PROFINITE EQUIVARIANT HIGHER ALGEBRAIC
K-THEORY FOR THE ACTIONS OF ALGEBRAIC

GROUPS

ADEREMI KUKU

ABSTRACT. Let G be an algebraic group over a field F. In this paper,
we study and compute equivariant higher K-groups as well as profinite
equivariant higher K-groups for some G-schemes when F' is a number
field or p-adic field.

For example, let o F be a twisted flag variety (see 1.2.3), and B a finite
dimensional separable F-algebra. When F' is a number field, we prove
that Kont1(4F, B) is a finitely generated Abelian group; Ko, (4F, B)
is torsion (see theorem 3.1.2); K" ((,F,B),Z) is l-complete and fur-
thermore div K2 ((,F, B), Z;) = 0 (see theorem 4.3.1). When F is a
p-adic field, we prove that for all n > 2 K,(,F, B); is a finite group,
KB ((,F,B), Zi) = Kn((4F, B), Z) is an I-complete profinite Abelian
group and div K2 ((,F, B), Z;) = 0.

We obtain similar results for some other smooth projective varieties
(see 3.1.5, 3.2.3, 4.3.5).
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2 ADEREMI KUKU

INTRODUCTION

Let G be an algebraic group over a field F. The aim of this paper is to
study equivariant K-theory as well as profinite equivariant K-theory for G-
schemes with the goal of computing these K-theoretic groups for twisted flag
varieties, Brauer—Severi varieties and some other smooth projective varieties
over number fields and p-adic fields.

We start in section 1 by reviewing the equivariant higher algebraic K-
theory for schemes (& la Thomason, see [19]) with relevant examples includ-
ing those that have appeared in the works of A. Merkujev [11] and I. Panin
[13]. We note, however, that the equivariant categories involved are special
cases of equivariant exact categories discussed in [10], even though we have
focussed in this paper on the notations and terminologies of Thomason [19].

We prove at first some finiteness results in the K-theory of twisted flag
varieties. More precisely, let G be a semi-simple connected and simply con-
nected F-split algebraic group over a field F', P a parabolic subgroup of
G, F = G/P, ,F the twisted form of F with respect to the l-cocycle
v : Gal(Fyep/F) — G(Fyep) (see 1.2 or [13]), B a finite-dimensional separable
F-algebra and K, (,F, B) the Quillen K-theory of the category VBz(,F, B)
of vector bundles on F equipped with left B-module structure. We prove
that when F' is a number field, Ko,11(,F, B) is a finitely generated abelian
group and Ky, (,F,B) is torsion and has no non-trivial divisible elements
for all n > 1 (see theorem 3.1.2). When F' is a p-adic field, we prove that
K, (F,B); is a finite group for all n > 1 (see theorem 3.1.5).

We obtain similar results for K-theory of Brauer-Severi varieties as well
as for K-theory of twisted forms of some smooth projective varieties arising
in the context of a motivic category constructed by I. Panin (see 3.2.3 or
[13]).

In section 2 we introduce mod-I* and profinite higher algebraic K-theory
with copious examples relevant to this paper. We then prove that if F'
is a number field, then for all n > 1, Kg;((wf,B),Zl) is l-complete and
div K¥ ((,F, B),Z;) = 0 (see theorem 4.2.1).

When F is a p-adic field, we have that for all n > 1, K} ((,F, B),7;) ~
Kn((,F, B)Z;) are I-complete profinite groups, div K3 ((,F, B),Z;) = 0 and
the kernel and cokernel of K, ((,F, B)) — KR'((,F, B),Z;) are uniquely
l-divisible (see theorem 4.2.4). Similar results are obtained for Brauer-Severi
varieties.

Notes on Notation. For an additive abelian group A and a positive integer
m, we write A/m for A/mA, and Ajm] = {z € A | mz = 0}. If | is a rational
prime we denote by A; the l-primary subgroup of A, i.e. A; = |JA[l]] =
lim A[l*].

Acknowledgements. Part of the work reported in this article was done
while I was visiting University of Bielefeld, Germany and THES, Paris. It
was concluded and written up while visiting Max-Planck-Institut fiir Math-
ematik, Bonn, Germany. I like to thank the three institutions for hospitality
and finantial support.
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1. EQUIVARIANT HIGHER K-THEORY FOR SCHEMES

In this section, we briefly review equivariant higher algebraic K-theory
for schemes as defined by R.W. Thomason in [19], as well as review some
relevant examples. As remarked in the Introduction, the equivariant cate-
gories involved are special cases of equivariant exact categories discussed by
this author in [10], even though we shall in this paper stick to the notations
and terminologies of Thomason.

1.1. Generalities.

1.1.1.  Let G be an algebraic group over a field F' and Rep »(G) the category
of representations of G in the category P(F') of finite dimensional vector
spaces over F. We denote Ko(Repr(G)) by Rrp(G) or R(G,F) (or just
R(G) when the context is clear). Note that R(G) is the free abelian group
generated by the classes of irreducible representations and that R(G) also
has a ring structure induced by tensor product. Call R(G) the representation
ring.
Since Rep(G) is an exact category (see [16] or [13]) we denote K,,(Repr(G))

by K, (G, F), which is also equal to G, (G, F) (see [10]). So, Go(G,F) =
Rp(G) = Ko(G, F) (see 1.1.3 below).

1.1.2. Let G be a group scheme over a scheme Y (we shall mostly be

interested in Y = Spec(F), F a field). A scheme X over Y is called a

G-scheme if there is an action morphism 6 : G x X — X (see [19] or [11]).
Y

A G-module M over X is a coherent Ox-module M together with an
isomorphism of Ogx x-modules p : §*(M) — p5(M) where pa : G x X — X
Y Y

is the projection satisfying the cocycle condition on G X G x X:
Y Y

pa3(p) o (id, x0)"(p) = (m x idx)*(p),

where m : G x G — G is the multiplication (see [11] or [19]).
Y

1.1.3. Let M(G, X) denote the abelian category of G-modules over a G-
scheme X. We write G,,(G, X) for K,,(M(G,X)). Note that when X =
Spec(F) we recover G, (G, F) in 1.1.1.

Let P(G, X) be the full subcategory of M(G, X) consisting of locally free
Ox-modules. We can write K, (G, X) for K,,(P(G,X)). Note that:

(a) if G is a trivial scheme, then G,(G,X) ~ G,(X); K,(G,X) ~
K, (X).
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1.1.4.  We have the following generalization of 1.1.3 (see [11], [13]):

Let A be a finite dimensional separable F-algebra, G an algebraic group
over F' and X a G-scheme. A G-A-module over a G-scheme X is a G-module
M which is also a left A® pOx-module such that g(am) = ga-gm for g € G,
me M.

Let M(G, X, A) be the Abelian category whose objects are G-A-modules
and whose morphisms are A ® p Ox- and G-module morphisms. We write
Gn(G,X,A) for K,(M(G, X, A)). Note that M(G, X, F) ~ M(G, X), and
s0, Gp(G, X, F) ~ G, (G, X).

Let P(G, X, A) be the full subcategory of M(G, X, A) consisting of lo-
cally free Oag0,-module. Write K, (G, X, A) for K,,(P(G,X,A)). Hence
PG, X, F)~PG,X), K,(G,X,F) ~ K, (G, X).

1.1.5.  Let G be an affine algebraic group over F';, X a G-scheme, VBg(X)
the category of G-equivariant vector bundles on X. If H is a closed subgroup
of GG, then we have an equivalence of categories

ind

Repp(H) —— VBa(G/H),

where ‘ind’ and ‘res’ are defined as follows:

> res: For any vector bundle E £~ G/H, p~1(é) € Repy(H) (where & =
eH = H) since the stabilizer of H in G/H = e.

> ind: Let (V,a : H — Aut(V)) € Repp(H). Then, one has a vector
bundle (GxV)/H — G/H where H acts on (GxV)/H by (g,v)h =
(g - h,h~1v), see [13]. We denote (G x V)/H by V. Here h™tv :=
a(h™). So we get K,(Repp(H)) ~ K,(VBg(G/H)). We denote
Ko(VBG(G/H)) by Kn(G/H).

1.2. K-theory of twisted flag varieties. In this subsection we briefly
introduce twisted flag varieties and their algebraic K-theory. Details can be
found in [13]. We say enough here to develop notations for later use.

1.2.1. Let G be a semi- simple connected and simply connected, F-split
algebraic group over a field F'. Let T C G be a maximal F -split torus of
G PcGa ‘parabolic subgroup of G containing the torus 7. The factor
variety F = G/P is smooth and projective (see [13], [2]). Call F = G/F a
flag variety.

Let N@(f) be the normalizer of T in G, W := N@(f)/f the Weyl group
of G — a finite group. Let W5 := {w € W | wPw™! = P}. Put n(F) =
(W : W5]. Note that R(P) is a free R(G)-module of rank n(F) (see [13]).

1.2.2. Let Z be the center of G and Z* = Hom(Z, G.,) the group of char-
acters of Z. Note that Z* is a finite group.

Let # € Z* and Repé(ﬁ) be the full subcategory of Rep(P) consisting
of those V' € Rep »(P) such that Z acts on V by the character . The

F-group scheme Z acts on V' by the character x and hence on every V =
(G xV)/P e VBs(F) (see 1.1.5).
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Let VB&(F, x) be the full subcategory of VBz(F) consisting of those 1%

such that Z acts on every fibre of 1% by the character x. Write K, (F, x) for
Kn(VB&(F,x) and RX(P) for KO(Repifﬂ(P)).

123, Let G,Z,T,P be asin 1.2.1 and 1.2.2. Put G = G/Z, P = P/Z,
T=T/Z and F = G/P = G/P. Put g = Gal(Fy/F) where Fy, is the
separable closure of F'. Let v : g — G(Fysp) be a 1-cocycle (see [13]) and

+F the twisted form of F corresponding to v (see [11] or [13]). We write
Kn(yF) for Kn(VBa(yF)).

Now, for x € Z* = Hom(Z,G,,), choose a non-trivial representation
Vy € RepX(G). Put Ay, = Endp(V,). Then A, is an F-algebra equipped
with a G-action by F-algebra automorphism (see [13]). Using the 1-cocycle
7, one gets a new g-action on A, ®p Fyp and hence a twisted form A,  of

the algebra A, (see [13]).

1.24. Asin 1.2.3, let v : g — G(Fyep) be a 1-cocycle and let ,F be the
twisted form of F corresponding to the cocycle . Assume that char(F) = 0

or char(P) is prime to the order of Z*. Now consider the exact sequence
1V —Z2—G—G/Z— {1}

and the boundary map 0 : H YF,G) — H*(F, A ). Then we have an element
oy € I;IQ(F, Z). Now, any y € Z* = Hom(Z,G,,) induces a map . :
H?*(F,Z) — H?*(F,G,,) = Br(F). Hence we now have a map

B:7Z* — Br(F)

X — x«(07)

1.2.5. Lemma (Tits, [20]). Assume that char(F) =
prime to the order of Z*, then [Ay ] = B(v) € Br(F).
1.2.6. Remarks.

(a) Note from 1.2.5, that A, . is a central simple F-algebra.

(b) We give one example of the structure above. Other examples can
be found in [13]. Take G = SL,, G = PGL,,, Z = p,, the group
scheme of n'® roots of unity, 7% = Z/nZ whose generator is the

0 or that char(F) is

embedding p, & Gm. Let V,, be the regular n-dimensional repre-
sentation of G. Then V,, € RepX(G). Take V=V e RepX' (G),
A; = Endp(V,:). Then A, , is a central simple F-algebra of degree
n corresponding to 7, and Ay =~ A%fv (for : = 0,1,...,n — 1).
Put P = {(%%)‘ det(a) det(b) = 1}, a € GLg, ¢ € GL,,_;. Then
G/P = Gr(k,n) is the Grassmannian variety of k-dimensional linear
subspaces of a fixed n-dimensional space.

1.2.7. Let B be a finite dimensional separable F-algebra, X a smooth pro-
jective variety equipped with the action of an affine algebraic group G over
F, ,X the twisted form of X via a l-cocycle 7. Let VBg(,X, B) be the
category of vector bundles on X equipped with left B-module structure.
We write K,,(,X, B) for K,(VBa(,X,B)).
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2. PROFINITE HIGHER K-THEORY FOR SCHEMES — DEFINITIONS AND
RELEVANT EXAMPLES

In this section we briefly introduce mod-I* and profinite K-theory for
exact categories with examples relevant to this paper. More details and
examples can be found in [10, chapter 8] or [8].

2.1. Mod-/®* K-theory of C.

2.1.1. Let C be an exact category, | a rational prime, s a positive integer,
MZZH the (n+ 1)-dimensional mod-/*-space i.e. the space obtained from S"
by attaching an (n + 1)-cell via a map of degree [® (see [3], [12]).

If X is any H-space, write m,41(X,Z/1°) for [M;:™, X], the set of ho-
motopy classes of maps from Ml’;‘ﬂ to X. If C is an exact category and
X = BQC, write K,,(C,Z/1°) for m,+1(BQC,Z/1*) for n > 1 and Ky(C,Z/1°)
for Ko(C) ® Z/1°. Call K,,(C,Z/1®) mod-I* K-theory of C.

2.1.2. Note from [10, 8.1.12] or [8] that the exact sequence

s Kn(C) 5 K (C) s K (CZ)17) L K (C) — Kn(C) — -+
induces a short exact sequence for all n > 2
0 — K,(C)/lI° — K,(C,Z/I°) — K,(C)[I*] — 0.
2.1.3. Ezamples.
(i) if A is a ring with identity, and C = P(A) the category of finitely gen-
erated projective A-modules, write K, (A, Z/1°) for K, (P(A),Z/1°).
Note that K, (A,Z/1%) is also 7,(BGL(A)",Z/1®).
(ii) If Y is a scheme and C = P(Y'), the category of locally free sheaves
of Oy-modules, write K,,(Y,Z/1°) for K, (P(Y'),Z/l®). Note that for
Y = Spec(A), A commutative, we recover K, (A,Z/1*).

(iii) Let A be a Noetherian ring and M (A) the category of finitely gen-
erated A-modules. We write

Gn(A,Z/15) for Kn(M(A),Z/1%).

(iv) If Y is a Noetherian scheme, C = M(Y") the category of coherent
sheaves of Oy-modules, write

Go(Y,Z)1°) for Gn(M(Y),Z/I%).

(v) Let G be an algebraic group over a field F, X a G-scheme and
C = M(G, X) as defined in 1.1.3. Write

Gn((G,X),Z2/1°) for K,(M(G,X),Z/1%).
(vi) If C = P(G, X) as defined in 1.1.3, write
Ko((G,X),Z)15) for Kn(P(G,X),Z/I°).
(vii) If C = VBg(,X, B) as in 1.2.7 we write
K. ((-X,B),Z/I*) for K,(VBa(,X,B);Z/l®).
(viii) If C = M(G, X, A) as defined in 1.1.4, write
Gn((G,X,A),Z/1°) for K,(M(G,X,A),Z/").
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(ix) If C =P((G, X, A),Z/1®) as in 1.1.4, we write
K,(G,X,A),z2/)l°) for K,(P(G,X,A),Z/l®).

2.2. Profinite K-theory.

2.2.1. Let C be an exact category, | a rational prime, s a positive inte-
ger. Put M;ZOH = li_n)lMﬁH. We define the profinite K-theory of C by

K¥'(C, 2y) := [M'; BQC]. We also write K, (C, ;) for lim (C,Z/1*). Note
that for all n > 1, we have an exact sequence

0 — lim' Ko, 41 (C, Z/1°) — KP'(C, 7)) — Kn(C,Z;) — 0.

S

For more information see [10] or [8].

2.2.2. Examples.
(i) If C = P(A) as in 2.1.3(i), we write K5"(A,Z;) for K,,(P(A),Z;) and

A

K. (A, 7)) for K, (P(A),Z).

(ii) If ¢ = P(Y) as in 2.1.3(ii) we write KE"(Y;Z!) for KE'(P(Y),Z;)
and K, (Y, Z;) for K,(P(Y),Z;).

(iii) If C = M(A) as in 2.1.3(iii) we write G, (4,%;) for G (M(A),Z;)
and Gy, (A4,7Z;) for K,(M(A),Z).

(iv) If C = M(Y') as in 2.1.3(iv) write

G (Y, Zy) for KR'(M(Y),Z).
(v) If C = M(G, X) as in 2.1.3(v) write
GP (G, X),Z;) for KP'(M(G,X),Z).
(vi) If C = P(G, X) as in 2.1.3(vi) write
KFM((G,X),Z;) for KE(P(G,X),Z).
(vil) If C = VBg(, X, B) as in 2.1.3(vii), write
KP'((,X,B),2Z;) for KF'(VBa(,X,B),Z).
(viii) If C = M(G, X, A) as in 2.1.3(viii) write
GP'((G, X, A),Z;) for KP'(M(G,X,A),Z).
(ix) IC=P(G,X,A) as in 2.1.3(ix) write
KP'((G, X, A),Z;) for KP(P(G,X,A),Z).
3. SOME FINITENESS RESULTS IN HIGHER K-THEORY OF TWISTED
SMOOTH PROJECTIVE VARIETIES

In this section, we prove some finiteness results in the K-theory of twisted
flag varieties as well as K-theory of twisted forms of some other smooth
projective varieties over number fields and p — adic fields.

3.1. Finiteness results for twisted flag varieties.
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3.1.1. Let G be a semi-simple, simply connected and connected F-split al-
gebraic group over a field F', P a parabolic subgroup of G, v the 1-cocycle
v : Gal(Fyep/F) — G(Fiep), 4F the twisted form of F. Let B be a finite
dimensional separable F-algebra. We write K, (,F,B) for K, of the cat-
egory VBq(,F,B) of vector bundles on ,F equipped with left B-module
structure. We prove the following result.

3.1.2. Theorem. Let F' be a number field. Then for alln > 1,

(a) Kopy1(4F,B) is a finitely generated Abelian group.
(b) Kon(yF,B) is a torsion group and has no non-trivial divisible ele-
ments.

In order to prove 3.1.2, we first prove the following

3.1.3. Theorem. Let 3 be a semi-simple algebra over a number field F.
Then for alln > 1

(a) Kony1(X) is finitely generated Abelian group.
(b) Ko, (X) is torsion and has no non-zero divisible elements.

Proof. (a) Let R be the ring of integers of F. It is well-known that any
semi-simple F-algebra contains at least one maximal R-order (see [10], [16]
or [4]). So let I be a maximal order in ¥. From the localization sequence

ce—> @G%H(I‘/QF) — G2n+1(1“) — G2n+1(2) — @GQH(F/BF) — ...
p

p
(D)

(whose p ranges over all prime ideals of R) we have
Gon(T'/pl") = Kaon ((I'/pI') / rad(I'/pI))

where (I'/pI") / rad(I'/pl") is a finite semi-simple ring which is a direct prod-
uct of matrix algebras over finite fields. So, G2,(I'/pI') = 0. Note that since
I' and ¥ are regular, K,,(I') ~ G, (') and K, () ~ G,(X) for all n > 0.
But Ko,+1(I") is finitely generated (see [10, theorem 7.1.13] or [7]). Hence
Ko, 41(X) is finitely generated as a homomorphic image of Gop,+1 (). O

(b) Recall from the proof of (a) that G2,(I'/pI') = 0. Hence Quillen’s
localization sequence yields

0 = Gon(T) = G2n(2) = @D Gon-1(T/pl) = SKy1(T) — 0. (II)
p

Also recall that since I', ¥ are regular, K, (I') ~ G,(I") and K,(X) ~
Gr(X) for all n > 0. But G, (I') ~ Ks,(I") is a finite group for all n > 1
(see [10] theorem 7.1.12 or [6]). Also, @ Ga,+1(I'/pl') is a torsion group
as a direct sum of finite groups, see [10, 7.1.12]. Hence it follows from the
diagram (II) above that Ga,(X) ~ K2,(X) is a torsion group.

Also from one sequence (II), @ Ga,—1(I'/pl'), as a direct sum of finite
groups has no non-trivial divisible elements. So any divisible element in
Ko, (¥) must come from Ga,(I') ~ Ky,(I'). But Ky,(I") is a finite group
and also has no non-trivial divisible elements. Hence G2,(X) has no non-
trivial divisible elements.
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Proof of 3.1.2. (a) It was proved in [13] that for all n > 0 K,,(Ay y ®p B) =~
K, (4F,B). So, it suffices to prove that Ky, 1(A,, ®F B) is finitely gener-
ated. Now, as discussed in 1.2.4-1.2.6, A, , is a central simple F-algebra.
Also B being separable is also semi-simple. So, A, , ®r B is a semi-simple
F-algebra (see [14, p. 136]). Hence by theorem 3.1.3(a) Kop41(Ayy ®@F B)
is finitely generated. Hence Ky, _1(yF, B) is finitely generated.

(b) follows from theorem 3.1.3(b) by substituting A, , @ B for £. O

3.1.4. Remarks.

(a) One can also see that Ko,11(,F) is finitely generated as a special
case of 3.1.2(a). However one can also prove it directly as follows:
Since @?(F) Kont1(F) = Kopt1(4F) (see [13]), we only have to see
that Ko,41(F) is finitely generated (since we have a finite direct
sum of Kopy1(F)). Now by Quillen’s result, Ks,11(R) is finitely
generated and by Soule’s result Ko,11(R) ~ Kopt1(F) is finitely
generated.

(b) To see that Ko, (,F) is torsion it suffices to show that Koy (F) is

torsion since @?(F) Ko (F) ~ Kop(4F). The arguments are similar
to the proof of 3.1.3(b) applied to the short exact sequence

0 — Kon(R) — Kon(F) — @D Kon-1(R/p) — 0
p

of Soule, realizing that Ka,(R) is finite and each K2, 1(R/p) is also
finite.

We now turn attention to the local structure.

3.1.5. Theorem. Let F be a p-adic field, | a rational prime such that | # p.
Then for all n > 1 and any separable F-algebra B, K, (,F,B); is a finite
group.

Proof. As noted before, A, , ®r B is a semi-simple F-algebra and so, it
suffices to prove that for any semi-simple F-algebra ¥, K, (3); is a finite
group for any n > 1. To do this, it suffices to show that for any central
division algebra D over some p-adic field F', K, (D), is a finite group.

Now, D has at least one maximal order I', say (see [4]). Let m be the
unique maximal ideal of I'. Then, from the localization sequence

e Kn(r/m7 Z/ls) - Kn(ra Z/ls) - Kn(Dv Z/ls) - n—l(r/m7 Z/ls) —
(I11)
we know that K, (I, Z/1°) ~ K, (I'/m,Z/1*) for all n > 1. (See [18, corollary
2 to theorem 2]).
Now, the groups K,,(I'/m,Z/l®), n > 1 are finite groups with uniformly
bounded orders (see [18]). Hence, so are the groups K,,(D,Z/1*) and K, (I, Z/1*)
(from the exact sequence (III)). Also from 2.1.2, we have an exact sequence

0 — Kpi1(D)/I* — Kp(D,Z)I°) — Kno(D)[I}] — 0 (IV)

where K, 11(D,Z/1?) is finite group having uniformly bounded orders (as
shown above). So the groups K, (D)[l*] are equal for s > some sg. But
K, (D), =y~ Kn(D)[l*]. Hence K, (D), is finite. O
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3.1.6. Remarks. Let V be a Brauer-Severi variety over a field F, and A the
finite dimensional central division F-algebra associated to V. D. Quillen
shows in [15] that
dim V/
K,(V) = @ Kn(A%),
s=0

for all n > 1.

(a) Suppose that F' is a number field, then Ky,.1(V) is a finitely gen-
erated Abelian group. Again, this follows from theorem 3.1.3.
(b) If F is a p-adic field then for all n > 1 K,,(V); is a finite group if

is a prime # p.

3.2. Finiteness results for some objects of the motivic category

c(@).

3.2.1. Let G be an algebraic group over a field F. By considering a smooth
projective G-scheme as an object of a category C(G) defined below, we have
similar finiteness results to those of 3.1 for K,,(,X, B) where 7 is a 1-cocycle,
4X is the y-twisted form of X and B is a separable [-algebra.

3.2.2. The category C(G) is constructed as follows (the construction is due
to L. Panin, see [13], or [11]):

The objects of C(G) are pairs (X, A) whose X is a smooth projective G-
scheme and A is a finite dimensional separable F-algebra on which G acts
by F-algebra automorphisms. Define

Home(q) (X, A), (Y, B)) := Ko(G, X x Y, A® @p B).

Composition of morphisms is defined as follows: If u : (X, A) — (Y, B),
v:(Y,B) — (Z,c) are two morphisms, then the composite is defined by

vou = pi3(pa3(v) @B pia(u)),

where p1o : X QY ®27Z — XQY,pi3: XY ®Z — X ® Z, and
p23:X®Y®Z—>Y®Z.
The identity endomorphism of (X, A) in C(G) is the class [A® pOa] (where
A C X x X is the diagonal) in K,(G, X x X, A" @p A) = End¢(g)(X, A).
We now have the following results.

3.2.3. Theorem. Let a: C — X be an isomorphism in the category C(G),
i.e., a : (Spec(F),C) — (X,F). For every l-cocycle v : Gal(Fyep/F) —
GF,., and any finite dimensional separable F-algebra B, let K, (1Y, B) be as
defined in 1.2.5.

(a) If F is a number field, then forn > 1,
(i) Kont1(4X,B) is a finitely generated Abelian group and has no
non-trivial divisible elements.
(i) Kon(yX,B) is a torsion group and has no non-trivial divisible
elements.
(b) If F is a p-adic field, | a rational prime such that | # p, then for all
n > 1 and any separable F-algebra B, K, (vX, B); is a finite group.
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Proof. From [13], we have that for all n > 1 K,,(Cy ®r B) ~ K,(,X,B)
where F' is any field and C, ®r B is a semi-simple F-algebra X, say.

If F'is a number field, (a)(i),(ii) follows from 3.1.3(a),(b). IF F' is a p-adic
field it suffices to prove that for all n > 1, K,,(X); is a finite group. But this
is done already in the proof of 3.1.5. ]

4. PROFINITE EQUIVARIANT K-THEORY FOR (G-SCHEMES

4.1. A general result. We first prove the following general result for later
use

4.1.1. Theorem. LetC, C’ be exact categories and f : C — C' an exact func-
tor which induces an Abelian group homomorphism f, : K,(C) — K,(C'),
for each n > 0. Let | be a rational prime, s a positive integer
(a) Suppose that f, is injective (resp. surjective, resp. bijective), then
so are the induced maps
fo: Kn(C,Z)1°) — K, (C',ZJ1°)  and
fPT s KPY(C, Zy) — KPY(C, 7).

(b) If f« is split surjective (resp. split injective) then so is

Fo: Kn(C,Z)15) — Kn(C,Z)1%).

Proof. Consider the following commutative diagram (I) where the rows are
exact and the vertical arrows are induced from f,.

0 — Ko(C))I5 —2— Ko (C,Z)1°) —1— K,_1(C)[I*] — 0

|7 | | M

/

0 — Ko ()15 —2— Ko (C,Z)1°) —1— K, 1(C")[I*] — 0
O

Now, f, injective (resp. surjective, resp. bijective) implies that f,, f are
injective (resp. surjective, resp. bijective). So by applying the five lemma to
diagram (I), we have that f., f/ injective (resp. surjective, resp. biyective)
imply that f* is injective (resp. surjective, resp. biyective). Hence f,
injective (resp. surjective, resp. bijective) implies that f* is injective (resp.
surjective, resp. biyective). This proves the first part of (a).

Now consider the following commutative diagram

0 — lim 'K, 1 (C,Z/1°) —— KE'(C,Z1) —"— Ku(C,Z;) — 0

|7 | e
0 — lim K1 (C,Z/1%) —C— KR(C,2)) —— Ko(C',2)) — 0
where f/ and f! are induced by f, in diagram (I).
Note that,
K, (C, ;) = lim K,(C,Z/I°) and K,(C',Z;) :=lim K,,(C,Z/I*).

S S
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Now if f, is injective (resp. surjective, resp. biyective) in diagram (I), then
ﬂ and f* are both injective (resp. surjective, resp. bijective) in diagram
(I1).

Also by applying the five lemma to diagram (II) we find that if f; and
:,’f are both injective (resp. surjective, resp. bijective), then fI" is injective
(resp. surjective, resp. bijective). Hence if f, is injective (resp. surjective,
resp. bijective) then so is f* and this implies that f{" is injective (resp.
surjective, resp. bijective) as required.

(b) We prove here only that f,. split surjective implies that f* is split
surjective since proving that f, split injective implies that f* is split injective
is similar.

First observe that the horizontal sequences in diagram (I) are split ex-
act (see [10] or [1]) since [ is an odd prime. Hence there exist a map
5 Kn(C,Z/ZS) — K,(C)/I° such that 66 = Lk, /1), as well as a map
0+ K, (C',ZJ1°) — K,(C')/l° such that &6’ = 1k, (c1s). Also, f. split
surJectlve implies that f, is spht surjective. So, there exists f! such that
fofl = L, (c)/1s- Put fl = 6f18'. Then for any @ € K,(C',Z/1*),

f*f»i (33) = f*éf;(;/(aj)
=97, ﬂg'(x), by the commutativity of the left-hand square,

=z
Hence f.f/ = idg, c,z10) 1-e- f. is split surjective.

4.1.2. Remark. This author is not able to use the procedure above to show
that f, split surjective (resp. split injective) implies that

T KPYC,Zy) — KPY(C, Zy)

is split surjective (resp. split injective). This is because it is not known (to
the author) that the sequence

0 — lim' K 1(C, Z/1°) — KB'(C,Z)) — Kn(C,Zy) — 0
is split.

4.2. Remarks and examples. Theorem 4.1.1 applies notably in the fol-
lowing situations
(a) Let B be a split solvable group, T' C B a split maximal torus, X a B-
scheme. Then, by [11], G, (B, X) — G,(T, X) is an isomorphism.
So, by 4.1.1, G%r((B,X),Zl) — Ggr((T,X),Zl) is an isomorphism.
(b) Let G be an algebraic group over a field ', H a closed subgroup of G
such that G/H ~ AL and X a G-scheme. It is known (see [11]) that
Gn(G,X) ~ G, (H,X). Hence GY (G, X), Zy) ~ GI'((H, X), Zy).
(c) Let G be a split reductive group with m(G) torsion free and X a
smooth projective GG-scheme. Then the restriction homomorphism
Gn(G, X) — G, (X) is surjective (see [11]). Hence, by 4.1.1 follows
that GE'((G, X),Z;) — GV (X, Z;) is surjective.
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(d) Let G be a reductive group defined over a field F' such that G is
factorial (i.e. for any finite field extension E/F, Pic(Gg) is trivial).
Let X be a smooth projective G-scheme over F'. Then the restriction
homomorphism G, (G, X) — G,(X) is split surjective (see [11]).
Hence by 4.1.1 G, ((G, X),Z/1°) — G, (X,Z/1°) is split surjective
and so G ((G, X),Z;) — Gpn(X,Z;) is split surjective. (Recall that
Go(C, ) = lim Gn(C,Z/19).)

(e) Let G be an algebraic group over F' and X a quasi-projective smooth
G-scheme. Then K, (G, X, A) ~ G,(G, X, A) (see [11]). Hence by
4.1.1 KE'(G, X, A), 7)) ~ G ((G, X, A), 7).

(f) Let U be a split unipotent group over F; X a U-scheme. Then the
restriction homomorphism G, (U, X) — G,(X) is an isomorphism
(see [11]). Hence by 4.1.1, K} (U, X), Z;) ~ KE' (X, Zy)

4.3. Some computations. In this subsection, we obtain some [-completeness
and other results for some twisted flag varieties as well as Brauer—Severi va-
rieties over number fields and p-adic fields. Recall that if [ is a rational
prime, an Abelian group H is said to be I-complete if H = lim H/I°H.

s

4.3.1. Theorem. Let F' be a number field, G a semi-simple, connected,
stmply connected split algebraic group over F, Pa parabolic subgroup of é,
F =G/P, v a 1-cocycle Gal(Fyep/F) — é(Fsep), vF the vy-twisted form
of F, B a finite dimensional separable F-algebra. Then for alln > 1,

(1) K'((F,B),Z;) is an l-complete Abelian group.

(2) div K5 ((F,B),Z;) = 0.

Proof. From [13] we have an isomorphism K, (Ay , ®r B) ~ K, (,F, B) for
alln > 0. Hence by 4.1.1 we also have K} (A, ,®rB), Z;) ~ K} ((F, B), 7).
So, it suffices to show that Kb5* (A, ®F B),Z) is l-complete for all n > 1.
As earlier explained in the proof of 3.1.2, A, , ®F B is a semi-simple F-
algebra and so, by theorem 3.1.3, K,:+1(X) is a finitely generated Abelian
group. Now it is proved in [10, lemma 2.8] or [8], that for all m > 2 and any
exact category C,

lim(KP(C, Z1) /1° =~ K (C, 2)

S

Hence for any m > 2

lim KE(S, 20)/1° 2 Ko (5, 22). ()
S
Also, for any m > 2 and any exact category C we have from [10, lemma
8.2.1] or [8] an exact sequence
0 — lim' K11 (C, Z/1°) — KEX(C,Z;) — K (C,Z;) — 0.
S

Hence we have an exact sequence (for m > 2)

0 — lim' Ky 1(8, Z/1°) — K(S,2) — Kn(C,Z;) — 0. (IV)
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Since Ko,41(X) is finitely generated for n > 1 then Ko, 41(X,Z/1%) is a
finite group and so, @SlKgnH(E, Z]1*) = 0. Hence from (IV),

KY(2,7) ~ Kon(2, 7). (V)

Also from (III),

From (V) and (VI) we now have
lim K3, (%, Zy)/1° =~ K55, Z4),

So, Kg;(Z,Zl) is I-complete. Hence KJ (rF, 7;) is l-complete.
(b) From [10, theorem 8.2.2(ii)] or [8], we have that for all m > 2 and any
exact category C,

lim' K1 (€, Z/17) = div K27 (C 2)

Hence for all m > 2,

lim' K1 (5, Z/1°) = div KB (S, Zy).
S

If m = 2n, then Ky,;1(X) is finitely generated and so, Ko,41(X,Z/1%) is a
finite group. Hence, lilllKgn+1(E,Z/ls) = 0. Hence div K%' (3,7;) = 0 and
so, div K3 ((,F, B),Z;) = 0. O

4.3.2. Remarks. The following results can be proved by procedures similar
to those above.

(a) If F is a number field, . F as in 4.2.1, then K" (F, Z;) is an I-complete
Abelian group and div K} (,F, Zl) = 0. The proof in this case is
easier.

(b) If V is a Brauer-Severi variety over a number field F', then for all

n> 2, K¥(V,Z) is l-complete and div K5" (V,Z;) = 0.

4.3.3. Our next aim is to consider the situation when F' is a p-adic field.
Before doing this, we make some general observations. Note that for any
exact category C, the natural map M ;ZOH — S™*! induces a map

(™1, BQC] 5 (M, BQC]

Le.,
K.(C) % KP'(C,7) (VII)
and hence maps
K, (C))I° — KP¥(C,7,)/1° (VIII)
and
Kn(C)[I°) — KR (C, Zy)[1"]. (IX)

We shall denote the maps in (VIII) and (IX) also by ¢ by abuse of notation.
We now prove the following result.
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4.3.4. Theorem. Let p be a rational prime, F a p-adic field, ég semusimple
connected and simply connected split algebraic group over F', P a parabolic
subgroup og G, v a 1l-cocycle Gal(Fyep/F) — G(Fsep), 4F the y-twisted
form of F, B a finite dimensional separable F-algebra, | a rational prime
such that I # p. Then for allm > 2
(a) K¥'((+F,B),2Zy) is an l-complete profinite Abelian group.
(b) K ((+F, B), Zi) = Kn((+F, B), Z). A
(¢c) The map ¢ : K,,(vF,B) — K} ((,F, B),Z;) induces isomorphisms
(1) Kn(yF,B)[lI*] ~ Kgr((v}—73)a@)[ls],
(2) Koo F. B)/I* = K ((,F, B), 22) /1. A
(d) Kernel and cokernel of K,,((vF, B)) — K& ((+F, B),Z;) are uniquely
[-divisible. X
(e) div Ky ((F,B),Z;) =0 forn > 2.

Proof. (a), (b). Since K, (A, ®r B) ~ K,((,F,B)) and A, , @r B is a
semi-simple F-algebra X, say, it suffices for the proof of (a) to show that
KE'(2,7,) is l-complete profinite Abelian group. To do this it suffices to
prove that K5 (D, Zl) is an [-complete profinite Abelian group for a central
division algebra over a p-adic field F'. From the proof of 3.1.5, we saw already
that K, (D,Z/1®) is a finite group. Hence, in the exact sequence

0 — lim' K41 (D, Z/1°) — KE'(D,Z) — Ku(D,Z;) — 0,

we have anl K,+1(D,Z/1*) = 0. Hence

KP'(D,2y) ~ Kn(D, Zy) (X)
proving (b).
Now, for any exact category C, we have lim K,,(C,Z/l*) ~ K,(C,Z;) for
all n > 2 (see [10, lemma 8.2.2] or [7]). So, we have

lim KP"(D,Z)/1° ~ K, (D, Z). (XI)
From (X) and (XI) we now have lim Kp' (D,Z)/1° ~ KE'(D,Z;) — proving
(a). It is profinite because K5 (D, Z;) = lim K, (D, Z/1°), where Ky, (D, Z/1%)
is a finite group.

(c),(d). Recall that K, (yF,B) is by definition the K, of the (exact)
category of vector bundles on ,F equipped with left B-module structure.
Recall also from theorem 3.1.5 that for all n > 1, K,(,F,B); is a finite
group and hence has no non-zero divisible subgroups. Hence, (c) follows
from [10, theorem 8.2.1] or [8] and (d) follows from [10, corollary 8.2.1] or
8].

(e). We saw in the proof of 3.1.5 that K, (D,Z/l®) is a finite group for
all n > 2. Hence @lKn(D,Z/ls) = 0 for all n > 2. But by [10, theorem
8.2.2(ii)] or [§]

lim' Ky, 1 (D, Z/1°) ~ div KB'(D, Zy).

Hence div K5 (D, Z;) = 0 as required for all n > 1, so div K2 ((vF, B), Z;) =
0. O
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4.3.5. Remarks. (a) Let V be a Brauer-Severi variety over a p-adic field F'.
By a similar proof to that of 4.2.4, we have
(i) K¥'(V,Z;) ~ K, (V,Z;) is an I-complete profinite Abelian group.
(i) K, (V)/I® ~ KF'(V,2;)/1° and K, (V)[I°] ~ KE"(V, Z;)[1%].
(iii) Kernel and cokernel of K,,(V) — KE'(V,Z;) are uniquely I-divisible.
(iv) div K"(V,Z;) = 0.
(b) Finally, if ,X is as in 3.2.3, we have similar results to those of 4.2.4 for
KX ((+X, B),Zy), etc.

(1]
2]
3]
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