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GROUP ACTIONS ON SPHERES WITH RANK ONE ISOTROPY

IAN HAMBLETON AND ERGÜN YALÇIN

Abstract. Let G be a rank two finite group, and let H denote the family of all rank
one p-subgroups of G, for which rankp(G) = 2. We show that a rank two finite group G
which satisfies certain group-theoretic conditions admits a finite G-CW-complex X ' Sn

with isotropy in H, whose fixed sets are homotopy spheres.

1. Introduction

Let G be a finite group. The unit spheres S(V ) in finite-dimensional orthogonal rep-
resentations of G provide the basic examples of smooth G-actions on spheres. Moreover,
character theory reveals intricate relations between the dimensions of the fixed sets S(V )H ,
for subgroups H ≤ G, and the structure of the isotopy subgroups {Gx |x ∈ S(V )}. We
are interested in understanding how these basic invariants are constrained for smooth
non-linear finite group actions on spheres.

We say that G has rank k if it contains a subgroup isomorphic to (Z/p)k, for some
prime p, but no subgroup (Z/p)k+1, for any prime p. In this paper, we use chain complex
methods to study the following problem, as a step towards smooth actions.

Question. For which finite groups G, does there exist a finite G-CW-complex X ' Sn

with all isotropy subgroups of rank one ?

The isotropy assumption implies that G must have rank ≤ 2, by P. A. Smith theory
(see Corollary 7.3). Since every rank one finite group can act freely on a finite complex
homotopy equivalent to a sphere (Swan [13]), we will restrict to groups of rank two.

There is another group theoretical necessary condition related to fusion properties of
the Sylow subgroups. This condition involves the rank two finite group Qd(p) which is
the group defined as the semidirect product

Qd(p) = (Z/p× Z/p) o SL2(p)

with the obvious action of SL2(p) on Z/p × Z/p. In his thesis, Ünlü [16, Theorem 3.3]
showed that Qd(p) does not act on a finite CW-complex X ' Sn with rank 1 isotropy.
This means that any rank two finite group which includes Qd(p) as a subgroup cannot
admit such actions.

More generally, we say Qd(p) is p′-involved in G if there exists a subgroup K ≤ G, of
order prime to p, such that NG(K)/K contains a subgroup isomorphic to Qd(p). The
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argument given by Ünlü in [16, Theorem 3.3] can be extended easily to obtain the stronger
necessary condition (see Proposition 6.3):

(>). Suppose that there exists a finite G-CW-complex X ' Sn with rank 1 isotropy. Then
Qd(p) is not p′-involved in G, for any odd prime p.

In the other direction, finite groups which do not p′-involve Qd(p) have some interesting
complex representations. Jackson [9, Theorem 47] proved that, in this case, each Sylow
p-subgroup of G has a p-effective character which respects fusion in G. We use these
characters to reduce the isotropy from p-subgroups to rank one p-subgroups.

Let F be a family of subgroups of G closed under conjugation and taking subgroups.
For constructing group actions on CW-complexes with isotropy in the family F, a good al-
gebraic approach is to consider projective chain complexes over the orbit category relative
to the family F (see [6]).

Let SG denote the set of primes p such that rankp(G) = 2. Let Hp denote the family
of all rank one p-subgroups H ≤ G, for p ∈ SG, and let H =

⋃
{H ∈ Hp | p ∈ SG}. Our

main result is the following:

Theorem A. Let G be a rank two finite group satisfying the following two conditions:

(i) G does not p′-involve Qd(p) for any odd prime p ∈ SG;
(ii) if 1 6= H ∈ Hp, then rankq(NG(H)/H) ≤ 1 for every prime q 6= p.

Then there exists a finite G-CW-complex X with isotropy in H, such that XH is a homo-
topy sphere for each H ∈ H.

Our construction produces new non-linear G-CW-complex examples, for certain groups
G which do not admit any orthogonal representations V with rank one isotropy on the
unit sphere S(V ) (see Example 7.4). In Section 7, we give the motivation for condition
(ii) on the q-rank of the normalizer quotients. It is used in a crucial way (at the algebraic
level) in the construction of our actions, but it is not, in general, a necessary condition
for the existence of a finite G-CW-complex X ' Sn with rank 1 isotropy (see Example
7.5). Determining the full list of necessary conditions is still an open problem.

Theorem A is an extension of our earlier joint work with Semra Pamuk [6] where we
have shown that the first non-linear example, the permutation group G = S5 of order
120, admits a finite G-CW-complex X ' Sn with rank one isotropy. Theorem A implies
this earlier result since for G = S5, the set SG includes only the prime 2 and the second
condition above holds since all Sylow p-subgroups of S5 for odd primes are cyclic. More
generally, we have:

Corollary B. Let p be a fixed prime and G be a finite group such that rankp(G) = 2, and
rankq(G) = 1 for every prime q 6= p. If G does not p′-involve Qd(p) when p > 2, then
there exists a finite G-CW-complex X ' Sn with rank one p-group isotropy.

We will obtain Theorem A from a more general technical result, Theorem 6.1, which
accepts as input a suitable collection of Fp-representations (see Definition 4.1), and pro-
duces a finite G-CW complex. Theorem 6.1 is used to construct the action in Example
7.5 for G = A7 with rank one p-group isotropy. In principle, it could be used to construct
other interesting non-linear examples for finite groups with specified p-group isotropy.
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Here is a brief outline of the paper. We denote the orbit category relative to a family
F by ΓG = OrF G, and construct projective chain complexes over RΓG for various p-local
coefficient rings R = Z(p). To prove Theorem 6.1, we first introduce algebraic homotopy
representations (see Definition 2.6), as chain complexes over RΓG satisfying algebraic
versions of the conditions found in tom Dieck’s geometric homotopy representations (see
[15, II.10.1], [4], [5], and Remark 3.3). In Section 2 we show that the conditions in
Definition 2.6 are necessary conditions for a chain complex over RΓG to be homotopy
equivalent to a chain complex of a geometric homotopy representation (see Proposition
2.7). Then in Section 3 we prove conversely that algebraic homotopy representations are
realizable by geometric homotopy representations.

In Section 4, we construct p-local chain complexes where the isotropy subgroups are
p-groups. In Section 5, we add homology to these local models so that these modified
local complexes C(p) all have exactly the same dimension function. Results established in
[6] are used to glue these algebraic complexes together over ZΓG, and then to eliminate a
finiteness obstruction. In Section 6 we combine these ingredients to give a complete proof
for Theorem 6.1 and Theorem A. We end the paper with a discussion about the necessity
of the conditions in Theorem A. This discussion and the examples of nonlinear actions
for the groups G = A6 and A7 can be found in Section 7.

Acknowledgement. The authors would like to thank Alejandro Adem and Assaf Libman
for helpful conversations on a number of occasions.

2. Algebraic homotopy representations

Let G be a finite group and F be a family of subgroups of G which is closed under
conjugations and taking subgroups. The orbit category OrF G is defined as the category
whose objects are orbits of type G/K, with K ∈ F, and where the morphisms from G/K
to G/L are given by G-maps:

MorOrF G(G/K,G/L) = MapG(G/K,G/L).

The category ΓG = OrF G is a small category, and we can consider the module cat-
egory over ΓG. Let R be a commutative ring with unity. A (right) RΓG-module M
is a contravariant functor from ΓG to the category of R-modules. We denote the R-
module M(G/K) simply by M(K) and write M(f) : M(L) → M(K) for a G-map
f : G/K → G/L.

The category of RΓG-modules is an abelian category, so the usual concepts of homo-
logical algebra, such as kernel, direct sum, exactness, projective module, etc., exist for
RΓG-modules. Note that an exact sequence of RΓG-modules 0 → A → B → C → 0 is
exact if and only if

0→ A(K)→ B(K)→ C(K)→ 0

is an exact sequence of R-modules for every K ∈ F. For an RΓG-module M the R-
module M(K) can also be considered as an RWG(K)-module in an obvious way where
WG(K) = NG(K)/K. We will follow the convention in [11] and consider M(K) as a right
RWG(K)-module. In particular, we will consider the sequence above as an exact sequence
of right RWG(K)-modules. The further details about the properties of modules over the
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orbit category, such as the definitions of free and projective modules, can be found in [6]
(see also Lück [11, §9,§17] and tom Dieck [15, §10-11]).

In this section we consider chain complexes C of RΓG-modules. When we say a chain
complex we always mean a non-negative complex, i.e., Ci = 0 for i < 0. We call a chain
complex C projective (resp. free) if for all i ≥ 0, the modules Ci are projective (resp. free).
We say that a chain complex C is finite if Ci = 0 for i > n, and the chain modules Ci

are all finitely-generated RΓG-modules.
Given a G-CW-complex X, associated to it, there is a chain complex of RΓG-modules

C(X?;R) : · · · → R[Xn
? ]

∂n−→ R[Xn−1
? ]→ · · · ∂1−→ R[X0

? ]→ 0

where Xi denotes the set of i-dimensional cells in X and R[Xi
? ] is the RΓG-module

defined by R[Xi
? ](H) = R[XH

i ]. We denote the homology of this complex by H∗(X
?;R).

If the family F includes the isotropy subgroups of X, then the complex C(X?;R) is a
chain complex of free RΓG-modules.

Given a finite dimensional G-CW-complex X, there is a dimension function

DimX : S (G)→ Z,

given by (DimX)(H) = dimXH for all H ∈ S (G) where S (G) denote the set of all
subgroups of G. In a similar way, we define the following.

Definition 2.1. The dimension function of a finite dimensional chain complex C over
RΓG is defined as the function Dim C : S (G)→ Z given by

(Dim C)(H) = dim C(H)

for all H ∈ F, where the dimension of a chain complex of R-modules is defined as the
largest integer d such Cd 6= 0. If C(H) is the zero complex or if H is a subgroup such
that H 6∈ F, then we define (Dim C)(H) = −1.

Remark 2.2. Recall that a function n : S (G) → Z is called a super class function if it
is constant on conjugacy classes of G. We say that a super class function n : S(G)→ Z is
defined on F, if n(H) = −1 for all subgroups H 6∈ F. For such a function, we sometimes
use the notation n : F → Z instead of n : S (G)→ Z.

In this sense, the dimension function Dim C of a chain complex C over RΓG is a super
class function defined on F. In a similar way, we can define the homological dimension
function of a chain complex C of RΓG-modules as the function HomDim C : F → Z where
for each H ∈ F, the integer

(HomDim C)(H) = hdim C(H)

is defined as the homological dimension of the complex C(H).
Let us write (H) ≤ (K) whenever Hg ≤ K for some g ∈ G. Here (H) denotes the set

of subgroups conjugate to H in G. The notation (H) < (K) means that (H) ≤ (K) but
(H) 6= (K).

Definition 2.3. We call a function n : S (G) → Z monotone if it satisfies the property
that n(K) 6 n(H) whenever (H) ≤ (K). We say that a monotone function n is strictly
monotone if n(K) < n(H), whenever (H) < (K). �
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We have the following:

Lemma 2.4. The dimension function of a projective chain complex of RΓG-modules is a
monotone function.

Proof. By the decomposition theorem for projective RΓG-modules [15, Chap. I, Theorem
11.18], every projective RΓG-module P is of the form P ∼= ⊕HEHPH where PH is a
projective NG(H)/H-module. If n(K) = n, then Cn must have a summand EHPH with
(K) ≤ (H). But then we will have Cn(L) 6= 0 for every (L) ≤ (K). Also if H 6∈ F, then
by the closure of F under taking subgroups, there can not be any K ∈ F with (H) < (K).
So we have (Dim C)(K) = −1 for all K ≤ G with (H) ≤ (K). �

We are particularly interested in chain complexes which have the homology of a sphere
when evaluated at every K ∈ F. To specify the restriction maps in dimension zero,
we will consider chain complexes which are augmented, i.e., chain complexes C together
with a map ε : C0 → R such that ε ◦ ∂1 = 0 where R denotes the constant functor. We
sometimes consider ε as a chain map by considering R as a chain complex over RΓG which
is concentrated at zero. By the reduced homology of an augmented complex ε : C → R,
we always mean the homology of the chain complex

C̃ = {· · · → Cn
∂n−→ · · · → C2

∂2−→ C1
∂1−→ C0

ε−→ R→ 0}
where R is considered to be at dimension −1.

Definition 2.5. Let n be a super class function defined on F, and let C be a chain
complex over RΓG.

(i) We say that C an R-homology n-sphere if C is an augmented complex with the
reduced homology of C(K) is the same as the reduced homology of an n(K)-
sphere (with coefficients in R) for all K ∈ F.

(ii) We say that C is oriented if the WG(K)-action on the homology of C(K) is trivial
for all K ∈ F.

In transformation group theory, a G-CW-complex X is called a homotopy representation
if it has the property that XH is homotopy equivalent to the sphere Sn(H) where n(H) =
dimXH for every H ≤ G (see tom Dieck [15, Section II.10]). Note that we do not assume
that the dimension function is strictly monotone as in Definition II.10.1 in [15].

In [15, II.10], there is a list of properties that are satisfied by homotopy representations.
We will use algebraic versions of these properties to define an analogous notion for chain
complexes.

Definition 2.6. Let C be a finite projective chain complex over RΓG, which is an R-
homology n-sphere. We say C is an algebraic homotopy representation (over R) if

(i) The function n is a monotone function.
(ii) If H,K ∈ F are such that n = n(K) = n(H), then for every G-map f : G/H →

G/K the induced map C(f) : C(K)→ C(H) is an R-homology isomorphism.
(iii) Suppose H,K,L ∈ F are such that H ≤ K,L and let M = 〈K,L〉 be the subgroup

of G generated by K and L. If n = n(H) = n(K) = n(L) > −1, then M ∈ F

and n = n(M).
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In the remainder of this section we will assume that R is a principal ideal domain. The
main examples for us are R = Z(p) or R = Z.

Proposition 2.7. Let C be a finite projective chain complex over RΓG, which is an R-
homology n-sphere. If the equality n = Dim C holds, then C is an algebraic homotopy
representation.

Under condition (iii) of Definition 2.6, the isotropy family F has an important maxi-
mality property.

Corollary 2.8. Let C be a projective chain complex of RΓG-modules, If condition (iii)
holds, then the set of subgroups FH = {K ∈ F | (H) ≤ (K), n(K) = n(H) > −1} has a
unique maximal element, up to conjugation.

Before we prove Proposition 2.7, we make some observations and give some definitions
for projective chain complexes.

Lemma 2.9. Let C be a projective chain complex over RΓG. Then, for every G-map
f : G/H → G/K, the induced map C(f) : C(K) → C(H) is an injective map with an
R-torsion free cokernel.

Proof. It is enough to show that if P a projective RΓG-module, then for every G-map
f : G/H → G/K, the induced map P (f) : P (K) → P (H) is an injective map with a
torsion free cokernel. Since every projective module is a direct summand of a free module,
it is enough to prove this for a free module P = R[X?]. Let f : G/H → G/K be the G-
map defined by f(H) = gK. Then the induced map P (f) : R[XK ] → R[XH ] is the
linearization of the map XK → XH given by x 7→ gx. Since this map is one-to-one, we
can conclude that P (f) is injective with torsion free cokernel. �

When H ≤ K and f : G/H → G/K is the G-map defined by f(H) = K, then we denote
the induced map C(f) : C(K) → C(H) by rKH and call it the restriction map. When H
and K are conjugate, i.e., K = Hg for some g ∈ G, then the map C(f) : C(K)→ C(H)
induced by the G-map f : G/H → G/K defined by f(H) = gK is called the conjugation
map and usually denoted by cgK . Note that every G-map can be written as a composition
of two G-maps of the above two types, so every induced map C(f) : C(K) → C(H) can
be written as a composition of restriction and conjugation maps.

Since conjugation maps have inverses, they are always isomorphisms. So, the condition
(ii) of Definition 2.6 is actually a statement only about restriction maps. To study the
restriction maps more closely, we consider the image of rKH : C(K) → C(H) for a pair
H ≤ K and denote it by CK

H . Note that CK
H is a subcomplex of C(H) as a chain complex

of R-modules. Also note that if C is a projective chain complex, then CK
H is isomorphic

to C(K), as a chain complex of R-modules, by Lemma 2.9.

Lemma 2.10. Let C be a projective chain complex over RΓG. Suppose that K,L ∈ F

such that H ≤ K and H ≤ L, and let M = 〈K,L〉 be the subgroup generated by K and
L. If CK

H ∩CL
H 6= 0 then M ∈ F and we have CK

H ∩CL
H = CM

H .

Proof. As before it is enough to prove this for a free RΓG-module P = R[X?] where X is
a G-set whose isotropy subgroups lie in F. Note that the restriction maps rKH and rLH are
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linearizations of the maps XK → XH and XL → XH , respectively, which are defined by
inclusion of subsets. Then it is clear that the intersection of images of rKH and rLH would
be R[XK ∩XL] considered as an R-submodule of R[XH ]. There is a well known equality
XK ∩ XL = XM for fixed point sets. Therefore, if CK

H ∩ CL
H 6= 0, then we must have

XM 6= ∅. This implies that M ∈ F and that im rKH ∩ im rLH = im rMH . �

Now, we are ready to prove Proposition 2.7.

Proof of Proposition 2.7. The first condition in Definition 2.6 follows from Lemma 2.4.
For (ii) and (iii), we use the arguments similar to the arguments given in II.10.12 and
II.10.13 in [15].

To prove (ii), let f : G/H → G/K be a G-map. By Lemma 2.9, the induced map
C(f) : C(K) → C(H) is injective with torsion free cokernel. Let D denote the cokernel
of C(f). Then we have a short exact sequence of R-modules

0→ C(K)→ C(H)→ D→ 0

where both C(K) and C(H) have dimension n. Now consider the long exact reduced
homology sequence (with coefficients in R) associated to this short exact sequence:

· · · → 0→ Hn+1(D)→ Hn(C(K))
f∗−→ Hn(C(H))→ Hn(D)→ · · ·

Note that D has dimension less than or equal to n, so Hn+1(D) = 0 and Hn(D) is
torsion free. Since Hn(C(K)) = Hn(C(H)) = R, we obtain that f ∗ is an isomorphism.
Since both C(K) and C(H) have no other reduced homology, we conclude that C(f)
induces an R-homology isomorphism between associated augmented complexes. Since
the induced map R(f) : R(K) → R(H) is the identity map id : R → R, the chain map
C(f) : C(L)→ C(K) is an R-homology isomorphism.

To prove (iii), observe that there is a Mayer-Vietoris type exact sequence associated to
the pair of complexes CK

H and CL
H which gives an exact sequence of the form

0→ Hn(CK
H ∩CL

H)→ Hn(CK
H)⊕Hn(CL

H)→ Hn(CK
H + CL

H)→ Hn−1(C
K
H ∩CL

H)→ 0.

Here we again take the homology sequence as the reduced homology sequence.
Let iK : CK

H → C(H), iLH : CL
H → C(H), and j : CK

H +CL
H → C(H) denote the inclusion

maps. We have zero on the left-most term since CK
H + CL

H is an n-dimensional complex.
To see the zero on the right-most term, note that by Lemma 2.9, CK

H
∼= C(K) and

CL
H
∼= C(L) as chain complexes of R-modules, so they have the same homology. This

gives that Hi(C
K
H) = Hi(C

L
H) = 0 for i ≤ n− 1.

Also note that by part (ii), the composition

Hn(C(K)) ∼= Hn(CK
H)

iK∗−→ Hn(CK
H + CL

H)
j∗−→ Hn(C(H))

is an isomorphism. So, j∗ is surjective. Since Hn+1(C(H)/(CK
H + CL

H)) = 0, we see
that j∗ is also injective. Therefore, j∗ is an isomorphism. This implies that iK∗ is an
isomorphism. Similarly one can show that iL∗ : Hn(CL

H) → Hn(CK
H + CL

H) is also an
isomorphism. Using these isomorphisms and looking at the exact sequence above, we
conclude that Hn(CK

H ∩CL
H) ∼= R and Hi(C

K
H ∩CL

H) = 0 for i ≤ n− 1. So, CK
H ∩CL

H is
an R-homology n-sphere.
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Since n > −1, this implies that CK
H ∩CL

H 6= 0, and hence M = 〈K,L〉 ∈ F by Lemma
2.10. Moreover, CK

H ∩CL
H = CM

H . This proves that n(M) = n as desired. �

3. A Realization Theorem for Chain Complexes over ZΓG

In [6], we proved the following realization theorem for free ZΓG-module chain complexes,
with respect to any family F, which are Z-homology n-spheres satisfying certain extra
conditions.

Theorem 3.1 ([6, Theorem 8.10], [12]). Let C be a finite free chain complex of ZΓG-
modules which is a homology n-sphere. Suppose that n(K) ≥ 3 for all K ∈ F. If Ci(H) =
0 for all i > n(H) + 1, and all H ∈ F, then there is a finite G-CW-complex X such that
C(X?; Z) is chain homotopy equivalent to C as chain complexes of ZΓG-modules.

Note that a homology n-sphere C with Dim C = n, and n(K) ≥ 3 for all K ∈ F, will
automatically satisfy these conditions. So, it is interesting to ask under what conditions a
projective chain complex C which is an Z-homology n-sphere is chain homotopy equivalent
to one where the equality Dim C = n holds. It turns out that the conditions (i), (ii), and
(iii) of Definition 2.6 are exactly what is needed. In other words, the additional input
needed is that C should be an algebraic homotopy representation.

The main purpose of this section is prove the following theorem.

Theorem 3.2. Let C be a finite free chain complex of ZΓG-modules which is a homology
n-sphere. If C is an algebraic homotopy representation, then C is chain homotopy equiv-
alent to a finite free chain complex D for which Dim D = n. If, in addition, n(K) ≥ 3 for
all K ∈ F, then there is a finite G-CW-complex X such that C(X?; Z) is chain homotopy
equivalent to C as chain complexes of ZΓG-modules.

Remark 3.3. The construction actually produces a finite G-CW-complex X with the
additional property that all the non-empty fixed sets XH are simply-connected. Moreover,
by construction, WG(H) = NG(H)/H will act trivially on the homology of XH . Therefore
X will be an oriented geometric homotopy representation (in the sense of tom Dieck).
From the perspective of Theorem A, since we don’t specify any dimension function, a
G-CW-complex X with all fixed sets XH integral homology spheres will lead (by three-
fold join) to a homotopy representation. The same necessary and sufficient conditions for
existence apply.

The last sentence of Theorem 3.2 follows from Theorem 3.1. The first part says that
under the conditions given in the theorem, the complex C is homotopy equivalent to a
finite free chain complex D with Dim D(H) = HomDim D(H) = n(H) for every H ∈ F.

In the remainder of this section we will again assume that R is a principal ideal domain.
The main examples for us are R = Z(p) or R = Z, as before.

Definition 3.4. We say a chain complex C of RΓG-modules is tight at H ∈ F if

Dim C(H) = HomDim C(H).

We call a chain complex of RΓG-modules tight if it is tight at every H ∈ F.
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For possible future applications we will deduce Theorem 3.2 from the following algebraic
result, together with Theorem 3.1.

Theorem 3.5. Let C be a finite free chain complex of RΓG-modules which is a homology
n-sphere. If C is an algebraic homotopy representation over R, then C is chain homotopy
equivalent to a finite free chain complex D which is tight.

So to prove Theorem 3.5, we need to show that the complex C can be made tight at
each H ∈ F by replacing it with a chain complex homotopic to C.

Let H be a maximal element in F. Consider the subcomplex C(H) of C formed by
free summands of C isomorphic to R[G/H ? ]. The complex C(H) is a complex of isotypic

modules of type R[G/H ? ]. Recall that free RΓG-module F is called isotypic of type G/H

if it is isomorphic to a direct sum of copies of a free module R[G/H ? ], for some H ∈ F.
For extensions involving isotypic modules we have the following:

Lemma 3.6. Let

E : 0→ F → F ′ →M → 0

be a short exact sequence of RΓG-modules such that both F and F ′ are isotypic free modules
of the same type G/H. If M(H) is R-torsion free, then E splits and M is stably free.

Proof. This is Lemma 8.6 of [6]. The assumption that R is a principal ideal domain
ensures that finitely-generated R-torsion free modules are free. �

Note that C(H)(H) = C(H), since H is maximal in F. This means that C(H) is a finite
free chain complex over RΓG of the form

C(H) : 0→ Fd → Fd−1 → · · · → F1 → F0 → 0

which is a R-homology n(H)-sphere, with n(H) ≤ d.

Lemma 3.7. Let C be a finite free chain complex of RΓG-modules. Then C is chain
homotopy equivalent to a finite free chain complex D which is tight at every maximal
element H ∈ F.

Proof. We apply [6, Proposition 8.7] to the subcomplex C(H), for each maximal element
H ∈ F. The key step is provided by Lemma 3.6. �

To make the complex C tight at every H ∈ F we use a downward induction, but the
situation at an intermediate step is more complicated than the first step considered above.

Suppose that H ∈ F is such that C tight at every K ∈ F such that (K) > (H). Let CH

denote the subcomplex of C with free summands of type R[G/K ? ] satisfying (H) ≤ (K).
In a similar way, we can define the subcomplex C>H of C whose free summands are of
type R[G/K ? ] with (H) < (K). The complex C>H is a subcomplex of CH . Let us
denote the quotient complex CH/C>H by C(H). As before the complex C(H) is isotypic

with isotropy type R[G/H ? ]. We have a short exact sequence of chain complexes of free
RΓG-modules

0→ C>H → CH → C(H) → 0.
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By evaluating at H, we obtain an exact sequence of chain complexes

0→ C>H(H)→ CH(H)→ C(H)(H)→ 0

which is just the sequence

0→ C>H(H)→ C(H)→ SHC→ 0

defining the splitting functor SH (see [11, Lemma 9.26]) Note that we also have a sequence

0→ CH → C→ C/CH → 0.

If we can show that CH is homotopy equivalent to a complex D′ which is tight at H, then
by push-out of D′ along the injective map CH → C, we can find a complex D homotopy
equivalent to C which is tight at every K ∈ F with (H) ≤ (K). So it is enough to show
that CH is homotopy equivalent to a complex D′ which is tight at H.

Lemma 3.8. Let C be a finite free chain complex of RΓG-modules which is tight at every
K ∈ F with (H) < (K). Suppose that n = hdim C(H) ≥ dim C(K) for all (H) < (K)
and that Hn+1(SHC) = 0. Then CH is homotopy equivalent to a finite free chain complex
D′ which is tight at every K ∈ F with (H) ≤ (K).

Proof. We first observe that C>H has dimension ≤ n, since C>H(K) = C(K) for (H) <
(K), and dim C(K) ≤ n. Let d = dim C(H). If d = n, then we are done, so assume that
d > n. Then dim C(H) = d, and C(H) is a complex of the form

C(H) : 0→ Fd → Fd−1 → · · · → F1 → F0 → 0.

We claim that the first map in the above chain complex is injective. Note that since
C(H) is isotypic of type (H), it is enough to show that this map is injective when it is
calculated at H. In other words we claim that Hd(C

(H)(H)) = Hd(SHC) = 0 when d > n.
To show this consider the short exact sequence 0 → C>H(H) → C(H) → SHC → 0.
Since the complex C>H has dimension ≤ n, the corresponding long exact sequence gives
that Hd(SHC) ∼= Hd(C(H)) = 0 when d > n + 1. If d = n + 1, then this is true by the
assumption in the lemma. Now we apply [6, Proposition 8.7] to C(H) to obtain a tight
complex D′′ ' C(H), and then let D′ ' CH denote the pullback of D′′ along the surjection
CH → C(H). �

To complete the proof of Theorem 3.5, we need to show that if C is a finite free chain
complex of RΓG-modules which is an R-homology n-sphere, satisfying the conditions (i),
(ii), and (iii) in Definition 2.6, then the conditions in Lemma 3.8 hold at an intermediate
step of the downward induction.

Note that the condition about the dimensions follows from the condition (i) since when
n is monotone, we have

HomDim C(H) = n(H) ≥ n(K) = HomDim C(K) = Dim(K)

for all K ∈ F with (H) < (K). The other condition in the lemma, that Hn+1(SHC) = 0,
follows from the conditions (ii) and (iii) but it is more involved to show this (see Corollary
3.11 below).
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In the rest of the section, we assume that C is a finite projective chain complex of
RΓG-modules, which is an R-homology n-sphere, and satisfies the conditions (i), (ii), and
(iii) in Definition 2.6. Assume also that C is tight for all K ∈ F with (H) < (K) for
some fixed subgroup H ∈ F. Let KH denote the set of all subgroups K ∈ F such that
H < K and n(H) = n(K). By condition (iii) of Definition 2.6, this collection has a unique
maximal element M . Let CK

H denote the image of the restriction map

rKH : C(K)→ C(H),

for every K ∈ F with H ≤ K. Note that CK
H is a subcomplex of C(H) and by Lemma 2.9,

it is isomorphic to C(K). Moreover, if K ∈ KH , then by condition (ii), the subcomplex
CK
H is an R-homology n-sphere and the map

Hn(CM
H )→ Hn(CK

H)

induced by the inclusion map CM
H ↪→ CK

H is an isomorphism. More generally, the following
also holds.

Lemma 3.9. Let C and H ∈ F be as above, and let K1, . . . , Km be a set of subgroups in
KH . Then the subcomplex

∑m
i=1 CKi

H is an R-homology n-sphere and the map

(3.10) Hn(CM
H )→ Hn(

m∑
i=1

CKi
H )

induced by the inclusion maps is an isomorphism.

Proof. The case m = 1 follows from the remarks above. For m > 1, we have the following
Mayer-Vietoris type long exact sequence

0→ Hn(Dm−1 ∩CKm
H )→ Hn(Dm−1)⊕Hn(CKm

H )→ Hn(Dm)→ Hn−1(Dm−1 ∩CKm
H )→

where Dj =
∑j

i=1 CKi
H for j = m − 1,m. By the inductive assumption, we know that

Dm−1 is an R-homology n-sphere and the map Hn(CM
H )→ Hn(Dm−1) is an isomorphism.

Note that

Dm−1 ∩CKm
H = (

m−1∑
i=1

CKi
H ) ∩CKm

H =
m−1∑
i=1

(CKi
H ∩CKm

H ) =
m−1∑
i=1

C
〈Ki,Km〉
H

where the last equality follows from Lemma 2.10. We can apply Lemma 2.10 here because
CM
H ⊆ CK

H for all K ∈ KH gives that CKi
H ∩ CKm

H 6= 0 for every i = 1, . . . ,m − 1. Note
that we also obtain 〈Ki, Km〉 ∈ KH for all i. Applying our inductive assumption again
to these subgroups, we obtain that Dm−1 ∩CKm

H is an R-homology n-sphere and that the
induced map

Hn(CM
H )→ Hn(Dm−1 ∩CKm

H )
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is an isomorphism. This gives that Hi(Dm) = 0 for i ≤ n−1. We also obtain a commuting
diagram

0 // Hn(CM
H ) //

��

Hn(CM
H )⊕Hn(CM

H ) //

��

Hn(CM
H ) //

ϕ

��

0

0 // Hn(Dm−1 ∩CKm
H ) // Hn(Dm−1)⊕Hn(CKm

H ) // Hn(Dm) // 0

Since all the vertical maps except the map ϕ are known to be isomorphisms, we obtain
that ϕ is also an isomorphism by the five lemma. This completes the proof. �

Corollary 3.11. Let C and H ∈ F are as above. Then Hn+1(SHC) = 0.

Proof. Let KH = {K1, . . . , Km}. By condition (ii), we know that the composition

Hn(C(M))
∼=−→ Hn(CM

H )→ Hn(
m∑
i=1

CKi
H )→ Hn(C(H))

is an isomorphism. However, we have just proved that the middle map is an isomorphism,
and that all the modules involved in the composition are isomorphic to R. Therefore, the
map induced by inclusion

Hn(
m∑
i=1

CKi
H )→ Hn(C(H))

is an isomorphism. Note that if (H) ≤ (K) and n(K) < n, for some K ∈ F, then
dim C(K) < n. This means that

Hn(C>H(H)) ∼= Hn(
m∑
i=1

CKi
H ) ∼= Hn(C(H)).

From the exact sequence 0 → C>H(H) → C(H) → SHC → 0, and the fact that
HomDim C(H) = n, we conclude that Hn+1(SHC) = 0, as required. �

4. Construction of the preliminary local models

Our main technical tool is provided by Theorem 6.1, which gives a method for con-
structing finite G-CW-complexes, with isotropy in a given family. This theorem will be
proved by applying the realization statement of Theorem 3.2. To construct a suitable
finite free chain complex C over ZΓG, we work one prime at a time to construct local
models C(p), and then apply the glueing method for chain complexes developed in [6,
Theorem 6.7].

The main input of Theorem 6.1 is a compatible collection of unitary representations
for the p-subgroups of G. We give the precise definition in a more general setting.

Definition 4.1. Let F be a family of subgroups of G. We say that V(F) is an F-
representation for G, if V(F) = {VH ∈ Rep(H,U(n)) |H ∈ F} is a compatible collection
of (non-zero) unitary H-representations. The collection is compatible if f ∗(VK) ∼= VH for
every G-map f : G/H → G/K.
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For any finite G-CW-complex X, we let Iso(X) = {K ≤ G |XK 6= ∅} denote the
isotropy family of the G-action on X. This suggests the following notation:

Definition 4.2. Let V(F) be an F-representation for G. We let

Iso(V(F)) = {L ≤ H |S(VH)L 6= ∅, for some VH ∈ V(F)}

denote the isotropy family of V(F). We note that Iso(V(F)) is a sub-family of F.

Example 4.3. Our first example for these definitions will be a compatible collection
of representations for the family Fp of all p-subgroups, with p a fixed prime dividing
the order of G. In this case, an Fp-representation V(Fp) can be constructed from a
suitable representation Vp ∈ Rep(P,U(n)), where P denotes a p-Sylow subgroup of G.
The representations VH can be constructed for all H ∈ Fp, by extending Vp to conjugate
p-Sylow subgroups and by restriction to subgroups. To ensure a compatible collection
{VH}, we assume that Vp respects fusion in G, meaning that χp(gxg

−1) = χp(x) for the
corresponding character χp, whenever gxg−1 ∈ P for some g ∈ G and x ∈ P .

We will now specify an isotropy family J that will be used in the rest of the paper.

Definition 4.4. Let {V(Fp) | p ∈ SG} be a collection of Fp-representations, for a set SG
of primes dividing the order of G. Let Jp = Iso(V(Fp)) and J =

⋃
{Jp | p ∈ SG} denote

the isotropy families.

We note that J contains no isotropy subgroups of composite order, since each Jp is a
family of p-subgroups. Let ΓG = OrJG and ΓG(p) denote the orbit category OrJp G over
the family Jp. A chain complex C over RΓG(p) can always be considered as a complex of
RΓG-modules, by taking the values C(H) at subgroups H 6∈ Jp as zero complexes.

In this section we construct a p-local chain complex C(p)(0) over RΓG(p), for R = Z(p),
which we call a preliminary local model (see Definition 4.10). From this construction we
will obtain a dimension function n(p) : Jp → Z. By taking joins we can assume that these
dimension functions have common value at H = 1. In the next section, these preliminary
local models will be “improved” at each prime p by adding homology as specified by the
dimension functions n(q) : Jq → Z, for all q ∈ SG with q 6= p. The resulting complexes
C(p) over the orbit category RΓG will all have the same dimension function

n =
⋃
{n(p) | p ∈ SG} : J→ Z,

and satisfy conditions needed for the glueing method.
The first step is based on a construction of Connolly and Prassidis [2, §2].

Theorem 4.5. Let G be a finite group. Suppose that:

(i) B is a finite-dimensional G-CW-complex, with fixed sets BH simply-connected for
all H ≤ G;

(ii) V(F) is an F-representation for G, with F = Iso(B).

Then there exists a finite-dimensional G-CW-complex E, with isotropy Iso(V(F)), such
that all fixed sets EH are simply-connected.
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Proof. The given G-CW-complex B and the given F-representation V(F) can be combined
with a construction of Connolly and Prassidis [2, §2] to produce an integer k ≥ 1 and a
G-fibration π : E → B, such that the fibre

π−1(σ) 'H S(V ⊕kH ),

for all cells σ ⊂ B with stabilizer Gσ = H. The construction given in [2, §2] only works
when all the representations VH are free H-representations, but this construction later
generalized by Klaus [10, Proposition 2.7] to an arbitrary family of unitary representations.
A more detailed version of this construction can also be found in [17, Proposition 4.3]
(see also Ilhan [7]). Here V ⊕kH denotes the direct sum VH ⊕ · · · ⊕ VH of k copies of the
unitary representation VH , and 'H denotes “H-equivariant homotopy equivalence”. The
G-CW-complex E has the required properties. �

The basic input for our local models is the construction of finite-dimensional G-CW-
complexes with good p-local properties.

Corollary 4.6. Let G be a finite group, and let V(Fp) be an Fp-representation for G for
some p ∈ SG. Then there exists a finite-dimensional G-CW-complex E, which is p-locally
homotopy equivalent to a sphere, with isotropy Jp = Iso(V(Fp)). Moreover, all the fixed
sets EH are simply-connected.

Proof. We recall a result of Jackowski, McClure and Oliver [8, Proposition 2.2]: there
exists a simply-connected, finite dimensional G-CW-complex B which is Fp-acyclic and
has finitely many orbit types with isotropy in the family of p-subgroups Fp in G. The
quoted result applies more generally to all compact Lie groups and produces a complex
with p-toral isotropy (meaning a compact Lie group P whose identity component P0 is
a torus, and P/P0 is a finite p-group). For G finite, the p-toral subgroups are just the
p-subgroups. The property that all fixed sets BH are simply-connected is established in
the proof.

We now apply Theorem 4.5 to this G-CW-complex B and the given Fp-representation
V(Fp). The resulting G-CW-complex E has the required properties. In particular, since
B is Fp-acyclic then for each p-subgroup H, the fixed point set BH will be also Fp-acyclic
(and BH 6= ∅). Hence E is a p-local sphere. �

We now let R = Z(p), and consider the finite dimensional chain complex C(E?;R) of
free RΓG(p)-modules. By taking joins, we may assume that this complex has “homology
gaps” of length > l(ΓG) as required for [6, Theorem 6.7], and that all the non-empty fixed
sets EH have n(H) ≥ 3 and trivial action of WG(H) on homology. Let n(p) : Jp → Z
denote the dimension function HomDim C(E?;R).

The following result applies to chain complexes over RΓG with respect to any family F

of subgroups.

Lemma 4.7. Let R be a noetherian ring and G be a finite group. Suppose that C is
an n-dimensional chain complex of projective RΓG-modules with finitely generated ho-
mology groups. Then C is chain homotopy equivalent to a finitely-generated projective
n-dimensional chain complex over RΓG.
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Proof. Note that the chain modules of C are not assumed to be finitely-generated, but
Hi(C) = 0 for i > n. We first apply Dold’s “algebraic Postnikov system” technique [3,
§7], to chain complexes over the orbit category (see [6, §6]).

According to this theory, given a positive projective chain complex C, there is a se-
quence of positive projective chain complexes C(i) indexed by positive integers such that
f : C → C(i) induces a homology isomorphism for dimensions ≤ i. Moreover, there is a
tower of maps

C(i)

��
C(i− 1)

���
�
�

αi // Σi+1P(Hi)

C

##GGGGGGGGGG

;;wwwwwwwwww

DD

















// C(1)

��

α2 // Σ3P(H2)

C(0)
α1 // Σ2P(H1)

such that C(i) = Σ−1C(αi), where C(αi) denotes the algebraic mapping cone of αi, and
P(Hi) denotes a projective resolution of the homology module Hi = Hi(C).

By assumption, since the homology modules Hi are finitely-generated and R is noe-
therian, we can choose the projective resolutions P(Hi) to be finitely-generated in each
degree. Therefore, at each step the chain complex C(i) consists of finitely-generated
projective RΓG-modules, and C(n) ' C has homological dimension ≤ n. Now, since
Hn+1(C(n);M) = Hn+1(C;M) = 0, for any RΓG-module M , we conclude that C(n) is
chain homotopy equivalent to an n-dimensional finitely-generated projective chain com-
plex by [11, Prop. 11.10]. �

Remark 4.8. This result generalizes [11, 11.31:ex. 2] or [14, Satz 9].

Lemma 4.9. The chain complex C(E?;R) is chain homotopy equivalent to an oriented
R-homology n(p)-sphere C(p)(0), which is an algebraic homotopy representation.

Proof. The chain complex C(E?;R) is finite dimensional and free over RΓG, but may
not be finitely-generated. However, by the conclusion of Corollary 4.6, the homology
groups H∗(C(E?;R)) are finitely generated since C(E?;R) is an R-homology n-sphere.
The result now follows from Lemma 4.7, which produces a finite length projective chain
complex C(p)(0) of finitely-generated RΓG(p)-modules. Note that C(E?;R) satisfies the
conditions (i)-(iii) in Definition 2.6, so C(p)(0) also satisfies these conditions (which are
chain-homotopy invariant), hence C(p)(0) is an algebraic homotopy representation. �

Note that C(p)(0) is an algebraic homotopy representation, meaning that it satisfies the
condition (i), (ii), and (iii) in Definition 2.6, even though Dim C(p) may not be equal to
n(p) = HomDim C(p)(0).

By taking joins, we may assume that there exists a common dimension N = n(p)(1), at
H = 1, for all all p ∈ SG. Moreover, we may assume that N + 1 is a multiple of any given
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integer mG (to be chosen below). We now obtain the “global” dimension function

n =
⋃
{n(p) | p ∈ SG} : J→ Z,

where n(p) = HomDim C(p)(0), for all p ∈ SG, and n(1) = N .

Definition 4.10 (Preliminary local models). Let SG = {p | rankpG ≥ 2}, and let mG

denote the least common multiple of the q-periods for G (as defined in [13, p. 267]), over
all primes q for which rankq G = 1. We assume that n(1) + 1 is a multiple of mG.

(i) We will take the chain complex C(p)(0) constructed in Lemma 4.9 for our prelim-
inary model at each prime p ∈ SG.

(ii) If rankq G = 1, we take Jq = {1} and C(q)(0) as the RΓG-chain complex E1P
where P is a periodic resolution of R as a RG-module with period n(1) + 1 (for
more details, see the proof of Theorem 5.2 below, or [6, Section 9B]).

This completes the construction of the preliminary local models at each prime dividing
the order of G, for a given family of Fp-representations. In the next section we will
modify these preliminary models to get p-local chain complexes C(p) over RΓG which are
R-homology n-spheres for the dimension function n described above.

Example 4.11. In the proof of Theorem A we will be using the setting of Example 4.3.
Suppose that G is a rank two finite group which does not p′-involve Qd(p), for any odd
prime p. We let SG be the set of primes p where rankpG = 2. Under this condition, a
result of Jackson [9, Theorem 47] asserts that G admits a p-effective p-local character Vp.
Here p-effective means that when Vp is restricted to an elementary abelian subgroup E of
rank 2 then it has no trivial summand. This guarantees that the set of isotropy subgroups
Jp = Iso(S(Vp)) consists of the rank one p-subgroups. In this setting, our preliminary local
models arise from the following special case:

Corollary 4.12. Let G be a finite rank two group with rankpG = 2. If G does not
p′-involve Qd(p) when p > 2, then there exists a simply-connected, finite-dimensional G-
CW-complex E with rank one p-group isotropy, which is p-locally homotopy equivalent to
a sphere.

5. Construction of the local models: adding homology

Let G be a finite group and let SG = {p | rankpG ≥ 2}. We will use the notation
Jp = Iso(V(Fp)), for p ∈ SG, as given in Definition 4.4. For p 6∈ SG we have Jp = {1}.
We will continue to work over the orbit category ΓG = OrJG where J =

⋃
{Jp | p ∈ SG}.

For each prime p dividing the order of G, let C(p)(0) denote the preliminary p-local model
given in Definition 4.10, and denote the homological dimension function of C(p)(0) by
n(p) : Jp → Z for all primes dividing the order of G.

We now fix a prime q dividing the order of G, and let R = Z(q). In Theorem 5.2, we will

show how to add homology to the preliminary local model C(q)(0), to obtain an algebraic
homotopy representation with dimension function n(p) ∪ n(q) for any prime p ∈ SG such
that p 6= q. After finitely many such steps, we will obtain our local model C(q) over RΓG
with dimension function HomDim C(q) = n.
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Remark 5.1. In order to carry out the above construction, certain conditions on the
dimension function must hold. In particular, if there exists a q-local model C(q) with
isotropy in Jp ∪ Jq, where p ∈ SG, then for every p-subgroup 1 6= H ∈ Jp, we can
consider the RNG(H)/H complex C(q)(H). This is a finite length chain complex of
finitely generated modules which has the R-homology of an n(H)-sphere.

Since R = Z(q), if we take a q-subgroup Q ∈ NG(H)/H with H 6= 1, and restrict

C(q)(H) to Q, we obtain a finite dimensional projective RQ-complex (see [6, Lemma
3.6]). This forces Q to be a rank one subgroup. So, to be able to perform the above
adding process, we must have the condition that for every p-group 1 6= H, the normalizer
quotients WG(H) = NG(H)/H have q-rank ≤ 1. Note that a similar argument also shows
that for q 6∈ SG, we must have rankq G ≤ 1. This explains the rank conditions that appear
in Theorem 5.2 and Theorem 6.1.

We may also assume that n(H)+1 is a multiple of the q-period of WG(H) and the gaps
between non-zero homology dimensions are large enough: more precisely, for all K,L ∈ J

with n(K) > n(L), we have n(K) − n(L) ≥ l(ΓG), where l(ΓG) denotes the length of
the longest chain of maps in the category ΓG. We can easily guarantee both of these
conditions by taking joins of the preliminary local models we have constructed. The main
result of this section is the following:

Theorem 5.2. Let G be a finite group and let R = Z(q). Suppose that C is an algebraic
homotopy representation over R, such that

(i) C an (oriented) R-homology n(q)-sphere of projective RΓG(q)-modules;
(ii) If 1 6= H ∈ Jp, then rankq(NG(H)/H) ≤ 1, for every prime p 6= q.

Then there exists an algebraic homotopy representation C(q) over R, which is an (oriented)
R-homology n-sphere over RΓG.

We will add the homology specified by the dimension function n(p), at a prime p 6= q,
by an inductive construction using the number of nonzero homology dimensions. The
starting point of the induction is the given complex C. Let n1 > n2 > · · · > ns denote
the set of dimensions n(H), over all H ∈ Jp. Note that, since the dimension function n
comes from a unitary representation, we have ns ≥ 1. Let us denote by Fi, the collection
of subgroups H ∈ Jp such that n(H) = ni.

Suppose that we have constructed a finite projective chain complex C over RΓG, satisfy-
ing the conditions (i)-(iii) of Definition 2.6, which has the property that HomDim C(H) =
n(H) for all H ∈ F≤k where F≤k =

⋃
i≤k Fi. Our goal is to construct a new finite dimen-

sional projective complex D which also satisfies the conditions (i)-(iii) of Definition 2.6,
and has the property that HomDim D(H) = n(H) for all H ∈ Fi with i ≤ k + 1.

We will construct the complex D as an extension of C by a finite projective chain
complex whose homology is isomorphic to the homology that we need to add. Note that
since the constructed chain complex D must satisfy the conditions (i)-(iii), the homology
we need to add should satisfy the condition that for every H ≤ K with H,K ∈ Fk+1, the
restriction map on the added homology module is an R-homology isomorphism.

Definition 5.3. Let Ji denote the RΓG-module which has the values Ji(H) = R for all
H ∈ Fi, and otherwise Ji(H) = 0. The restriction maps rKH : Ji(K) → Ji(H) for every
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H,K ∈ Fi such that H ≤ K, and the conjugation maps cg : Ji(K) → Ji(
gK) for every

K ∈ F and g ∈ G, are assumed to be the identity maps.

In this notation, the chain complex D must have homology isomorphic to Ji in dimen-
sion ni for all i ≤ k+1, and in dimension zero the homology of D should be isomorphic to
R restricted to Fk+1. It is in general a difficult problem to find chain projective complexes
whose homology is given by a block of R-modules with prescribed restriction maps. But
in our situation we will be able to do this using some special properties of the poset of
subgroups in Fi coming from condition (iii) (see Corollary 2.8).

Lemma 5.4. For 1 ≤ i ≤ s, each poset Fi is a disjoint union of components where each
component has a unique maximal subgroup up to conjugacy.

Note that for every K ∈ Jp, the Sylow q-subgroup of the normalizer quotient WG(K) =
NG(K)/K has q-rank equal to one, hence it is q-periodic.

The proof of Theorem 5.2. By our starting assumption, the q-period of WG(K) divides
n(K) + 1. So by Swan [13], there exists a periodic projective resolution P with

0→ R→ Pn → · · · → P1 → P0 → R→ 0

over the group ring RWG(K) where n = n(K). Note that this statement includes the
possibility that Sylow q-subgroup of WG(K) is trivial since in that case R would be
projective as a RWG(K)-module, and we can easily find a chain complex of the above
form by adding a split projective chain complex.

Now suppose that K ∈ Jp is such that (K) is a maximal conjugacy class in Fk+1.
Consider the RΓG-complex EKP where EK denotes the extension functor defined in [6,
Sect. 2C]. By definition

EK(P)(H) = P⊗R[WG(K)] R[(G/K)H ]

for every H ∈ F. We define the chain complex Ek+1P as the direct sum of the chain com-
plexes EKP over all representatives of isomorphism classes of maximal elements in Fk+1.
Let N denote the subcomplex of Ek+1(P) obtained by restricting EK(P) to subgroups
H ∈ F≤k. Let Ik+1P denote the quotient complex Ek+1(P)/N. We have the following:

Lemma 5.5. The homology of Ik+1P is isomorphic to Jk+1 at dimensions 0 and nk+1

and zero everywhere else.

Proof. The homology of Ik+1P at H ∈ Fk+1 is isomorphic to⊕
{R⊗R[WG(K)] R[(G/K)H ] : (K) maximal in Fk+1}

at dimensions 0 and nk+1 and zero everywhere else. Note that (G/K)H = {gK : Hg ≤ K}.
If gK is such that Hg ≤ K, then H ≤ gK. Now by condition (iii), we must have
〈K, gK〉 ∈ Fk+1. But (K) was a maximal conjugacy class in Fk+1, so we must have
K = gK, hence g ∈ NG(K). This gives 1 ⊗ gK = 1 ⊗ 1 in R ⊗R[WG(K)] R[(G/K)H ].
Therefore

R⊗R[WG(K)] R[(G/K)H ] ∼= R
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for every H ∈ Fk+1. Also, by the same argument H can not be included in two different
maximal subgroups in Fk+1. So we have Ik+1(P)(H) ∼= R for all H ∈ Fk+1. Since the
restriction maps are given by the inclusion map of fixed point sets (G/H)U ↪→ (G/H)V

for every U, V ∈ Fk+1 with V ≤ U , we can conclude that all restriction maps are identity
maps. This completes the proof of the lemma. �

The above lemma shows that the homology of Ik+1P is exactly the RΓG-module that
we would like to add to the homology of C. To construct D we use an idea similar to the
idea used in [6, Section 9B]. Observe that for every RΓG-chain map f : N → C, there is
a push-out diagram of chain complexes

0 // N

f

��

// EKP

��

// Ik+1P // 0

0 // C // Cf
// Ik+1P // 0 .

The homology of N is only nonzero at dimensions 0 and nk+1 and at these dimensions
the homology is only nonzero at subgroups H ∈ F≤k. At these subgroups the homology
of N(H) is isomorphic to the direct sum of modules of the form R ⊗RWG(K) R[(G/K)H ].
Note that for every H ∈ F≤k, there is an augmentation map

εH : R⊗RWG(K) R[(G/K)H ]→ R

which takes r ⊗ gK to r for every r ∈ R. The collection of these maps gives a map
of RΓG-modules denoted εK : EKR → R. Taking the sum over all conjugacy classes of
maximal subgroups, we get a map

∑
K εK : ⊕K EKR → R. Repeating the arguments

given in [6, Section 9B], it is easy to see that if f is a chain map such that the induced map
on zeroth homology f∗ : H0(N) → H0(C) is the same map as the sum of augmentation
maps

∑
K εK , then the chain complex Cf will have the identity map as the restriction

maps on zeroth homology. At dimension nk+1 we will have zero map since the homology
of C is zero at dimension nk+1 by assumption.

Unfortunately, we can not take D as Cf since the complex Ik+1P is not projective
in general, and neither is N. We note that finding a chain map N satisfying the given
condition is not a easy task without projectivity (compare [6, Section 9B], where this
complex was a projective). So we first need to replace the sequence 0→ N→ Ek+1P→
Ik+1P→ 0 with a sequence of projective chain complexes.

Lemma 5.6. There is a diagram of chain complexes where all the complexes P′,P′′,P′′′

are finite projective chain complexes over RΓG and all the vertical maps induce isomor-
phisms on homology:

0 // P′

��

// P′′

��

// P′′′

��

// 0

0 // N // Ek+1P // Ik+1P // 0 .

Proof. Since EKP is a projective chain complex of length n, Ek+1P is a finite projective
chain complex. So, by [11, Lemma 11.6], it is enough to show that N is weakly equivalent
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to a finite projective complex. For this first note that N =
⊕

NK is a direct sum of
chain complexes NK where NK is the restriction of EKP to subgroups H ∈ F≤k. So
it is enough to show that NK is weakly equivalent to a finite projective chain complex.
To prove this, we will show that for each i, the RΓG-module Ni := (NK)i has a finite
projective resolution. The module Ni is nonzero only at subgroups H ∈ F≤k and at each
such a subgroup, we have

Ni(H) = (EKPi)(H) = Pi ⊗RWG(K) R[(G/K)H ].

So, as an RWG(H)-module Ni(H) is a direct summand of R[(G/K)H ] which is isomorphic
to ⊕

{R
[
WG(H)/WgK(H)

]
: K-conjugacy classes of subgroups Hg ≤ K}

as an RWG(H)-module. Since K is a p-group, these modules are projective over the
ground ring R because R is q-local. So, for each H ∈ F≤k, the RWG(H)-module Ni(H)
is projective. Now consider the map

π : ⊕H EHNi(H)→ Ni

induced by maps adjoint to the identity maps at each H. We can take ⊕HEHNi(H) as the
first projective module of the resolution, and consider the kernel Z0 of π : ⊕HEHNi(H)→
Ni. Note that Z0 has smaller length and it also have the property that at each L, the
WG(L) modules Z0(L) are projective. This follows from the fact that R[(G/H)L] is
projective as a WG(L)-module by the same argument we used above. Continuing this
way, we can find a finite projective resolution for Ni of length ≤ l(Γ ). �

Now it remains to show that there is a chain map f : P′ → C such that the induced map
on zeroth homology f∗ : H0(P

′) ∼= H0(N)→ H0(C) is given by the sum of augmentation
maps εK over the conjugacy classes of maximal subgroups K in Fk+1. Then the complex
D will be defined as the push-out complex that fits into the diagram

0 // P′

f

��

// P′′

��

// P′′′ // 0

0 // C // D // P′′′ // 0 .

Since both C and P′′′ are finite projective chain complexes, D will also be a finite projec-
tive complex.

To construct the chain map f : P′ → C, first note that the chain complex C has no
homology below dimension nk. By assumption on the gaps between nonzero homology
dimensions, we can assume that nk ≥ nk+1 + l(ΓG) ≥ l(P′). So, starting with the sum of
augmentation maps

∑
K εK at dimensions zero, we can obtain a chain map as follows:

// 0 // P ′m

fm

��

∂P ′
m // · · · // P ′0

f0
��

// H0(N)P
K εK

��

// 0

// Cm+1
// Cm

∂C
m // · · · // C0

// H0(C) // 0

where m = l(P′). This completes the proof of Theorem 5.2. �
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6. The Proof of Theorem A

In this section we establish our main technique for constructing actions on homotopy
spheres, based on a given P-representation, where P =

⋃
{Fp | p ∈ SG} denote the family

of all p -subgroups of G, for the primes p in a given set SG (see Definitions 4.1 and 4.4).
Theorem A stated in the introduction will follow from this theorem almost immediately
once we use the family of p-effective characters constructed by M. A. Jackson [9]. The
main technical theorem is the following:

Theorem 6.1. Let G be a finite group and let SG = {p | rankpG ≥ 2}. Suppose that

(i) V(Fp) is a Fp-representation for G, with Iso(V(Fp)) = Jp, for each p ∈ SG;
(ii) If p ∈ SG and 1 6= H ∈ Jp, then we have rankq(NG(H)/H) ≤ 1 for every q 6= p.

Then there exists a finite G-CW-complex X ' Sn, with isotropy in J =
⋃
{Jp | p ∈ SG},

which is a geometric homotopy representation for G.

Remark 6.2. The construction we give in the proof of Theorem 6.1 gives a simply-
connected homotopy representation X, with dimXH ≥ 3, for all H ∈ J, whenever XH 6=
∅. It also relates the dimension function of X to the linear dimension functions DimS(VH),
for VH ∈

⋃
{V(Fp) | p ∈ SG} in the following way: for every prime p ∈ SG, there exists an

integer kp > 0 such that for every H ∈ Fp, the equality dimXH = dimS(V
⊕kp

H )H holds.

As we discussed in the previous section, the condition on the q-rank of NG(H)/H is a
necessary condition for the existence of such actions. Recall that this condition is used in
an essential way in the proof of Theorem 5.2.

The proof of Theorem 6.1. By the realization theorem (Theorem 3.1) proved in Section
3, we only need to construct a chain complex of ZΓG-modules satisfying the conditions
(i), (ii) and (iii) of Definition 2.6. If we apply Theorem 5.2 to the preliminary local
model constructed in Section 4, we obtain a finite projective complex C(p), over the orbit
category Z(p)ΓG with respect to the family J, for each prime p dividing the order of G. In

addition, C(p) is an oriented Z(p)-homology n-sphere, with the same dimension function

n = HomDim C(p)(0) coming from the preliminary local models. By construction, the
complex C(p) satisfies the conditions (i), (ii) and (iii) of Definition 2.6 for R = Z(p).

We may also assume that n(H) ≥ 3 for everyH ∈ J, and that the gaps between non-zero
homology dimensions have the following property: for all K,L ∈ J with n(K) > n(L), we
have n(K) − n(L) ≥ l(ΓG) where l(ΓG) denotes the length of the longest chain of maps
in the category ΓG.

To complete the proof of Theorem 6.1, we first need to glue these complexes C(p)

together to obtain an algebraic n-sphere over ZΓG. By [6, Theorem 6.7], there exists a
finite projective chain complex C of ZΓG-modules, which is a Z-homology n-sphere, such
that Z(p) ⊗ C is chain homotopy equivalent to the local model C(p), for each prime p
dividing the order of G. The complex C has a (possibly non-zero) finiteness obstruction
(see Lueck [11, §10-11]), but this can be eliminated by joins (see [6, §7]).

After applying [6, Theorem 7.6], we may assume that C is a finite free chain complex
of ZΓG-modules which is a Z-homology n-sphere. Moreover, C is an algebraic homotopy
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representation: it satisfies the conditions (i), (ii) and (iii) of Definition 2.6 for R = Z,
since these conditions hold locally at each prime.

We have now established all the requirements for Theorem 3.2. For the family F used
in its statement, we use F = J. For all H ∈ F, we have the condition n(H) ≥ 3. Now
Theorem 3.2 gives a finite G-CW-complex X ' Sn with isotropy J such that XH is an
homotopy sphere for every H ∈ J. �

Now we are ready to prove Theorem A.

The proof of Theorem A. Let G be a rank 2 finite group and let SG denote the set of
primes with rankpG = 2. Since it is assumed that G does not p′-involve Qd(p) for any
odd prime p, we can apply [9, Theorem 47] and obtain a p-effective representation Vp,
for every prime p ∈ SG. We apply Theorem 6.1 to the Fp-representations V(Fp) given
by this collection {Vp} (see Example 4.3). Since Vp is p-effective means that all isotropy
subgroups in Hp are rank one p-subgroups (see Example 4.11), the isotropy is contained
in the family H of rank one p-subgroups of G, for all p ∈ SG. We therefore obtain a finite
G-CW-complex X ' Sn, with rank 1 isotropy in H, such that XH is an homotopy sphere
(possibly empty) for every H ∈ H. �

The proof of Corollary B follows easily from Theorem A since if rankq(G) ≤ 1, then for
every p-group H, we must have rankq(NG(H)/H) ≤ 1. So we can apply Theorem A to
obtain Corollary B.

Note that the condition about Qd(p) being not p′-involved in G is a necessary condition
for the existence of actions of rank 2 groups on finite CW-complexes X ' Sn with rank
one isotropy.

Proposition 6.3. If G acts on a finite complex X homotopy equivalent to a sphere with
rank one isotropy, then G cannot p′-involve Qd(p) for every odd prime p.

Proof. Suppose that G has a normal p′-subgroup K such that Qd(p) is included as a
subgroup in NG(K)/K. Then a p-Sylow supbgroup of Qd(p) lifts to P ≤ NG(K). Let
a, c ∈ P be elements of order p, where c is a central element and a is a non-central element
such that aK and cK are conjugate to each other in NG(K)/K via an element in Qd(p).
This means that there is an element g ∈ NG(K) such that the equation g−1ag = ck holds
for some k ∈ K. Since k has order prime to p, by taking a suitable p′-power of both sides,
we obtain that subgroups 〈a〉 and 〈c〉 are conjugate to each other in G.

The rest of the proof follows from the argument given in the proof [16, Theorem 3.3].
Since P action on X has rank 1 isotropy subgroups, we have XE = ∅ for every rank two p-
subgroup E ≤ P . Therefore XC = ∅ by Smith theory, since otherwise P/〈c〉 ∼= Z/p×Z/p
would act freely on X〈c〉 which is a mod p homology sphere. Now consider the subgroup
E = 〈a, c〉. Since 〈a〉 and 〈c〉 are conjugate to each other in G, all cyclic subgroups of E
are conjugate to each other. In particular, we have XH = ∅ for every cyclic subgroup H
in E. This is a contradiction, since E can not act freely on X. �
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7. Discussion and examples

We first discuss the rank conditions in the statement of Theorem A. Suppose that X
is a finite G-CW-complex. Recall that Iso(X) = {H |H ≤ Gx for some x ∈ X} denotes
the minimal family containing all the isotropy subgroups of the G-action on X. We call
this the isotropy family. Note that H ∈ Iso(X) if and only if XH 6= ∅. We say that X
has rank k isotropy if rankGx ≤ k for all x ∈ X and there exists a subgroup H with
rankH = k and XH 6= ∅. Let P denote the family of all prime-power order subgroups of
G.

Lemma 7.1. Let G be a finite group, and let X be a finite G-CW-complex with X ' Sn.

(i) If H is a maximal p-subgroup in Iso(X), then rankp(NG(H)/H) ≤ 1.
(ii) If 1 6= H ∈ Iso(X) ⊆ P is a p-subgroup, and XH is an integral homology sphere,

then rankq(NG(H)/H) ≤ 1, for all primes q 6= p.

Proof. This follows from two basic results of P. A. Smith theory [1, III.8.1]), which state
(i) that the fixed set of a p-group action on a finite-dimensional mod p homology sphere
is again a mod p homology sphere (or the empty set), and (ii) that Z/p × Z/p can not
act freely on a finite G-CW-complex X with the mod p homology of a sphere.

For any prime p dividing the order of G, let H ∈ Iso(X) denote a maximal p-subgroup
with XH 6= ∅. For any x ∈ XH , we have H ≤ Gx and if g · x = x, for some g ∈ NG(H)
of p-power order, it follows that the subgroup 〈H, g〉 ≤ Gx. Since H was a maximal
p-subgroup in Iso(X), we conclude that g ∈ H. Therefore NG(H)/H acts freely on the
fixed set XH , which is a mod p homology sphere, and hence rankp(NG(H)/H) ≤ 1.

If q 6= p and H is a p-subgroup in Iso(X) ⊆ P, then any q-subgroup Q of NG(H)/H
must act freely on XH (since x ∈ XH implies Gx is a p-group). Since XH is assumed to
be an integral homology sphere, Smith theory implies that rankq(Q) ≤ 1. �

Example 7.2. If G is the extra-special p-group of order p3, then the centre Z(G) = Z/p
can not be a maximal isotropy subgroup in Iso(X). On the other hand, we know that
G acts on a finite complex X ' Sn with rank one isotropy: just take the linear sphere
S(IndGZ(G)W ) for some nontrivial one-dimensional representation W of Z(G). So we can
not require that G acts on X ' Sn with Iso(X) containing all rank one subgroups.

For any prime p, we can restrict the G-action on X to a p-subgroup of maximal rank.

Corollary 7.3. If X is a finite G-CW-complex with X ' Sn and rank k isotropy, then
rankpG ≤ k + 1, for all primes p.

These results help to explain the rank conditions in Theorem A. If we have rank one
isotropy, then we must assume that G has rank two. However, condition (ii) on the
q-rank of the normalizer quotient is only necessary for p-subgroups H, with q 6= p, for
which XH 6= ∅ is an integral homology sphere. In order to get a complete list of necessary
conditions, we must have more precise control of the structure of the isotropy subgroups.

Now we discuss two applications of Theorem A and Theorem 6.1.

Example 7.4. The alternating group G = A6 admits a finite G-CW-complex X ' Sn,
with rank one isotropy. This follows from Theorem A once we verify that G satisfies the
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necessary conditions. Note that A6 has order 23 · 32 · 5 = 360 so it automatically satisfies
the condition about Qd(p), since it can not include an extra-special p-group of order p3

for an odd prime p. For the q-rank condition, note that SG = {2, 3}, so we need to check
this condition only for primes p = 2 and 3. Here are some easily verified facts:

• A 2-Sylow subgroup P ≤ G is isomorphic to the dihedral group D8, so all rank
one 2-subgroups are cyclic, and H2 = {1, C2, C4}.
• NG(C2) = P , and rank3(NG(C2)/C2) = 0.

• NG(C4) = P and rank3(NG(C4)/C4) = 0.

Now, let Q be a Sylow 3-subgroup in G. Then Q ∼= C3 × C3.

• Any subgroup of order 3 in G is conjugate to CA
3 = 〈(123)〉 or CB

3 = 〈(123)(456)〉.
• |NG(CA

3 )/CA
3 | = 6 and rank2(NG(CA

3 )/CA
3 ) = 1.

• |NG(CB
3 )/CB

3 | = 6 and rank2(NG(CB
3 )/CB

3 ) = 1

We conclude that condition (ii) of Theorem A holds for this group.

We now give an example which does not satisfy the q-rank conditions in Theorem A,
but where we can apply Theorem 6.1 directly.

Example 7.5. The alternating group G = A7 admits a finite G-CW-complex X ' Sn,
with rank one isotropy. The order of G is 23 · 32 · 5 · 7, so this group also automatically
satisfies the Qd(p) condition. Here is a summary of the main structural facts:

• The 3-Sylow subgroup Q ≤ G is isomorphic to C3 × C3.

• Any subgroup of order 3 in G is conjugate to CA
3 = 〈(123)〉 or CB

3 = 〈(123)(456)〉.
• The Sylow 2-subgroup of NG(CA

3 ) is isomorphic to D8.

• |NG(CA
3 )/CA

3 | = 24 and rank2(NG(CA
3 )/CA

3 ) = 2.

• NG(CB
3 ) ∼= (C3 × C3) o C2 and rank2(NG(CB

3 )/CB
3 ) = 1.

• |NG(C2)| = 24, and rank3(NG(C2)/C2) = 1.

• NG(C4) ∼= D8 and rank3(NG(C4)/C4) = 0

We see that the rank condition in Theorem A fails for 3-subgroups, since there is a cyclic 3-
subgroup H = CA

3 with rank2(NG(H)/H) = 2. On the other hand, by applying Theorem
6.1 directly, we can still find a finite G-CW-complex X ' Sn, with rank one isotropy in
the family generated by {1, C2, C4, C

B
3 }.

In this case, we have SG = {2, 3}. For p = 2, we can use the F2-representation V2 from
[9], since A7 satisfies the rank condition for 2-subgroups. It remains to show that there
exists an F3-representation of G with isotropy subgroups only type B cyclic 3-subgroups.
But this is easily constructed by taking V3 as the direct sum of augmented permutation
modules I(Q/K1) ⊕ I(Q/K2) where K1 = 〈(123)(456)〉 and K2 = 〈(123)(465)〉. It is
clear that this representation respects fusion, and has isotropy given only by the cyclic
3-subgroups of type B lying in F3.

Remark 7.6. When G is a finite group with a rank two elementary abelian Sylow q-
subgroup Q, the representation

Vq =
⊕
{I(Q/Ki) : 1 ≤ i ≤ s}
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over some family of rank 1 subgroups Ki, which is closed under G-conjugacy, will give a
q-effective representation which respects fusion. But for more general Sylow q-subgroups,
the above representation may fail to be q-effective. Note that for Vq to be q-effective
one needs to have exactly one double coset in E\Q/Ki for every Ki and for every rank
2 elementary abelian subgroup E of Q. This fails, for example, if Q = Cp2 × Cp2 is a
non-elementary rank two abelian group.
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