 1ngoyg So'ms + Vs + €3 (17)

loodlal € (Z/2)°

Hence we get for n,, in (15) the formula

(1,0) for n = 4,
Miw = (18)
(1,0,1,1) for n=28.
Using (13) we see that
' P(A)® Z/2 forn =4,
A® U2, {S"} = (19)
P(AY®Z]2 & (AR Z[2)® forn=28.
Moreover the inclusion (14) shows that the first element in (12) corresponds to
(A®@nu_1)fm = v € PAR®Z/2 C A®l{S"} . (20

On the other hand the second element in (12) can be described as follows. We first deal with the case
n =4. Then we have the commutative diagram

N4,

T~

AQZ[2 —- SUAQZ[2) -1 PYA)® Z/2 (21)

K Ir

QUARZI2) = AQARZ/2
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where ji = n4, since a® P, = [a,a]®n by (8.2)(4) so that 74,(a®1)=a®@m,1=a®Pl=[a,a]®@1=
jla-a) = ji(a). The quotient map ¢ carries z ® y to the equivalence class z -y = {z ® y} with
JHz y)=[z,y]®1 = P(x®y®1). Now the second element in (12) coincides with the following element
R where y,2 € A® Z [2correspond to the elements y, z in (12).

R = jR)withR = y-z4+i(y-w(z)) . (22)
The elements R' generate the kernel of w, in (9.4)(3). Hence we obtain by (20) the formula
EMIM) = E4w)/@.(v) forn=4. (23)
A similar argument yields the result for n = 8. In this case we get by (18), see (9.4)(4),
R = jly-z+ily-w(2) & vy w(z)®y w(z). (24)
These elements R generate the kernal of @, in (9.4)(4),(5) so that by (20) we get
EM|M) = Es(w)/@.(v) forn=S8. (25)

This completes the proof of theorem (9.5). b
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$(10) Remark on_diffeomorphisms.

Let M be a differential manifold and let MDiff .(M) be the group of isotopy classes of orientation

preserving diffeomorphisms of M . Then we have the homomorphism
(10.1) ¥ TeDiff¢ (M) — &L (M)

which carries an isotopy class of a diffeomorphism A to the homotopy class of h. Here £.(M) is the
subgroup of orientation preserving homotopy equivalences in £(M). We use the invariants ass and b
in (8.10) and for & = apr or @ = 6y let Auty(a) be the subgroup of Aut(a) consisting of elements z
with deg(z) = +1. By our result (8.14) we get the following theorem on the homomorphism ¥ above.

In the theorem we use the diagram

Ma(SO,) =+ Ma(SOny1)

l# l7
Mo(S") = Mangr(S7HY)

where J is the J-homomorphism and where S is induced by the inclusion SO, C SOn+1 . Since the

diagram commutes up to sign we get the well defined homomorphism
(10.2) J: SH.(50,) — Zla(S*) = Torlignp (S

needed in the following result:

(10.3) Theorem: Let M be a differential (n — 1)-connected 2n-manifold, » > 3, which is almost
parallelizable. Then there is a commutative diagram in which the columns are short exact, A =
H, M. v

Ker(H,) 5> A®SH,50, 2] A@Li,,s

l !

Mo Diff 4 (M) -, £+ (M)
[ I
Auty(oar) :Er Auty (6ar)

Here H, is given by the homology functor and the inclusion ¥ is surjective if J,, in (8.7) is
injective, i.e. for n odd or n=6(8). Moreover X is surjective with kernel(X) = ©4,41/{Zx}
where X is an element in the group of (2n + 1)-dimensional homotopy spheres 3,41 of order

2 and depending only on M.

The homomorphism X is obtained by the homomorphism X in [30] via Poincaré duality; commutativity
of the diagram follows from the definition of X' and the definition of J, see the proof of Wall of lemma
8 [40].

(10.4) Corollary: If J in (10.2) is injective then we have Ker¥ = KerX = O2,41/{Zar}.

Moreover if 7 in (10.2) is surjective and n odd or n=6(8) then ¥ is surjective. On the other
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hand if J = 0 in (10.2) and if n is odd or n=6(8) then the fundamental extension for £(M)
has a splitting induced by W¥.

(10.5) Remark: We would like to warn the reader that the paper of Kolosov concerning ¥ in
(10.3) (see Math. USSR Sbornik Vol. 41(1982) No4) contains various errors, in particular his main result

theorem 1 contradicts results of Kreck [30] and theorem (10.3) above.
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