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§ 0 Introduction
§8 0.0 General introduction

In this paper, we study systems of linear partial differential
equations in n (& 3) wvariables of rank ( = the dimention of the
solution space) n+2. The case n = 2 1s treated in [SY1l] and [SY2].

Here we would like to mention our motivation. Let D be the
symmetric domain of type IV of dimension n (& 3), ' be a
transformation group acting properly discontinuously on D, X be a
quotient variety of D wunder I' naturally equipped with the
structure of orbifold, @ be the projection of D onto X and
finally let ¢ = n-lz X M be the developing map of the orbifold X.
We think there should be a system of linear differentlial equations (E)
defined on X such that the solution of the system gives rise to the
inverse map %. It 1s called the uniformizing differential eguation
of the orbifold X. Since D can be thought of a part of a non-

degenerate quadratic hypersurface Q 1in CPn+1 and since we have the

following inclusion relations

Aut(D) c Aut(Q) < Aut(CP™*1) c PGL(n+2)

of the groups of complex analytic automorphisms, the system (E) must
be of rank n+2 and the mapping defined on X by the ratio of n+2
linearly independent solutions of (E) has its image in the
hyperquadric Q. 1In this way wWe encounter equations in n wvariables
of rank n+2. S

Making a linear change of independent variables X = (xl.....xn)

if necessary, we may assume that any system in n-variables of rank
n+2 with the unknown W has the form

2

A°w 8 W n k oW 0

(EQ) — 71 = + 2 + A, w (1S4, Sn)
axioxd 11 glogd «181y axk 1

where

k k 0 0 k .0
Byg = Byyr Ayy = Ajyyr Ayy = Ayys Byp = 1, Ajp = A = 0
This equation 1s the key to connect the theory of conformal

connections, the projective theory of hypersurfaces and the theory of
uniformizing differential equations of orbifolds uniformized by
symmetic domains of type IV.
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We return to the uniqueness assertion. It suffices to show
that the volumes V enclosed by the surfaces indicated increase
strictly with r . We divide the volume into twé parts, V+ and
Vv~  as indicated in Figure 7 . The volumes v* are exactly those

that arise from sessile drops on a plane with (nondecreasing)
+

data y(r) ; by the lemma, %%— > 0,-As to V , we have

- 2 r
V. = mrfz(r) =27 [ pz(p)dp

and thus
-_— = nrzz'(r) 2 0,

and the uniqueness proof is complete.

We remark finally that if ¢ extends to infinity, the
existence of symmetric surfaces with prescribed Vv and vy 1is
easy to prove. For each r we need only seek that surface in

the one parameter family determined by v that yields the

0
requisite yY(r) , and it is clear that V(r) varies from 0 to
o , If € is definéd only in a bounded set, then by the above

monotonicity result for V , there exists a solution for any V

not exceeding the value V at the "top" of €.,

I wish to thank M. Griter and R. Gulliver for a number of

helpful discussions.



We study geometric meanigs of the equations (EQ) in §2 as
explained in §§0.1 and 0.2, and construct an example in §3 as
explained in §8§0.3. Projective differential geometrical tools which
plays an essential role in §2 is briefly reviewed in §1.

§§ 0.1 Introduction for differntial geometers

Let a hypersurface M 1in Pn+1 be the image of the map ¢: X =2 wW(X)
a (wl(x).....wn*z(x)) where wj are linearly independent solutions
of (EQ). We study in §1, as a preparation, the induced conformal
metric II on M and the cubic invariant form III of the embedding
M C Pn+l ;and fomulate the fundamental theorem of projective
hypersurfaces (Theorem 1.3). We show that the coefficlents gij
represent the induced conformal metric II and that the coefficlents
ATJ and Agj are expressed in terms of II and the cubic invariant
III (Theorem 2.1). When M 1s a quadratic hypersurface, we show that
the coefficlents A¥J and Agj are expressed in terms of gij
(Theorem 2.3). Conversely, for a given conformally flat quadratic
form gij' we can assoclate a differential equation of the form (EQ)
with the principal part gij such that the map % has its image in a

hyperquadric in Pn+l (Theorem 2.4).

§§ 0.2 Introduction for topologists

Let X be an n-dimensional orbifold (or simply a manifold) which has
a conformally flat structure. As Kuiper ([Kul]) pointed out, there is
a conformal map, called the developing map, from the universal cover
of X 1into thé‘model space, hyperquadric in Pn+1. We ask |
"How can we get the developing map ?"
In thils paper, we give an answer. Let gUinxédxg be the conformal
structure for coordinate neighborhoods (U.xU). Consider the system
of linear differential equations of rank n+2:

2 2
9w 9w n K ow 0
(EQ) —Y T = B — + A = + A w
U axiaxJ Uij axlaxn Ek=1 Uij axk Uij
on U. The coefficients Agij and Agij are determined so that the
map ?U' using n+2 1linearly independent solutions wg of (EQ)U:
. 1 n+2 n+l
?U. Uax~- (wU(x).....wU (x)) € P



has its image a part of a nondegenerate gquadratic hypersurface in
Pn+l. If V 1is another chart such that Vv n U # ¢ then ?U and ?V
are projectively related. The developing map of X 1is given by
{?U}U'

§8§ 0.3 Introduction for algebralc geometers

Let M = H2 be the Siegel upper half space of genus 2 and ['(2) be
the Siegel modular group of level 2. The regular orbit of H2 modulo
['(2) 1s known to be the space

A= 5223 ec® 1 Al 2o, 1, A (i)

Let x : H2 - A be the natural projection.

The space A can be thought of the parameter space of a family
of curves of genus 2:

C(A): wzv2 = u(u-w)(u-llw)(u—kzw)(u-ksw)
in the projective plane. The periods of C(A) glves a (multi-valued)
inverse of T and they satisfy a system of linear differential
equations which is sometimes called the Gauss-Manin connection of the
fiber space UXC(X) - A. In this paper, we expiicitly write the
system of differential equations. In order to do so, we develop a
general theory of Gauss-Manin connections related to the n-dimensional

symmetric domaln of type IV. Notice that the 3-dimensional symmetric

domain of type IV 1s the Siegel space Hz'



§ 1 Review of the projective theory of hypersurfaces

§§ 1.0 Summary

In this section we recall the fundamental formulation of the ihtrinsic
conformal geometry and the projective theory of hypersurfaces, which
are necessary 1n the discussion of systems of linear differential
equations in the following sections. Although the fact stated in this
section is already known by [Sas], our present version is made in
order to clarify and to show up the story of the theory, which may not
be easy to grasp in reading [Sas].

To have a better understanding of the theory, we recall first the
story of the intrinsic Riemannian geometry, that of hypersurfaces in
the euclidean spaces and the fundamental theory connecting them.

— Intrinsic Riemannian gecmetry — Let M be an n-dimensional
manifold equipped with a Riemannian metric. Then there 1s a unique
affine connection compatible with the metric (Levi-Civita connection}.
The Riemannian curvature tensor is defined by the Levi-Civita
connection. -

— Hypersurfaces — Let 1 : M C Rn+1 be an embedding of a manifold
M. The induced metric and the second fundamental form are defined on
M. The Levi-Civita connection and the Riemannian curvature tensor of
the induced metric are defined as above. They are related as follows:
Gauss equation: The Riemannian curvature tensor is expressed in terms
of the second fundamental form.

Codazzi-Minardi equation: The covariant derivatives of the second
fundamental form and the induced metric are related.
-—— Fundamental theorem — Let M be a manifold equipped with a
Riemannian metni¢'ahd a quadratic form. They are the induced metric
and the second fundamental form defined by some embedding t : M C
Rn*l if they safisfy the Gauss equation and the Codazzi-Minardi
equation. The embedding t 1s unique up to rigid motions of Rn+l.
"Now we summarize the story of the intrinsic conformal geometry,
that of hypersurfaces 1in the projective space and the fundamental
theorem connecting them.
— Intrinsic conformal geometry — Let M be a manifold equipped with
a conformal metric h. Then there is a unique conformal connection =
compatible with the conformal metric (the normal conformal

connection). The conformal curvature tensor C 1s defined by the
normal conformal connection.



— Hypersurfaces — Let 1 : M C Pn*'l be an embedding of an n-
dimensional manifold M. The induced conformal metric h and the
form <t (called the invariant of t) are defined. The normal
conformal connection =® and the conformal curvature tensor C of the
induced metric are defined intrinsically as above. They are related
as follows.

Gauss equation: The conformal curvature tensor is expressed in terms
of the invariant <.

Codazzi-Minardil equation: Covariant derivatives of T and the induced
metric h are related.

— Fundamental theorem — Let M be a manifold equipped with a
conformal metric h and a form <. They are the induced conformal
metric and the invariant defined by some embedding t : M C Pn+l if
they satisfy the Gauss equation and the Codazzi-Minardi equation.
The embedding 1t 1s unique up to projective transformations of Pn+l.

§§ 1.1 Intrinsic conformal geometry

We recall some facts on the conformal connection. A precise and
detailed description can be referred in the book [Kob].

LLet M be an n-dimensional complex manifold and h = (hij) be a
non-singular symmetric matrix. Define

CO(h) = { Aa | a € GL(n.C), aha = h, A e C }.

Let L(M) be the bundle of complex linear frames on M. A
holomorphic principal subbundle P of L{M) with structure group
CO0(h) 1s called a hdlomorghic CO(h)-structure. Such subbundles on M
are in a natural one-to-one correspondence with the sections M -
L(M)/CO(h). In other words, for such a structure, we assoclate a

conformal covariant tensor field g = (gij) called a conformal metric
that is locally written as

1.3
gij(x)dx dxv, det gij #= 0,

with respect to a local coordinate system (xi).(Throughout this
paper, 1if an index occurs twice in a term, once as a superscript and
once as a subscript, summation over that index 1s indicated.)



We consider a non-singular hyperquadric Qn in Pn+1 defined in
terms of the homogeneous coordinate system (z0 ....zn+1) by the

equation

0. _n+l h I | -
- 2272 + hijz z 0.

Let Q be the symmetric matrix of degree n+2 corresponding to this
quadratic form:

0 6 -1
Q = 0 h 0
-1 0 0

0(Q) = (g € GL(n+2) | gQ'g = Q}

The group

acts transitively on the hyperquadric. Let H be the isotropy

subgroup at t(0,....0,1). It consists of matrices of the form
A 0 O Av = 1, ahta = n,
(1.1) b a O t t
u ¢ v b =Xah'c ., v = Ach'c/2.

We have a principal bundle 0(Q) over Qn a 0(Q)/H with structure
group H. The linear isotropy representation of the group H at
t(0.....0.1) has a non-trivial kernel consisting of matrices of the

form
+1 0 0
b :In 0
u c 1

Denote this kernel by N. Then H/N 1s isomorphic to CO(h). Thus

we have a principal bundle O0(Q)/N over the hyperquadric Qn = 0(Q)/H
with structure group CO(h).

0(Q) 0(Q)/N
l H l H/N = CO(h)
Q" = 0(Q)/H = 0(Q)/H

This 1s called the canonical conformal structure of the guadric. The
associated conformal metric is given as follows. Let % = - 2dzodzn+l
. nijdzidzJ be the tensor field on €"*2 - {0}. Let s be a local
section of the bundle Cn+2 - {0} over Pn+1. Although the pull-back
s'? depends on the section s, 1ts restriction to Qn 1s defined
independently of s up to a multiplicative factor of non-vanishing




»*
holomorphilc functions. Thus the conformal metric of s <PIQn is
uniquely defined.

Conslider again a CO(h)-structure P on a manifold M. Let
PZ(M) be the bundle of 2-frames over M with structure group,
elements of which are holomorphic 2-frames of Cn at the origin
([Kob, chapter 4, § 5]). The first prolongation of P, which is a
principal subbundle of Pz(M) with structure group H, 1s denoted by
P(l). The correspondence between P and P(l) is known to be
bijective ([Kob, chapter 4, §6]). 1In fact we can recover P from
P(l) by putting P = P(l)/N. For the hyperquadric Qn, this bundle
P{1)  is nothing but the bundle 0(Q) - O(Q)/H. The bundle P{1) nas
Cartan connections ({Kob, chapter 4]). Let 0(Q) be the Lie algebra
of 0(Q). Then a Cartan connection in question 1s a o0(Q)-valued 1-

form T on P(l) considered as a set of 1-forms (ni.ui.nj) by the
l1dentification

no nj 0
= J Jj._0 k
;A T Ty o+ Sin hikn € 0(Q)
0 hkjnk —no
0o _ 1 Kk j 3
where 1 = - 5 z T, - The forms Ty and 1 are the restriction to

P(l) of the components of the canonical form of . P(l). They have the

property dnJ = nk nﬂ. The curvature form JI of = 1s defined by
NMN=drx - t m® which is'written as

n 0 0
- o J

n I y 0

Jk0 0

0 hY -T

There exists a unique Cartan connection, called the normal conformal
connection, satisfying the (normalization) condition

J
C 130 ° 0

where
J _ 5ig0 J _ K J _ J _ J2 _k J
rni ain dni xi;\nk uif\n hikh A xﬁ - Sink/\ng



1. kK 2
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In fact this condition determines the forms ni uniquely ([Kob,
Chapter 4, Theorem 4.2]).

Definition: A CO(h)-structure P (or a conformal metric g) 1s said

to be conformally flat if the normal conformal connection x 1is
integrable, 1.e. Tl = dmxr - TAX = 0.

§§ 1.2 Projective theory of hypersurfaces

Suppose we are given a portion of n-dimensional hypersurface M 1in
the projective space Pn+1. Let .i: M=~ Pn+l be the embedding. We
assume the map 1 has a 1lift, denoted by ey to Cn+2 -{0}, the

natural covering of Pn*l. Let €1r-- 0y be a set of independent
tangent vector fields to M along eo and choose another vector
field en+1 so that det(eo,el....,en.en+l) = 1 with respect to a

fixed frame of Cn+2. Then the hypersurface M 1is described by the
motion of the vectors ea (0 8§ « & n+l) which we call a projective

moving frame field along M. We introduce the asscociate Maurer-Cartan
form w by

de = we.
I
Here we use abbreviations e = (eO’el""’en+1) and w = (wa). The
indices «,8,... range from 0 to n+l. When we use the indices
i1,jJ,..., these are understood to range from 1 to n. The l-form w

has values in sQ(n+2,C)Q It satisfies the Maurer-Cartan equation:

S 8 v 8
(1.2) . dw WA W i.e. dwa = W, AW,

First notice that the above choice of a frame implies wg+1 = 0,
{ wg | 1 £ jJ §n) are independent on M. Hereafter we write wJ =

wg. Then (1.2) implies
n+1l Kk n+l
0=dw0 nw/\wk ,

which allows us to put

n+1 _ k
(1.3) wy = hikw , hik =h.,.



We have
wg wj 0
B 0 ] k
we= w, ) = wy wy hikw
0 : J n+1l
wn+1 wn+l wn+1

Let us define a symmetric quadratic form II on M by

(1.4) II = hijwiwj.

An important property of this form is its invariance in the following

sense. Let e' Dbe another projective frame, which, as 1s easily
seen, has a form

(1.5) ' e' = ge

A 0 0
g = b 0
)i} c v

¥

where the entries are functions with values in A, u, ve (C, ae

GL(n,{) and b, c € Cn. Then the assoclate Maurer-Cartan fbrm w' 1s
given by

(1.8) w' = (dg + gw)g'l.

and this leads to the identity

)

v o oK
(1.7) Avh aithaJ.

i3

In particular, the assoclate quadratic form II' 1s given by

(1.8) IT' = AZII.

This implies that the conformal class of II is intrinsic on the

manifold M. Hence, especlally, 1its rank is independent of the cholice

of frames. We now assume that the form II 1s non-degenerate. Notice

that the above process defining II shows that it is determined by

the second order derivatives of the embedding 1. We next derive

another invariant which depends on its third derivatives. In order to
make the following formulae look simple, we choose a frame so that



_ 0 n+l _
(1.9) det h1J =1, Wy * W1 0.

This is possible because of the non-degeneracy assumption for II and

the transformation rule (1.6). Then the exterior derivation of (1.2)
glves

J

k K
which enables us to define a symmetric quantity hijk by
(1.10) h, . = an,, - b, X - n, o,

13k 1] ik™yJ Jk™1

Let us define a symmetric cubic form III on M by
iJk
(1.11) IIT = hijkw wrw

and call this the (Wilczynski-Fubini-Pick) cubic invariant form.
Indeed it has the invariance: ‘ '

(1.12) III* = A2 III

with respect to the frame change (1.5). The role of this form can be
seen 1in

Proposition 1.1. Let M be a connected plece of a hypersurface in
Pn+l. Assume the quadratic form II 1s non-degenerate and the cubic

invariant form III vanishes everywhere. Then M 1s contained in a
quadratic hypersurface.

The projective description of a hypersurface needs one more
invariant. Take a derivation of wo + wn+l = 0. The we have

0 n+1l
J _ 0 1 _
which allows us to define a symmetric quantity LiJ by
J _ 0 J
(1.13) hijwn+l w, = L .

It 1s possible to show the existence of a projective frame satisfying

i} n+l _ _ i, _
(1.14) det hij 1. Wy * W ] = 0 and tracehL (= Lijh ) = 0.



Now we fix a frame e with this property. Then, at every point p
where the frame is defined, the matrix h = (hij) defines a Lie group
by (1.1) which we denote by H(p). Analogously the group O0O(Q{p))
and its Lie algebra o(Q(p)) are defined. Take another frame e°
with the property h’iJ = hij and (1.14). A caluculation shows the
frame change g from e to e' Dbelongs to the group H(p) at each
p.

We next formulate the fundamental theorem by using the language
of conformal geometry. Define a tensorilial matrix-valued l1-form =t by

0 0 0
_ K 1, ik
(1.15) 7 = My, + Ly )w 2w 0
- w0 J
Woe1 h QMka 0
where
-1 F 1
Mix ® 2(n-2) ik * 8(n-2) (n-1) D1k - 2 Lik
) pq ) par
K1k = hipqh K and F hpqrh s
and put

(1.16) W= w + T.

(Here the raising of indices relative to hij 18 used. e.g. hiJk =
hijphpk.) Then a computation shows the invariance

(1.17) =T' = grg'l

under the frame changes belonging to the group H(p) for each point
p; and it is easy to see the form 7w has its value in the Lie algebra
o(Q(p)). Let T be the curvature tensor of m®m. It has the
expression as-follows (HO = 0)

0 0 0
- —-— -] 0 ‘j
T dn T X ni Hi
J
0 nn+1 0
where
0 . ]
ﬂi h1J nn+1'

Since T 1is a tensorial 2-form, we may put



- 12 -

j 1 . k 9 J J -
0 1 K 9 )
My = - 3 Cigq WAw Cikg * Crax = ©-

The choice of * has been made by requiring the normali;ation
condition

(1.18) CJijQ - 0.

With these notations, the following analogue of the Gauss and the
Codazzi-Minardi equations holds:

(1.18) (The Gauss equation)
- L p _ p
Cijra = 2 (Mygphpy ~ Pypphyg)

1

* T(n-27 PyeKig - DKy thy oKy - DyKyg)
+ 1 (h, h,a- h, h, )F
4n-1) (n-2) (PigPye~ Pighyk
_ _ 1 J _ J
Cikg T Tik, 0 " Tian *a (Myg Ly - By hyg)

where fiQ is the projective analogue of the Schouten tensor defined
by

S S F
fie = " T2y %10 * Ta-D(n-2) Pig
and f i1s the covariant derivative of ¢ with respect to =:.
12,k Kk Kk K 62
i.e. f

19,k W = Afyg ~ Ty Mg - Tpelty + 20,07

(1.20)(The Codazzi-Minardi equation)
Disk,a " Prgo,x T Liglye - DakPye * LyoPik ~ LykPig

9 e
Ligow ~ Lik,y = Byg o = Pyy fgg + 2(hyvy - hyvp)

R L

0 i
where fi is defined as Wo,p - fiw and h

tjk, 9 Lig,x @M 7y
are covariant derivatives of h

1ik’ L1J and ri with respect to T.

Now we choose a frame e so that h be a constant matrix, which
we denote by °h. This is posible by (1.7). Then the set of

projective frames satisfying (1.14) and h{p) = 0h becomes a



principal bundle denoted by P with the group H, corresponding to
oh. as a structure group. The l-forms =T and <t corresponding to
ge (g € H) can be thought of l1-forms'on P in view of (1.6) and

(1.17). We denote these forms by = and <. These considerations
then show

Proposition 1.2. The pair (P,m) defines a normal conformal
connection defined in §§1.1 on the hypersurface M. The form < 1is
the invariant satisfying the relations (1.19) and (1.20).

Conversely we have

Theorem 1.3. Let M be an n (& 3) dimensional complex manifold with
a normal conformal connection =m. Let <« be a tensorial 1-form in
the form (1.15). Assume that the covarilant derivatives of <«
satisfies the relation (1.20) and that the curvature tensor of T 1is
given by (1.19). Then, for a given point p of M, there exists a
neighborhood of p which can be embedded as a non-degenerate
hypersurface In a projectivee space of dimension n+l1 so that =T and
T become the connection and the invariant induced by this embedding,

respectively. This embedding 1s unique up to projective
transformations.

For the proof of this theorem and for the induction of the above
formulae, refer [Sas]. '

For the use in. the next section, we review the local expression
of ni and ng in terms of the conformal structure tensor hij'
(xi) be a local coordinate system and choose a frame so that wi =
dxi. (This frame 1s, 1n general, different from the frames defin;ng

the bundle. P.) The definition of x in (1.16) is made so that

Let

k

k
dhiJ - hiknj - hikni = 0.

This leads, as usual, to the identity

J J kK
ny o= Fikw .

where Fik is the Christoffel symbol of hiJ:



I R | - i} Kk
ik =20 (hyg o * Bpgy = Py o) dhjg = Byg W -
Let RJikQ be the Riemannian curvature tensor:
J oK agd o Lgd KA
dﬁ. niAq{ zRikaAw.
The Riccl and the scalar curvatures are denoted by Rij and by R,
respectively:
) 1
RiJuRiJQ. R‘h Rij.
If we put
0 k
Ty o= Syyw

then the definition (1.17) implies

hdMg

J _ pd Jm
C =R h"s i9 mk .

1k 4 + S

J _ J _
ik * Sik¥o " Sk * hyhT Sy - B

The requirement (1.18) easily shows

1 R
(1.21) S;p = 772 ( Ryyx - 271y Pik )
The tensor Sij is called the Schouten tensor relative to the tensor

hij'




§ 2 Local geometric theory of linear differential equations in n-
variables of rank n+2

The purpose of this section is to give a geometric interpretation of
the system of linear differential equations in n-variables of rank

n+2, referring the projective study of hypersurfaces reviewed in §1.

§§ 2.1 Geometry of hypersurfaces defined by linear differential

equations
Let us first fix such a differential system. Xx = (xl,....xn) will
denote a coordinate system and subindices attached to functions mean
derivatives with respect to these coordinates. e.g. W= aw/axi. w1J =
azw/axiaxj. Let us consider n+2 linearly independent functions
wl...,wn+2 in x. They are solutions of linear differential
equations
W W ce wn)'2
1 n+2
W, Wy e Wy
wn w1 e wn+2 = 0
W wE wﬂ+2
1] iJ e 1]
1 n+2
Weg Wea e Wieg

with the unknown w. Since the linear independence of w1 says that

w1 n+2
w} w?+2

ﬁij = wi wg+2 #Z 0
PR 1

for some pair (1,j), it loses no generality assuming Aln # 0. {(Change

coordinates otherwise.) Then, dividing the equation by Aln’ we get a
system

k 0
(EQ) wiJ = gijwln + Aijwk + Aijw' 1s81,J8n
where
K _ Lk o _ ,0 N _ k 0
(2.1) Aij = AJi' Aij = AJi. gij gJi' gln = 1, Aln = Aln = 0,

The functions wi satisfy also equations



W w1 wn+2
1 n+2
Y Wy W
Wo w1 .o wn+2 =0
w wE wB+2
1n 1n e in
1 n+2
wiJk wiJk .. wiJk

A part of these equations will be written shortly as

(2.2) Wy o= Gguy e B?wk R ng, 15$1i,Jsn
Notice that these equations are derived from (EQ) by differentiation.
The system (EQ) when n=2 was first treated by E.J. Wilczynski in
his memoirs [Wil] in the beginning of this century. The reformulation
of this case 1s given by the authors in [SY 1] in view of the moving
frame method. In this paper we treat this system when n 2 3, éiming
at making the geometric¢ meaning of the coefficients clear. '

Let us consider the equation (EQ) with (2.1) of rank n+2 which
satisfies

(2.3) A = det g % 0.
We fix a vector w = (wl....,wn+2) made of linearly independent
solutions, which defines a local embedding of the X-space into the
projective space of dimension n+l1. We call this embedding the
projective solution of (EQ), which is unique up to PGL(n+2,C). By
abuse of language we sometimes consider w as the embedded '
hypersurface. Put

6 t t t t
(2.4) e det ('w, ILEERE wn, wln).
which we call the normalization factor of the system (EQ). The

function 8 1is independent of the cholice of w up to additive
constant. Deflne a set of vectors e = t(eo.

.,en+1)'by

(2.5) €y = W, e, =W e = e'ew
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Then this is a projective frame along W 1in the sense explained in
§1. The system (EQ) and the equations (2.2) can be written in a

Pfaffian form

(2.6) de = we

where
0 daxd 0
B 0 k J k ] k
w = (wa) = Aikdx Aikdx e gikdx
-0,0. .k -0.3 ..k k
e Bkdx e Bkdx (Gk—ek)dx

1s the Maurer-Cartan form of the frame e. The result of §l‘says that
the tensr hij = eeg1J defines the induced conformal metric of the
hypersurface. Then the process of normalization in §1 can be applied
to the above frame e. A suitable cholce of a transformation g in

the form

1 0 0

(2.7) g = 0 Al 0
. n _ n

c A

suffices for this normalization. Namely, writing

w' = dg g 1 +. gug™t,

which is a coframe of the transformed frame e' = ge, the element g
i1s determined so that

‘ Ve 0 'n+l _ v
(2.8) det hij;- 1, Wy o+ Wy 0 and trace LiJ = 0.
(see Propoéition 1.2). Then by (1.16) w' 1s decomposed into the sum
of the connection form & assoclated with hij and the tensorial
invariant form <« of the embedding w. Reversing this process, we

have

I hm - on?t

(2.9) w=dh h"
for h = g'l. The point here is that the right hand side is known to
have a geometrically invariant meaning. And, consequently, the
coefficients of the system (EQ) 1is written in terms of the invariants
of the hypersurface w, which, in the following, we write down
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n+2 8

n+2
= A 1y ® X e gij' the component M 1s

explicitly. Since h'i h

determined by

J

(2.10) A = (eNfp)~1/n(n+2)

Other components ¢ and )} may be computed following the
normalization process. In the present case, however, they can be
determined also by the requirements Agn = Agn = 0. We prove

Theorem 2.1. Let the equation (EQ) of rank n+2 (n & 3) with (2.1) and
(2.3) be given. If the normalization factor satisfies

0 N
(2.11) det (e gij) = 1 :
then the poeefients Aik are given by
N J o1 .0 3
Atk = (Tig - & T9p) 2 (B4 ~ B0 qp)
A - (S, - B.S. ) - (M, + L, -g. (M. +L.)}
ik ik ik 1in ik ik ik '1n in’ 7"

Here Fik and S, ‘are the Christoffel symbol and the Schouten tensr °
~ J

of the tensor e’g ,, defined in §§1.2. The b7, , L;, and M,  are

components of the form < defined in §§1.2 with respect to the’

normalized frame ge.

Proof: Put h1J = eagij. Since A 1s chosen to be 1, we have h'iJ

= h;;. Recall that the discussion in §1 shows that =® and < have
the following form

0 7 0 0 ax’ 0
- 0 J n+l - k 3 k Kk
T T, Ty R Sikdx Fikdx hikdx
J . Jl K
0 nn+1 0 0 h Sikdx 0
0 0 0 0
- 0 J - k 1.1 k
T Ty T3 0 (Mik+Lik)dx 2 h 1kdx 0
0 i 0 J1 k
Tn+1 ?n+1 0 wn+1 h Mlkdx 0



Note that ng = ng:i = 0 because m'g = O, which 1s deduced by wg =
0 and by the choice of g (A = 1). Insert these expression into
(2.9) to yield
0 ) 0
_ o _ 0 n+l J _.J J_n+1 n+l
(2.12) w = ni L uni 7y Tyt eIy Ei
Y - J _ 3 _gad_ypd i_n+1
Thel du nn+1 Th+l dcY -ux C ni
1,0 0 n+l i g 3, ] n+l
c (ni T MLy ) c (ni Ty+CIT )
Hence
J o _pd _ L] J
(2.13) Ay =Ty - 207 * ¢'hyy
A® -5, - (M, +L,)+uh
ik ik ik ik ik~
The requirments Ak = Ao = 0 are satisfied when
€ qu in 1n~
J . _ .9 pd _ 1.3 _ -8 ) )
(2.14) c e (Fln > h 1n)' u = e (Sln Mln Lln)'

With these equalities inserted in (2.13), we have the formulae (2.11)
and complete the proof. 0O

Remark: From (2.12) and (2.14) follow also the formulae for GJ and
BJ in (2.2).

If the equation (EQ) does not satisfy the condition (2.11), then
by multiplying a suitable function to the unknown W, one can
transform (EQ), without changing the hypersurface Ww nor the
coefficients gij' into‘the one satisfying the condition . The other

coefficients are obtained by the following lemma, of which proof is a
stralghtforward computation.

Lemma 2.2 : Let the system (EQ) be given with the normalization factor
8

e . If the unknown w 1s transformed into a new unknown by w =
e %u, then the system 1s subject to the change

0

' _ J
(2.15)  uyp = BypUyp *+ Piguy + Pypu.

where

(2.18) Pik = Aik * “15i + “kai - gik(“lag + “nsi)

0

Pik

0 S J _ -
Ajg + (oefy = ogoeg) + Ajpey = By (o - o)

The new normalization factor 1is e9+(n+2)a.



§§ 2.2 Linear differntial equations defining maps into hyperquadrics

Definition: The system (EQ) is sald to satisfy the quadric condition
if the image of w 1is contained 1In a certain quadratic hypersurface,
i1.e. if the cubic invariant form III vanishes identically
(Proposition 1.1).

Since the quadratic hypersurface 1s conformally flat, the
invariant <t vanishes under the quadric¢ condition; and the connection
form 7w« itself is flat. This fact can be also seen directly from the

formulae (1.19) and (1.20). Therefore we have a corollary to Theorem
2.1.

Theorem 2.3. Let the equation (EQ) of rank n+2 (n & 3) satisfying
(2.1), (2.3) and (2.11) be given. If it satisfies the quadric
condition then the coefficients Aik are expressed as rational
functions in gij and their derivatives:
i o
(2.17) Aik rik

J
& xlin

0
Ajx = Sik - 8ixS1n.

Here Fik and Sik are the Christoffel symbol and the Schouten

e
tensor of e gij'

Converse of this theorem holds.

Thecorem 2.4. Let gij (g1r1 = 1) be a non-degenerate symmetric tensor
which represents a conformally flat structure. Define 8 so that
det (eegij) = 1; and define quantities AYX, ana A%, by (2.17)

AiJ
according to the tensor

0
6 1
e gij' Then the equation

is of rank n+2 and satisfies the quadric condition. Its normalization

factor 1is ee.

Proof: Put h1J = eegij. Since by assumption h1J is conformally

flat, the assoctated normal conformal connection = 1s integrable.
Apply Theorem 1.3 by putting 7 = 0. The Gauss and the Codazzi-
Minardil equations are trivially satisfied (all the terms are zero) so
that there 1s an unique embedding w = (wl ,wn+2)

)

of X-space into
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P?*1  such that the induced conformal metric is hiJ and the
invariant form T 1s zero. Let
1 |k '0
(#) Wiy = BygWin * AljgWg * ATggW

be the system with the projective solution w and with the

normalization factor ee. The argument in §§2.1 tells us that the
surface w has the induced conformal metric eegiJ. Therefore we

have gig a gij' Since (#) 1s of rank n+2, Theorem 2.2 asserts that

K 0 _ 0
A 13 Aij and A 1 Aij' This completes the proof. 0O

We can formulate this in a more symmetric way:

Theorem 2.5. Let dij be a non-degenerate symmetic tensor which
represents a conformally flat structure. The the system

P w 1

1 o _ 1P I
013 (Wrg = TigWp = mozRke¥) = Fke(Wyy - T9yw, - 338 W)

is of rank n+2 and satisfles the quadric condition. Here FEJ and
Rij stand for the Christoffel symbol and the Ricci tensor with

respect to diJ.

Proof: Assume en = g # 0 and put g = e'nd and det(g,,) =
-2np B iJ 1] 1]

e .

Define hiJ = e gij so that det(hij)'= 1. We have only to
combine Theorem 2.4 and Lemma 2.2 as well as the transformation
formulae of the Christoffel symbol and the Riccl tensor for hij into
those for aiJ:

J J J J Jp
Tik(o) = Tip(h) + o 8 + g8y - hyph* Ve

«. T () )

Ri(9) = Ryp(h) - (n-2) (g - oy - oIy

- (Ao +(n-2)hjpajap}hik

where o = %n - P and Ah is the Laplaclan of hiJ (see [Gol, p.
115]). O
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§ 3 Uniformizing equation of a Siegel modular orbifold
§§ 3.1 Statement of the result

The domain
D= ((zh...2% €€l (1n 2Y)(Im 2" - S m 2% > 0, I 2t > 0)

is called the symmetric domain of type IV of dimension n (& 2). If
n =2, D 1is biholomorphically equivalent to the product HxH where
H 1is the upper half plane {r € C| Im v > 0}. If n =3, D 1is

biholomorphically equivalent to the Siegel upper half space ﬁ& of
genus 2:

{ (11 12) l (Im 11)(Im 73) - (Im ?2)2 > 0, Im 11 > 0
2 3
° 7

Let Q be an (n+2) by (n+2) symmetric matrix given by

(to,....tn+l)Qt(to,....tn+1) . tOtn+l R tltn _ z?;%(tj)z
and let Qn be the quadratic hypersurface of ,Pn+l defined by Q.

Then the domain D can be considered as a connected component of the
open subset

feel ey e Q™ el e et e, Lt 2 0y
of Qn through the embedding:
(zl....zn) - (to,..,tn+1) = (1.21...,zn,zlzn - 2?;;(zj)2).

The group Aut(D) of analytic automorphisms of D 1s a subgroup of
{X e GL(n+2,R)lXQtX = Q}/* of index two via the embedding D c Q" ¢

Pn+1. The restriction of the canonical conformal structure of Qn on

D 1is represented by
w = dzldz® + azlazl - 22?;§(dz3)2

Let I ¢ Aut(D) be a properly discontinuous transformation group
acting on D, and let D' be the maximal open subset of D on which
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I' acts freely. Denote the quotient manifold D'/’ by X and the

natural projection D' =2 X by =®. Since Aut(D) acts conformally on
D, there is a holomorphic conformal structure xn,w on X. Let

gijdxidxJ (gln = 1) be a conformal metric representing x,w on a

chart, with local coordinates xi. of X. There 1s a linear

differential equation (UDE) called the uniformizing equation of X 1in
the form (EQ) with the principal part giJ such that the projective
solution gives the inverse of m. When n & 3, Theorem 2.2 tells us
that gij determine the remaining coefficients of (UDE). Therefore

if one knows gij as functions of xi, one can know the equation

(UDE). .
Indeed this is the case for the Siegel modular group ['(2) of

level 2 acting on the Siegel upper half space H2, equipped with the
canonical conformal structure

w = drtde® + drdarl - 2(a7%)?.

Theorem 3.1 The regular orbit of H under I'(2)  1s isomorphic to

2
the space X = {(x',x%.x°) e¢®| x! #0, 1, xJ (L # j)}. The image
nt,w 1s a form on X conformal to (xl-xz)xs(xs-l)(dxldx2 + dxzdxl)

+ (x2-x3)xl(xl-1)(dx2dx3 + dx3dx2) + (xz-—xl)xz(xz-l)(dxsdx1 + dxldxz).

The uniformizing equation (UDE) on X 1is given as follows:

' 11 1 1 1
(3.1) w,, + { =, + + =( + ) w
i1 AT T2t g Tk 1
_ xJ(xJ-l) W, - x%ixk—l) W+ 1 W= 0
axt(xt-1yxt-xd) 3 axtxt-nyxt-x¥y K xixi-n
(xk-xi)xj(xj—l){2wij s (T Jl = )W,
X =-X XY =-X
1 1 1
+( + YW, + w o}
xi—xk xi—xJ J (xk-xi)(xk-xj)

- (xi-xj)xk(xk~l){2wik o (—2— =1y

where (1,J,k) 1s a cyclic permutation of (1,2,3).
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In the next subsection (Proposition 3.4), we shall express T=,w
in terms of the XxX-coordinate. Once it is done, the equation (UDE) is

derived as follows: We apply Theorem 2.5 to the tensor of the
form

dij

0 E3 E2
(dij) = E3 0 E1
E2 1 0
which is assumed to be conformally flat and E1E2E3 # 0. Put
W = W - w - R W
ij iJ ij'k ij™

Then the system 1s

(3.2) ”11 = 0
ijij - Ekwik = 0,
where (i,Jj,k) 1s a cyclic permutation of (1,2,3).

The actual computation will be sketched. The inverse matrix of
g 1s given by

2
B £ ElE§ E,E,
(2E,E,E,) E,E, - g2 EzE5
EE) EzE, - Eg

Lemma 3.2. The Christoffel symbols of ¢ are given by

E E
i _1 J _ 21 1
Iy = 3(log E4EL),, Fiy = 2E1(1°g E, 1"
A -AE
Fij = E%_' : F?J - 4EkEk ’
] |
where Ai a (EJ)J + (Ek)k - (Ei)1 and (i,j.k) 1s as above.

Proof: Here the summation rule is not applied to the indices 1i,]
and k. By definition, we have

11 19
Ty =529 077 (20,4 4 - 954 )

19
= 29 07004 ( g4y = 0)



1] ik
qg aij,i + g7

ik, 1

1 1 1
EE;(Ek)i * 2EJ(EJ)1 g(1og EjE, )y

Hence the first equality. Others are similarly obtained. O
As for the Ricci tensor recall the definition:

_ '}
Rij = Z9R7195
_ 2 2 9 9
= 29T 0.5 - Z0T5y .0 * S0 alialmy ~ Za.al13T0m
Lemma 3.3: The Ricci tensor is given as follows
E E E
= L i _J1 _ K. _k
Ry; =35 { (log Ej)yy Ei(l°g Ek)ij Ei(log E )ik )
J
E
¥ %(1°3 Eyj)y (log g é Y
37k
E E E, E E
1 1 1 K 1
+ Z(log 7)), { (log ==) =—(log ), }
4 E, 1l E, EjEk j E, EJ Kk K
EJRiJ - EyRyy = 5 { EJ(log Ek)iJ - Ek(log EJ) }
E E E
1 _ 1 1 1 i
4(108 E;), (Ej-E,) + 3(log Ek)i{Ej(log B * Bu(los Ej)k}.
Proof: We show the first identity only. R is the sum of three

i1
parts:

) 9
Rij = EQFIQ 1 Qrii g * Zgnl Tiglmy - Tiqlom )

Lemma 3.2 shows

& i j
Zolye= Ty + Ty Iy

A
1 k. _1
= z(log E4E ), + gE, * 3k, T 20108 ByEyEp)y-

Here note that AJ + Ak = Z(Ei)i. The second term is

9 1 i K
Ly, 0 = Pii 1 ° Fii g rii K
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E E E

E

1 v {—dl 1 K k
= 20108 EjEyplyy {2E1(1°g Ek)i}j * {2E1(1°g Ej)i}k

The third term is computed as follows:

9
Eﬂ,m( FTQFmi - Pm FQm )

= zm( ro FJ - FJ + Fk

13 mi 1i% jm Tilmi - Tiy km )

= rJi( F - - Fk ) + TK

13 77313 7 tkd 110 Y1k T ik

Fi - rd Fkk )

el ol K 3 i rk k |2
T Oy *+ Ty ) 0 {(Fij) + 2l Ty + (T h
Ap - Ay
The first bracket 1s equal to ——— = - Z(log E.E },. Notice that
4E 2 1%k g
A - Ay = 2{(E1)i - (Ek)k}' Hence the sum of the first two terms 1is
E E.E E.E
1 i EEy Btk
4Ei(loz Ek)i{ E,(log E, )y - Ey(log E, )y }.

The third term is, in view of Fji

- %(log EJ k)1(103 E )i

The last term 1s

( Ay ) ( 51_)2 . s - AJEJ - AE,
4E 4E, 4E.E, 4E1EJ
1 2 1 2

= 16 Ei (AJ + A = 4{(1og Ei)i} .

Summing up these, we have

R = —(log E.E

1
11 1E; k)ii - g(log EJEk)ii

E E
- { (lOg hi)i } { (10g EJ)i }k

E.E E.E
_l 173 17k
4Ei ) { Ek(lOg Ek )k - EJ(IOg EJ

1
Fii = 2(1og Ei)i’ equal to

)y )



- §(log E(E), (log Ey)y + 3{(log Ey) )%,

which implies the first equality of the lemma. 0O
Proof of (3.1): We choose a conformal class ¢ given by

-1

(3.3) E]' = - b exdy x oy xd (e -1y kK (xK-1)

which 1s conformal to x,w. Inserting these into the identities in
Lemma 3.2 and 3.3, the system (3.2) becomes the system (3.1). O

§§ 3.2 The conformal structure on a modular variety

The real symplectic group Sp(2.IR) 1s by definition,

((82) < oem (a2 ) (28) ~ (2, )

2

where Ik stands for the k by Kk identity matrix. The group of
analytic automorphisms of H2 is given by Sp(2,R)/%* by the action

7 = (11 72) > (At + B)(Ct + D)7}
T2 T3 :

Let us consider the following two discrete subgroups of Sp(2,R):

I' = GL(4,Z2) n Sp(2,R): the full modular group
I'2) = (Xerll X = I4 mod 2}: the principal congruence

subgroup of level two.
The group I'(2) 1is a normal subgroup of [ such that

L/T(2) = (T/%)/(T(2)/%) = 84

where S6 is the symmetric group on six letters. The transformation

L ( 1 72 ) 5 ( 1 g2 )
72 23 72 o

(1t € '(2)) fixes the hyperplane FO C H2 given by 12 = 0. The set

F of fixed points of I'(2) on H2 is given by F = FFO.



Consider the space

1.5 e H® el = & (1 % 4)).

E=1{& = (&
The group PGL(2,C) and the symmetric group S6 act on E as
follows:

v: (8L, ..., 2% 5 (vEl,....¢£5) v € PGL(2.0)
o: (8L, ... 8% 5 (go(1) . g9(6), s € Sg

For & € Z, we consider a non-singular plane curve

4. 2

c(g): wiv? = (u - Elw)...(u - E%)

2

of genus two in P with a homogeneous coordinate system (u,v,w).

Two curves C(&) and C(5') are biholomorphically equivalent if and
only if £ = g&' for some g € Sy % PGL(2,L). The space E modulo
PGL(2,C) 1is isomorphic to the space

A= (0A2233 ec® 1At #0100 (1= )y,

which parameterizes plane curves in Rosenhein normal form

C(A): w3v2 = u(u -uw)(u - llw)(h - kzw)(u - ksw).

Notice that the group.‘Aut(A) of automorphisms is isomorphic to SG‘
We consider the curve C(A) for a fixed X € A. We take a basis of
the homology groupv"Hl(C(A).Z) so that the corresponding four by four

intersection matrix takes the canonical form, i.e. ( 0 i, ). Then

-1 0
we take two linearly independent differentials of the fiist kind on
C(X) such that the period matrix takes the form (1.12). This is
always possible and we get a point 7t of H2' Notice that the choice
of the basis of Hl(C(k).Z) 1s not unique but, once 1t 1s chosen, the
choice of two differentials is unique. Notice also that =t € H2 - F,
since the Jacobian variety Cz/(1.12)24 of the curve C(A) can not
be the product of two elliptic curves. Now we let X € A vary and
let the basis of Hl(C(A).Z) depend continuously on A. Then the

correspondence A = 7(A) glves a multivalued map



P A- H2 - F,

which turns out to be an inverse map of the natural projection
T H2 -F = (H2 - F)y/I'(2) 2 A.

Notice that (H2 - Fy/''=s A/SS. The 1somorphism (H2 - )y /T'(2) g A
can be explicitly given as follows.

We define sixteen theta constants eg.g.h.h,(T) for g', g", h',

h" = 0,1 by

_ : LBV 2.1
eg'g'h'h'(T) - zpo'pnez exP ni{(p +2 ) T

+ 2(p'+§L)(p”+§i)72 + (p"+§L")273 + (p'+§i)h' + (p"+§-'—‘)h"}

which are holomorphic functions in <7 = (71 12 ) € Hz' In terms
'!'2 75
of theta constants the natural map 7%: 7 - (Al,kz,ks) can be

expressed by

2 2
AL, (91100(7)) _(91000(1))

%0100¢7) ) ®6000(7) )
2 91100(™)\" [ ®B1001(7)
A B (D) 8. (7)
0100(™) /A Og001 (M)
3 81000(7) 91001(7)
N NN 5. (7
0000 0001
We have chosen thé above expression from 6! = # Aut(A)

possibilities. We want an explicit expression of the form

1

T, (dtide® + drodrt - 2(d7?)?)

in terms of coordinates kl. Az and As.

Proposition 3.4: The quadratic form n:.(d'rld't3 + d?sdrl - 2(d12)2) is
a form on A conformal to (Al - Az)ks(ks - 1)(dlldA2 + dkzdkl)

o (A2 -1y (axZarn® o aa3aa?) o A3-al)n2(a2-1) (andant + antarndy,
whose discriminant is A112A3(k1—1)(lz-l)(kz—l)(kl-kz)(Az—ks)(ks-ll).



The rest of this section 1s devoted to the proof of the
proposition We put q = exp n113 and study expansions of three

lambdas Al. Az and l3 in gq. Put

2
A e ag + Ala »oa®). A% = a2« aq s 0(dh),

3

2
A% = kg . qu + 0(q%).

where O(qk) stands for a holomorphic function or a form divisible by

qk. then we have

L a2 Zyegexe mllprp) it (p+ )%y 2 e ety 2
Lemma 3.5 : AO ] AO = 5 1 -
= EZexp Xl (p“r” + pv ) BOO(T )
1 2
Ay = - A
1 i
i 4Al ¢ Zoez z EZexp ni{(p+ )211 +‘2(p+%)12} i ;ngexP ni(pzrl + 2p12)
0 (71 80 ()
10 00
A= arh, A3 <o,

1
where egh(w) (g.h = 0,1) are elliptic theta constants:

0un(w) = Z gexp wi((p+H) % + (p+5)n) (v e H)

L ‘ Blo(w)
and A(w) 'is the lambda function defined by A(w) = —
’ . . eoo(w)

Proof: We have

: 2
. 2 1
-80000(7) = zp,neZexP ni(p“rt + 2pn‘-r2)qn
1
= 8(tT) + 8{1) a + 0(a?)
2.1 2' n2
80001(1) = Ep.neZexp ni(p“t" + 2pnt° + n)gq

= 89o(71) + 8{3l1a + 0(a?)

2
81000(7) = Zp nezexP TL(p+5) tt + 2(p+3ine?)q"
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1
B 910(71) + eiogoq + 0(a%)
1,21 1, .2 n2
81001(7) = Ep nezeXP Ti{(p+3) 77" + 2(p+3)n7” + nlq
} 910(71) * Biéélq + 0(q%)
2.1 1. 2 (n“'%)z
0100(7) = 2p,nezexp ni{p“7” + 2p(n+3)77}q
- at/%8{ 10, + 0(a%))
1,2
. ()
81100(1) = zp'ndexp Ei{(p+%)21l+ 2(p+%)(n+%)12}q 2
SCRACITER + 0(a®)},
where _
eéééo =T eééél ® Zzpezexp Ei(ple + 2p72)
eié())o | eié())l = zzpezexP Ei{(p+-§-)211 + 2(p+%-)12}
eégéo = 2 Zpezexp ni(pzrl + ptd)
0{000 = 2 Syegexp TL{(p+5) 27 + (peg)7).

The following identit

y

2 2
3, *+ 3,4 + 0(q )) 2 (co +ciq + 0(q2))
2
by + byq + 0{(q™) dy + d;q + 0(q2) 7
a5Cy 2 I 3,
) {b d )- + 2 ——— { F(c;dy - cqdy)
070 (bydg) 0
c
+ ‘g(a b, - a.b,)}a + O( 2)
b, #1°0 oPy)1d q
leads to
(0) 1,12 (0) 1
kl =l(91100 910(1 )) . 2 81100 elo(T )
(0) 1 (0) 1.2
80100 ®00(*) {86100 oo(™ )}
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(0)
6
1100 (1) 1, _ 1,4(1) 2
x{ B0 (7] ®1000%0 (7)) = 8107 1850007 }a + 0(a%)
(0) 1.\2 (0) 1
22 .| 81100 810" )) . 5 1100 %100
(0) 1 (0) 1.42
80100 B0 (™) {85100 Boot™ )}
Big%o (1) 1 1,.(1) 2
x{ o (L ( 81601800(7) = 810(7 184501 }a + 0(a™)
1.4 1.2 1.
A3 . (910(71)) . g 210 8i0(Ty)
1 4 1
B50(77) 8o0(71) 850(7")
(1) 1, _ 1,,(1)
*{81501900(7) = 810(77 85501
(1) 1 1..(1) 2
* 81000%0(7) = 83o(7)85pp0ta + 0(a%).
Since we have B{ééo = - G{égl and Géééo a - Béé%l. the lemma 1s
proved. O
1 2 1 2 aal 2223 1 2
Corollary 3.6: A~ - A° = qh(7r .77.q). det(a( 1' 2’ 3)) = qf(7v,77.q),
T T T
' 2

where h and f are holomorphic functions in 1,

are not divisible by q.

T, T and q which

Proof: The first assertion is obvious.

calculations below.

The second follows from the

1 1 1 1
)N oA )N oA
oA 0 1 0 1 1 2
= = —_ ¢ o} + q TiA + 0(9%)
9t 311 371 372 812 1
aaZ  aal a2 Al 2
- t q + q TiALQ
311 811 812 812 1
a
— 0 0
a7
3 2 1
-2 oA )N
A 0 0 0
det(g—T) = i -1 ( - J\}. — }\i 5 g o+ O(qz)
aT aT a7



o axg g )
s - 2KIANT — —5 q + 0(q“) 0
1 811 912
12 1 1 3k 3 2
Lemma 3.7: qf(v ,7t7,q)dr” = 2n111 —= 4 da\” + 0(q°)
ot
qf(11.12.Q)d72 = 0(q) ,
3
3AL A
af (tr, 7%, q)ard = —2 —2 (aal - ar?) + 0(q?)
1.2
3r 97

Proof: This follows from the expression of qf(Tl.Tz.Q) %% :

oAl
0(a?) 0(a?) 2miAT - —2 qa + 0(a?)
T
0(q) 0(q) 0(q)
Efg axg , 353 g . g axg ) axg g s i
811 813 v ot - 811 813 £ ota. - 313 BTl 313 811 ()

—

Let UCA be an open subset of 03 such that the closure U
in C3 has the property: U n {(Al,kz.ks) € 031 Al # Az} = U n A.
Corollary 3.8. The quadratic form =, (d7id7? + d7?d7} - 2(dz>)?) " is
conformally equivalent on U to a quadratic form with the following
local expression around U n A:

25 (ar%ar® + arlar?) ——5tantax® « axdarh

kl-l kl-k

+ (holomorphic quadratic form in A),

whose discriminant has double pole along {Xl s kz}.

This implies that that the holomorphic conformal structure

n,(drldrz + d?szl - 2(d1 ) ) on A can be extended to a meromorphic
conformal structure 7 on P3 D A. We can put
- 3 1.4J -
n 21,3- aij(k)dk dA aiJ = ayy
P, (A)
S % i 1,2 4,3
aij(k) oS Pyy € CIA A%, A7)

DA = AMAZAI (Al-1y (A%-1) (A3-1) (A1-a2) (A2-23) (A3-0Y .
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We can assume
-2
det(aij(k)) = D(A)

since 1N should be a holomorphic nondegenerate quadratic form on A.
Since [I/I'(2) = S6 acts on A as the group of automorphisms of A,
the conformal structure of A represented by n© 1s invarlant under

the action of SB' In particular it is invariant under the
transformation:

1 2
Co1 A 2 _ A% 31
ag. - = A3 R ) 1) x3 ' )] XS.
Put
. 1.1 _
an = Z bij(z) dp~dp bij = bji'
then we have
a,.(A)
N i
b, (M) = —H—= (1, = 1,2)
ij (u3)2
uJaij(x) +a L0+ pla
b, (1) = - K (1,4} = (1,2)
#3 (u3)3
oo phafa () ¢ 52 00 00+ (89 %8, 0 a0
33 (p3)4 :
Since
p(A) = - e ana det(d - - )74
we have

det(bij(n)) = det(aij(k)) (113)_8
=pn)"2 %8 - 512 p2.

Therefore multiplying a conformal factor (113)_4 to g*n. we should
have

ay () = (u3)~4 by (). (1,J = 1,2,3)



In prticular if 1,j = 1,2 then

3. -4 3.-6
ajy(p) = (us)_s Pyy(1) (n_i 2440
SO
(3.4) p, (2125 - - )% p, .« v -1y
1j 130 3 0 37 3

This implies in particular that the total degree deg(pij) of piJ
(1,J = 1,2) 1s at most four. Since the form % 1is invariant under
permutations of Al.kz and A3. we conclude that deg(pij) 24 (1,3 =

1,2,3). On the other hand, by Ceorollary 3.8, plz(l) and pkk(k) (k

= 1,2,3) are divisible by kl-kz. By using symmetricity with respect

to kl.kz and 13 again, we have the following expressions

P (M) = (AFA%) (A% (a%-at

)qkk

Py (A) = (A'-Ad)r (1 # )

i

where Qer and riJ are polynomials with deg(qkk) 21 and deg[rij)

S 3. The first expression satisfies (3.4) if and only if is

Uk
identically zero. Thus we have

akk(l)'a 0 (k = 1,2,3)

and that the determinant of the matrix (aij(l)) can be computed as
follows:

P15(A)Pyz(X)Pgq (X)

det(aij(k)) = 2 D(y)3

This expression with the identity: det(aij(k)) = D(}u)-2 imply that

deg(pij) =3 (1si1#J8&3) and plz(k)p23(k)931(k) = D(A)/2.
Substitute the expression

Pioy) = (Xl-kz)rlz deg(r = 2

12

into (3.2), we have

plz(l) = (const.)(kl-kz)k3(k3-1).



By using symmetricity of M with respect to the A's and the
identity D(kl.ks.kz) = - D(Al.kz.ks). we conclude that n 1is
expressed, up to a multiplicative constant, by

aL-aZ)3 3.1,

1,42 2.1
8N (dAtdr4s dAa%dA™)

(aZ-a3yatoal-1y

2..3 3.2
509 (dA“dA”+ dA”dA“)

+

(A3-ahya2a2-1)
D(A)

(ax3anls anlar3y.

This completes the proof of Proposition 3.4.

References

[Igu] J. Igusa, On the Siegel modular forms of genus two, Amer. J. of
Math. 84 (1962) 175-200.

[Gol] S.I. Goldberg, Curvature and Homology, New York, Academic Press,
(1962).

[Kob] S.  Kobayashi, Transformation groups in differential geometry,
Ergeba der Math. 70, Springer (1972).

[Kui] N.H. Kuiper, On conformally flat spaces in the large, Ann. of
‘Math. 50 (1949) 916-924.

[Sas] T. Sasakil, On the projective geometry of hypersurfaces,Equations
differentielles dans le champ complexe (Colloque franco-japonals
1985), Hermann (1987).

[SY1] T. Sasaki & M. Yoshida, Linear differential equations 1in two
variables of rank four I (preprint 1987).

[SY2] T. Sasakl & M. Yoshida, Linear differential equations in two
varlables of rank four II - The uniformizing equation of a Hilbert
modular orbifold (preprint 1987).

[Wil] E.J. Wilczynski, Projective differential'geometry of curved
surfaces (fourth memoir), Trans. Amer. Math. Sos. 8 (1907) 233-260.

[Yos]'M. Yoshida, Fuchsian differential equations, (Aspects in Math.)
Vieweg Verlag (1987).



