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Introduction

The functions studied in this paper are a cross between elliptic

functions and modular forms in one variable. Specifically, we define a

Jacobi form on sr.z(z) to be a holomorphic function

¢: HxC—¢C ( H=ypper half-plane)

satisfying the two transformation equations

2wimcz?
(M W@ I o ersd)® e T (o, (@ Hes,@),
-2 mi 2
@) e, zerren) = o HROTTAR) L, (A wez?)
and having a Fourier expansion of the form
(3) #taz) = 3V ol o2¥i(nt+rz) )
n=0 r

r’gfmn

Here k and m are natural numbers, called the weight and index of ¢, respec

¢ eeme - e -

tively. Note that the function ¢(t,0) 1is an ordimiry modular form of weight

k , while for fixed t the function z - ¢(t,z) is a function of the type

normally used to embed the elliptic curve C€/ZT+L into a projective space.
if m=0 , then ¢ is independent of 2z and the definition reduces

to the usual notion of modular forms in one variable. We give three other

examples of situations where functions satisfying (1) - (3) arise classically:

{. Theta series. Let Q: ZN —»Z be a positive definite integer—

valued quadratic form and B the associated bilinear form. Then for any
vector xuezR the theta series

(%) exo(‘r,z) - szN e2:i(Q(x)r+B(x,x°)z)

is a Jacobi form (in general omn a congruence subgroup of SL, (Z)) of
weight N/2 and index Q(xo) ; the condition rzslmn in (3) arises from

the fact that the restriction of Q to Zx +Zx, is a positive definite



binary quadratic form. Such theta series (for N=1) were first studied

by Jacobi [10], whence our general name for functions satisfying (1) and (/

2. Fourier coefficients of Siegel modular forms. Let F(Z) bea

Siegel modular form of weight k and degree 2. Then we can write Z a
(: :.) with z€€, Tt,t'€eH (and Im(z)2< Im(t)Im(c')) , and the func
tion F 1is periodic in each variable t, z and <t'. Write its Fourier
expansion with respect to t' as

) F@ = ] ¢ (x,2) VT
m=0

then for each m the function ‘m is a Jacobi form of weight k
and index m, the condition lmmi:tz in (3) now coming from the fact that

F has a Fourier development of the form zc(T) e2u Tr(12)

where T
ranges over positive semi-definite symmetric 2x2 matrices. The expansior
(5) (and generalizations to other groups) was first studied by Piatetski-

Shapiro [26], who referred to it as the Fourier-Jacobi expansion of F

and to the coefficients ¢m as Jacobi functions, a word which we will
reserve for (meromorphic) quotients of Jacobi forms of the same weight
and index, in accordance with the usual terminology for modular forms and

functions.

3. The Weierstrass p-function. The function

(6) plt,z) = z 2.4 “;m((zm)‘z - u‘?)

is a meromorphic Jacobi form of weight 2 and index 0 ; we will see latft
how to express it as a quotient of holomorphic Jacobi forms (of index !

and weights 12 and 10).

Despite the importance of these examples, however, no systematic

theory of Jacobi forms along the lines of Hecke's theory of modular for®s
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seems to have been attempted previously*. The authors' interest in
constructing such a theory arose form their atiempts to understand and
extend Maass' beautiful work on the '"Saito~Kurokawa conjecture”. This
conjecture, formulated independently by Saito and by Kurokawa L15] on
the basis of numerical calculations of eigenvalues of Hecke operators
for the (full) Siegel modular group, asserted the existence of a "lifting"
from ordinary modular forms of weight 2k-2 (and level ome) to Siegel
modular formg of weight k (;nd also level one); in a more precise
version, it said that this lifting should land in a specific subspace of
the space of Siegel modular forms (the so-called Maass "Spezialschar",
deéined by certain identities among Pourier coefficients) and should in

fact be an isomorphism from “2kr2(sL2(2)) onto this space, mapping

Eigsenstein series to Eigenstein series, cusp forms to cusp forms, and
Hecke eigenforms to Hecke eigenforms. Most of this conjecture was proved
by Maass [21 » 22 23], another part by Andrianov [2 ], and the

remaining part by one of the authors [40] » It turns

out that the conjectured correspondence is the composition of three

isomorphisms

Maass "Spezialschar" < Mk(sPA(Z))
ll
Jacobi forms of weight k and index 1
n h
Kohnen's 'I'"-space (M) e Mk_*(l‘ou))
4
My (5L, (2))

*Shimura (31,32] has studied the same functions and also their higher-dimen-
sional generalizations. By multiplication by appropriate elementary factors
they become modular functions in <t and elliptic (resp. Abelian) functioms
in z , although non-analytic ones. Shimura used them for a new foundation
of complex multiplication of Abelian functions. Because of the different
aims Shimyra's work does not overlap with ours. We also mention the work of
R. Berndt [ 3,4 ], who studied the quotient field (field of Jacobi functions)
from both an algebraic~geometrical and arithmetical point of view. Here, too,
the overlap is slight since the field of Jacobi functions for SL,(Z) is
eagily determined (it is generated over € up to the modular invariant j(t)
and the Weierstrass p-function p(t,z)); Berndt's papers concern Jacobi
functions of higher level. Finally, the very recent paper of Feingold and
Frenkel (Math. Ann. 263, 1983) on Kac-Moody algebras uses functions equiva-
lent to our Jacobi forms, though with a very different motivation; here
there is some overlap of their results and our §9 (in particular, our
Theorem 9.2 seems to be equivalent to their Corollary 7.11).
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the first map associates to each F the function ¢1 defined by (5),
the second is given by

§ cta) Q2¥inT ) ) c(4n~r2) o 2™ (nT+rz)

nz0 .n20 r2sén
and the third is the Shimura correspondence [29,30] between modular
forms of integral and half-integral weight, as sharpened by Kohnen [11]
for the case of forms of level 1 .

One of the main purposes of this paper will be to explain

diagram (7) in more detail and to discuss the extent to which it generalizes
to Jacobi forms of higher index. This will be carried out in Chapters
I and 1I, in which other basic elements of the theory (Eisenstein series,
Hecke operators,...) are also developed. In Chapter III we will study
the bigraded ring of all Jacobi forms on SL,(Z). This is much more
complicated than the usual situation because, in contrast with the
classical isomorphism M*(SLZ(Z)) - G[E,‘,Bs] » the ring J*’* = kem Jk,m
( Jk,m = Jacobi forms of weight k and index m ) is not finiteiy
generated. Nevertheless, we will be able to obtain considerable informa-
tion about the structure of J*’ . In particular, we will find upper

*
and lower bounds for dim Jk o which agree for k sufficiently large

k]

(k2m), will prove that J*,n -?Jk,m is a free module of rank 2m

over the ring M (SL,(Z)) , and will describe explicit algorithms for

finding bases of J as a vector space over € and of J as a
k,m % ,m

module over H*(SLZ(Z)) . The dimension formula obtained has the form

' m
(8) dim %em " rZO dimM _, - N

for k even (and sufficiently large), where N(m) is given by
m rz
Nm) = 1} l——] ( [x] = smallest integer 2x ) -
r=0 lm

We will show that N(m) can be expressed in terms of class numbers of

imaginary quadratic fields and that (8) is equivalent to the formula



9 dim 0 = dim M3eY, (T @),

where Mgizz(ro(m))+ is the space of new forms of weight 2k-2 on

lb(m) which are invariant under the Atkin-Lehner (or Fricke) involutiom

£(t) - m—k*i r-2k+2 new

f(-1/mt) and Jk o 2 suitably defined space of
?

"new" Jacobi forms.

Chapter IV, which will be published as the second part of this
paper, goes more deeply into the Hecke theory of Jacobi forms. 1In
particular, it is shown with the aid of a trace formula that the equality
of dimensions (9) actually comes from an isomorphism of the corresponding
spaces as modules over the ring of Hecke operators.

Another topic which will be treated in a latéf paper (by
B.‘Gross, W. Kohnen and the second author) is the relationship of Jacobi
forms to Heegner points. These are specific points on the modular curvé
xo(no - H/Pb(mﬂ U{cuapa} (namely, those satisfying a quadratic equation
with leading coefficient divisible by m ). It turns out that for each
n and r with r2'<4nm one can define in a natural way a class
P(n,r) € Jac(xo(m))(Q) as a combination of Heegner points and cusps

and that the sum X

P(n,r) qn ;r is an element of Jac(xo(m))(Q) Gb.l
n,r

One final remark. Since this is the first paper on ;hé theory
of Jacobi forms, we have tried to give as elementary and understandable
an exposition as possible. This means in particular that we have always
preferred a more classical to a more modern approach (for instance,
Jacobi forms are defined by transformation equations in Hx= € rather
than as sections of line bundles over a surface or in terms of the
representation theory of Weil's metaplectic group), that we have often
given two proofs of the same result if the shorter one seemed to be too

uninformative or to depend too heavily on special properties of the

2,m
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full modular group, and that we have included a good many numerical
examples. Presumably the theory will be developed at a later time from

a more sophisticated point of view.

*

This work originated from a much shorter paper by the first author,
submitted for publication early in 1980. In this the Saito-Kurokawa
conjecture was proved for modular (Siegel and elliptic) forms on PO(N)
with arbitrary level N . However, the exact level of the forms in the

bottom of diagram (7) was left open. The procedure was about the same as

. ———— - —

here iﬁ 554-6: The second author persuaded the first to withdraw his
paper and undertake a joint study in a much btcégﬁf frame. Sections 2 and
8-10 are principally due to the second author, ;hile sections 1, 3~7 and 1!
are joint work.

The authors would 1like to thank G. van der Geer for his criti

reading of the manuscript.



Notations

We use N to denote the set of natural numbers, ']No for
N {0}. We use Knuth's notation |x] (rather than the usual [x])
for the greatest~integer function max {neZ | n$x} and similarly
[x] = min{neZ |n2x} = -|-x] . The symbol O denotes any square
number. By d||ln we mean d|n and (d,%)-l . In sums of the

ad=%

form } or 2 it is understood that the summation is over
din
positive divisors only. The function } d° (deN) 1is denoted cv(n) .
din

. .
2®ix

The symbol e(x) denotes e , while e™(x) and em(x)

(meN) denote e(mx) and e(x/m) , respectively. In e(x) and
e™(x) , X 1s a complex variable, but in em(x) it is to be taken in

Z/mZ ; thus em(ab-1) means em(n) with bn=a (modm) , and not
e(a/bm) .

We use M and I; for the i:ranspose of a matrix and for the

nxn identity matrix, respectively. The symbol [a,b,c] denotes the
quadratic form ax2+bxy*cy2 .

H denotes the upper half-plane {recC| Im(t)>0} . The letters
T and z will always be reserved for variables in H and € ,
respectively, with T = utiv, 2z = xtiy, q=e(t) , ¢ = e(z) . The
group SLZ(Z) ) will often be denoted by 1‘1 and the space of modular
(resp. cusp) forms of weight k on l'l by M (resp. Sk) . The
normalized Eisenstein series Bk."'k (k24 even) are defined in the

usual way; in particular one has M, =M - C[EA,BG] vith
- n
Bl; '+240203(n)q , Eﬁ - 1-5°4Z°S(n) qn

The symbol " :=" means that the expression on the right is
the definition of that on the left.



Chapter I. Basic Properties

§ 1. Jacobi forms and the Jacobi group

The definition of Jacobi forms for the full modular
group I“ = SLZ(Z) was already given in the introduction. In order
to treat subgroups T eT 1 wvith more than one cusp, we have to
rewrite the definition in terms of an action of the groups SLZ(Z’)
and 22 on functions ¢: H x € + €. This action, analogous to the

action

(1) ELM (D) = cre)™ £EED) e Der))

“in the usual theory of modular forms, will be important for several
later constructions (Eisenstein series, Hecke operators). We fix

integers k and m and define

2
a by . -k m,~c2z at+b k]
) “lk,n [c d] )(‘F,z) = (ct+d) e (c‘nd) ¢ (c't+d , c‘r+d)

ab
(C P&t
and

(3) “'mD u])(t,2) = e®(22r + 222) ¢(t,z + At + y)
(Gwezd ,

2ximx

where e"(x) = e (see "Notations"). Thus the two basic trans-

formation laws of Jacobi forms can be written

2
¢|k’mu- ¢  (Mer), ¢/ x=4¢ (xe2),

where we have dropped the square brackets around M or X to lighten

the notation. One easily checks the relations

(ﬂk,mu) lk,mn' - "k,m(m')' (¢|EX) I-X' - ’lm(x + X",
(4)

Ol ol 00 = D] M Muar, Xx'e ) .



They show that (2) and (3) jointly
define an action of the semi-direct product I": 1= I'1 [ 4 22

(= set of products (M,X) with MeTl , Xe 22 and group law

1‘
(M,X)(M',X') = (MM', XM' + X') ; notice that we are writing our
vectors 43 row vectors, S0 I" acts on the right), the (full)

Jacobi group. We will discuss this action in more detail at the end

of this section.

We can now give the general definition of Jacobi forms.

Definition. A Jacobi form of weight k and

index m (k,m«N) on a subgroup T < I‘1 of finite index is a

holomofphic function ¢: Hx¢€¢ -+ ¢ satisfying
i ¢l M=¢ (MeD
i) o x =¢ e |
iii) for each M erl 1’ dk’mu- has a Fourier development of the
form Zc(n.r)qncr (q = e(7),2 = e(z)) with c(n,r) = 0 unless
n& tzllm . If ¢ satisfies the stronger condition c(n,r) # 0 -yn>t2/4m,
it is called a cusp form.

The vector space of all such functions ¢ is

denoted Jk’él') s If T = Ty we write simply Jk,,n for ka(l'1).

Remarks: Ve could also define Jacobi forms with character, Jk él‘ X ,
by inserting a factor x(M) in i) in the usual way. Also, we' could
replace 22 by some other lattice invariant under I (e.g. by imposing
congruence conditions modulo N # T = I'(N) );if we did this, then the
exponents n and r in iii) would in general be rational numbers
but we would still require 4mm 2 rz as the condition of holomorphy
at the cunpn-“; It would therefore be more proper to refer

to functions satisfying i) - iii) as Jacobi forms on the Jacobi



group rla T o 22 (rather than on T). Bowéver, we will not worry
about this since most of the time we will be concerned only with

the full Jacobi group.

Our first main result is

Theorem 1.1. The space Jkp(r) is finite~dimensional.

This will follow from two other results, both of independent

interest : .

Theorem 1.2. Let ¢ be a Jacobi form of index m . Then for

fixed Tt € H , the function z ~ ¢(1,2) , if not identically zero, has

exactly 2m zeros (counting multiplicity) in_any fundamental domain for

the action of the lattice Zt +Z om €.

Proof: It follows easily from the transformation law ii) that

¢ _(t,2)
! z = = -a—¢ = 3 C/Z«t
21i§ #(t,z) dz = 2m (¢z 32 ° F = fundamental domain for

(the expression -2-:—{ %‘ is invariant under z + z + 1 and changes
by 2m when one replaces z by z +t) , and this is equivalent to the
statement of the theorem. Notice that the same proof works for ¢ mero~
morphic (with "number of zeros" replaced by "number of zeros minus number
of poles") and any meZ. A consequencé is that there aré no holomorphic

Jacobi forms of negative index, and that a holomorphic Jacobi form of index

is independent.-of z (and hence simply an ordinary modular form of weight ¥

in T1).

Theorem 1.3.. Let ¢. .be a Jacobi form on T' of weight k and index m

snd A,u rational. numbers. Theam. the function, ,h f(t) = em(kzr) ¢(t,At # W

is_a modular form (of weight k and on some subgroup of T, of finite

index depending only on T and on A,u).
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For A=pu= 0 it is clear that t -+ ¢(t,0) is a modular
form of weight k on T. We will prove the general case later on in
this section, when we have developed the formalism of the action of the
Jacobi group further. Note that the Fourier development of £(71)
at infinity is

2 c(n,r) e((mlz;rhn)r) .

n,l‘
so that the conditions n3 0, rzs 4mn in the definition of Jacobi forms

are exactly what is required to ensure the holomorphicity of f at =
in the usual sense.

To deduce 1.1, we pick any 2m pairs of rational numbers
(Ai,ui)cqz with (Ai,ui) #(Aj,uj) (mod 22) for i # j. Then the functions
fi(t) - e“'(xizr) ¢(r,xit + "i) lie in Mk(l'i) for some subgroups
I, of T, and the map ¢ -’{fi}i is injective by Theorem 1.2.
Thereforel dim Jk,m(r) < i.Zdim Hk(f']." ) ; this proves Theorem 1.1 and also

shows that J, (M) is 0 for k<0 unless k=m=0, in which case it

reduces to the constants.
To prove Theorem 1.3, we would like to apply >(3)
to (A,u) € Qz . However, we find that formula (3) no

longer defines a group action if we allow non-integral A and u , since

Gl DD w2 =
- e"(x'z-; + 2\'z. + Azr + 2A(z+A't+u"))  $(t,z+d"Tru' +Az+n)
= eQap) (@ (A’ wru'D(x,2)
and e(2mr'uy) will not in general be equal to 1 . Similarly, the third
equation of (4) breaks down if X is not in 22 . Hex;ce if we want to

extend our actions to SLZ(Q) (or SI.Z(R)) and Qz (or Rz), we must

wodify the definition of the group action.
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The verification of the third equation in (4) depends

on the two elementary identities

z . awmb AT,
ct4d “crvd ¥ ct+d  °?
2
A Tu)
2 at+p N 1 cz 2 c(z+ 1 1
Mot T ema A N Az - Ay,

where (A' uI) = (A u)(: :). Thus to make this equation hold for arbitrary

M= (: :)‘SLZG) and X = Qu)caz we should replace (3) by

(5) (4] n[x s (1,2) := (A 2r+22z+2p) ¢(1,z+AT+y)

(2 per?)

this is compatible with (3) because e"(\u) = 1 for ALuel .

Unfortunately, (5) still does not define a group action; we now find

6) (ﬂmx).lmx' = " (Au'-1'"p) ¢|m(X+X') (X=Q ), X=X ,u')tnz)

To absorb the extra factor, we must introduce a scalar action of the

group R by

(¢)) (¢|m[=])(t,z) = e(mx) #(t,2) (x&R)
_ and then make a central extension of Bz by this group R , i.e. replace

Bz by the Heisenberg group

g = ([Aw,x] | Ower? ,cem),

[ WLkl [(F 1) k] = [(a" wen®), wex'+hu'=2'y].



_12-

(This group is isomorphic to the group of upper triangular unipotent

3 x3 mpatrices via

[(A w,k]

o
-
-
.
L

o
o
-—

The subgroup (‘h tm {[(0 0) ,oc], xeR} 1is the center of HR and
HR/CR o Rz . We can now combine (5) and (7) into an action of

HR l;y set:cing.
(¢|[(l u) ,K])(‘l’,z) = em(kzt-o-uzﬂuﬂ:) ¢(t,z+AT+y) ,

and this now is a group action because the extra factor
e®(A'u-Ap') in (6) is compensated by the twisted group law in HR .
;,u‘.‘) and the determinant

is preserved by SL, , the group SL,(R) acts on on the right by
2 2

Because this twist involves Apu'=A'uy = det(

2

(.M = [04,c]  (ReR, ceR, MesL,@R));

the above calculations then show that all three identities (4) remain
true if we now take M,M'e SLZ(R) and x,x'eux and hence that equations
(2), (5) and (7) together define an action of the semidirect product
SLzm)u BR .

In the situation of usual modular forms, we write H as
G/K where G = SLZG) contains I as a discrete subgroup with Vol(M&)
finite and K = S0(2) is a meximal compact subgroup of G . Here we would
like to do the same. However, the group SLZ(R) x HR contains
PJ = Ix 2’2 with infinite covolume (because of the extra R in HB ) and

its quotient by the maximal compact subgroup S0(2) is HxE€xR rather
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than Hx€ . To correct this, we observe that the subgroup 2¢R
acts trivially in (7) , so that (2),(5) and (7) actually define

an action of the quotient group

I .. '
6" := SL,0R) & H/C, .

Here it does not matter on which side of th we urite c2 , 8ince C

is central in H ; the quotient Bn/(:z is a central extension of Rz

by S'={z€€| Jg| =1} (gz=e(x)) and will also be denoted BZ-S' .

Now I° is a discrete subgroup of G with Vol(l"\c’)< = , and if wve

choose the maximal compact subgroup

J

K’ := soc2) x s

J
< ¢ = sL,® x(@®-s!)
then GJ/ l(J can be identified naturally with B x € via

ab, . : J ai+h  Aiey
(@ owele~ 5. 39 -

The above discussion now gives

Theorem 1.4. Let G> be the set of triples [M,X,c]

(MesL, ®), XeB?, [ e € |z|=1). Then ¥ _is a group via

(M,X,c] (M',x",2'] = [, XM'ex" ,;z'e"(det(%:))]

and the formula

@ | (@ 2.0w.den

& B c(zﬂrw)z 2 aT+h  ztAtty,,

m
g (ct+d) prre mndhg ACT+22z+An) ‘(c'r w4’ ored

defines an action of GJ on {¢ : Hx€C +C} . The functions ¢ satisfying.

the transformation laws i) and i.i) of Jacobi forms
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are precisely those invariant with respect

. J
to this action under the discrete subgroup ' = ez’ of G,

and the gpace of such ¢ can be identified via

F(g) := (¢|g)(i,0)

J

with the set of functions F : G° -+ € left invariant under I‘J and

transforming on the right by the representation

cos @ sin © m ikO.
FGg* [(C33h0 cns o) »(0 0,5] ) = ¢"e™F

(g)

J
of the maximal compact subgroup KJ = S0(2) x s of G .

Thus the two integers k and m in the definition of Jacobi
forms appear, as che'y should;as the parameters for the irreducible (and here
one-dimensional) representations of a maximal compact subgroup of GJ .

- As an application of all this formalism, we now give the
proof of 1.3. The function f£(r) in that theorem is up f:o a constant
(namely e™(ip)) equal to ¢X(r) := (¢]X)(1,0) , where X = (A u)ell2
and ¢|X is defined by (5) (from now on we often omit the indices

k,n' on the sign | ). For X' = (A' u‘)czz we have
byegr (D) = € O0'2"0) ¥y (1)

by (6) , so ¢ depends up to a scalar factor only on X (mod 22) and

2

itself depends only on X (mod N2°) if X & N 'Z* . For

¥
M= (: :)el‘ we have
-k at+b
(ct+d) = 4 (Cg) = (¢|x|M) (x,0)
= (/M| (xM)) (7,0)
= (¢| (X)) (x,0)

- ¢m(1) ’



80 ¢x behaves like a modular form with respect to the congruence

subgroup
2 X
Mer| xMsM (mod 27) , m-det(y, )e2}

of T (this group can be written explicitly
(P - 2 2
(c d)c Tl (a=1)A+cu, bA+(d~1u, mlcu“+(d-a) Au~-br“)e 2

2
and hence contains TI'mn l‘(-?r?m) if NX e 22). Finally, if M is any

element of I‘1 then

(4g] W (7) = (s|u|R0) (,0)
- e“(xfnx’u')(¢|u)(x,xlr+u')
where (A, ) = XM , and since ¢|M has a Fourier development containing

qn:r only for lonn-ktz » this contains only'non-ncgativo powers of

e(t) by the same calculation as given for M~Id after the statement

of 1.3.

We end with one other simple, but basic, property of Jacobi

forms.

Theorem 1.5. The Jacobi forms form a bigraded ring.

Proof: That the product of two Jacobi forms 01 and ¢, of
weight k, and kz and index m, and B, , respectively, transforms

like a Jacobi form of weight k=k +k2 and index n=no,m, is clear;

1
we have to check the conditiom at infinity. One way to see this is to use
the converse of Theorem 1.3, i.e. to observe that the conditions at infinity
for a Jacobi form ¢(t,z) of index m is equivalent to the condition

that f£(t) = c‘(xzr)o(x-c-m) be holomorphic at « (in the usual sense)

for all A, u € @ ; this condition is clearly satisfied for ¢(t,2) =

Q‘(t,z)oz(t.:) with f£(t) = ft(r)fz('r) . A more dir::t proof is to write

L
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the (n,r)-Fourier coefficient of ¢ as

c¢(n,r) = Y c1(n1,r') cz(nz.rz) ,
n;+n,=n
r,+r,=r
where the ¢, are the Fourier coefficients of 2 (the sum is finite

since n, sn, ri s 4nimi) and deduce the inequality r2 S &nm from

the identity

2 2 2
_(r,+r,)? . T 5, (m,r,-m,r )
i e Y v =z * (@) e Gmag)

This identity also shows that (as for modular forms) the product ¢1¢q
rs

is a cusp form whenever either ¢I or ¢2 is one but that (unlike the
situation for modular forms) ¢1¢2 can be a cusp form even if neither 9
nor ¢2 1s.

The ring J, ., = @ Jk o of Jacobi forms will be the object cf
?
N

study of Chapter III.
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§ 2. Eisenstein series and cusp forms

As in the usual theory of modular forms, we will obtain our
first examples of Jacobi forms by constructing Eisenstein series.

In the modular case one sets (for k>2)

Ek('r) - Z i'k = ';- Z (et*d)-k ,

YET\T, c,dezZ
(c,d)=1
vhere T = {t(:) ?)In‘Z} is the subgroup of I‘1 of elements

Y with 1|ky = {1 , where 1| denotes the constant function. Similarly,

here we define

(1) (t,2) := - il v
Bk:m Y‘ri\r': k,l

where

r - {Ycl‘fl 1ly=1}

= { [t.(:) ?), (0 u)] | n,ne2}.
Explicitly, this is
' 2
1 2 , Z <k mg 2 at+b z__ ez
(2) ak,nx(‘""') 2 c,de2 re2 (ct+d) € (A ct+d + 2 ct+d T
(c,d)=1
where a,b are chosen so that (: :) ¢P1 . As in the case of modular

forms, the series converges absolutely for k24 ; if 1is zero if k

is odd (replace c¢,d by =-c, ~d). The invariance of Ek,m under

l“J is clear from the definition and the absolute convergence. To check
the cusp condition, and in order to have an explicit example of a form
in Jk,m » We must calculate the Fourier development of Ek,m , which we

now proceed to do.
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As with Ek » Wwe split the sum over ¢ , d into two parts,
according as ¢ is O or not. If c=0 , then d=t1 ; these terms

give a contribution

(3) Z em(lzt + 2)z) = Z. qu chA
AeZ AeZ

(q = e21l’1‘l’ , &= eZ'nz) . This is a linear combination of qncr with
4nm = 1:2 and corresponds to the constant term of the usual Eisenstein

series. If ¢ # 0 , we can assume c¢>0 (since k is even'); using the

identity
2 2 2
2 at+b z_ _ cz - - c(z=A/c) al
A ct+d +2 ct+d cT+d ct+d * c (c$0)

we can write these terms as

2 2 2

-k Z di-k m, (z=A/¢) a

c Z (rt +2) (- + ) .

c-zl G fa’'’Y ¢ T+d/c c
(d,c)=1

Note that d — d+¢ and A - A+c correspond to z -+ z+1 and

T = t+1 , so this part equals

) 2. ™ é:. 2. ecma P @+ 4, 22
c=1 d (mod ¢) 2 (mod c) »> e ¢

(d,c)=1
with e. as in "Notations" and
2
’ P, q¢Z
the function F is periodic in Tt and z , so (4) makes sense.

k,m

Now the usual Poisson summation formula gives

e - 3 v
»

n, reX
with

Y(n,r) = j. T-ke(-n") j e(-nz% -rz) dz dt
Im(‘c)-cl In&)-cz

(c,>0, C, arbitrary). The inner integral is standard and equals
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1
(/2im)? e(rzt/lm). Hence
y
7 ri-4m

v(n,r) = J- % @/2im) e(=7=—1) dr
Iatde G

0 - _ if rz‘a‘lmn

akm‘-k(lsnn-rz)k-ut if ri<éom

with
. - -yk/2 /2
%2 F (k=)

(if rzz 4um, we can deform the paﬁh of 'inﬁegratioh to +ise, so y=0; if

1.'2 24nm we deform it to a path from -i® to -iee circling O once in 2

clockwise direction and obtain a standard integral representation of 1/T(

Substituting the Fourier development of P a into (4) gives the expressi-
]

Z .k,ll(n’r) qn Cr

n,reZ
4om> r®

with
oo

3
k-
(5) e ln(n.r) -—:k_-‘ (lmur-rz) 2z Zc'k Z e (md"xz-rxmd).
’ m c=1 A,d(mod ¢) ©

(d,c)=1

(for d-1 , see "Notations"). To calculate this, we first replace A by

dA in the inner double sum (since (d,c)=1 , this simply permutes the
summands) ;- then the summand becomes ec(dQ(i\)) ‘with Q(A) := nlz'ﬂ:km .
We now use the well~known identity

S eam - 2 n s,

d(mod c) © a|(c,N)
(d,c)=1

where u is the MSbius function (so-called Ramanujan sum; ses

Hardy-Wright or most other number theory texts); them the inner double
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sum in (5) becomes

ZadHe D 1.
ajlc A(mod ¢)
Q(1) 30(mod a)

Now the condition Q(A)s0(mod a) depends only on 2 (mod a), so the inmer

sum is % times Na(Q) , where
N_(Q) := #{)(mod a)| Q(A) 2 0(mod a)} .

Hence the triple sum in (5) simplifies to

ow _ - * N (Q
2 ' 7‘_'. W) N (@ = gk-1) 1> =
ajc

c=1 a=1 ak.‘

(the last equality follows by writing c=ab and using

Ju(v) b® - C(s)-i). To calculate the Dirichlet series, we first
calculate Na(Q) for (a,m)=1 ; this will suffice completely if w=1
and (using the obvious multiplicativity of N8 ) will give the Dirichlet
series up to a finite Euler product involving the prime divisors of m

in general. If (a,m)=1 , then
N (Q) = #{A(mod a)| m2+rl4~n30(mod a)}
= #{A(mod a)| (me\-m:')2 = rz-lom(mod 4a)}
- N_(r?-4m) ,

where

N (D) := #{x(mod 2a) | x> 2 D (mod 4a)} .

It is a classical fact that

-8 _ z(s)
(6) Z Na(D)a - 029) LD(S) .

as=1

if D=1 or if D is the discriminant of a real quadratic field, where
LD(s) - L(l,(%)) is the Dirichlet .L-series associated to D . It was

shown in [39,p.130] that the same formula holds for all DEZ if Ly(s) is
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defined by
& if DE0,1 (mod 4)
Ip(s) = 'ﬁ £(2s-1) if D=0 ,
LLDo(s).d%f u(d)‘(%)d?sat-zs(f/d) if D=0,1 (mod 4)

where in the last line D has been written as Dofz with £ €N and
D0 = discriminant of Q(/D) (the finite sum i_.n this case can also be

written as a finite Buler product over the prime divisors



- 20 -

of £) . Inserting (6) into the preceding equations, we find
that we have proved

3
2

k—
ek,‘(n,r) = a.kll)l l:(2k-2)-1 LD(k-l)

if m=1 and D-r2-4n<0 , while for m arbitrary there is a similar
formula (now with D-rz-lomn) but multiplied by an Euler factor invol-
ving the prime divisors of m . Using the functional equations of

LD(s) and 7(s) we can rewrite this formula in the simpler .fom
ek’i(n.r) = L (2-k)/3(3-2k) ,

where now all wnumerical factors have disappeared. The values LD(Z-k)
(D<0, k even) are well-known to the rational and non-zero; they have
been studied extensively by Cohen [ 6 ] , who denoted them

H(k-1,|D|) . Summarizing, we have proved

Theorem 2.1. The series F.k o (k24 even) converges and defines a
)

non~zero element of Jk,m' The Fourier development of Ek,m is given

by
(t,z) = (n,r) qn * ,
B n’Zm °k,m

4nm2x?
where e, (n,r) for 4nmer? equals 1 if rsO0(mod 2m) and O
14

otherwise, while for lmm>r2, we have

2
H(k-1, 4n-r")
e, (8 = 2 (3-2%)

(H(k=1,N) = L_N(Z-k) s Cohen's function) and

2
e pln,r) = a(k.kal-‘;sr L. TT (elementary p-tactor) .
? p'n

In particular, ek'm(n,r) €Q .
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One can in fact complete the calculation of L in general

with little extra work; the result for m square-free is

) (a,r) = = R a7V g(g-1, AmEI)
®,m'® Z-20 d|G,r.m) P T2 .

However, we do not bother to give the calculation since this result
will follow from the properties of Hecke~type operators introduced

in § 4 (Theorem 4.3).

For m=1 and the first few values of k we find, using the

tables of H(k-1,N) given in [ 6 ] , the expansions

B, , = 1+ (z%+565+126+560 '+t 2)q + (12627
1 4
+ 576¢+756+5765 ' +126¢ 2 q” + (565°+7565>
+ 15120+2072+15128 147568 2+568 )q° + ... ,

2

By, = 1+ (57-882-330-887 't 2)q + (-330¢

-4224;—7524-422“-'—330C-2)q2 * eee

1

By =1+ (22+562+366+567 '+ 2)q> + ...
»

We will give tables of the coefficients of ‘these and other Jacobi

forms of index 1 at the end of § 3.

In the formula for the Fourier coefficients of Bk 10 it is
]
striking that e 1(n,r) depends only on lm-tz . We now slww that this
1

is true for any Jacobi form of index 1 ; more gemerally, we have

Theorem 2.2. Let ¢ be a Jacobi form of index m with Fourier development

Zc(n,r)qn;r . Then c¢(n,r) depends only on lmn-rz‘” and on r(mod 2m).

If x is.ci(nn and. m = 1 of m is prime, then c(n,r) depends only

on lmn-rz. If m=1 and k in odd, then ¢ is identically zero.
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Proof. This is essentially a restatement of the second transformation

law of Jacobi forms: we have

2c(n,r)q tt = ¢(t,2) = em(A2t+2Az) $(T,z+AT+Y)

2
A E* Dea,r) tgghT
Z n+r)‘+m)u2 r+2m\
=2,c(n,r) q 4

and hence

c(n,r) = c(n+rA+mA2 , T+2mA) ,

.

i.e. c¢{(n,r) = c(n',r') whenever r'sr(mod 2m) and 4n'm—r'2 - 4mrr2 "
as stated in the theorem. If k 1is even, then we also have c(n,-r) = c(n,r)
(because applying the first transformation law of Jacobi forms to

-1261'1 gives ¢(t,~2z) = (--1)k ¢$(t,2z) ), so if m is 1 or a prime

then

Tlm'm-r'z = lmm-rz = r'm r(mod 2m) =» c(n,r) = c(n',r") .

Finally, if m=1 and k is odd then ¢»0 because c(n,-r) = -c(n,r)

but 4om --»(--r)2 = lmm-tz and -r sy (mod 2m) in this case.

Remark: Theorem 2.2 is the basis of the relationship between Jacobi

forms and modular forms of half-integral weight (cf. § 5).

In the definition of Jacobi cusp forms, there were apparently
infinitely many conditions to check, namely c(n,r)=0 for all n , r
with lmm-rz . Theorem 2.2 tells us in particular that we in fact need
only check this for a set of representatives of r(mod 2m). The nuwber of
: tesid;xe classes r(mod 2m) with rzl O(mod 4m) is b , where b2 is
the largest square dividing uw (namely if m-ab2 with a square—free

then lmlrz &9 2ab|r ). Thus for ¢ & Jk,m ve have
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¢ a cusp form &5 c(asz,Zabs)-O for s=0,1,.,..,b-1 ;

in particular, the codimensiomn of JEUEP in 5 is at most b .
k,m k’m

Using c(n,~r) = (-1)k c(n,r) we see that in fact it suffices
to check the condition c(asz,Zabs)-rO for 3-0,1,...,[%_1 if k

is even and s~1,2,...,[%lj if k is odd. Hence we have

. . cusp . .
Theorem 2.3. The codimension of Jk,n in Jk,m is at most

l%jﬂ if k is even (resp. [P%l] if k is odd) , where b is

the largest integer such that b2|m.

On the other hand, if k>2 them for each integer s we can
construct an Eisenstein series

2 .
(8) E, _ (1,2) := Z. g2 23bs|
k,m,s T Jd
ver \l

(m"tlb2 as above), where the summation is the same as in the definition
of B " E ,m,0 - Then repeating the beginning of the proof of

Theorem 2.1 we find that

2
1 r/ém .r_ . . \kp-r
(9) Ek,n,s'fgz‘ q &+ + ... ,
r » 2abs(mod 2m)

where "..." (the contribution from all terms in the sum with c#0 )
has a Fourier development consisting only of terms qn‘r with
4mrr2>0 . It is them clear that B os depends only on s(mod b),
sily
k . .
n(= th
that Ek,m,-s (-1) Bk,m,s' and that the series Ek,m,s wi

0s sslz’- (k even) or O0<s <% (k-odd) are linearly independent.

Comparing this with 2.3, we see that the bound giventhere is sharp and

that we have proved:
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- 1Cusp is cusp .
Theorem 2.4. If k>2 , then Jk‘,m Jk,m D Ji,m , where Jk,m is

Eis
k,m k,m

. . . . b
functions Ek,m,s . The functions Bk,m,s with 0Ss sf (k even) or

b ) . is
0<s <-2- (k odd) ‘form a basis of Ji,m .

the space of cusp forms in J and J the space spanned by the

We will not give the entire calculation of the Fourier develop-

ments of the functions Ek a.s here, since it is tedious and we do not
gty
need the result. However, we make some remarks. In §4 we will introduce
certain operators q‘ and Yi which map Jacobi forms to Jacobi forms
of higher index. These will act in a simple way on Fourier developments
and will send Eisenstein series to Eigenstein series. Hence certain
combinations of the s ("old forms") have Fourier coefficients
which can be given in a’simple way in terms of the Fourier coefficients
of Eisenstein series of lower index (compare equation (7), wvhere the
coefficients of Ek are simple linear combinations of those of Ek ),
’m ’1

and we need only consider the remaining, "new," forms. A convenient

basis for these is the set of forms

(10) El(‘x) 1= Z. x(s) Ek,m,s (m=£2)

o s (wod £)
of index fz , where X is a primitive Dirichlet character (mod £) with
)((--1)-'(--1)k . Then a calculation analogous to the proof of Theorem 2.1

69

for the case m=1 shows that the coefficient of qncr in Ek B,X
| 2t

is given by
(1) O (a,r) = elx) x(r) L (2-k, T)
*%,m "™ r2-4nm » X

if (r,f) =1, where LD(s,x) is the convolution of LD(s) and L(s,x)
and e(x) a simple constant (essentially a quotient of Gauss sums attached
to x and x2 divided by L(3-2k, x-z) ); in particular, the coefficients
are algebraic (in Q(X) ) and non-zero. If (r,f)>1, then e‘(‘ﬁ(n,i‘) is
given by a formula like (11) with the right-hand side multiplied by a

finite Buler product extending over the common prime factors of r and f.
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If k=2 , then the Eisenstein series fail to converge; however,
by the same type of methods as are used for ordinary modular forms

("Hecke' ergence trick” o . . . .
one can show that for X non-principal there is an Eisaenstein series

E el

2,m,x having a Fourier development given by the same formula
t Ak

2,m .
.8in
as for k>2 . Since yx must be even (x(-1) = (-1)k) and(there exists

an even non-principal character (mod b) only if b=5 or b27 , such

series exist only for m divisible by 25, 49, 64 ... .

There is one more topic from the theory of cusp forms in the
classical case which we want to generalize, namely the characterization

of cusp forms in terms of the Petersson scalar product. We write
T = u+iv (v>0) , z -.xﬂ’.y
and define a volume element dV on Hx€ by

(12) aVi= v 3 dx dy du dv .

If is easily checked that this is invariant under the action of GJ

on HxC defined in §1 and is the unique C{invariant measure up to &

constant. {(The form v.z'du dv is the usual SLZ(R)-invarian: volume form
orn H ; the form v.' dxdy 1is the translation-invariant volume form on

€ , normalized so that the fibre €/Zt+Z has volume 1 .) If ¢ and
v transform like Jacobi forms of weight k and index m, then

the expression

2
vk e 4wy /v ¢(t,2) tzt,zs
is easily checked to be invariant under l"J s+ 80 we can define the
Petersson scalar product of ¢ and ¢ by

2
(13) (9,9) := J I vk .‘“ﬂY Iv «t,z) vit,z) d4v .
r \ ix¢ .
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Then we have

Theorem 2.5. The scalar product (13) is well-defined and finite for

Y € J@ sdat least one of ¢ and ¢ a cusp form. It is positive-

definite on J:::p and the orthogonal complement of Jeusp

¥,m with

. Eis
respect to ( , ) is Jk,m .

This will follow from the results in §5 concerning the connection

between Jacobi forms and modular forms of half-integral weight.



§ 3. Taylor expansions of Jacobi forms

-

The restriction of a Jacobi form ¢(t,z) to 2z=0 gives a
modular form of the same weight. In §1 we proved an analogous statement
for the restriction to z = Ar+y (A,u rational) and used it to show
that Jk AI‘) is finite~-dimensional. Ano:hér and even more useful way
to get modular forms is to consider the Taylor development of ¢ around
z=0 ; by forming certain linear combinations of the coefficients ome
obtains a series of modular forms Dv¢_ . (Dv for "L development
coefficient) with D,¢= ¢(1,0) and D”¢ a modular form of weight

k+2v . The precise result is

Theorem 3.1. For vclio, keN define a homogeneous polyunomial

pg“) of two variables by
- -k+‘
M (2\(,“;\:3', Pg l)(t,n) = coefficient of t2” in (l-runcz)

Then for ¢eJk ér) a Jacobi form with Fourier development
»

J c(n,r)q"z% , the function
n,r

@
@ Dy =) (Z,'p§§"’ (x,om) c(a,5)) "
Nn=Q*r

is a modular form of weight k+2v on I . If v0 , it is a cusp form.

Explicitly, one has
Doé = X(Zc(n,r)) <,
ar

Dyé = r)i(g(krz-hmx) c(n,r)) ¢,

D¢ = Z():((kﬂ)(k-pz)r“ - 12(k+1)r2nn + 12n2m2)c(n,t)) <.
nr
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Notice that the summation over r is finite since c¢(n,r)$0 =» rzslmm .

The polynomial pg:—q) is given explicitly by
(k~1) . _yi __(2v)! (k+2v-u=2)! 2v=2u b
) Ppy  (Fom) ,-Zo( Ry o= N (T ) N "

“and is, up to a change of notation and
normalization, the so-called Gegenbauer or "ultraspherical" polymomial,

studied in any text on orthogonal polynomials); we have chosen the

normalization given so as to make pg—” a polynomial with integral
coefficients in k,r,n in a minimal way (actually, 717 times pg_”

would still have integral coefficients as a function of r and n for

fixed k @N). The characteristic property of the polynomial p(k—1) is

2v
that the function p.‘(,t-”(B(x,y) ,Q(x)Q(y)) , where Q 1is a quadratic form
in 2k variables and B the associated bilinear form, is a spherical
function of x and y with respect to QA (Theorem 7.2).
ﬁlere is a similar resul.t: in\;bl;ing odd polynomials and giving
modular forms D1¢, D3¢,... weight k+1, k+3, ... (simply take
vt% +llo and replace (k+v-2)! by (k+v-—g-)l in (1) and (3)) , but,

as ve shall see, this can be reduced to the even case in a trivial way,

so we content ourselves with stating the latter case.

As an example of Theorem 3.1 we apply it to the function F.k 1
3

studied in the last section; using the formula given there for the Fourier

coefficients of Ek y ve obtain

Corollary (Cohen (6, T™.6.2] ). Let k be even and H(k-1,N)

(N GNO) be Cohen's function

L_N(Z-k) if N>0 , Nz20 or 3(mod 4) ,
H(k-1,N) = $(3-2k) if N=O ,

0 if Ns? or 2(mod 4) .
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Then for each v tN the function

c‘(tv)(t) = ) ( 2 pék 1)(r n) H(k-1,4n-t )) q

n20 l:2 $4n

is a modular form of weight k+2v opn the full modular group 1‘1 .
If v>0 , it is a cusp form.

Cohen's proof of this result used modular forms of half-integral
weight; the relation of this to Theorem 3.1 will be discussed in §5 .
Yet another proof was given in [39 ] , where it was shown that Cl(‘v) b
the property that its scalar prcdﬁct with a Hecke eigenform
f= {a(n)qn e Sk+2 v is equal, up to a simple numerical factor, to
the value of the Rankin series ):a(n) "% at s = 2k+2v-2 . This
property characterizes the form qg v) ‘and also shows (since the value
of the Rankin series is non-zero) that it generates sk+2v (resp.

Hk if v=0 ) as a module over the Hecke algebra; an application of

this will be mentioned in §7 .

To prove Theorem 3.1, we first develop ¢('r,z) in a Taylor

expansion around z=Q :

(4) #(t,z) = 2, X, (1) z’
v=0

and then apply the transformation equation

2
at+b cz

(5) “c‘r*d’ c‘t+d) (c'H-d) (c't+d) ¢(t,z)

to get

(6) & b) - (crﬁ)kw( (t)+211mc (1) __(Zumc) (1

xv ct+d X cttd -2 Xy-4

i.e. Xy transforms under T 1like a modular form of waeight k+v modul

corrections coming from previous coefficients. The first three cases
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of (6) are
XoGmp = (e x (™)
G = ! x (1)

REE = ©rd)? % (0 + 2mimeend) T g @ |

Differentiating the first of these equations gives

(ar+b) -

ket k+2
xo(orrg ke(ct+d) <" xo(r) + (ct+d) xb(r) s

and subtracting a multiple of this from the third equation gives

. _ 2mim _,

Proceeding in this way, we find that for each & the function

' . (c2mim) P keveu=2) (W)
@) £,(1) ¢ Oz;‘—’ DT 5l )g)_zp(t)
2

transforms like a modular form of weight k+v on T . The algebraic
manipulations required to obtain the éppropriate.coefficients in (7)
directly (i.e. like what we just did for v=2 ) are not very difficult
and can be made quite simple by a judicious use of generating series,

but we will in fact prove the result in a slightly different way in

a moment .'Z

2 c(n,r) qu ;t , then xv--;l!-%:(g(zwir)v c(n,r)) qn and hence

n,r

If ¢ 1is periodic in 2z and has a Fourier development

‘ - Y (ktv=p=2)! (-mn)"r¥" Zu) n
(8) £,(1) = (2ni) n;O(X é%i! v T ST T/ ¢ e,
so

- =2V (k+2w-2)1 (2v) L
(9 D2v¢(1) (2%i) G 1 EZv(t) .

Thus Theorem 3.1 follows from the following more general result:



- 31 -

Theorem 3.2. Let ¢(t,z) be a formal power series in z as in (4)

with coefficients X, which satisfy (6) for all

a g) €l and : are holomorphic everywhere

(including the cusps of T ). Then the function £, defined by (7)

is a modular form of weight k+v on T .

tr;gf: Let Hk, ln(l‘) denote the set of all functions ¢ satisfying the
conditions of the theorem. (Note that HK lll(I‘) is isomorphic to
Hki(r) vif z + /mz .) Since g, involves only x,, with v' s v(mod 2)
we can split up Hk m(I‘) into odd and even power series, say
Hk,g') = H;ér) ® H.;_&I') and look at the two parts separately (this
corresponds to adjoining -Iz to I' and looking at the action of

-1, on ¢ ; if I already contains -1, » then Mk“‘l‘) - H§ ‘) ).

2
1f ¢cnh () , then ¢ = z¢‘ with ¢1 e ukﬂ’m(r) and the functions
P F’v for ¢ and ¢1 are the same except for the shift
=+ y=1_ k-+k+ 1, Hence it suffices to look at H;él‘). We

. ?

now introduce the differential operators

2
L= 8rin = - 2
* 3:2

(the heat operator) and

-y et D
Lk' L z iz

The operator L is natural in the coantext of Jacobi forms because it
acts on monomials q°g' by multiplication by (Zwi)z(lomrrz) and
hence, in view of Theorem 2.2, preserves the second transformation lavw

of Jacobi forms; this can also be seen directly by checking that
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(10 LGl X = W] X x er?) .

If L satisfied a similar equation with respect to the operation of
Sl.zm) , then it would map Jacobi forms to Jacobi forms. Unfortunately,

this is not quite true; when we compute the difference between

L“lk,mm and (L¢)|k+2’mu we find that most of the terms cancel
. . c
but there is = one term 4¥im(2k-1) E-;?(ﬂk’nu) (t,2)
left .over . (unless k --;- , in which case L really does
map Jacobi forms to Jacobi forms of weight -i- and the same index m ;

examples are the Jacobi theta-series, which are annihilated by L ).
To correct this we replace L by Lk , which no longer satisfies (10)

but does satisfy

(1n L (4l 0 = W |y, oM (M @SL,®) ,

as one checks by direct computation. Because of the 2z in the
denominator, Lk only acts on povwer series with no linear term; in
+ +
i i r r
particular it acts on Mk,ns ) and (because of (11) ) maps Mk,ng )

+ .
to Hk+2,ni(m ~. Explicitly, we have

2
: . A
L xgox* 27 .,‘Z;:o(snmxi-t.(m ) (Jvfk)x,m)z2 )

Iterating this formula v times, we find by induction omn v that

the composite map

e

naps lezu to

M, N )

+ +
Hk+2,m(r) R — }&c+2v,m(r)

Vv
v=y . My (Arv=p) 1 (A+ke2v-p=2)1 (W) 2
Ago(g.o(-l.) (8'1“) (u) Xl (A"'k"'\’-z) 1 XAW-H(T) z ’

and composing this with the map

* ) -+ (r) (¢(r,r) - 0(1,0),
Mk+2v,m Mk-'-Z\o
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gives &2\’ € Mk+2vu‘) . This proves Theorem 3.2 and hence also

Theorem 3.1 except for the assertion about cusp forms. But the latter is
clearly true, e=1)
because the constant term of (2) is Py (0,0) ¢(0,0) , which is 0

for v>0 , and the expansion of Dv¢ at the other cusps is given
by a similar formula applied to “k mM, Mer, .
k]
By mapping an even (resp. odd) function ¢eMk ér) to
»

(50,52,54,...) (resp. to (E1,£3,..;) ), we obtain maps

+ -
Mk,m(r) - \}:g M1(-0-2\;(1’) 4 Mk,m(r) - \E(‘; M1;:1»2\;<|-l(r) )

It is clear that these maps are isomorphisms: one can express X, in

terms of Ev by inverting (7) to get

@nim " (erv=2u=1) 1 (W)
(12) xv(r) = OS\.IZSV (k+v=y=1)!  ul v—ng(T)

2
and then the transformation equations (6) of the %, follow from

Ev“’k*v(r) . In particular, taking €0=f » 5,20 (v>1) and w=l
we obtain the following result, due (independently of one another)

to Kuznetsov and Cohen:

Theorem 3.3 (Kuznetsov [16] , Cohen [ 7 ] ): Let £(t) be a modular

form of weight k on r . Then the funct:i.on

o .\ V
(13) T,z = ] LR £V S
v=0 ’

satisfies the transformation equa:ion

(14) TETD

k
ctd C‘t+d) = (ctrd)

) Fee,2) (G Ner) .

c-r+d
We mention a corollary which will be used later.

Corollary (Cohen (6 ,Th. 7.1] ): Let f‘,fz be modular forms on

I' of weight k1 and k, ectively, vcllo . Then the function

l"(k +») P(k +v) )
‘. -v v-u (w) ((v-¥
F,(£,08)) (271) uZO( n (v) I‘(k ) Fﬂt,w-v) N
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is a modular form of weight k‘+k2+2v on T and is a cusp form if

v>0 .

(We have modified Cohen's definition by a factor (27i) "’  to make the
Fourier coefficients of Fv(fl’fz) rational in those of f1 and fz.)
The corollary follows by computing the coefficient of zZv in

f1 (t,i)?z(tjz) , which by Theorem 3.3 transforms like a modular form

of weight k1+k2 under T.

We observe that the known result 3.3 could also have been used to prove
3.1 and 3.2. (We pteferred to give a direct proof in the context of the theory
of Jacobi forms, especially as the use of :the differential operators Lk
: v)
makes the pl_:oqf.racher natural.) Indeed,.let. Mk,m be the subspace of Mx,m
of functions ‘¢ which are. O(zY) , iL.e. have a development

xv(‘r)zv*'xv ”('r)zvﬂ‘t-... o From (6) it is clear that the leading coefficient

Xy is then a modular form of weight k+v and we get an exact sequence

(v+1) v)

(14) 0 — :M'lgn "M

in which the first arrow is the inclusion and the second is ¢ Xy

On the other_hand, H,S:z Mk+v,m by division by z’ (this was al-

ready used for v=1 when we reduced the study of Hk.,m to that of
+

%

this shows that the last map in (15) is surjective and gives an

) , and 3.3 gives a map Mkw—-» Mkw o by f »—r 'f'(r,/tiz) H
b ]

explicit splitting. To get the sequence of modular forms 50,51, cee
associated to ¢ @ uk,m we now proceed by induction: having found

50,51, ’Ev-1 such that

¢(e,z) - Z 13 ,(t,/mz )zv" 0 (mod z")
. vi<v ¥ ‘
define Ev(t) as the leading coefficient (coefficient of z¥ )

in the expression on the left-hand side; then ¢ = ¥ fv(r,/u-az) z’
v
as a formal power series and this is equivalent to the series of



We have gone into the meaning of the development coefficients
D vé fairly deeply because they play an important role in the study
of Jacobi forms and because the relation with the identity (14)
of Kuznetsov and Cohen concerning T (which is not a Jacobi form)
seemed striking. In particular, we should mention that (13) can be

written
- Jk_1(.4n’n-;5 z)

F(t,z) = a(0) + (k-1)t ) a(n) CmnF T "

n=1

if £=) a(n) q®  (this is the form in which Kuznetsov gave the

identity). To see where the Bessel functions come from, note that the
funetion h(z) = (k-1)1 J_ (xz)/(2x2)" ' satisfies the ordimary differ

2k~
—-;-!- h'*(’lf h =0 and is the only solution holomorph

tial equation h" +
at the origi.n and with h(0)=1. By separation of variables we see tha
£(v,2) = ? a(n) h(/nz) o 2vin® is the unique solution of the parial
differential equation Lk? = 0 satisfying the boundary conditions
f(v+1,2) = E(v,2) and ?(1',0)'-f(t) » and this uniqueness together with
the fact that L, commutes with the operation of SL,(R) (eq. (11))
immediately implies that £ has the property (14).

As afirst épplicatim of the mips D y O Jacobi forms, we have

a second proof and sharpening of Theorem 1.1:

2m
Th 3.4: i i i
eorem dim Jk,n(r) S dim Hk(l') + \21 dim skw(r) .

Indeed, &0 .= EZm = 0 implies Xg Teee® Xop * 0 or

= 0(22m+1 ), so Theorem 1.2 implies that the map
2m
D= :
30 D, : Ju(r) — 4D s, ()&...¢ 5,0

is injective. Note that half of the spaces ka(l') are 0 if "1251' ;

in particular, for T = l" we have

dim Hk+din Siag*es - +dim +23 (k even)
(1s) dim § . §

dim sk-c-l +dim shso-...'rdin szn_‘ (k odd)
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Here the second estimate can even be strengthened to

(16) dim J < dim S + ... +dim S

k,m k+1 k+2m-3 °*

because an odd Jacobi form must vanish at the three 2-division points

-;-, -12':, —‘-;—t and hence cannot have more than a (2m-3)~fold zero at z =0,

Application: Jacobi forms of index omne

?heorm 3.4 is the basis Afoithe analysis of the structure of J*’*-k?n .o
as given in Chapter III, to which the reader may now skip if he so desires
(the results of §§ 4~7 are not used there). As an example, we now treat

the case wm=1 , which is particularly easy and will be used in Chapter II.

Equations (15) and (16) (or Theorem 2.2) give

Jk,1=0 (k odd) , dim JkJ s dim Mk + dim sk+2 (k even).
On the other hand, the Fourier developments of Ea 1 and 26 - as
] ?

given after Theorem 2.1, show that the quotient

E6 1('t,z)

-1
m' 1 - (1440 + 456 + 1440 ')q + ...

depends on 2z and hence is not a quotient of two modular forms, so the

map

Mes @ M 6 4y

(£,8) —£E, (1,2) + g(DE (1,2)

is injective. Since dim M, tdimM . =din M +dim S for all

k+2
k (this follows from the well-known formula for dim Mk ), we deduce

Theorem 3.5. The space of Jacobi forms of index 1 on SLZ(Z)

is a free module of rank 2 over M. , with generators F . and E, , .
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Dy @D, : J , = M @5,

(D

0° D2 as in Th. 3.1) is an isomorphism .

In particular, we find that the space J is one—dimensional,

8,1

E, °E (E, = 1 + 240 q +... the Eisenstein

8,1~ "4 4,1 74

series in M, ), vhile the first cusp forms of index 1 are the forms

with genera'tor E

1 )
Gan %10,1 " 745 Bo B4y “Ei Eg ) 0 %12y =775 By B41 " B B,y

of weight 10 and 12 , respectively (the factor 144 has been inserted

to make the coefficients of ®0 ' and ¢‘2 integral and coprime).
9 ?

1
We have tabulated the first coefficients e of B (k = 4,6,8) and
’1 ,‘
.1 ©°f ¢ , (k =10,12) in Table 1; notice that it
b} L4
suffices to give a single sequence of coefficients c(N) (N20, Ns0,3(mod 4)
since by 2.2 any Jacobi form of index 1 has Fourier coefficients of the
form c(n,r) = c(bn-rz) for some {c(N)} . To compute the c(N) , we
can use either assertion of Th. 3.5, e.g. for ¢‘° 1 ¢12 , ve can
1 4

either use (17) and the known Fourier expansions of Ek and Ek a °F
. b d

else (what is quicker) use the expansions

(18) Po #10,1 70 » Dy #1g,4 =208, Dy 8, 4= 124,04 0

12,1

[} o
(a=gqg nn1(1-qn)24 = 21t(n) q" ) to obtain the identities
L J n.

> 0.1 (4n~r?) = 0 , 2. 2 (4o=x2) = t(n) ,

|z]<2/m Occ<aa | 10,1
Z c (‘m-tz) = 12t (n) , Z rz c (Im-rz) = nt(n)
|rl<26 12’1 . 0‘“25 12,'

and then solve these recursively for the e 1(N) .
?

The functions
o " (c-2+z")q + (2:2-16c+36-16c"+2c’z)q2 L SN
]

12,1 = (t+10+¢"')q + (10z2-88¢-132-88¢" w100 Dq2 + ...
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n eu(n) ec(n) -es(n) cm(n) °12(n)
0 1 1 1 0 0
3 56 -88 56 1 1
L 126 -330 366 -2 10
T 576 -h22h 14016 -16 -88
8 756 ~-7524 33156 36 -132
11 1512 -30600 260712 99 1275
12 2072 -46552 Lk62392 =272 136
15 ko32 -130944 1987392 -2ko -8oko
16 4158 -169290 2998638 1056 -2880
19 554l -355080 9090984 -253 24035
20 7560 -46hook -1800 13080
23 12096 -899712 * 2736 -14136
2k 11592 1052040 * -146h -54120
27 13664 ~1732192 . -4284 -1288u44
28 16704 ~-2099328 1254} 115456
31 2h192 -3421440 -6816 389520
32 2k9oh8 ~-3859812 ~-19008 38016
35 27216 -559310L 27270 -256410
36 31878 -6522450 -455h -697950
39 Lh352 -9651840 -686L -806520
40 39816 -104335Lk 39880 963160
k3 41832 -1400282L -66013 1892363
bk 5504k  -1618TLOO. -26928 938400
WT 72576 -224294L0 LLo6k -1227600
48 66584 -23836120 1254k -2309120
51 67536 -30320400 108102 -813450
52 76104k -33965Lk8 -93T0L ~2813096
55 100800 -45141888 -22000 2311640
56 99792 -47828880 8078 5549040
59 10130k -58659480 -281943 ~3336015
60 116928 -650T79168 188160 10548480
63 145728 -8348T7360 -36432 6141960
64 133182 -86676810 -295424  -20142080
6T 126504 -103023624 659651  ~11654893
68 160272 -114521616 193392 -10887888
71 205632 - -14363T120 -8k816 5100360
T2 177660 -14TL929T72 -390420 24801876
75 176456 -1T1930088 -635225 31406575
76 205128 -187837320 68816 17689760
79 249984 -230334720 -109088 -47059760
80 24ok80 -238495752 950400 -376T040
83 234360 -2T723220T2 22455 ~37384T1
84 265104 -295334160 -484368 -64883280
87 326592 -35680550k4 1050768 -5321448
88 281736 -362360328 143176 26020696
91 277200 -4LOBBTS280 195910 66711190
92 350784 -LL4T15686L4 -2145024 18546432
95 k23360 -532388736 -370800 96031320
96 382536 -539696520 172992 15586560
99 355320 -599851800 -1073655 -239563575
100 390726 —6hh325330 - 2832950 118753250

Table 1. Coefficients of Jacobi forms of index 1
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have several beautiful properties and will play a role in the structure

theory developed in Chapter III. Here we mention only the following:

Theorem 3.6. The quotient

-1
¢‘2"(T,z) T+10+Z

-1
= — + 12(5-2+4% ')q + ...
910,172 op.p! |

is —3/12 times the Weierstrass p-function p(t,z) .

Indeed, since ‘10 1 vanishes doubly at z=0 and (by Theorem 1.2)
’

nowhere else in ¢€/2t+2 , and since by (18)

(19) ‘10 1" (Z'Iri.)2 A(T) z2 + O(za) . = 12 A(T) + O(zz) ’

%121

the quotient in question is a doubly periodic function of z with a double po’

with principal part 3 z-2 at 2=0 and no other poles in a period parallelogr™
(2xi)
80 must equal _ 12 3 p(t,z) .
(27i)

Finally, we note that, just as the two Eisenstein series Elo 1 and
. ?

36,1 form a free basis of J,,‘,1 over M, , the two cusp forms 010,1 and

¢12’1 form a basis of J:“:p over M, , i.e. we have an isomorphism
?

cus
Meo10 @My = Jey
£ , 8 f(r)¢10’1(r,z) +g(r)¢,2’|(r,z) .

Thus the Jacobi forms

B, (0 Eg(D)° b5 1(1.2) (a,b20, j€{10,12}, 4ar6b+j=k)
b4
form an additive basis of the space of Jacobi cusp forms of weight k and

r.,
index 1 . Each of them has a Fourier expansion of the form Xc(lm-rz)qnc ’

the coefficients c(N) for N$20 and all weights k$50 are given in

Table 2.
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k a b j el ctd) i cidl ¢t} et ¢ils cila) ct19} ci2)}
10 0 ¢ 10 1 -2 -1 38 9 =213 -24§ 1655 -233 -1800
12 0 0 12 { 10 -g8 -132 1275 738 -304y -2380 24033 13080
141 0 10 1 -2 2% -4 -1581 4348 -5320 94 §3587 -129060
18 01 10 { -2 -520 1044 -3409 14848 33069 -214656 -%0973 628200
16 1 0 12 § 10 152 2268 -17685 -9344 114660 -44160 2745585 199800
18 2 0 10 i -1 464 924 54339 -104832 105800 -864 -2962973 5619000
1801 12 i 10 -592  -5172 28995  -9908s 590050 591849 -6840445 129000
21110 i -2 -280 564 131109 251088 -305:040 3590454 159107 -11836920
20 2 0 12 1 10 392 4648 20955 S54974  -37T94TH0 2679360 -3382045 -15165480
23 0 10 { =2 704 -1404 137959 -332912 14157120  -27649824 143274847 -231589800
20210 1 -2 -1024 2052 234979 -478064 12687040  -24815%04 157306227 -265458600
211 12 { 10 -352  -2172 -110925 -{3}8738 4375800 -34285920 217428035 -106371000
24 21 10 1 -2  -40 B4 -196149 392128 -35120280 69454384  -1018050013 1897579540
2 3 0 12 { 10 832 7088 117195 1498494 2087880 146407480  -872209885 1861429240
402 12 1 10 -1096 -10212 310731 2341312 -4200312 135307008  -7a457622% 1980045624
28 4 0 10 L =2 943 -1884 338979  -474192 53970440 -~110594784 1908309507  -75946107400
212 10 b -2 -784 1§72 -b6L 10096 57356880 -135132384 3755208707  -7240133400
2 21 12 1 10 -112  -372 -193245 -1962414 -20996800 -356702880 1505914115 -11201914200
28 3110 1 =2 200 -39 -203589 407948 -B2275720 163735104  -9870850333 19414437440
803 10 1 =2 -1528 3060 735443 -1479008 -89542184 182245440 -10153799945 19941534148
28 40 12 { 10 872 9468 271035 416416 315BAS20 569380800  -113712925 40715895940
B 12 12 ! 10 -B836 -7812 49851 -87958 58014483 475231148  -1108819741 39442512024
350 19 I -2 1184 -2364 5487699 -~1130672 139371340 -276463744 18079318947 -J5407805800
2210 1 -2 -S4 1092 -192821 383056 64281120 -129327264 19949307587 -39639575400
W I L 100 128 2028 -217945 -2030096 -67612800 -B28419040  -3951942205 -1010517484600
303 12 { 10 -1600 -15232 B46483 7321840 -142703040 -875098016 -3681447997 -103904883960
324110 L =2 40 -876 -133429 308408 -130498360 260778624 -30055413633 59589577320
3213 10 1 -2 -1288 2580 371883 -748928 83810375 -156120320 -30087457985 4605048412548
325 0 12 1 10 1112 11868 482475 5710336 98525140 1409838720 8058344835 184810546680
322212 110 -616 -5412 -153429 -1941248 78134483 437312128 15314400739 2012556460024
460 10 I -2 1424 -2844 BS4019 -1702352 278183280 -552954704 52743149187 -104422077000
W32 10 i -2 -304 512 -321021 640814 156883740 -35048544 34937076847 -69843414600
404 10 1 -2 -2032 4048 1489923 -2987984 -433518735 677017504 22944715395  -47686445640
341 12 1 10 368 4428 -135085 1529776 -119641200 -1311194400 -20448940925 -304243522200
#1312 1 10 -1350 -12852 464643 3882940 57003400 848266404 -36112508797 -298435351440
BS5S 110 ! -2 680 -1354 -454A9 94048 -168564200 332938944 -51751452573 122837118600
36 23 10 1 -2 -1048 2100 54923  -134048 170282936 -340303480 -9178338205 19037153928
3% 8 0 12 I 10 1352 14268 75151 85802546 214727800 2806021440 32754039395 535584093400
%3 2 12 110 -376  -3012 -299109 -3218528 39989458 159789888 33733829219 149981281624
36 0 4 12 1 10 -2104 -20292 1634251 14842528 -542842248 -4313843872  S4358407779 21774197589

Table 2. Coefficients of Jacobi cusp forms of index 1
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ka b j e ) ) cf® clD) c1d) ctid) ci1s) cf19) ci2m
@70 10 =2 1664 -3324 1197939 -2389232 484230400 -967565864 121381404227 -240829833000
4 I T U] -2 -3 132 -391821  79337¢ -50B11200 120055775  38I1I7ASAT  -748h6825000
B4 boo=2 1192 3 1004403 -20153984 -82319616 168674784 -76355185085 134371011600
3511 I 10 508 5828  -94605  -4374556 163260000 1666788960 -49760122045 -822187283000
B 23 12 110 -1120 -10452 140403 520080 145587040 1704483744 -21437137597  -87002594920
0 41 10 b -2 920 -1836 119691 -235712 -175049240 352568044 -101820918493 202935441480
W33 16 1 -2 -808 1620 -1B4437 385632 1B3b11496 -347952540 3182373075 -62911195992
0 05 10 1 -2 -2336 5076 2497419 -5004992-1152765680 2315548416 217935113507 -440504318880
07 0 12 110 1592 15568 1078155 12028176 4G0UIB440 3895158960  BA4010B67S5 1227040548120
0 4 2 12 Y10 -136 -612 -387189 -3919808 -32501912 -619095552 42682759699 381358758824
01 4 12 I 10 -1864 -17892 1135451 9994048 -154a79928 -795420672 -72403550941 -785661679944
28 0 10 b -2 1904 -3B04 159945% -3191312 777335720 1548294524 240675448067 -478257505800
25210 1 =2 176 -348 -405021 810736 -154979760 308337696 22872314627  -443b0494500
2.2 410 1 -2 -1332 3108 575483 -1159t84 154873104 -307424736 -95954407165 192522510840
2061 12 110 848 9228 53475 1222854 -1B4645200 -1758962720 -B9142745385 -1023115479000
2 33 12 110 -880 -8052 -126237 -1846800 194871280 1830793824 18599513603 323342812200
2 0 5 12 i 10 -2508 -25332 2680035 24903376-1332642000-11458231200 300994982915 2147358543400
4 71 10 1 -2 1180 -2316 342651 -6B0s72 -145329480 292017784 -143808003613 287031285940
4 43 10 1 =2 -38 1140 378197 750117 137008056 -278715200 75486697955 -150419213112
4 15 1 1 -2 -2296  A59% 1B9OYIY -3791072 -538857140 1125301056 -53351489033 104448594120
4 8 0 12 110 1832 19068 1452395 16048096 662221080 7818521280 184745042915 2428829922840
w35 2 12 110 104 1788 -417659 -4045088 -125814312 -1361104192 34021086179 224305113624
424 12 110 -1624 -15492 4688251 5721568 113328792 1544571328 -107090988061 -955095356584
% 9 610 1 -2 2144 -4284 2058579 -4108592 1165325240 -2322439564 430703904707 -856767047400
¥ 62 10 I =2 416 -828 -350621 722896 -251797920  S02149216 -15194472893 293893468400
3 4 10 1 -2 -1312 2628 206163 -417584 289883424 -578929056 -57550070845 116257587480
% 0 &8 10 1 =2 -3040 5084 3758931 -7930032-2369410080 4753886304 757703781827 -1524922854120
% 71 12 116 1038 11828 259155 3459184 159972800 -1443475580 -133334391483 -1442082958200
6 43 12 I 10 -640 -5652 -3I5277 -3777680 164680320 1345436705 45570052803 758447107720
Bt 5 12 I 10 -2388 -22932 2056275 13845296 -895060140 -S535070880 -13047729725 -548795708280
8 81 10 1 -2 1400 -27% 623211 -1240832 -60SBO92C 123640754 -177939139933 355629752040
85310 -2 -38 860 -510357 1019392 46100614 -94239350 107694246435 -215202993432
8 2 35 10 1 -2 -2055 4116 1342059 -2692352 -109984440 225357496 -183406190813 3646362962120
48 9 0 12 110 2072 21468 1904235 20646016 1017159720 11711318400 346849203875 4340067229540
85212 I 1w 3 4168 -390549 -3594308 -225823512 -2527994032 2924202659 -159085091976
83412 110 -1334 -13092 300451 2075088 275007912 2904352128 -78416351581 -567343782024
8 0 8 12 110 -3112 -30372 3977835 37504304-7040125350-23589440640 928392397475 7511428019320
5010 0 10 1 -2 234 -AT64 2575299 -5141072 1664022950 3317768544 714843158147 -1423055929800
w72 10 1 -2 656 ~-1308 -258621 519855 -337441680 673842334 -75404102013 151461036600
50 4 4 10 I -2 -1072 2148 -106557 208816 3365385344 -573484176 12430463875  -23549742280
50 1 & 0 1 -2 -2000 5604 3031491 -5074192-1473826320 2959806624 197144242307 -400214160840
0 8112 1 10 1328 14028 522435 6271504 -105418800 -5BB0S7840 -173562759805 -1780966968500
05 312 L 10 -400 -3252 -488717 -S11250 82838150 446652304 104354848003 1078154321640
002 5 12 110 -2128 -20532 1490115 13303216 -206662320 -1062665760 -175456509555 -1834900807960

Table 2. Coefficients of Jacobi cusp foyms bf index 1 (contd.)



§ 4. Hecke operators.

We define operators Uy Voo Ty (2>0) on functions ¢: HxC-=C by
(1) (¢!k mul) (T,z) = ¢(T,£Z),
2
k-1 -k mf,~cz at+b Lz
(2) “lk,mvz)("’Z) = 2 . b'; ; (crtd) " e (c-r+d) ¢(c-c+d , c'r+d)’
(. d)¢P1\M2(2)
ad~-be=¢

€) Bl gTp) (122) = 27 Z; MX ,

Mel‘i\M (z) Xe2 /9.2

det M-'!.
g.c.dM)=[1]

where the symbols. Ik ¥ Im X have the same meanings as in §1

9
(except that for M € GL;m) one first replaces M by (det u)"”zu € SLZQR))
and g.c.d.(M)=[] means that the greatest common divisor of the entries

of M is a square. Then we have

Theorem 4.1. Theoperators U!.’ Vz, '1‘2 are well-defined (i.e. independent

of the choice of representatives) on Jk;n and map Jk,m to J ome? Jk oL

and Jk,m » respectively.

Proof: The well-definedness and the fact that ¢|V£, ¢|V£ » #IT,
transform correctly follow by straightforward calculations from the pro-
perties of the Jacobi group given in §1 ; the conditioms at
infinity will follow from the explicit Fourier expansions given below.

Before proceeding to give the properties of the operators U,V,T ,
we explain the motivation for the definitions given. The operator U! is

an obvious one to introduce, corresponding to the endomorphism "multiplicatjon



by £ " on the elliptic curve €/27t + 2 . As to the other two, we

would like to define Hecke—operators as in the theory of modular forms by
replacing ¢ by ¢|n » where M runs over a system of representatives
of matrices of determinent 2 modulo left multiplication by elements of
l‘1 . Doing this would produce a new function transforming like a Jacobi

form with respect to T, . However, since ¢{[M] is a multiple of

at+b /2 z
(4) ¢(m ’ -c—-?;-d-)

M= (: :) o2 = det M) , and /2 is in general irrationmal, the function
¢|[M] transforms in =z for translations by a lattice incommensurable
with 2¢ + T , and there is no way to make a Jacobi form of the same
index out of it. However, replacing v¢ by £ in (4) restores the

rationality; since this is formally the operator U /B and U multiplies

2
the index by 12 , we obtain in this way an operator which multiplies
indices by L . This explains the definition (2). Finally, if ¢ is a
square then the function (4) transforms like a Jacobi form with respect
to translations in the sublattice Y2(2t+®) of 2t + Z , so we get
a function with the right translations properties by averaging over the
quotient lattice. This explainas (3) except for the condition on
g.c.d.(M) , which was introdﬁced for later purposes: If we define '1':
by the same formula as (3) but with the condition "M primitive”
(i.e. g.c.d.(M) = 1 ), then T, and '1': are related by
(5) T, = L::‘.dzk"" ™, .

a?ls £/d
Eventually we want to show that the Jacobi-Hecke operators 'r’. corres~
pond to the usual Hecke operators Tl. on modular forms of weight 2k-2,
and equation (5) is prgc%ne}y the relation between these Hecke operators

and the corresponding operaﬁors defined with pr‘in‘nitive matrices,
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Our main goal is to describe the action of our operators on
Fourier coefficients and to give their commutation relations. We start with

U and V_ since they are much easier to treat.

2 2

Theorem 4.2. i) Let ¢¢Jk o’ ¢ = 2 c(n,r) qncr . Then

(6) o0, = I e,/ q” o

n,r

(with the convention c(m,r/%) = 0 if 24r ) and

0 oy, = 1 (2@, H)
n,r a|(nm,r,2)

ii) The operators Ul , Vz satisfy the relations

(8) Upg = U = Uppr »

9) | Uzovz, = Vl'o Uf.’

(10) VeV, = D 4 Uge ¥y 0/q2 -
d|(e,2")

In particular, all of these operators commute.

Renark. ?ormla (7) nearly makes sense for £ =0 and suggests the

definition
n
$lv, = (0,0 [ o + fo a ]

with some constant <y Since ¢|V° should belong to Jk,O ’Mk , we

take e =" Big' so that ¢|V, is a multiple of the Eisenstein series
2k
of weight k . This definition will be used later.

Proof. Bquation (6) 'is obvious. For (7) take the standard set of

representatives

(11) G ';) , a,d>0 , b(modd) , ad=t

for the matrices in (2). Then
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Z Z a‘r+b‘ , az)

(¢I vl) (T,Z)
ad=2 b(mod d)

an

k Z ! ct,r) ¢ 37 e, (nb)
ad=2¢ b(mod d) u,r

Zd -k Z c(a,r) q%g. d

d-!. n,r
ns0 (mod d)

- ak--l z c(-——, ) qan ar ,
ajt n,r

which is equivalent to (7) . Eq. (8) is obvious. By (6) and (7), we have

]
™
(-9

coefficient of anr in ('HU,'NV,.-

k~t  n&' r
- a c(—-,: Ty )
aj(n,r,2')

{ 0 if Yr
Z & e@ L ) if e

= coefficient of ¢ ¢¥ in (NV!.) U,

Finally, using (7) we find

coefficient of q° ¢* in (QIVL)IV",

- - 1]
. Z: o1 2: pk-! (@M &,

HEED e

- Z N(e) ek.1 c(—ez— ’ L3
by 2

where N(e) is the numbhar og ways of "ri‘{‘;& e as a*b in the precedins
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s . y e )
sum. If such a decomposition exists then e|f%a and hence a = .0
for some integer § ; writing down the conditions on a and b=e/a we

find the formula

] 1 '
N(e) = number of divisors § of (n,