Deformation theory of Calabi-Yau threefolds and Certain invariants of singularities

Yoshinori Namikawa

Department of Mathematics Sophia University Kioi-cho, Chiyoda-ku Tokyo, 102 JAPAN

i i

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn GERMANY

,

MPI/95-82

.

Deformation theory of Calabi-Yau threefolds and Certain invariants of singularities

Yoshinori Namikawa

Let Z be a Calabi-Yau threefold with isolated rational Gorenstein singularities, that is, Z is a projective variety of dimension three with isolated rational Gorenstein singularities, with trivial dualizing sheaf, and finally with $H^1(Z, \mathcal{O}_Z) = 0$. In the previous works [Na 1, Na-St, Na 2], we have considered the following problems in the case where Z has only isolated rational hypersurface singularities or only terminal singularities:

(1) When is the Kuranishi space Def(Z) smooth?

(2) When can we deform Z to a smooth Calabi-Yau threefold ?

By [Na 1] the problem (1) always has a positive answer, and by [Na-St, Na 2] we can give rather satisfactory, sufficient (or necessary) conditions for Z to be smoothed by a flat deformation.

In turn, when Z does not necessarily have only hypersurface singularities, the situations are rather complicated; in [Gr] Mark Gross has studied it. For example, Def(Z)is not necessarily reduced (cf. [Gr, Example(2.4)]). As for (2), if Z has a quotient singularity, then Z is not, even locally, smoothable by Sclessinger [Sch]. But it should be remarked that some sufficient conditions for smoothings are obtained in [Gr]. In this paper we shall prove the following:

Theorem Let Z be a Calabi-Yau threefold with isolated rational Gorenstein singularities. Assume that

(1) Z is **Q**-factorial;

(2) every singularity on Z is locally smoothable, and

(3) the semi-universal deformation space Def(Z, x) of each singularity (Z, x) is smooth.

Then Z is smoothable by a flat deformation.

Example Let Z be a **Q**-factorial Calabi-Yau threefold which admits only isolated rational Gorenstein codimension 3 points. Then Z is smoothable. In fact, any such point is a Pfaffian subscheme by [B-E]. By [K-L], it is smoothable. On the other hand, the semi-universal deformation space of a normal, Gorenstein codimension 3 point is smooth by [W].

Our method is, in principle, the same as [Na-St]. Let (X, x) be the germ of an

isolated rational singularity. Let $\pi : (Y, E) \to (X, x)$ be a good resolution of (X, x), that is, E is a divisor with simple normal crossing. Define $\mu(X, x)$ to be the dimension of the cokernel of the map $(2\pi i)^{-1} dlog : H^1(Y, \mathcal{O}_Y^*) \otimes_{\mathbb{Z}} \mathbb{C} \to H^1(Y, \Omega_Y^1)$. By [Na 1, §5], $\mu(X, x)$ is independent of the choice of the resolution. We also define $\sigma(X, x)$ to be the rank of the finitely generated Abelian group Weil(X, x)/Cart(X, x), where Weil(X, x)(resp. Cart(X, x)) be the group of Weil (resp. Cartier) divisors of (X, x). The following is a key result.

Theorem 1. Let (X, x) be an isolated rational Gorenstein singularity of dimension three. Assume that $\mu(X, x) = \sigma(X, x) = 0$. Then (X, x) is rigid.

Proof Put $U = X \setminus x$. Identifying U with $\pi^{-1}(U)$, we have the map $\tau : H^1(U, \Omega_U^2) \to H_E^2(Y, \Omega_Y^2(\log E)(-E))$ as a coboundary map of the sequence of local cohomology. By the vanishing theorem of Guillén, Navarro Aznar, Puerta and Steenbrink (cf. [St 2]), $H^2(Y, \Omega_Y^2(\log E)(-E)) = 0$. Hence, τ is a surjection. On the other hand, by [Na-St, Proposition (2.1)], $\mu(X, x) = \dim_{\mathbf{C}} H^1(Y, \Omega_Y^1(\log E)(-E))$. Consider the map $d : H^1(Y, \Omega_Y^1(\log E)(-E)) \to H^1(Y, \Omega_Y^2(\log E)(-E))$. This map is a surjection by the proof of Theorem (1.1) from [Na-St]. By the assumption, $\mu(X, x) = 0$, and hence $H^1(Y, \Omega_Y^2(\log E)(-E)) = 0$. From this it follows that τ is also an injection. In particular, we have $h^1(U, \Omega_U^2) = h_E^2(Y, \Omega_Y^2(\log E)(-E))$. Consider the exact sequence

$$0 = H^1(Y, \Omega^1_Y(log E)(-E)) \to H^1(Y, \Omega^1_Y(log E)) \to H^1(E, \Omega^1_Y(log E) \otimes \mathcal{O}_E).$$

By duality, the middle term has the same dimension as $H^2_E(Y, \Omega^2_Y(log E)(-E))$, hence as $H^1(U, \Omega^2_U)$ by the above remark. Note that

$H^{1}(E, \Omega^{1}_{Y}(log E) \otimes \mathcal{O}_{E}) = Gr_{F}^{1}H^{3}_{\{x\}}(X, \mathbf{C}),$

where F is the Hodge filtration of the mixed Hodge structure on $H^3_{\{x\}}(X)$ (cf. [St 1]). On the other hand, $h^3_{\{x\}}(X, \mathbb{C}) = \sigma(X, x)$ because (X, x) is an isolated rational singularity of dimension three (cf. the proof of [Na-St, Proposition (3.10)]). Thus, the third term in the exact sequence must vanish, and we have $H^1(U, \Omega^2_U) = 0$. Since (X, x) is an isolated Gorenstein singularity of dimension three, this implies that (X, x) is rigid by Schlessinger [Sch]. Q.E.D.

Proposition 2 Let Z be a Q-factorial Calabi-Yau threefold with isolated rational Gorenstein singularities. Let $\pi : Y \to Z$ be a resolution of Z. Let p_i $(1 \le i \le n)$ be the singular points on Z such that either $\mu(Z, p_i) > 0$ or $\sigma(Z, p_i) > 0$, and let E_i be the exeptional set over p_i . Let Z_i be mutually disjoint, contractible, Stein open neighborhoods of $p_i \in Z$. Set $Y_i = \pi^{-1}(Z_i)$. Consider the diagram

$$Ext^{1}(\Omega_{Z}^{1}, \mathcal{O}_{Z}) \xrightarrow{\alpha} \bigoplus_{1 \leq i \leq n} H^{0}(Z_{i}, T_{Z_{i}}^{1}) \xrightarrow{\bigoplus_{1 \leq i \leq n} \beta_{i}} \bigoplus_{1 \leq i \leq n} H^{1}(Y_{i}, \Theta_{Y_{i}}).$$

Then there is an element $\eta \in Ext^1(\Omega^1_Z, \mathcal{O}_Z)$ such that $\alpha(\eta)_i \notin im(\beta_i)$ for all *i*.

Proof. Let $Sing(Z) = \{p_1, ..., p_n, p_{n+1}, ..., p_m\}$ and let $U = Z \setminus \{p_1, ..., p_m\}$. By [Sch] or [Na 1, §5], $Ext^1(\Omega_Z^1, \mathcal{O}_Z) \cong H^1(U, \Theta_U)$. On the other hand, $H^0(Z_i, T_{Z_i}^1) \cong H^2_{p_i}(Z, T_Z^0)$

by [Fr]. Thus, the map α is identified with the composition of the coboundary map $H^1(U, \Theta_U) \to \bigoplus_{1 \le i \le m} H^2_{p_i}(Z, T^0_Z)$ of the exact sequence of local cohomology and the projection $\bigoplus_{1 \le i \le m} H^2_{p_i}(Z, T^0_Z) \to \bigoplus_{1 \le i \le n} H^2_{p_i}(Z, T^0_Z)$. Since $H^2_{p_i}(Z, T^0_Z) \cong H^2_{p_i}(Z, \pi_*\Omega^2_Y)$ and $\Theta_U \cong \Omega^2_U$, we have the following exact commutative diagram

$$H^{1}(U, \Omega_{U}^{2}) \xrightarrow{\gamma} H^{2}_{E}(Y, \Omega_{Y}^{2}) \longrightarrow H^{2}(Y, \Omega_{Y}^{2})$$
$$\parallel \qquad \uparrow \bigoplus \phi_{i}$$
$$H^{1}(U, \Theta_{U}) \xrightarrow{\alpha} \bigoplus_{1 \le i \le m} H^{2}_{ni}(Z, T^{0}_{Z}) \cong H^{2}(Z, T^{1}_{Z})$$

Denote by ι_i the natural map $H^2_{E_i}(Y, \Omega^2_Y) \to H^2(Y, \Omega^2_Y)$. In the above diagram, ϕ_i is factorized as follows:

$$H^2_{p_i}(Z, T^1_Z) \xrightarrow{\phi_i'} H^2_{E_i}(Y, \Theta_Y) \to H^2_{E_i}(Y, \Omega^2_Y).$$

We shall prove that the map

$$\iota_i: H^2_{E_i}(Y, \Omega^2_Y) \to H^2(Y, \Omega^2_Y)$$

is not an injection for each $i \leq n$. If this is proved, then we take a non-zero element $\zeta_i \in Ker(\iota_i)$ for each *i*. By the above diagram, there is an element $\eta \in H^1(U, \Theta_U)$ such that $\phi_i \circ \alpha(\eta) = \zeta_i \neq 0$. In particular, we have $\phi_i \circ \alpha(\eta) \neq 0$. We then see that $\alpha(\eta)_i \notin \text{image}(\beta_i)$ by the exact sequence

$$H^1(Y_i, \Theta_{Y_i}) \xrightarrow{\beta_i} H^2_{p_i}(Z, T^0_Z) \xrightarrow{\phi_i} H^2_{E_i}(Y, \Theta_Y).$$

We shall finish the proof by showing the following claim.

Claim The map ι_i is not an injection for $i \leq n$.

Proof We only have to prove that the dual map $\iota_i^* : H^1(Y, \Omega_Y^1) \to H^1(Y_i, \Omega_{Y_i}^1)$ is not surjective. First note that $H^1(Y, \Omega_Y^1) \cong H^1(Y, \mathcal{O}_Y^*) \otimes_{\mathbb{Z}} \mathbb{C}$ because $H^2(Y, \mathcal{O}_Y) = 0$. Thus, ι_i^* is factorized as follows:

$$H^1(Y, \mathcal{O}_Y^*) \bigotimes_{\mathbf{Z}} \mathbf{C} \to H^1(Y_i, \mathcal{O}_{Y_i}^*) \bigotimes_{\mathbf{Z}} \mathbf{C} \to H^1(Y_i, \Omega_{Y_i}^1).$$

The second map is an injection by [Na 1, §2, CLAIM] because (Z, p_i) is a rational singularity. Since Z is Q-factorial, the image of the first map is the C-vector space generated by $[E_{i,j}]$'s, where $E_{i,j}$ are two dimensional irreducible components of E_i and $[E_{i,j}]$ denote the corresponding line bundles. If $\sigma(Z, p_i) > 0$, then the first map is not a surjection, and hence ι_i^* is not surjective. On the other hand, if $\mu(Z, p_i) > 0$, then the second map is not surjective by definition. In particular, ι_i^* is not surjective. Q.E.D.

Proof of Theorem Let Z be a Calabi-Yau threefold which satisfies the conditions (1), (2) and (3) of Theorem. By (2), for every singularity on Z, either μ or σ is positive. In fact, if both of them are zero, then the singularity is rigid by Theorem 1. On the

other hand, it is smoothable by (3), which is a contradiction. By the result of Gross [Gr, Theorem(2.1)], the conditions (3) assures that Def(Z) is smooth. We shall use the same notation as Proposition 2. Let $Def(Z_i)$ be the semi-universal deformation space of Z_i and let Z_i be the semi-universal family over $Def(Z_i)$. By definition, $Def(Z_i)$ is smooth, and a general point of $Def(Z_i)$ parametrizes a smooth point. By the same argument as Theorem (2.4) from [Na-St], $Def(Z_i)$ has a stratification into Zariski locally closed, smooth subsets S_i^k ($k \ge 0$) with the following properties:

- 1. $\operatorname{Def}(Z_i) = \coprod_{k \ge 0} S_i^k;$
- 2. S_i^0 is a non-empty Zariski open subset of $\text{Def}(Z_i)$, and \mathcal{Z}_i is smooth over S_i^0 ;
- 3. S_i^k are of pure codimension in $\text{Def}(Z_i)$ for all $k \ge 0$, and $\text{codim}_{\text{Def}(Z_i)}S_i^k < \text{codim}_{\text{Def}(Z_i)}S_i^{k+1}$;
- 4. If k > l, then $\bar{S}_i^k \cap S_i^l = \emptyset$;
- 5. \mathcal{Z}_i has a simultaneous resolution on each S_i^k , that is, there is a resolution \mathcal{Z}_i^k of $\mathcal{Z}_i \times_{\operatorname{Def}(Z_i)} S_i^k$ such that \mathcal{Z}_i^k is smooth over S_i^k .

The origin of $Def(Z_i)$ is contained in the minimal stratum S_i^k . By definition, the flat family $\mathcal{Z}_i \times_{Def(Z_i)} S_i^k \to S_i^k$ admits a simultaneous resolution. This simultaneous resolution induces a resolution $\pi: Y_i \to Z_i$. Since each π_i is an isomorphism over smooth points, these fits together into a global resolution $\pi: Y \to X$. We here apply Proposition (2.3). Let $q: \mathbb{Z} \to \Delta$ be a small deformation of Z determined by $\eta \in Ext^1(\Omega^1_{\mathbb{Z}}, \mathcal{O}_Z)$. It determines a holomorphic map $\varphi_i : \Delta \to Def(Z_i)$ with $\varphi_i(0) = 0$ for each *i*. Then the image of φ_i is not contained in S_i^k . Moreover, if we take a general point $t \in \Delta \setminus 0$, then $\varphi_i(t) \in S_i^{k'}$ for some k' < k by the property 4. of the stratification. \mathcal{Z}_t is also a Q-factorial Calabi-Yau threefold with isolated rational Gorenstein singularities which satisfies the conditions (1), (2) and (3) in Theorem. In fact, Q-factoriality, in this case, is preserved by a small deformation by Kollár-Mori [K-M, 12.1.10]. The condition (3) is satisfied because $\mathcal{Z}_i \to Def(Z_i)$ is a versal family of singularities on a suitable open neighborhood of the origin in $Def(Z_i)$ (cf. [Gra, Tyu] or [Pou, Theorem]). (2) is clearly satisfied. Thus, we can continue the same process as above for \mathcal{Z}_t by using $Def(Z_i)$. Finally, we reach a Calabi-Yau threefolds whose simularities all satisfy $\mu = \sigma = 0$. But these singularities are locally smoothable. By Theorem 1, this implies that the resulting Calabi-Yau threefold is smooth. Q.E.D.

References

- [Fr] Friedman, R.: Simultaneous resolution of threefold double points, Math. Ann.
 274, 671-689 (1986)
- [Gr] Gross, M.: Deforming Calabi-Yau threefolds, preprint

- [Gra] Grauert, H.: Über die Deformation isolierter Singularitäten analytischer Mengen, Invent Math. 15, 171-198 (1972)
- [K-M] Kollár, J., Mori, S.: Classification of three-dimensional flips, J. Amer. Math. Soc. 5,(3) 533-703
- [Na 1] Namikawa, Y.: On deformations of Calabi-Yau threefolds with terminal singularities, Topology **33**(3), 429-446 (1994)
- [Na 2] Namikawa, Y.: Stratified local moduli of Calabi-Yau 3-folds, preprint
- [Na-St] Namikawa, Y., Steenbrink, J.H.M.: Global smoothing of Calabi-Yau threefolds, preprint
- [Pou] Pourcin, G.: Deformation de singularites isolees, Astérisque 14, 161-173 (1974)
- [Sch] Schlessinger, M.: Rigidity of quotient singularities, Invent. Math. 14, 17-26 (1971)
- [St 1] Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities. Proc. Symp. Pure Math. 40 Part 2, 513-536 (1983)
- [St 2] Steenbrink, J.H.M.: Vanishing theorems on singular spaces, Astérisque 130, 330-341 (1985)
- [Tyu] Tyurina, G.N.: Locally semi-universal flat deformations of isolated singularities of complex spaces, Math. USSR. Izv. **3**, 976-1000 (1969)

Department of Mathematics, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo, 102, Japan

Current Adress: Max-Planck-Institut fur Mathematik, Gottfried-Claren-Strasse 26, Bonn, D-53225, Germany