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ABSTRACT

In this article we study such finite groups that the cusp forms associated to all el-
ements of these groups by means of some faithfull representation are modular forms
with multiplicative Fourier coefficients from the special class. The Sylow subgroups of
such groups of odd orders are found. We describe such metacyclic groups. The groups
of order 16 and the groups of order 32 which are metacyclic or are the direct products
of the group of the order 16 and the cyclic group of the order 2 are considered in detail.

Introduction.

In many modern investigations of modular forms their connections with the theory
of group representations are studied. In this article we consider the problem of finding
such finite groups that the modular forms associated to all elements of these groups by
means of some faithfull representation belong to a special class of modular forms which
are called multiplicative n—products. Modular forms are associated with the elements
of finite groups by the symbol of the Frame generalized substitution ("Frame-shape").
In 1985 G.Mason has shown that the Mathieu group M, belongs to the type of groups
which we investigate [2]. It can be shown that there are many groups of such type
which are not subgroups in Ms,,. There are multiplicative n—products which cannot be
associated with elements of Ms,. So we have a nontrivial classification problem. This
problem is open: all such groups have not been found. Moreover the different variants
of correspondence are possible for the same group.

In the previous works of the author it has been shown that all the groups of order
24 belong to this type, in this case we can use the regular representation as the faithful
representations. The metacyclic groups without nontrivial intersections have been in-
vestigated. We give here the statement of this result. The finite subgroups in SL(5, C)
were also studied. The abelian groups of such type were described completely in the
article |15].

In this article we continue the investigations.

We prove the theorem which describes all Sylow subgroups S, p # 2, of such groups.
We also study groups of orders 2", n < 5, in detail. The case of the groups with the
order equal to a degree of the number 2 is the most important and the most difficult
for this classification. We hope that the representations written out explicitely in the
section will be usefull for further investigation. We give the list of metacyclic groups of
the type we investigate.

1. Multiplicative n—products and representations of finite groups.

The Dedekind n—function n(z) is determined by the formula

T](Z) — q1/24 H(l . qn)7 q= e27rz'z,
n=1
z belongs to the upper complex half-plane.
We describe modular forms which are completely determined by the following con-
ditions: they are cusp forms of integer weights with characters, they are eigenforms of
Hecke algebra, all their zeroes are in the cusps and have the multiplicity one. A priory

1



we don’t suppose that they are modified products of Dedekind n—functions. But infact
it is so, there are 28 such functions. We give their complete list.

Table 1.

f(2) E | N | x(d)
n(23z)n(z) 1] 23 (_723>
n(22z)n(2z) 1| 44 (—711)
n(212)n(32) 1] 63 ] ()
1n(202)n(4z) 1] 80| ()
n(182)n(62) 1 108] ()
n(16z)n(8z) 1 ]128 (_72)

7?(122) 1144 ] ()
n*(62) 2 | 36 1
n*(82)n?(4z) 2 | 32 1
n*(102)n?(2z) 2 |20 1
n(12z)n(62)n(4z)n(2z) | 2 | 24 1
n(152)n(52)n(3z)n(z) | 2 | 15 | 1
n(142)n(7z)n(22)n(z) | 2 | 14 | 1
n%(92)n?(32) 2 | 27 1
n*(112)n%(2) 2 | 11 1

73 (62)13(22) 3|12 ()

n°(42) 3|16 (_71)

PEnAsma):) | 3] 8 | (F)

(720’ (2) 31 7 [ ()
n*(62)n*(Bz)n*(22)n*(2) | 4 | 6 1
n'(52)n'(z) 415 1
n8(32) 419 1
n*(42)n* (22 4| 8 1

@ Ram'z) [5] 4 [ (F)
1°(32)n°(2) 6] 3 1
n'?(2z) 6| 4 1
n%(22)n%2) 8| 2 1
n*(z) 12| 1 1

We add 2 cusp forms of half-integer weight to this list: 1(24z), 1n*(82).

We shall call these functions multiplicative n—products because they have multi-
plicative Fourier coefficients.

American and Canadian mathematicients J.MacCay, D.Dummit, and H. Kisilevskii
obtained this list from another point of view.

They have shown that only these 30 functions have multiplicative Fourier coefficients
among the functions of the kind

f(z) =] n™(arz), Y arte =24, ai, t, € N.
k=1
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Using computer calculations (they consider about 1700 variants) they rest only such
functions that have several first multiplicative Fourier coefficients Then they check
that these functions generate one-dimensional spaces. The explicit expressions for the
functions as products of modified Dedekind functions are used from the beginning.

Yves Martin [6] described completely all n—quations with multiplicative coefficients.
They are functions of the same kind with the condition ¢, € Z. But we in our corre-
spondence use only ¢, € N.

From various points of view, these functions have been studied in recent works of
American mathematiciants. [1 - 8|.

We assign modular forms to elements of finite groups by the following rule. Let ®
be a representation of a finite group G by unimodular matrices in a space V' whose
dimension is divisible by 24. And let us suppose that for every element g € G the
characteristic polynomial of the operator ®(g) has the kind:

s

Pg(.CE) = H(Qfak — 1)tk, a, € N, t, € Z.
k=1

With each g € G we can associate the function
ng(2) = [] 1™ (ax2).
k=1

The function n,(z) is a cusp form of a certain level N(g) and of the weight k(g) =

% >-7_1 tx with the character equal to the character of the quadratic field Q. /TT;_; (tax ).

We shall call a representation of a group as desired or as a representation of a
permissible type if, by means of this representation, the multiplicative n—products are
associated with all elements of this group. Permissible groups are indicated up to iso-
morphism. Such groups can contain only elements whose orders do not exceed 24 and
are not equal to 13, 17, 19. We can immediately see that if a multiplicative n—product
corresponds to an element of this group then cusp forms from the above list correspond
to all powers of this element. Due to this fact, in the study of the groups it is sufficient
to treat the representations only for elements that do not belong to the same cyclic
group. The identity element of the group corresponds to the form 7*4(z).

2. Multiplicative n—products and metacyclic groups.

The metacyclic groups of the type we study are described in the following theorem
which has been proved in [10, 14, 16].

Theorem 1.

Let G be a metacyclic group with the following genetic code

<a,b:am"=eb*=e b tab=a" >,

such that the modular form associated with each element of this group by means of a
faithful representation is a multiplicative n—product and the cyclic groups < a > and
< b > have only trivial intersection. Then for the values of m,s,r (up to isomorphism)
there are only the following possibilities:

m = 3,s = 2,4,6,8,12,18, r = 2.

m=4,s=24,6,810,24, r = 3.

m=>5,s=4812, r=2;s=24,6_8, r = 4.



— 6,5 =246, 1 = 5.
=7,5=36,r=25s=6,12,r=3;5s=2,4,6,7r = 6.
=8,s=241r=3;s=2,4r=5s=24r="T.
=9,s=2,r=8;s=4,r=8.

=10,s =48, r = 3;s = 2,4, r = 9.

=11,s =24, r = 10;s =5, r = 5;s = 10, 20, r = 2; s — 10, r — 4.
12,s =2, r=5,7, 11.

14,s =2, r=13;s =3, r=9%s=41r=3;s =6, 1 = 3.
15, s =2, r=4,14;s =4, r = 2.

16,s =2, r=7,9, 15.

18,s =2, r = 17.

=20,s=2,r=9,19;s =4, r = 17.
=21,s=2,r=8,20;s =3, r=4;s =6, = 2.
=22,s=2,r=2l;8=5,r=3;s=10,r = T.

=23,s =2, r=22;s =11, r = 10; s = 22, r = 5.

m=24,s =2, r=17.

3. The Sylow subgroups of odd orders of permissible groups.

Theorem 2. Let G be a finite group such that there is a faithful representation T
that for each g € G the characteristic polynomial of the operator T(g) has such form
P,(z) = ITj_ (x®* — 1)* that the corresponding cusp form n,(z) = IT;_; n*(axz) is a
multiplicative n—product.

Then for the Sylow p—subgroups Sy, p # 2, of such groups there are only the following
possibilites:

BEEBEEEEEBEEBEEEBEEEE
I

S(3> = Zg, S(3> = Z3 X Zg, S(3> = Zg,
S(3) =< a,b,c:a®=e,b* =e,c =e,ab= bac,ac = ca,bc = cb >,
S(5)=Zs, S(7)=Z;, S(11)= Zy.

Proof.

The permissible 3-group can contain only elements of orders 1,3 and 9.

Let T be a desired representation, 77 be a trivial representation (77(g) = 1,Vg € G.)
Let xr, x1 be their characters.

The group Zs x Zs.

We must consider three cases.

1. All elements of order 3 correspond to the cusp form 7%(3z).

Then yr(e) =24, xr(g) =0, ord(g) = 3.

The scalar product < xr,x1 >= %4 = %. But this number must be integer. We
obtain a contradiction and the desired representation can not be constructed.

2. All elements of order 3 corresponds to the cusp form 75(32)n°(z).

In this case the group is permissible. The desired representation contains 77 with
the multiplicity 8, all other representations are contained in it with the multiplicity 2.

3. In this case u elements of order 3 correspond to the cusp form 7°%(32)n%(2),v
elements corresponds 7%(3z), 0 < u,0 < v.

The group is permissible.

Because ¢ and g2 correspond to the same modular form then the numbers u and v
are even. The scalar product
(244 6u) =

< X1, X1 >= - (84 2u).

Ol =
Wl =
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Because this number must be integer then u = 2. It is a suitable variant. Let elements
f and f? correspond to the form 1°(32)n°(z). Let T}, be one-dimensional representation
of our group, my, be its multiplicity in the desired representation in 7" If T;(f) = 1 then
my, = 4. For all other [Insa apyrux one-dimensional representations m, = 2.

The group Z3 X Z3 X Zs.

We shall show that this group is not permissible. We must consider two cases.

1. All elements of order 3 correspond to the cusp form 1°%(32)n%(z).

The scalar product

< X1, X1 >= 2—17 . (24+266) = %

We obtain a contradiction because this number must be integer.

2. In this case u elements correspond to the cusp form 7°(32)n%(2), v elements cor-
respond to the cusp form n®(32), 0 < u,0 < v.

The numbers u and v are even.

The scalar product

1 1
< X1, X1 >= 2—7-(24+6u) = §-(8+2u).
Because this number must be integer then u = 14,m; = 4. Let T} be an one-

dimensional representation of our group, my be its multiplicity in the desired represen-
tation 7.
Let u; be a number of such elements g that correspond to 1°(32)n%(2) and Ty(g) = 1;
uy be a number of such elements g that correspond to 7°(32)n%(2) and Ty (g) = (3;
u3 be a number of such elements g that correspond to 7°(32)n%(z) and Ty (g) = (2.
Then uy = us, uy + 2us = 14.

1
< X1, X1 >:2—7'(24+6(U1+C3'U2+C§'U3)):

= o (204 6 — ) = % L8+ 2(w1 — u)) =

If T} is not trivial, then u; # 14, and u; — us = 5. We obtain u; = 8, uy = 3 and
Ker(T},) does not contain elements, corresponding to 7%(3z). If the element h correspond
to n%(32) then T, (h) # 1,Vk # 1. In this case there are only 4 eigenvalues,equal to 1,
among the eigenvalues of the operator T'(h) and the characteristic polynomial of the
operator T'(h) can not be equal to (3 — 1)®. We obtain a contradiction.

The group Zg X Z3.

We show that this group is not permissible.

In this group there are 8 elements of the order 3, 18 elements of the order 9 and the
element e.

xr(e) = 24; xr(g) =0, ord(g) = 9; xr(g) =6, ord(g) = 3.

The number < x7,x; >= 5. We obtain a contradiction.
The group S(3) < a,b,c:a®>=¢e,b® = e, =e,ab = bac, ac = ca,bc = cb. >
This group has the order 27, there are 11 conjugacy classes in it.
l.e 2.c 3.c? 4.a, ac, ac® 5.b, bc, bc? 6.ab, abe, abc? T.ab, a’be, a?be?
8.a%,a’c,a’c? 9.b%, b?c, b?c? 10.ab?, ab’c, ab*c® 11.a%b%, a*b’c, a*b*c?
The commutant of the group is generated by the element c¢. G/G' = Z3 X Zs.



This group has the following irreducibl_erepresentations:
Ti(a) = (5, Tr(b) = G, Ti(c) = 1,k = 1,3,

Tk(a) = C{?aTk(b) = C??aTk(c) = 17 k= 4a 67

Tk(a) = Céf,Tk(b) = 1,Tk(0) = 1, k= 7, 9,

¢Gs 00 0 01
Tio(a) = T (b) = 0 G 0|, Twb)=Tu@=|[10 0 [,
0 01 010
G 0 0
Tho(c) = 0 G 0|, Tule)= T10(02)~
0 0 ¢

The desired reprentation contains the representations 77 and 75 with the multiplicity
1, other irreducible representations are included with the multiplicity 2.

The elements a, b, a?, b2, ac, be, a’c, b*c, ac?, bc?, a®c?, b?c? correspond to the cusp form
n%(3z) other elements of order 3 correspond to the cusp form 7%(32)n%(z).

In the article [16] it has been proved that the group < a,b: a® = ¢,b% = e,b"tab =
a* > is not permissible.

The Sylow p—subgroups, p=15,7,11.

We show that the group Z5 x Z5 is not permissible. There are 24 elements of order 5
in it. xr(e) = 24, xr(g) = 4 if ord(g) = 5. The number < xr, x1 >= 12—250 = %. But this
number must be integer. The elements of order 25 do not correspond to multiplicative
n—products. In any group of order 5,2 < k there is a subgroup of order 25. The group
of order 25 is isomorphic to Z5 X Z5 or to Zss. So we have the only possibility: S(5) = Zs.

The cases p = 7,11 are considered analogously.

Theorem 3. There is no such finite solvable group G that one can assign with all
elements of G by a faithful representation all multiplicative n—products and only them.

Proof. The order of this group must be equal to 2¥-3™ - 5-7-11. According to the
theorem of Ph.Hall [9] there is a subgroup of order 35 in this group. There is only one
group of order 35 : Z35. But the elements of order 35 do not correspond to multiplicative
n—products. The theorem is proved.

We shall formulate one open problem:

To find such algebraic structure that we can associate with its elements all multi-
plicative n—products and only them in according to some rule.

4. The groups of order 2¢ and multiplicative n—products.

Let us note as u the number of elements corresponding to the cusp form 7%(22)n%(z),
as v the number of elements corresponding to the cusp form 7'?(2z).

In the article [15] the group Z, x Zy x Z3 has been considered in details. It has been
shown that the desired representations can be found by such way that the numbers u
and v are equal to any values from 0 to 7. The sum of these numbers is equal to 7.

All groups of order 16 are permissible.

In this section we consider in detail the groups of the order 16 and the order 32
which are metacyclic or are direct products of the group of the order 16 and the group
Z5. We shall point out the unique possible variant for the realization of the elementary
abelian group of order 32.

4.1. T'pyuna Z, X Zy X Zy X Z3 and multiplicative n—products.

In the article [14] it was considered only one of possible variants .



Here we consider in details some other possibilities.

Let T be a desired representation, y is its character.

4.1.1. The case u =1,v = 14.

Let the element g correspond to 7%(22)n®(2),other elements of order 2 correspond to
n*?(22). The desired representation contains the one-dimensional representations which
send the element g to 1 with the multiplicity 2. It contains the one-dimensional repre-
sentations which send the element g to -1 with the multiplicity 1.

4.1.2. The case u = 3,v = 12.

Let the elements g1, g2, g3 correspond to the modular form 1®(22)n®(z), other ele-
ments of order 2 correspond to n'%(22).

Here we must consider two different cases:

1) The elements g1, g2, g3, g4 are generators for the group G. The element g, cor-
responds to 7'?(2z). In the following table we point out the multiplicity of all one-
dimensional representations in a desired permissible representation. The values of one-
dimensional representations on generators are pointed out in the columns of the table.
The multiplicities are written in the last row.

Table 2.
|1} 1y1}1;, 11,1} 1-1}-1-1}-1|-1}-1|-1]-1
1|11} 1}-1}-1-1}-1 11,1} 1|-1]-1|-1]-1
gs /1| 1}-1}|-1} 1} 1-1}-1 1} 1-1}-1| 1] 1|-1]-1
g 1|1, 1|1, 11, 1}-1, 1|1, 1}-1)1}-1|1]-1
m|3| 322221122111} 1|00

2) The element g3 = ¢; - go. In this case four representations which send the elements
g1 and go to 1 are included in the desired representation with the multiplicity 3. Other
one-dimensional representations are included in it with the multiplicity 1.

4.1.8. The case u = 5,v = 10.

Let the generators g1, g2, g3, g4 correspond to 1®(22)n®(z). In this case there is one
more element corresponding to this form. We have three different cases.

1) This element is g19293. Let ® be such one-dimentional representation that ®(g;) =
—1,k = 1,2,3,4. Let us calculate its multiplicity in the desired representation. This
number may be equal to zero but it may not be fractional or negative. But we obtain:

1
= —(24—8-5) =—1.

This contradiction shows that this case is not permissible. Two other cases are permis-
sible.

2) The cusp form 7®(22)n®(z) correspond to the elements g1, go, g3, g4, g192. The table
of multiplicities is:

Table 3.
|11} 1} 11|11 1|-1|-1|-1}-1}-1]-1]-1]-1
g | 1] 1] 1 1|-1]-1|-1|-1| 1| 1|1 1|{-1]-1|-1|-1
gg |1 1}-1}{-1y1}1}-1}|-1 1} 1|-1|-1} 1] 1]-17]-1
g |1 |-1}] 1}|-1| 1|-1| 1|-1] 1|-1| 1|-1}] 1]-1] 1]-1
ml| 4| 3 212110121102 1]1|0




3) The cusp form 1®(22)n%(2) correspond to the elements g1, g2, g3, g4, g19293g4. The
table of multiplicities is:

Table 4.
|11y 1}1;, 11,1} 1-1}-1-1}-1|-1}-1|-1]-1
|11, 1}1}-1}-1-1}-1 1} 1,1} 1|-1}]-1|-1]-1
gs |1 1}-1}|-1} 1} 1-1}-1 1} 1-1}-1| 1] 1|-1]-1
g |11, 1|1, 1}{-1, 1|1 1|1 1}{-1|1}-1|1]-1
m|4| 2|22 2] 2 02220} 2,0]00

4.1.4. The case u=6,v =9.

This group is permissible only in two different cases.

1) The g1, g, g3, 94, 9192, g3gs correspond to the form 1'%(2z). The table of multiplic-
ities is:

Table 5.
g |11} 1|11} 1} 1| 1-1}-1|-1|-1}-1]-1]-17]-1
g |11} 1} 1(-1}(-1}-1|-1y 1} 1] 1| 1}-1]-1]-17]-1
gs |1 1}|-1|-1 1} 1}-1|-1 1} 1|-1|-1} 1] 1]|-17]-1
g |11} 11y 1-1|1}|-1}1}-1}1}-11-1] 1]-1
m|6| 0] 0] 0] O] 2 2101 21 2] 210 2] 2| 2

2) The elements g1, g2, 93, g4, 9192, 91929394 correspond to the cusp form 7'?(2z).
Table 6.

|11y 1}1;, 11,1} 1-1}-1-1}-1|-1}-1|-1]-1
1|11} 1}-1{-1-1}-1 11,1} 1|-1]-1|-1]-1
gs /1| 11|11} 11|11} 1-1}-1| 1] 1|-1]-1
g 1|1, 1}{-1, 1|1, 1|1 1|1 1}{-1|1}-1|1]-1
m|6] 000111} 3|1} 1]1} 3]0} 2] 2] 2

4.1.5. The case u="T,v = 8.

1) We consider the case when in the group there is such subgroup of the order 8 that
all its elements not equal to identity correspond to 1®(22)n8(2). This variant is suitable:
the irreducible representations identical on this subgroup are included in the desired
representation with the multiplicity 5, other 14 representations - with the multiplicity
1.

2) In this group there is a subgroup of the order 8 which contains 5 elements corre-
sponding to the cusp form 7%(22)n®(z). For example the group will be permissible in the
case when the elements ¢192, 9193, 9293, 9394, 919293, 93, g4 correspond to the cusp form

n8(22)n8(2) and other elements of order 2 correspond to n'?(22).
Table 7.



|1} 1,1}1, 11,1} 1-1}-1-1}-1|-1}-1|-1]-1
g |11, 1}1}-1|-1-1}-1 1} 1,1} 1-1]-1|-1]-1
gs 1| 1}-1|-1} 1} 1-1}-1 1} 1-1}|-1| 1] 1|-1]-1
g |1}|-1y1}{-1y1}{-1y1}-11}-1,1}{-11}-1|1]-1
m{(5| 31002011201} 1] 3] 1] 2] 2

In the subgroup < g1 > X < g2 > X < ¢192935 > there are exactly 3 elements
corresponding to 7%(22)n8(2); in the subgroup < g; > X < gy > X < g1go > there are 2
elements corresponding to this form; in the subgroup which consists of products of two
or four generators there are4 such elements.

We can also consider the second variant.

The elements g1, go, g3, 94, 9194, 9294, 9193, g1g2 correspond to the cusp form 7°(22)n®(2)
and other elements of the order 2 correspond to 1'?(2z).

Table 8.
|11} 1} 11|11 1|-1|-1|-1}-1}-1]-1]-1]-1
g |11} 1] 1|-1|-1|-1|-1| 11} 1} 1}-1]-1]-1]-1
g3 | 1] 1|-1|-1| 1| 1|-1|-1| 1| 1|-1|-1] 1] 1|-1}-1
gs |11} 1{-1y1(-1}1}|-1y1}-1| 1|-1} 1]-1] 17]-1
m|5]| 2 11211110 211]0] 12| 0] 2

3) In the group there is a subgroup F' of the order 8 which contains only one ele-
ment g; corresponding to 75(22)n%(z). Let the elements g», g3 do not belong to F' and
correspond to 7'2(2z). The group G is permissible only in the case when g; # g.g3. In
this case we may assume that the elements g1, g2, g3, g4 are the generators.

Table 9.

|11y 1}1;, 11,1} 1-1}-1-1}-1|-1}-1|-1]-1
|11, 1}1}-1}-1-1}-1 1} 1,1} 1|-1}]-1|-1]-1
gs |1 1}-1|-1} 1} 1-1}-1 1} 1-1}-1| 1] 1|-1]-1
g 1|1, 1}{-1, 1|1, 1|1 1|1 1}{-1|1}-1|1]-1
m|5| 1|1} 2| 1] 2 31001101} 1| 2

4.1.6. The case u=9,v = 6.
This group is permissible only in two different cases.
1) The elements gy, g2, g3, 91, 9192, gsgacorrespond to n'*(2z).

Table 10.
g |11} 1} 111} 1} 1-1}-1|-1|-1}-1]-1]-1]-1
g |11} 1} 1(-1(-1}-1}|-1y 1} 1] 1| 1}-1]-1]-17]-1
gs |1 1}|-1|-1 1} 1}-1|-1 1} 1|-1|-1} 1] 1]|-17]-1
gs |1 (-1} 1|-1 11} 1|-11}-1|] 1|-1} 1|-1] 17]-1
m|6| 0] 0] 0] O] 2 2101 2] 22,0 2| 2] 2

2) The elements g1, g2, g3, 9, 9192, 9192939 correspond to n'?(2z).
Table 11.



|1} 1,1}1, 11,1} 1-1}-1-1}-1|-1}-1|-1]-1
g |11, 1}1}-1|-1-1}-1 1} 1,1} 1-1]-1|-1]-1
gs 1| 1}-1|-1} 1} 1-1}-1 1} 1-1}|-1| 1] 1|-1]-1
g |1}|-1y1}{-1y1}{-1y1}-11}-1,1}{-11}-1|1]-1
m|{6| 000} 1} 1} 131|113 0|2| 2] 2

4.1.7. The case u=11,v = 4.
The group is permissible only in the case when all elements corresponding to n'%(2z)
are generators for G.

Table 12.
g |11} 1|11} 1} 1} 1-1}-1]-1|-1}-1]-1]-17]-1
g |11} 1| 1(-1(-1}-1|-1 1} 1| 1 1}-1]-1]-17]-1
gs |1 1|-1|-1 1} 1}-1|-1 1} 1|-1|-1} 1] 1]-17]-1
gs |1 -1} 1|-1 11} 1|1 1}-1|] 1|-1} 1]-1] 17]-1
m|7] 0] 0] 1] 1] 0 210111 2,0 2| 2] 3

4.1.8. The case u = 13,v = 2.

We may assume that among four generators the first two ¢; and g, correspond
to '2(2z). Then the identical representation is included in the desired one with the
multiplicity 8, irreducible representations which are not equal on the elements ¢g; and
go are included with the multiplicity 1, nonidentical representations which are equal
on the elements ¢g; and ¢gs to 1 are not included in the desired representation. Other
representations are included with the multiplicity 2.

4.1.9. The case u = 15,v = 0.

Then the identical representation is included in the desired one with the multiplicity
9, Other representations are included with the multiplicity 1.

4.2. The group Z; x Z, and multiplicative n—products.

Iy X Ly Z2< f>X<h>.

We consider all possible cases.

1) All elements of the order 2 correspond to 7'?(2z). All elements of the order 4
correspond to 7°(4z).

This case is not permissible because the multiplicity of the identical representation
my is fractional in this case.

2) The element f? corresponds to 7'2(2z), the elements h?, f?h% correspond to
1°(22)n°(2).

This case is not permissible because the multiplicity mge is fractional in this case.
Here ®(f) =i, ®(h) =i.

3) The elements f2 h? correspond to n'%(2z), the element f?h* corresponds to
1°(22)n°(2).

Let s elements correspond to n*(42)n*(2z), t elements correspond to n*(42)n?(22)n*(22).
The number 0 < ¢ < 4. We obtain

1

Hence, ¢ = 0 or t = 4. Both variants are permissible.
The case t = 0.

10



In this case 8 representations which send f2h? into 1 are included with the multi-
plicity 2, other irreducible representations are included with the multiplicity 1.

The case t = 4.

In this case the elements fh, f3h, fh3, f2h® correspond to n*(42)n?(22)n*(22).

Table 13.

flrjp1rp 11 iji| ifi|-1|-1|-1|-1|-i|-i]|-1]-i
hll|pi|-1|-i| 1| i|-1|-i| 1] i|-1|-i|1|i|-1]|-
m |31} 1|1(1|2 121 13| 1|12 1|2

4) All elements of the order 2 correspond to 7%(22)n8(z).
Let s elements correspond to n*(42)n*(2z2), t elements correspond to n*(42)n?(22)n*(22).
Yuciio 0 < ¢ < 12. We obtain

1
my = 16-(24+24+4t).
Hence, t can be equal to one of the numbers 0, 4,8, 12. All these variants are permissible.

The case t = 0.

In this case 4 representations which send the elements f and h into B 1 or -1 are
included in the desired representation with the multiplicity 3, other irreducible repre-
sentations are included with the multiplicity 1.

The case t = 4.

In this case we may assume that the elements f, f3, fh?, f2h? correspond to n*(42)n*(22)n*(22).

Table 14.

frrprp 1y 1) i i i) i|-1]-1 -1 |-1]-i|-i]|-|-
h{l|i|-1|-1|1|i|-1|-1| 1| i|-1|-1|1] i]-1]-i
m{4(1| 411|111 212} 1]1|1] 1|1

The case t = 8.
In this case we may assume that the elements f, f3, fh?, f2h? correspond to n*(42)n*(22).
Table 15.

frry1rp 11 i i i) i|-1-1 -1 |-1]-i|-]|-]|-
hll|pi|-1|-i| 1| i|-1|-i| 1] i|[-1 -1 i|-1|-
m|s5|1] 1|1 /1|1 11313111} 1|1

The case t = 12.
This variant is permissible. The table of multiplicities is:
Table 16.

frrprp 11 i i i i|-1]-1 -1 |-1]-i|-i]|-|-
h{l|i|-1|-1|1|i|-1|-1| 1| i|-1]|-1|1] i|-1]-i
m|6|1]2|1/1|1} 11212111} 1]|1

The groups Zy X Zy X Zy u Zg X Zy have been considered in the article [15].
4.3. The group Z; X Zy X Zy X Zy X Z3 and multiplicative n—products.
The group is permissible only in the case when v = 21, v = 10.

11



Let the elements g1, g2, g3, g4, g5 be the generators for the group G. This group is
permissible if the elements

g1, 92, 93, 94, 9192, 91929394, 919395, 919295, 939495, 919495

correspond to the cusp form n'%(2z).
The table of multiplicities is:

Table 17.
g |11} 1} 1y1}1}-1}|-1-1}-1|{-1|-1}-1]-1]-17]-1
g |1|-1|-1| 1(-1(-1} 1|11} 1] 1|-1}-1]-1]-17]-1
gs |1 1| 1|-1(-1}(-1} 1| 1|-1}-1|-1| 1} 1]-1]-17]-1
g4 |1 11| 1(-1}(-1} 1|-11}-1|-1|-1}-1] 1| 17}-1
gs |1 (-1} 1} 11}(-1} 1) 11} 1|-1|1}-1] 1]|-1]-1
m|6| 1] 1] 1 1111} 1} 21|11 1] 2

Other irreducible representations are not included in the desired representation.

The permissible representation can not be constructed for other vallues of numbers
u and v.

Let us show how to prove it for u = 1. Let g correspond to n°(22)n%(2). Let ®(g) =
—1. Then me = %

In other cases we can give the proofs by an analogous way.

4.4. Nonabelian groups of the order 32 and multiplicative n—products.

In the our examples we shall meet all nonabelian groups of the order 16 as subgroups
in groups of the order 32.

The groups Dy and Dg are permissible [10].

4.4.1. I'pynna Dy X Zy.

The genetic code of the group is:

<a,bc:at =0 =c*"=e, b tab= a3 ac = ca,bc = cb. >

All irreducible representations of the group are:

The permissible representation is a direct sum of all irreducible representations.
The elements a, a®, ac?, a®c? correspond to 7%(42)n*(2z), other elements of the order 4
correspond to 1%(4z), the element a? correspond to n®(22)n%(2), other elements of the
order 2 correspond to n'?(22).

This group contains a subgroup Dy X Z,.

4.2. The group Qg X Zy.

The genetic code of the group is:

12



<abc:at=b"=ct=e¢, b lab=a? a® = V?, ac = ca,bc = cb. >
The one-dimensional irreducible representations are:

Ty(a) = (—)F, T(b) = 1,k = T,8; Ty(a) = (—1)%, Tu(b) = -1,k = 5, T6;

Ti(c) = i* k =T1,16.

The two-dimensional irreducible representations are:

T,@:(é Q),mm;(_? é) k = 17,20;

—1

ﬂ@%:(é .),k:1zm.

—1

The permissible representation is a direct sum of all irreducible representations. The
elements a, a®, b, b3, ab, a®b, ac?, a>c?, bc?, b3c?, a*c?, abc?, a*bc? correspond to n*(42)n*(22),
other elements of the order 4 correspond to 7°%(4z), the element a® correspond to
n%(22)n%(2), other elements of the order 2 to n'%(2z).

This group contains a subgroup Qg X Zs.

4.4.8. The group < a,b:a® =¢e,b* =e,b7tab=a® > .

The one-dimensional irreducible representations are:

The two-dimensional irreducible representations are:

o) =Tl = (G 3 ) Tt =Tet@ = (G 7).

8

Ti3(a) = Tha(a) = < % ng ) ;o To(b) = Tha(b) = Tus(b) = < (1) (1) ) 7

Tio(b) = Tia(b) = Tua(h) = < e ) .

The permissible representation is the direct sum which contains the representations 773
and Ty4 with the multiplicity 2, other representations are included with the multiplicity
1. All elements of the order 8 correspond to 7%(8z)n?(4z), the elements a2, a%, a?0?, a®b?
correspond to n%(42)n*(2z), other elements of the order 4 correspond to 7°(4z), the ele-
ment a* correspond to 75(22)n%(2), other elements of the order 4 correspond to 1'%(2z).
This group contains the subgroup with the genetic code
<a,b:a®=e,b?>=e,blab=a®>.
4.4.4. The group < a,b:a®=¢e,b* =¢e,b7tab=a’ > .
All irreducible representations of the group are:




Tor(b) = Tho(b) = < (1) (1) )  Tus(b) = Too(b) = < _(1) é ) .

The permissible representation is a direct sum of all irreducible representations. The
correspodence between modular forms and elements of the group is as in 4.4.3.

This group contains the subgroup with the genetic code

<a,b:ad=e,b?>=e,btab = a® > of the order 16.

4.4.5. The group < a,b:a® =e,b* =e,b~lab=a" > .

All irreducible representations of the group are:

10) = Tule) = (§ 3 ). Talo)=Tu@ = (G ),

Ti3(a) = Tha(a) = ( (g ng ) ;o To(b) = Tha(b) = Tus(b) = < (1) (1) ) 7

Tio(b) = Tia(b) = Tua(h) = ( e ) .

The permissible representation is a direct sum which contains the representations 773
and 774 with the multiplicity 2, other representations are included with the multiplicity
1. The correspodence between modular forms and elements of the group is as in 4.4.3.

This group contains the subgroup with the genetic code < a,b : a® = e, =
e,b~ltab=a" > .

4.4.6. The group < 2,2,2 >9 XZs.

The genetic code of the group is

<a,b,e,d:a? =0 =c*=d*=e,abc = bca = cab, ad = da, bd = db, cd = dc > .

There are 20 conjugacy classes in the group:

1.{e}2.{abc}3.{acb}4.{(ba)*}5.{d}6.{a, bab}7.{b, aba}8.{c, aca}9.{ab, ba}10.{bc, cb}

11.{ac, ca}12.{abed}13.{acbd}14.{d(ba)*}15.{ad, babd}16.{bd, abad}17.{cd, acad}
18.{abd, bad}19.{bcd, cbd}20.{acd, cad}

The commutant of the group is G' =< (bc)? > .

G/G,gZQ X Z2 X Z2 X Z2.

This group has 16 one-dimensional irreducible representations (the values 1 and -1

alternate on the elements a,b, ¢, d.)
The two-dimensional irreducible representations:

i) = 1) =il = Ti0) = ( | g ) B0 =T =m0 =1t = (g 7 ),

T2(a):T1(b):T4(a):T3(b)=( 0 é)

Ti(d) = T3(d) = E, T3(d) = Ty(d) = —E.

The permissible representation is a direct sum of all irreducible representations. All
elements of the order 4 correspond to n*(4z)n*(22), the element (ab)? correspond to
n8(22)n8(2), other elements of the order 2 correspond to 1'?(2z).
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This group contains the subgroup with the genetic code
<a,b,c:a®>=0b*=c*=e,abc = bca = cab > .
4.4.7. The group G =< a,b,c:a* = b = * = (ab)? = (a®b)? = ¢, ca = ac,bc = cb >

There are 20 conjugacy classes in the group:
1.{e}2.{a®}3.{b*}4.{a®b*}5.{c}6.{b, a®b*}7.{b* a®b}8.{a, a’b*}9.{a* ab®}10.{ab, a*b’}

11.{ab*, a®’b}12.{a*c}13.{b?c}14.{a*b*c}15.{bc, a*b*c}16.{b’c, a*bc}17 {ac, a*b*c}
18.{a’c, ab®c}19.{abc, a*b*c}20.{ab’c, a*bc}
The commutant of the group is G/ =< a?b? > .
G/G, = Z2 X Z2 X Z4.
This group has 16 one-dimensional irreducible representations.
The two-dimensional irreducible representations:
— 0 01
Tl(a) == Tg(a) = 0 i s TQ(CI,) = T4(a) = Tl(b) = Tg(b) = 10 .

Ty(b) == Ty(b) = < b ) ,

—1
Ty(e) = ()° B,k = T4,

The permissible representation is a direct sum of all irreducible representations. All
elements of the order 4 correspond to 1°%(4z), all elements of the order 2 correspond to
n'?(22).

4.4.8. The group < a,b, : b* = a* = (ab)?,a® = e,b~tab = a", ac = ca,bc = cb > .

The group is the direct product of the group Z, and the group of the generalized
quaternions.

The commutant of the group G’ =< (a)? > .

G/G' = Zy X Zy X Zs.

This group has 8 one-dimensional irreducible representations.

The two-dimensional irreducible representations:

Tl(a):T4(a)=<C8 <§> TQ(a)=Ts(a>=<é f;)

o) =T = ( § 3 ). B0 =10 =10 =100 = (] ¢ ),

o) =100 § g ).

The permissible representation is a direct sum which contains the representations 75
and 75 with the multiplicity 2, other representations are included with the multiplicity
1. All elements of the order 8 correspond to n%(82)n?(4z), all elements of the order 4 to
n*(4z)n*(2z), the element a* correspond to n®(2z)n®(z), other elements of the order 2
correspond to dopme 7'?(2z).

This group contains the subgroup with the genetic code
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<a,b:b?=a'= (ab)?,a® =e,b7lab=a" > .
4.4.9. The group < a,b:a'® =¢e, > =e,blab=1a" > .
All irreducible representations of the group:

k 6
Tk(a):<<18 417:){3)7 k:1747 T5(CL):< 18 <11§>7

9 11
nw =% ) ma= (% )

7M®:<2 é),k:LT

Ti(a) = 1,Ti(b) = (=1)*. k = 8,9;

Ti(a) = —1,T(b) = (=1)*, k = 10, 11.

The permissible representation is a direct sum which contains the representations
Ty, T, and T5 with the multiplicity 2, other representations are included with the multi-
plicity 1. All elements of the order 16 correspond to 7(16z)n(8z2), all elements of the order
8 correspond to 1?(82)n*(4z), all elements of the order 4 to n*(42)n*(2z), the element
a® correspond to n°(22)n®(z), other elements of the order 2 correspond to 1'*(2z).

This group contains the subgroup with the genetic code

<ab:a®=e b =eblab=a" >.

4.4.10. The group < a,b:a'® =e,b®> =e, b lab=a’ > .

All irreducible representations of the group are:

Ty(a) = ¢, Ty(b) = 1,k = .5,

Ti(a) = ¢, T1,(b) = —1,k = 9, 16;

3
(5 8). mo-(5 )
5 7
o) = (% ) me= (% ).

7%@:(? é),k:lzm.

The permissible representation is a direct sum of all irreducible representations. The
correspondence between modular forms and elements of the group is as in 4.4.9.
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