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Abstract. Let G be an algebraic group over a field F . In this paper,
we study and compute equivariant higher K-groups as well as profinite
equivariant higher K-groups for some G-schemes when F is a number
field or p-adic field.

For example, let γF be a twisted flag variety (see 1.2.3), and B a finite
dimensional separable F -algebra. When F is a number field, we prove
that K2n+1(γF , B) is a finitely generated Abelian group; K2n(γF , B)

is torsion (see theorem 3.1.2); Kpr
2n((γF , B), Ẑl) is l-complete and fur-

thermore div Kpr
2n((γF , B), Ẑl) = 0 (see theorem 4.3.1). When F is a

p-adic field, we prove that for all n ≥ 2 Kn(γF , B)l is a finite group,

Kpr
n ((γF , B), Ẑl) = Kn((γF , B), Ẑl) is an l-complete profinite Abelian

group and div Kpr
n ((γF , B), Ẑl) = 0.

We obtain similar results for some other smooth projective varieties
(see 3.1.5, 3.2.3, 4.3.5).
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Introduction

Let G be an algebraic group over a field F . The aim of this paper is to
study equivariant K-theory as well as profinite equivariant K-theory for G-
schemes with the goal of computing these K-theoretic groups for twisted flag
varieties, Brauer–Severi varieties and some other smooth projective varieties
over number fields and p-adic fields.

We start in section 1 by reviewing the equivariant higher algebraic K-
theory for schemes (à la Thomason, see [19]) with relevant examples includ-
ing those that have appeared in the works of A. Merkujev [11] and I. Panin
[13]. We note, however, that the equivariant categories involved are special
cases of equivariant exact categories discussed in [10], even though we have
focussed in this paper on the notations and terminologies of Thomason [19].

We prove at first some finiteness results in the K-theory of twisted flag

varieties. More precisely, let G̃ be a semi-simple connected and simply con-

nected F -split algebraic group over a field F , P̃ a parabolic subgroup of

G̃, F = G̃/P̃ , γF the twisted form of F with respect to the 1-cocycle
γ : Gal(Fsep/F )→ G(Fsep) (see 1.2 or [13]), B a finite-dimensional separable
F -algebra and Kn(γF , B) the Quillen K-theory of the category VB eG(γF , B)
of vector bundles on γF equipped with left B-module structure. We prove
that when F is a number field, K2n+1(γF , B) is a finitely generated abelian
group and K2n(γF , B) is torsion and has no non-trivial divisible elements
for all n ≥ 1 (see theorem 3.1.2). When F is a p-adic field, we prove that
Kn(γF , B)l is a finite group for all n ≥ 1 (see theorem 3.1.5).

We obtain similar results for K-theory of Brauer-Severi varieties as well
as for K-theory of twisted forms of some smooth projective varieties arising
in the context of a motivic category constructed by I. Panin (see 3.2.3 or
[13]).

In section 2 we introduce mod-ls and profinite higher algebraic K-theory
with copious examples relevant to this paper. We then prove that if F
is a number field, then for all n ≥ 1, Kpr

2n((γF , B), Ẑl) is l-complete and

div Kpr
2n((γF , B), Ẑl) = 0 (see theorem 4.2.1).

When F is a p-adic field, we have that for all n ≥ 1, Kpr
n ((γF , B), Ẑl) '

Kn((γF , B)Ẑl) are l-complete profinite groups, div Kpr
n ((γF , B), Ẑl) = 0 and

the kernel and cokernel of Kn((γF , B)) −→ Kpr
n ((γF , B), Ẑl) are uniquely

l-divisible (see theorem 4.2.4). Similar results are obtained for Brauer-Severi
varieties.

Notes on Notation. For an additive abelian group A and a positive integer
m, we write A/m for A/mA, and A[m] = {x ∈ A | mx = 0}. If l is a rational
prime we denote by Al the l-primary subgroup of A, i.e. Al =

⋃
A[ls] =

lim
−→

A[ls].

Acknowledgements. Part of the work reported in this article was done
while I was visiting University of Bielefeld, Germany and IHES, Paris. It
was concluded and written up while visiting Max-Planck-Institut für Math-
ematik, Bonn, Germany. I like to thank the three institutions for hospitality
and finantial support.
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1. Equivariant higher K-theory for schemes

In this section, we briefly review equivariant higher algebraic K-theory
for schemes as defined by R.W. Thomason in [19], as well as review some
relevant examples. As remarked in the Introduction, the equivariant cate-
gories involved are special cases of equivariant exact categories discussed by
this author in [10], even though we shall in this paper stick to the notations
and terminologies of Thomason.

1.1. Generalities.

1.1.1. Let G be an algebraic group over a field F and RepF (G) the category
of representations of G in the category P(F ) of finite dimensional vector
spaces over F . We denote K0(RepF (G)) by RF (G) or R(G,F ) (or just
R(G) when the context is clear). Note that R(G) is the free abelian group
generated by the classes of irreducible representations and that R(G) also
has a ring structure induced by tensor product. Call R(G) the representation
ring.

Since RepF (G) is an exact category (see [16] or [13]) we denote Kn(RepF (G))
by Kn(G,F ), which is also equal to Gn(G,F ) (see [10]). So, G0(G,F ) =
RF (G) = K0(G,F ) (see 1.1.3 below).

1.1.2. Let G be a group scheme over a scheme Y (we shall mostly be
interested in Y = Spec(F ), F a field). A scheme X over Y is called a
G-scheme if there is an action morphism θ : G×

Y
X → X (see [19] or [11]).

A G-module M over X is a coherent OX -module M together with an
isomorphism of OG×

Y
X -modules ρ : θ∗(M)→ p∗2(M) where p2 : G×

Y
X → X

is the projection satisfying the cocycle condition on G×
Y

G×
Y

X:

p∗23(ρ) ◦ (idρ×θ)∗(ρ) = (m× idX)∗(ρ),

where m : G×
Y

G→ G is the multiplication (see [11] or [19]).

1.1.3. Let M(G,X) denote the abelian category of G-modules over a G-
scheme X. We write Gn(G,X) for Kn(M(G,X)). Note that when X =
Spec(F ) we recover Gn(G,F ) in 1.1.1.

Let P(G,X) be the full subcategory ofM(G,X) consisting of locally free
OX -modules. We can write Kn(G,X) for Kn(P(G,X)). Note that:

(a) if G is a trivial scheme, then Gn(G,X) ' Gn(X); Kn(G,X) '
Kn(X).

(b) Gn(G,−) is contravariant with respect to flat G-maps.
(c) Gn(G,−) is covariant with respect to projective G-maps.
(d) Kn(G,−) is contravariant with respect to any G-map.
(e) Gn(−, X) is contravariant with respect to group homomorphisms.
(f) Kn(−, X) is covariant with respect to group homomorphisms (see

[19] or [11]).
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1.1.4. We have the following generalization of 1.1.3 (see [11], [13]):
Let A be a finite dimensional separable F -algebra, G an algebraic group

over F and X a G-scheme. A G-A-module over a G-scheme X is a G-module
M which is also a left A⊗F OX -module such that g(am) = ga ·gm for g ∈ G,
m ∈M .

LetM(G,X,A) be the Abelian category whose objects are G-A-modules
and whose morphisms are A ⊗F OX - and G-module morphisms. We write
Gn(G,X,A) for Kn(M(G,X,A)). Note that M(G,X,F ) 'M(G,X), and
so, Gn(G,X,F ) ' Gn(G,X).

Let P(G,X,A) be the full subcategory of M(G,X,A) consisting of lo-
cally free OA⊗OX

-module. Write Kn(G,X,A) for Kn(P(G,X,A)). Hence
P(G,X,F ) ' P(G,X), Kn(G,X,F ) ' Kn(G,X).

1.1.5. Let G be an affine algebraic group over F , X a G-scheme, VBG(X)
the category of G-equivariant vector bundles on X. If H is a closed subgroup
of G, then we have an equivalence of categories

RepF (H)
ind
−−−→
←−−−

res
VBG(G/H),

where ‘ind’ and ‘res’ are defined as follows:

B res : For any vector bundle E
p
−−→ G/H, p−1(ē) ∈ RepF (H) (where ē =

eH = H) since the stabilizer of H in G/H = ē.
B ind : Let (V, α : H → Aut(V )) ∈ RepF (H). Then, one has a vector

bundle (G×V )/H → G/H where H acts on (G×V )/H by (g, v)h =

(g · h, h−1v), see [13]. We denote (G × V )/H by Ṽ . Here h−1v :=
α(h−1v). So we get Kn(RepF (H)) ' Kn(VBG(G/H)). We denote
Kn(VBG(G/H)) by Kn(G/H).

1.2. K-theory of twisted flag varieties. In this subsection we briefly
introduce twisted flag varieties and their algebraic K-theory. Details can be
found in [13]. We say enough here to develop notations for later use.

1.2.1. Let G̃ be a semi-simple connected and simply connected, F -split

algebraic group over a field F . Let T̃ ⊂ G̃ be a maximal F -split torus of

G̃, P̃ ⊂ G̃ a parabolic subgroup of G̃ containing the torus T̃ . The factor

variety F = G̃/P̃ is smooth and projective (see [13], [2]). Call F = G̃/F̃ a
flag variety.

Let N eG(T̃ ) be the normalizer of T̃ in G̃, W := N eG(T̃ )/T̃ the Weyl group

of G — a finite group. Let W eP
:= {w ∈ W | wP̃w−1 = P̃}. Put n(F) =

[W : W eP ]. Note that R(P̃ ) is a free R(G̃)-module of rank n(F̃) (see [13]).

1.2.2. Let Z̃ be the center of G̃ and Z̃∗ = Hom(Z̃, Gm) the group of char-

acters of Z̃. Note that Z̃∗ is a finite group.

Let x ∈ Z̃∗ and Repχ
G(P̃ ) be the full subcategory of RepF (P̃ ) consisting

of those V ∈ RepF (P̃ ) such that Z̃ acts on V by the character χ. The

F -group scheme Z̃ acts on V by the character χ and hence on every Ṽ =

(G̃× V )/P̃ ∈ VB eG
(F) (see 1.1.5).
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Let VB eG
(F , χ) be the full subcategory of VB eG

(F) consisting of those Ṽ

such that Z̃ acts on every fibre of Ṽ by the character χ. Write Kn(F , χ) for
Kn(VB eG(F , χ) and Rχ(P) for K0(Repχ

F (P)).

1.2.3. Let G̃, Z̃, T̃ , P̃ be as in 1.2.1 and 1.2.2. Put G̃ = G̃/Z̃, P = P̃ /Z̃,

T = T̃ /Z̃ and F = G̃/P̃ = G/P . Put g = Gal(Fsep/F ) where Fsep is the
separable closure of F . Let γ : g → G(Fsep) be a 1-cocycle (see [13]) and

γF the twisted form of F corresponding to γ (see [11] or [13]). We write
Kn(γF) for Kn(VBG(γF)).

Now, for χ ∈ Z̃∗ = Hom(Z̃, Gm), choose a non-trivial representation

Vχ ∈ Repχ(G̃). Put Aχ = EndF (Vχ). Then Aχ is an F -algebra equipped
with a G-action by F -algebra automorphism (see [13]). Using the 1-cocycle
γ, one gets a new g-action on Aχ ⊗F Fsep and hence a twisted form Aχ,γ of
the algebra Aχ (see [13]).

1.2.4. As in 1.2.3, let γ : g → G(Fsep) be a 1-cocycle and let γF be the
twisted form of F corresponding to the cocycle γ. Assume that char(F ) = 0

or char(P ) is prime to the order of Z̃∗. Now consider the exact sequence

{1} −→ Z̃ −→ G̃ −→ G̃/Z̃ −→ {1}

and the boundary map ∂ : H1(F,G)→ H2(F, Z̃). Then we have an element

∂γ ∈ H2(F, Z̃). Now, any χ ∈ Z̄∗ = Hom(Z̄, Gm) induces a map χ∗ :

H2(F, Z̃)→ H2(F,Gm) = Br(F ). Hence we now have a map

β : Z̃∗ −→ Br(F )

χ 7−→ χ∗(∂γ)

1.2.5. Lemma (Tits, [20]). Assume that char(F ) = 0 or that char(F ) is

prime to the order of Z̃∗, then [Aχ,γ ] = β(γ) ∈ Br(F ).

1.2.6. Remarks.

(a) Note from 1.2.5, that Aχ,γ is a central simple F -algebra.
(b) We give one example of the structure above. Other examples can

be found in [13]. Take G̃ = SLn, G = PGLn, Z̃ = µn, the group

scheme of nth roots of unity, Z̃∗ = Z/nZ whose generator is the

embedding µn
χ
↪→ Gm. Let Vn be the regular n-dimensional repre-

sentation of G̃. Then Vn ∈ Repχ(G̃). Take Vχi := V ⊗i
n ∈ Repχi

(G̃),
Ai := EndF (Vχi). Then Aχ,γ is a central simple F -algebra of degree

n corresponding to γ, and Aχi,γ ' A⊗i
χ,γ (for i = 0, 1, . . . , n − 1).

Put P =
{( a b

0 c

)∣∣ det(a) det(b) = 1
}
, a ∈ GLk, c ∈ GLn−k. Then

G̃/P̃ = Gr(k, n) is the Grassmannian variety of k-dimensional linear
subspaces of a fixed n-dimensional space.

1.2.7. Let B be a finite dimensional separable F -algebra, X a smooth pro-
jective variety equipped with the action of an affine algebraic group G over
F , γX the twisted form of X via a 1-cocycle γ. Let VBG(γX,B) be the
category of vector bundles on γX equipped with left B-module structure.
We write Kn(γX,B) for Kn(VBG(γX,B)).
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2. Profinite Higher K-Theory for Schemes — Definitions and

Relevant Examples

In this section we briefly introduce mod-ls and profinite K-theory for
exact categories with examples relevant to this paper. More details and
examples can be found in [10, chapter 8] or [8].

2.1. Mod-ls K-theory of C.

2.1.1. Let C be an exact category, l a rational prime, s a positive integer,
Mn+1

ls the (n+1)-dimensional mod-ls-space i.e. the space obtained from Sn

by attaching an (n + 1)-cell via a map of degree ls (see [3], [12]).
If X is any H-space, write πn+1(X, Z/ls) for [Mn+1

ls , X], the set of ho-

motopy classes of maps from Mn+1
ls to X. If C is an exact category and

X = BQC, write Kn(C, Z/ls) for πn+1(BQC, Z/ls) for n ≥ 1 and K0(C, Z/ls)
for K0(C)⊗ Z/ls. Call Kn(C, Z/ls) mod-ls K-theory of C.

2.1.2. Note from [10, 8.1.12] or [8] that the exact sequence

· · · −→ Kn(C)
ls
−→ Kn(C)

ρ
−→ Kn(C, Z/ls)

β
−→ Kn(C) −→ Kn(C) −→ · · ·

induces a short exact sequence for all n ≥ 2

0 −→ Kn(C)/ls −→ Kn(C, Z/ls) −→ Kn(C)[ls] −→ 0.

2.1.3. Examples.

(i) if A is a ring with identity, and C = P(A) the category of finitely gen-
erated projective A-modules, write Kn(A, Z/ls) for Kn(P(A), Z/ls).
Note that Kn(A, Z/ls) is also πn(BGL(A)+, Z/ls).

(ii) If Y is a scheme and C = P(Y ), the category of locally free sheaves
of OY -modules, write Kn(Y, Z/ls) for Kn(P(Y ), Z/ls). Note that for
Y = Spec(A), A commutative, we recover Kn(A, Z/ls).

(iii) Let A be a Noetherian ring and M(A) the category of finitely gen-
erated A-modules. We write

Gn(A, Z/ls) for Kn(M(A), Z/ls).

(iv) If Y is a Noetherian scheme, C = M(Y ) the category of coherent
sheaves of OY -modules, write

Gn(Y, Z/ls) for Gn(M(Y ), Z/ls).

(v) Let G be an algebraic group over a field F , X a G-scheme and
C =M(G,X) as defined in 1.1.3. Write

Gn((G,X), Z/ls) for Kn(M(G,X), Z/ls).

(vi) If C = P(G,X) as defined in 1.1.3, write

Kn((G,X), Z/ls) for Kn(P(G,X), Z/ls).

(vii) If C = VBG(γX,B) as in 1.2.7 we write

Kn((γX,B), Z/ls) for Kn(VBG(γX,B); Z/ls).

(viii) If C =M(G,X,A) as defined in 1.1.4, write

Gn((G,X,A), Z/ls) for Kn(M(G,X,A), Z/ls).
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(ix) If C = P((G,X,A), Z/ls) as in 1.1.4, we write

Kn((G,X,A), Z/ls) for Kn(P(G,X,A), Z/ls).

2.2. Profinite K-theory.

2.2.1. Let C be an exact category, l a rational prime, s a positive inte-
ger. Put Mn+1

l∞ = lim
−→

Mn+1
ls . We define the profinite K-theory of C by

Kpr
n (C, Ẑl) := [Mn+1

l∞ ;BQC]. We also write Kn(C, Ẑl) for lim
←−s

(C, Z/ls). Note

that for all n ≥ 1, we have an exact sequence

0 −→ lim
←−

s

1K2n+1(C, Z/ls) −→ Kpr
n (C, Ẑl) −→ Kn(C, Ẑl) −→ 0.

For more information see [10] or [8].

2.2.2. Examples.

(i) If C = P(A) as in 2.1.3(i), we write Kpr
n (A, Ẑl) for Kn(P(A), Ẑl) and

Kn(A, Ẑl) for Kn(P(A), Ẑl).

(ii) If C = P(Y ) as in 2.1.3(ii) we write Kpr
n (Y ; Ẑl) for Kpr

n (P(Y ), Ẑl)

and Kn(Y, Ẑl) for Kn(P(Y ), Ẑl).

(iii) If C = M(A) as in 2.1.3(iii) we write Gn(A, Ẑl) for Gpr
n (M(A), Ẑl)

and Gn(A, Ẑl) for Kn(M(A), Ẑl).
(iv) If C =M(Y ) as in 2.1.3(iv) write

Gpr
n (Y, Ẑl) for Kpr

n (M(Y ), Ẑl).

(v) If C =M(G,X) as in 2.1.3(v) write

Gpr
n ((G,X), Ẑl) for Kpr

n (M(G,X), Ẑl).

(vi) If C = P(G,X) as in 2.1.3(vi) write

Kpr
n ((G,X), Ẑl) for Kpr

n (P(G,X), Ẑl).

(vii) If C = VBG(γX,B) as in 2.1.3(vii), write

Kpr
n ((γX,B), Ẑl) for Kpr

n (VBG(γX,B), Ẑl).

(viii) If C =M(G,X,A) as in 2.1.3(viii) write

Gpr
n ((G,X,A), Ẑl) for Kpr

n (M(G,X,A), Ẑl).

(ix) If C = P(G,X,A) as in 2.1.3(ix) write

Kpr
n ((G,X,A), Ẑl) for Kpr

n (P(G,X,A), Ẑl).

3. Some Finiteness Results in Higher K-Theory of Twisted

Smooth Projective Varieties

In this section, we prove some finiteness results in the K-theory of twisted
flag varieties as well as K-theory of twisted forms of some other smooth
projective varieties over number fields and p− adic fields.

3.1. Finiteness results for twisted flag varieties.
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3.1.1. Let G̃ be a semi-simple, simply connected and connected F -split al-

gebraic group over a field F , P̃ a parabolic subgroup of G, γ the 1-cocycle

γ : Gal(Fsep/F ) → G̃(Fsep), γF the twisted form of F . Let B be a finite
dimensional separable F -algebra. We write Kn(γF , B) for Kn of the cat-
egory VBG(γF , B) of vector bundles on γF equipped with left B-module
structure. We prove the following result.

3.1.2. Theorem. Let F be a number field. Then for all n ≥ 1,

(a) K2n+1(γF , B) is a finitely generated Abelian group.
(b) K2n(γF , B) is a torsion group and has no non-trivial divisible ele-

ments.

In order to prove 3.1.2, we first prove the following

3.1.3. Theorem. Let Σ be a semi-simple algebra over a number field F .
Then for all n ≥ 1

(a) K2n+1(Σ) is finitely generated Abelian group.
(b) K2n(Σ) is torsion and has no non-zero divisible elements.

Proof. (a) Let R be the ring of integers of F . It is well-known that any
semi-simple F -algebra contains at least one maximal R-order (see [10], [16]
or [4]). So let Γ be a maximal order in Σ. From the localization sequence

· · · →
⊕

p

G2n+1(Γ/pΓ)→ G2n+1(Γ)→ G2n+1(Σ)→
⊕

p

G2n(Γ/pΓ)→ · · ·

(I)
(whose p ranges over all prime ideals of R) we have

G2n(Γ/pΓ) ' K2n((Γ/pΓ)/ rad(Γ/pΓ))

where (Γ/pΓ)/ rad(Γ/pΓ) is a finite semi-simple ring which is a direct prod-
uct of matrix algebras over finite fields. So, G2n(Γ/pΓ) = 0. Note that since
Γ and Σ are regular, Kn(Γ) ' Gn(Γ) and Kn(Σ) ' Gn(Σ) for all n ≥ 0.
But K2n+1(Γ) is finitely generated (see [10, theorem 7.1.13] or [7]). Hence
K2n+1(Σ) is finitely generated as a homomorphic image of G2m+1(Γ). �

(b) Recall from the proof of (a) that G2n(Γ/pΓ) = 0. Hence Quillen’s
localization sequence yields

0→ G2n(Γ)→ G2n(Σ)→
⊕

p

G2n−1(Γ/pΓ)→ SK2n−1(Γ)→ 0. (II)

Also recall that since Γ, Σ are regular, Kn(Γ) ' Gn(Γ) and Kn(Σ) '
Gn(Σ) for all n ≥ 0. But G2n(Γ) ' K2n(Γ) is a finite group for all n ≥ 1
(see [10] theorem 7.1.12 or [6]). Also,

⊕
G2n+1(Γ/pΓ) is a torsion group

as a direct sum of finite groups, see [10, 7.1.12]. Hence it follows from the
diagram (II) above that G2n(Σ) ' K2n(Σ) is a torsion group.

Also from one sequence (II),
⊕

G2n−1(Γ/pΓ), as a direct sum of finite
groups has no non-trivial divisible elements. So any divisible element in
K2n(Σ) must come from G2n(Γ) ' K2n(Γ). But K2n(Γ) is a finite group
and also has no non-trivial divisible elements. Hence G2n(Σ) has no non-
trivial divisible elements.
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Proof of 3.1.2. (a) It was proved in [13] that for all n ≥ 0 Kn(Aχ,γ ⊗F B) '
Kn(γF , B). So, it suffices to prove that K2n+1(Aχ,γ ⊗F B) is finitely gener-
ated. Now, as discussed in 1.2.4–1.2.6, Aχ,γ is a central simple F -algebra.
Also B being separable is also semi-simple. So, Aχ,γ ⊗F B is a semi-simple
F -algebra (see [14, p. 136]). Hence by theorem 3.1.3(a) K2n+1(Aχ,γ ⊗F B)
is finitely generated. Hence K2n−1(γF , B) is finitely generated.

(b) follows from theorem 3.1.3(b) by substituting Aχ,γ ⊗F B for Σ. �

3.1.4. Remarks.

(a) One can also see that K2n+1(γF) is finitely generated as a special
case of 3.1.2(a). However one can also prove it directly as follows:

Since
⊕n(F)

1 K2n+1(F ) = K2n+1(γF) (see [13]), we only have to see
that K2n+1(F ) is finitely generated (since we have a finite direct
sum of K2n+1(F )). Now by Quillen’s result, K2n+1(R) is finitely
generated and by Soule’s result K2n+1(R) ' K2n+1(F ) is finitely
generated.

(b) To see that K2n(γF) is torsion it suffices to show that K2n(F ) is

torsion since
⊕n(F)

1 K2n(F ) ' K2n(γF). The arguments are similar
to the proof of 3.1.3(b) applied to the short exact sequence

0 −→ K2n(R) −→ K2n(F ) −→
⊕

p

K2n−1(R/p) −→ 0

of Soule, realizing that K2n(R) is finite and each K2n−1(R/p) is also
finite.

We now turn attention to the local structure.

3.1.5. Theorem. Let F be a p-adic field, l a rational prime such that l 6= p.
Then for all n ≥ 1 and any separable F -algebra B, Kn(γF , B)l is a finite
group.

Proof. As noted before, Aχ,γ ⊗F B is a semi-simple F -algebra and so, it
suffices to prove that for any semi-simple F -algebra Σ, Kn(Σ)l is a finite
group for any n ≥ 1. To do this, it suffices to show that for any central
division algebra D over some p-adic field F , Kn(D)l is a finite group.

Now, D has at least one maximal order Γ, say (see [4]). Let m be the
unique maximal ideal of Γ. Then, from the localization sequence

· · · → Kn(Γ/m, Z/ls)→ Kn(Γ, Z/ls)→ Kn(D, Z/ls)→ Kn−1(Γ/m, Z/ls)→ · · ·
(III)

we know that Kn(Γ, Z/ls) ' Kn(Γ/m, Z/ls) for all n ≥ 1. (See [18, corollary
2 to theorem 2]).

Now, the groups Kn(Γ/m, Z/ls), n ≥ 1 are finite groups with uniformly
bounded orders (see [18]). Hence, so are the groups Kn(D, Z/ls) and Kn(Γ, Z/ls)
(from the exact sequence (III)). Also from 2.1.2, we have an exact sequence

0 −→ Kn+1(D)/ls −→ Kn(D, Z/ls) −→ Kn(D)[ls] −→ 0 (IV)

where Kn+1(D, Z/ls) is finite group having uniformly bounded orders (as
shown above). So the groups Kn(D)[ls] are equal for s ≥ some s0. But
Kn(D)l =

⋃∞

n=1 Kn(D)[ls]. Hence Kn(D)l is finite. �
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3.1.6. Remarks. Let V be a Brauer-Severi variety over a field F , and A the
finite dimensional central division F -algebra associated to V . D. Quillen
shows in [15] that

Kn(V ) =

dim V⊕

s=0

Kn(A⊗s),

for all n ≥ 1.

(a) Suppose that F is a number field, then K2n+1(V ) is a finitely gen-
erated Abelian group. Again, this follows from theorem 3.1.3.

(b) If F is a p-adic field then for all n ≥ 1 Kn(V )l is a finite group if l
is a prime 6= p.

3.2. Finiteness results for some objects of the motivic category

C(G).

3.2.1. Let G be an algebraic group over a field F . By considering a smooth
projective G-scheme as an object of a category C(G) defined below, we have
similar finiteness results to those of 3.1 for Kn(γX,B) where γ is a 1-cocycle,

γX is the γ-twisted form of X and B is a separable F -algebra.

3.2.2. The category C(G) is constructed as follows (the construction is due
to I. Panin, see [13], or [11]):

The objects of C(G) are pairs (X,A) whose X is a smooth projective G-
scheme and A is a finite dimensional separable F -algebra on which G acts
by F -algebra automorphisms. Define

HomC(G)((X,A), (Y,B)) := K0(G,X × Y,Aop ⊗F B).

Composition of morphisms is defined as follows: If u : (X,A) → (Y,B),
v : (Y,B)→ (Z, c) are two morphisms, then the composite is defined by

v ◦ u := p∗13(p
∗
23(v) ⊗B p∗12(u)),

where p12 : X ⊗ Y ⊗ Z −→ X ⊗ Y , p13 : X ⊗ Y ⊗ Z −→ X ⊗ Z, and
p23 : X ⊗ Y ⊗ Z −→ Y ⊗ Z.

The identity endomorphism of (X,A) in C(G) is the class [A⊗F O∆] (where

∆ ⊂ X ×X is the diagonal) in Ko(G,X ×X,A(γ) ⊗F A) = EndC(G)(X,A).
We now have the following results.

3.2.3. Theorem. Let α : C
∼
−→ X be an isomorphism in the category C(G),

i.e., α : (Spec(F ), C)
∼
−→ (X,F ). For every 1-cocycle γ : Gal(Fsep/F ) →

GFsep and any finite dimensional separable F -algebra B, let Kn(γY,B) be as
defined in 1.2.3.

(a) If F is a number field, then for n ≥ 1,
(i) K2n+1(γX,B) is a finitely generated Abelian group and has no

non-trivial divisible elements.
(ii) K2n(γX,B) is a torsion group and has no non-trivial divisible

elements.
(b) If F is a p-adic field, l a rational prime such that l 6= p, then for all

n ≥ 1 and any separable F -algebra B, Kn(γX,B)l is a finite group.
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Proof. From [13], we have that for all n ≥ 1 Kn(Cγ ⊗F B) ' Kn(γX,B)
where F is any field and Cγ ⊗F B is a semi-simple F -algebra Σ, say.

If F is a number field, (a)(i),(ii) follows from 3.1.3(a),(b). IF F is a p-adic
field it suffices to prove that for all n ≥ 1, Kn(Σ)l is a finite group. But this
is done already in the proof of 3.1.5. �

4. Profinite Equivariant K-Theory for G-Schemes

4.1. A general result. We first prove the following general result for later
use

4.1.1. Theorem. Let C, C ′ be exact categories and f : C → C ′ an exact func-
tor which induces an Abelian group homomorphism f∗ : Kn(C) → Kn(C′),
for each n ≥ 0. Let l be a rational prime, s a positive integer

(a) Suppose that f∗ is injective (resp. surjective, resp. bijective), then
so are the induced maps

f̂∗ : Kn(C, Z/ls) −→ Kn(C′, Z/ls) and

fpr
∗ : Kpr

n (C, Ẑl) −→ Kpr
n (C′, Ẑl).

(b) If f∗ is split surjective (resp. split injective) then so is

f̂∗ : Kn(C, Z/ls) −→ Kn(C, Z/ls).

Proof. Consider the following commutative diagram (I) where the rows are
exact and the vertical arrows are induced from f∗.

0 −→ Kn(C)/ls
δ

−−−−→ Kn(C, Z/ls)
η

−−−−→ Kn−1(C)[l
s] −→ 0

yf̄∗

yf̂∗

yf ′

∗

0 −→ Kn(C′)/ls
δ′

−−−−→ Kn(C′, Z/ls)
η′

−−−−→ Kn−1(C
′)[ls] −→ 0

(I)

�

Now, f∗ injective (resp. surjective, resp. bijective) implies that f̄∗, f ′
∗ are

injective (resp. surjective, resp. bijective). So by applying the five lemma to
diagram (I), we have that f̄∗, f

′
∗ injective (resp. surjective, resp. biyective)

imply that f̂∗ is injective (resp. surjective, resp. biyective). Hence f∗

injective (resp. surjective, resp. bijective) implies that f̂∗ is injective (resp.
surjective, resp. biyective). This proves the first part of (a).

Now consider the following commutative diagram

0 −→ lim
←−s

1Kn+1(C, Z/ls)
δ

−−−−→ Kpr
n (C, Ẑl)

η
−−−−→ Kn(C, Ẑl) −→ 0

yf̂ ′

∗

yfpr
∗

yf̂ ′′

∗

0 −→ lim
←−s

Kn+1(C
′, Z/ls)

δ′
−−−−→ Kpr

n (C′, Ẑl)
η′

−−−−→ Kn(C′, Ẑl) −→ 0

(II)

where f̂ ′
∗ and f̂ ′′

∗ are induced by f̂∗ in diagram (I).
Note that,

Kn(C, Ẑl) := lim
←−

s

Kn(C, Z/ls) and Kn(C′, Ẑl) := lim
←−

s

Kn(C, Z/ls).
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Now if f̂∗ is injective (resp. surjective, resp. biyective) in diagram (I), then

f̂ ′
∗ and f̂∗ are both injective (resp. surjective, resp. bijective) in diagram

(II).

Also by applying the five lemma to diagram (II) we find that if f̂ ′
∗ and

f̂ ′′
∗ are both injective (resp. surjective, resp. bijective), then f pr

∗ is injective
(resp. surjective, resp. bijective). Hence if f∗ is injective (resp. surjective,

resp. bijective) then so is f̂∗ and this implies that f pr
∗ is injective (resp.

surjective, resp. bijective) as required.

(b) We prove here only that f∗ split surjective implies that f̂∗ is split

surjective since proving that f∗ split injective implies that f̂∗ is split injective
is similar.

First observe that the horizontal sequences in diagram (I) are split ex-
act (see [10] or [1]) since l is an odd prime. Hence there exist a map

δ̂ : Kn(C, Z/ls) → Kn(C)/ls such that δ̂δ = 1Kn(C/ls), as well as a map

δ̂′ : Kn(C′, Z/ls) → Kn(C′)/ls such that δ̂′δ′ = 1Kn(C′/ls). Also, f∗ split

surjective implies that f̄∗ is split surjective. So, there exists f̄ ′
∗ such that

f̂∗f̂
′
∗ = 1Kn(C)/ls . Put f̂ ′

∗ = δf̄ ′
∗δ̂

′. Then for any x ∈ Kn(C′, Z/ls),

f̂∗f̂
′
∗(x) = f̂∗δf̄

′
∗δ̂

′(x)

= δ′f̄∗f̄
′
∗δ̂

′(x), by the commutativity of the left-hand square,

= x.

Hence f̂∗f̂
′
∗ = idKn(C′,Z/ls) i.e. f̂∗ is split surjective.

4.1.2. Remark. This author is not able to use the procedure above to show
that f∗ split surjective (resp. split injective) implies that

fpr
∗ : Kpr

n (C, Ẑl) −→ Kpr
n (C, Ẑl)

is split surjective (resp. split injective). This is because it is not known (to
the author) that the sequence

0 −→ lim
←−

s

1Kn+1(C, Z/ls) −→ Kpr
n (C, Ẑl) −→ Kn(C, Ẑl) −→ 0

is split.

4.2. Remarks and examples. Theorem 4.1.1 applies notably in the fol-
lowing situations

(a) Let B be a split solvable group, T ⊂ B a split maximal torus, X a B-
scheme. Then, by [11], Gn(B,X) −→ Gn(T,X) is an isomorphism.

So, by 4.1.1, Gpr
n ((B,X), Ẑl) −→ Gpr

n ((T,X), Ẑl) is an isomorphism.
(b) Let G be an algebraic group over a field F , H a closed subgroup of G

such that G/H ' A
1
F and X a G-scheme. It is known (see [11]) that

Gn(G,X) ' Gn(H,X). Hence Gpr
n ((G,X), Ẑl) ' Gpr

n ((H,X), Ẑl).
(c) Let G be a split reductive group with π1(G) torsion free and X a

smooth projective G-scheme. Then the restriction homomorphism
Gn(G,X) −→ Gn(X) is surjective (see [11]). Hence, by 4.1.1 follows

that Gpr
n ((G,X), Ẑl) −→ Gpr

n (X, Ẑl) is surjective.
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(d) Let G be a reductive group defined over a field F such that G is
factorial (i.e. for any finite field extension E/F , Pic(GE) is trivial).
Let X be a smooth projective G-scheme over F . Then the restriction
homomorphism Gn(G,X) −→ Gn(X) is split surjective (see [11]).
Hence by 4.1.1 Gn((G,X), Z/ls) −→ Gn(X, Z/ls) is split surjective

and so Gn((G,X), Ẑl) −→ Gn(X, Ẑl) is split surjective. (Recall that

Gn(C, Ẑl) = lim
←−s

Gn(C, Z/ls).)

(e) Let G be an algebraic group over F and X a quasi-projective smooth
G-scheme. Then Kn(G,X,A) ' Gn(G,X,A) (see [11]). Hence by

4.1.1 Kpr
n ((G,X,A), Ẑl) ' Gpr

r ((G,X,A), Ẑl).
(f) Let U be a split unipotent group over F , X a U -scheme. Then the

restriction homomorphism Gn(U,X) −→ Gn(X) is an isomorphism

(see [11]). Hence by 4.1.1, Kpr
n ((U,X), Ẑl) ' Kpr

n (X, Ẑl)

4.3. Some computations. In this subsection, we obtain some l-completeness
and other results for some twisted flag varieties as well as Brauer–Severi va-
rieties over number fields and p-adic fields. Recall that if l is a rational
prime, an Abelian group H is said to be l-complete if H = lim

←−
s

H/lsH.

4.3.1. Theorem. Let F be a number field, G̃ a semi-simple, connected,

simply connected split algebraic group over F , P̃ a parabolic subgroup of G̃,

F = G̃/P̃ , γ a 1-cocycle Gal(Fsep/F ) −→ G̃(Fsep), γF the γ-twisted form
of F , B a finite dimensional separable F -algebra. Then for all n ≥ 1,

(1) Kpr
2n((F , B), Ẑl) is an l-complete Abelian group.

(2) div Kpr
2n((F , B), Ẑl) = 0.

Proof. From [13] we have an isomorphism Kn(Aχ,γ ⊗F B) ' Kn(γF , B) for

all n ≥ 0. Hence by 4.1.1 we also have Kpr
n ((Aχ,γ⊗FB), Ẑl) ' Kpr

n ((F , B), Ẑl).

So, it suffices to show that Kpr
2n((Aχ,γ ⊗F B), Ẑl) is l-complete for all n ≥ 1.

As earlier explained in the proof of 3.1.2, Aχ,γ ⊗F B is a semi-simple F -
algebra and so, by theorem 3.1.3, K2n+1(Σ) is a finitely generated Abelian
group. Now it is proved in [10, lemma 2.8] or [8], that for all m ≥ 2 and any
exact category C,

lim
←−

s

(Kpr
m (C, Ẑl)/l

s ' Km(C, Ẑl)

Hence for any m ≥ 2

lim
←−

s

Kpr
m (Σ, Ẑl)/l

s ' Km(Σ, Ẑl). (III)

Also, for any m ≥ 2 and any exact category C we have from [10, lemma
8.2.1] or [8] an exact sequence

0 −→ lim
←−

s

1Km+1(C, Z/ls) −→ Kpr
m (C, Ẑl) −→ Km(C, Ẑl) −→ 0.

Hence we have an exact sequence (for m ≥ 2)

0 −→ lim
←−

s

1Kn+1(Σ, Z/ls) −→ Kpr
m (Σ, Ẑl) −→ Kn(C, Ẑl) −→ 0. (IV)
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Since K2n+1(Σ) is finitely generated for n ≥ 1 then K2n+1(Σ, Z/ls) is a
finite group and so, lim

←−s
1K2n+1(Σ, Z/ls) = 0. Hence from (IV),

Kpr
2n(Σ, Ẑl) ' K2n(Σ, Ẑl). (V)

Also from (III),

lim
←−

s

Kpr
2n(Σ, Ẑl)/l

s ' K2n(Σ, Ẑl). (VI)

From (V) and (VI) we now have

lim
←−

s

Kpr
2n(Σ, Ẑl)/l

s ' Kpr
2n(Σ, Ẑl).

So, Kpr
2n(Σ, Ẑl) is l-complete. Hence Kpr

2n(rF , Ẑl) is l-complete.
(b) From [10, theorem 8.2.2(ii)] or [8], we have that for all m ≥ 2 and any

exact category C,

lim
←−

s

1Km+1(C, Z/ls) = div Kpr
m (C, Ẑl)

Hence for all m ≥ 2,

lim
←−

s

1Km+1(Σ, Z/ls) = div Kpr
m (Σ, Ẑl).

If m = 2n, then K2n+1(Σ) is finitely generated and so, K2n+1(Σ, Z/ls) is a

finite group. Hence, lim
←−

1K2n+1(Σ, Z/ls) = 0. Hence div Kpr
2n(Σ, Ẑl) = 0 and

so, div Kpr
2n((γF , B), Ẑl) = 0. �

4.3.2. Remarks. The following results can be proved by procedures similar
to those above.

(a) If F is a number field, γF as in 4.2.1, then Kpr
2n(F , Ẑl) is an l-complete

Abelian group and div Kpr
2n(γF , Ẑl) = 0. The proof in this case is

easier.
(b) If V is a Brauer-Severi variety over a number field F , then for all

n ≥ 2, Kpr
2n(V, Ẑl) is l-complete and div Kpr

2n(V, Ẑl) = 0.

4.3.3. Our next aim is to consider the situation when F is a p-adic field.
Before doing this, we make some general observations. Note that for any
exact category C, the natural map Mn+1

l∞ → Sn+1 induces a map

[Sn+1, BQC]
ϕ
−→ [Mn+1

l∞ , BQC]

i.e.,

Kn(C)
ϕ
−→ Kpr

n (C, Ẑl) (VII)

and hence maps

Kn(C)/ls −→ Kpr
n (C, Ẑl)/l

s (VIII)

and

Kn(C)[ls] −→ Kpr
n (C, Ẑl)[l

s]. (IX)

We shall denote the maps in (VIII) and (IX) also by ϕ by abuse of notation.
We now prove the following result.
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4.3.4. Theorem. Let p be a rational prime, F a p-adic field, G̃ a semisimple

connected and simply connected split algebraic group over F , P̃ a parabolic

subgroup og G̃, γ a 1-cocycle Gal(Fsep/F ) −→ G̃(Fsep), γF the γ-twisted
form of F , B a finite dimensional separable F -algebra, l a rational prime
such that l 6= p. Then for all n ≥ 2

(a) Kpr
n ((γF , B), Ẑl) is an l-complete profinite Abelian group.

(b) Kpr
n ((γF , B), Ẑl) ' Kn((γF , B), Ẑl).

(c) The map ϕ : Kn(γF , B) −→ Kpr
n ((γF , B), Ẑl) induces isomorphisms

(1) Kn(γF , B)[ls] ' Kpr
n ((γF , B), Ẑl)[l

s],

(2) Kn(γF , B)/ls ' Kpr
n ((γF , B), Ẑl)/l

s.

(d) Kernel and cokernel of Kn((γF , B)) −→ Kpr
n ((γF , B), Ẑl) are uniquely

l-divisible.
(e) div Kpr

n ((γF , B), Ẑl) = 0 for n ≥ 2.

Proof. (a), (b). Since Kn(Aχ,γ ⊗F B) ' Kn((γF , B)) and Aχ,γ ⊗F B is a
semi-simple F -algebra Σ, say, it suffices for the proof of (a) to show that

Kpr
n (Σ, Ẑl) is l-complete profinite Abelian group. To do this it suffices to

prove that Kpr
n (D, Ẑl) is an l-complete profinite Abelian group for a central

division algebra over a p-adic field F . From the proof of 3.1.5, we saw already
that Kn(D, Z/ls) is a finite group. Hence, in the exact sequence

0 −→ lim
←−

s

1Kn+1(D, Z/ls) −→ Kpr
n (D, Ẑl) −→ Kn(D, Ẑl) −→ 0,

we have lim
←−

1 Kn+1(D, Z/ls) = 0. Hence

Kpr
n (D, Ẑl) ' Kn(D, Ẑl) (X)

proving (b).

Now, for any exact category C, we have lim
←−

Kn(C, Z/ls) ' Kn(C, Ẑl) for

all n ≥ 2 (see [10, lemma 8.2.2] or [7]). So, we have

lim
←−

s

Kpr
n (D, Z)/ls ' Kn(D, Ẑl). (XI)

From (X) and (XI) we now have lim
←−

Kpr
n (D, Z)/ls ' Kpr

n (D, Ẑl) — proving

(a). It is profinite because Kpr
n (D, Ẑl) = lim

←−
Kn(D, Z/ls), where Kn(D, Z/ls)

is a finite group.
(c),(d). Recall that Kn(γF , B) is by definition the Kn of the (exact)

category of vector bundles on γF equipped with left B-module structure.
Recall also from theorem 3.1.5 that for all n ≥ 1, Kn(γF , B)l is a finite
group and hence has no non-zero divisible subgroups. Hence, (c) follows
from [10, theorem 8.2.1] or [8] and (d) follows from [10, corollary 8.2.1] or
[8].

(e). We saw in the proof of 3.1.5 that Kn(D, Z/ls) is a finite group for
all n ≥ 2. Hence lim

←−
1Kn(D, Z/ls) = 0 for all n ≥ 2. But by [10, theorem

8.2.2(ii)] or [8]

lim
←−

1Km+1(D, Z/ls) ' div Kpr
m (D, Ẑl).

Hence div Kpr
n (D, Ẑl) = 0 as required for all n ≥ 1, so div Kpr

n ((γF , B), Ẑl) =
0. �



16 ADEREMI KUKU

4.3.5. Remarks. (a) Let V be a Brauer-Severi variety over a p-adic field F .
By a similar proof to that of 4.2.4, we have

(i) Kpr
n (V, Ẑl) ' Kn(V, Ẑl) is an l-complete profinite Abelian group.

(ii) Kn(V )/ls ' Kpr
n (V, Ẑl)/l

s and Kn(V )[ls] ' Kpr
n (V, Ẑl)[l

s].

(iii) Kernel and cokernel of Kn(V )→ Kpr
n (V, Ẑl) are uniquely l-divisible.

(iv) div Kpr
n (V, Ẑl) = 0.

(b) Finally, if γX is as in 3.2.3, we have similar results to those of 4.2.4 for

Kpr
n ((γX,B), Ẑl), etc.
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