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Abstract

In general, quantum matrix algebras are associated with a couple of compatible braidings.
A particular example of such an algebra is the so-called Reflection Equation algebra. In this
paper we analyse its specific properties, which distinguish it from other quantum matrix
algebras (in first turn, from the RTT one). Thus, we exhibit a specific form of the Cayley-
Hamilton identity for its generating matrix, which in a limit turns into the Cayley-Hamilton
identity for the generating matrix of the enveloping algebra U(gl(m)). Also, we consider
some specific properties of the braided Yangians, recently introduced by the authors. In
particular, we exhibit an analog of the Cayley-Hamilton identity for the generating matrix
of such a braided Yangian. Besides, by passing to a limit of this braided Yangian, we get
a Lie algebra similar to that entering the construction of the rational Gaudin model. In its
enveloping algebra we construct a Bethe subalgebra by the method due to D.Talalaev.

AMS Mathematics Subject Classification, 2010: 81R50
Keywords: Reflection Equation algebra, braided Lie algebra, affinization, braided Yangian,

quantum symmetric polynomials, Cayley-Hamilton identity

1 Introduction

Let V be a vector space, dimV = N , and R : V ⊗2 → V ⊗2 be a braiding, i.e. a solution of the
braid relation (also called the quantum Yang-Baxter equation)

R12R23R12 = R23R12R23, R12 = R⊗ I, R23 = I ⊗R.

Hereafter I stands for the identity operator or its matrix. The above relation is written in the
space V ⊗3 and the lower indices label the spaces where a given operator acts.

∗gurevich@ihes.fr
†Pavel.Saponov@ihep.ru
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The unital associative algebra generated by entries of a matrix L = ‖lji ‖1≤i,j≤N , subject to
the following system

RL1RL1 − L1RL1R = 0, L1 = L⊗ I, (1.1)

is called the Reflection Equation (RE) algebra, associated with a braiding R and denoted L(R).
Below, the matrix L and all similar matrices are called generating.

The algebra L(R) is a particular case of the so-called quantum matrix (QM) algebras. Any
QM algebra is associated with a couple of compatible braidings (see [IOP] for more details).

Another well-known example of a QM algebra is the so-called RTT algebra, generated by
entries of a matrix T = ‖tji‖1≤i,j≤N subject to the system

RT1 T2 − T1 T2R = 0, T1 = T ⊗ I, T2 = I ⊗ T. (1.2)

All algebras, we are dealing with, are assumed to be unital.
A braiding R is called an involutive symmetry, if it meets the condition R2 = I, and a Hecke

symmetry, if it meets the Hecke relation1

(qI −R)(q−1I +R) = 0, q ∈ K, q2 6= 1. (1.3)

If an involutive or Hecke symmetry R is a deformation of the flip P , then the both QM algebras
are deformations of the commutative algebra Sym(gl(N)). This means that the dimensions of
homogeneous components of each of these algebras are classical, i.e. equal to those of corre-
sponding components2 in Sym(gl(N)). Emphasize that similar algebras can be associated with
any braiding R but in general this deformation property fails. Below, all symmetries R which are
deformations of the usual flips and the corresponding objects will be referred to as deformation
ones.

The best known examples of deformation Hecke symmetries are those coming from the Quan-
tum Groups (QG) Uq(sl(N)). However, we introduce all our algebras without any QG, which
plays merely the role of a symmetry group for them, provided the corresponding Hecke symme-
try R comes from this QG. As another example of a deformation Hecke symmetry we mention
the Cremmer-Gervais R-matrices. However, in general the involutive and Hecke symmetries, we
are dealing with, are not deformation either of the usual flips or of the super-ones.

Also, we assume all symmetries to be skew-invertible (see the next section for the definition).
Under this condition a braided (or R-)analog of the trace can be defined. Note that this trace
enters all our constructions. In particular, it takes part in the definition of quantum analogs
of the symmetric polynomials in all algebras under consideration. These quantum symmetric
polynomials generate commutative subalgebras, called characteristic.

However, only in the RE algebras these subalgebras are central (see [IP]). Besides, the RE
algebras possess many other properties distinguishing them from other QM algebras. The main
purpose of the present paper is to exhibit specific features of the RE algebras and of the so-called
braided Yangians [GS1], which are current (i.e. depending on parameters) algebras in a sense
close to the RE ones.

Here, we mention two of these particular properties. First, if a Hecke symmetry R = R(q)
is a deformation of the usual flip P (i.e. R(1) = P ), then the corresponding modified RE
algebra (3.1) is a deformation of the enveloping algebra U(gl(N)). It can be treated as the
enveloping algebra of a braided analog gl(VR) of a Lie algebra gl(n). If R is a skew-invertible
Hecke symmetry of a general type, similar analogs of the Lie algebra gl(N) and its enveloping
algebra can be also defined.

In this connection the following question arises: whether it is possible to define an affine

version of the braided Lie algebras similar to ĝl(N)? Below, we introduce such a braided analog

1From now on, the notation K stands for the ground field, which is C or R.
2If R is a Hecke symmetry we should additionally require q to be generic, that is qn 6= 1 for any integer n.
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ĝl(VR). Note that, putting aside the affine QG Uq(ĝ), there are known two approaches to define
quantum generalizations of affine algebras: the RE algebras in the spirit of [RS]3 and the double
Yangians and their q-analogs as introduced in [FJMR]. In our subsequent publications we plan

to study the centre of the enveloping algebra U(ĝl(VR)) in the frameworks of the Kac’s approach
and to compare all mentioned methods of defining quantum affine algebras.

The second particular property of the RE algebra is that its generating matrix L satisfies a
matrix polynomial identity Q(L) = 0 for a polynomial Q(t), called characteristic. Thus, we get
a version of the Cayley-Hamilton identity.

As was shown in [IOP], such an identity exists for the generating matrices of other QM
algebras. However, only in the RE algebra this identity arises from the characteristic polynomial.
Also, in deformation cases by passing to the limit q → 1 in the modified form of the RE algebra,
we get the characteristic polynomial and the corresponding Cayley-Hamilton identity for the
generating matrix of the enveloping algebra U(gl(N)), which are usually obtained via the so-
called Capelli determinant.

As noticed above, the braided Yangians, recently introduced in [GS1], are in a sense close
to the RE algebras. They are associated with current quantum R-matrices, constructed by
means of the Yang-Baxterization of involutive and Hecke symmetries. These braided Yangians
constitute one of two classes which generalize the Yangian Y(gl(N)), introduced by V.Drinfeld
[D]. The second class of Yangian-like algebras, also introduced in [GS1], consists of the so-called
Yangians of RTT type which are more similar to the RTT algebras.

One of the main dissimilarities of the braided Yangians and these of RTT type arises from
their evaluation morphisms. For the braided Yangians the evaluation morphisms are similar
to these for the Yangians Y(gl(N)), but their target algebras are the RE algebras (modified
or not) instead of U(gl(N)). Another particular property of the braided Yangians is that they
admit the Cayley-Hamilton identities for the generating matrices, which are also more similar
to the classical ones. This is due to the fact that the analogs of the matrix powers entering these
identities are given by the usual matrix product of several copies of the generating matrix (but
with a shifted parameter u).

Also, deformation braided Yangians, in particular those, associated withR-matrices (5.4) and
called braided q-Yangians, admit a limit4 as q → 1. In this limit we get Lie algebras Gtrig similar
to G entering construction of the rational Gaudin model. By using the method due to D.Talalaev,
we construct Bethe subalgebras in the enveloping algebras U(Gtrig). Consequently, we get new
Bethe subalgebras in the Lie algebras gl(N)⊕K . In a more detailed way the corresponding
version of an integrable model will be considered elsewhere.

The paper is organized as follows. In the next section we recall some basic properties of
braidings and symmetries. In section 3 we describe the RE algebra and the corresponding
braided Lie algebra gl(VR). Also, we define its affinization. In Section 4 we consider different
forms of the characteristic polynomials for the generating matrices of the RE algebras. In Section
5 we introduce braided Yangians and describe their specific properties. In the last section by
passing to the q = 1 limit in the braided q-Yangian, we get the aforementioned current Lie
algebra Gtrig and find a Bethe subalgebra in its enveloping algebra.

Acknowledgement D.G. is grateful to the Max Planck Institute for Mathematics (Bonn),
where the paper was mainly written, for stimulating atmosphere during his scientific visit. The
work of P.S. has been funded by the Russian Academic Excellence Project ’5-100’ and was
also partially supported by the RFBR grant 16-01-00562. The authors are also thankful to
D.Talalaev for elucidating discussion.

3They differ from our braided Yangians by the middle terms, which are also current R-matrices. Observe that
there are known many versions of such RE algebras.

4In order to get this limit we first change the basis in the Yangian, or in other words, we pass to the shifted
form of this Yangian.
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2 Braidings: definitions and properties

The starting object of our approach is a skew-invertible braiding of one of two types, specified
below. Recall that a braiding R is called skew-invertible if there exists an operators Ψ : V ⊗2 →
V ⊗2 such that the following relation holds

Tr2R12Ψ23 = P13 ⇔ Rkl
ijΨjq

lp = δqi δ
k
p , (2.1)

where the symbol Tr2 means that the trace is applied in the second matrix space. Below a
summation over repeated indexes is always understood. Here we assume that a basis {xi} in
the space V is fixed and ‖Rkl

ij‖ is the matrix of the operator R in the basis {xi ⊗ xj}:

R(xi ⊗ xj) = Rkl
ij xk ⊗ xl.

The condition (2.1) enables us to extend R up to a braiding

R : V ⊗2 → V ⊗2, (V ∗)⊗2 → (V ∗)⊗2, V ∗ ⊗ V → V ⊗ V ∗, V ⊗ V ∗ → V ∗ ⊗ V,

such that there exists an R-invariant pairing V ⊗V ∗ → K (see [GPS2]). This extended braiding
implies a braiding

REnd(V ) : End(V )⊗2 → End(V )⊗2,

where we identify End(V ) ∼= V ⊗ V ∗ since V is a finite dimensional space.
Now, introduce two operators

B = Tr1Ψ ⇔ Bj
i = Ψkj

ki , C = Tr2Ψ ⇔ Cj
i = Ψjk

ik . (2.2)

The definition of Ψ and the Yang-Baxter equation for R leads to the properties:

Tr1B1R12 = I2, Tr2C2R12 = I1. (2.3)

R12B1B2 = B1B2R12, R12C1C2 = C1C2R12, (2.4)

Let {xj} be the right dual basis of the space V ∗, i.e. < xi, x
j >= δji . Then the R-invariant

pairing in the opposite order is

< , >: V ∗ ⊗ V → K, < xj , xi >= Bj
i . (2.5)

In the space End(V ) we fix the following basis

lji := xi ⊗ xj ∈ End(V )

and consider the map
trR : End(V )→ K, lji 7→ δji , (2.6)

motivated by the pairing V ⊗ V ∗ → K. We call this map the R-trace.
Also, using the pairing (2.5), we define the following product in the space End(V )

◦ : End(V )⊗2 → End(V ), lji ◦ l
l
k = Bj

k l
l
i. (2.7)

This product is REnd(V )-invariant in the following sense

REnd(V )(I ⊗ ◦) = (◦ ⊗ I)R
End(V )
2 R

End(V )
1 , REnd(V )(◦ ⊗ I) = (◦ ⊗ I)R

End(V )
1 R

End(V )
2 , (2.8)

where all operators act on the space End(V )⊗3. Hereafter, for the sake of simplicity we write
Rk instead of Rk k+1.
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Now, introduce the following pairing on the space End(V ):

〈 , 〉 : End(V )⊗2 → K, 〈X,Y 〉 = trR(X ◦ Y ), ∀X,Y ∈ End(V ). (2.9)

Thus, on the generators lji we have 〈lji , llk〉 = Bj
kδ

l
i.

Now, let M = ‖mj
i‖ be an N ×N matrix. Define its R-trace as

TrRM = Tr(CM) = M j
i C

i
j .

This definition is motivated as follows. With a matrix M we associate an element M j
i xj ⊗ x̃i ∈

End(V ), where x̃i is the left dual basis of the space V ∗, i.e. < x̃i, xj >= δij . The right R-invariant

pairing of x̃i and xj reads < xj , x̃
i >= Ci

j (see [GPS2] for details). So, the R-trace of M is just

the result of applying this pairing to M j
i xj ⊗ x̃i.

As was shown in [O], this R-trace has an important property: for any N ×N matrix M the
following holds

TrR(2)R1M1R
−1
1 = TrR(2)R

−1
1 M1R1 = I1TrRM.

From now on, we use the following notation Tri1...ik = Tri1 . . .Trik where i1 < . . . < ik and the
same for R-traces.

Now, we assume R to be a Hecke symmetry and q to be generic. The corresponding con-
structions and results for involutive symmetries can be obtained by passing to the limit q → 1.

Note that for any Hecke symmetry R the symmetric and skew-symmetric algebras

SymR(V ) = T (V )/〈Im(qI −R)〉,
∧

R
(V ) = T (V )/〈Im(q−1I +R)〉

can be introduced. Since they are graded, the corresponding Poincaré-Hilbert series

P+(t) =
∑
k

dim Sym
(k)
R (V )tk, P−(t) =

∑
k

dim
∧(k)

R
(V )tk,

are well defined. Here the index (k) labels the k-th order homogeneous components. According
to [H] the Poincaré-Hilbert series P±(t) are rational functions.

Emphasize that the above homogeneous components can also be defined via the projectors
of symmetrization P+ (called below symmetrizers) and skew-symmetrization P− (skew-symmet-
rizers)

P(k)
+ : V ⊗k → Sym

(k)
R (V ), P(k)

− : V ⊗k →
∧(k)

R
(V ).

The latter operators can be introduced by a recursive relation:

P(k)
− =

1

kq
P(k−1)
−

(
qk−1I − (k − 1)qRk−1

)
P(k−1)
− , kq =

qk − q−k

q − q−1
, (2.10)

where we put by definition P(1)
− = I and assume that the skew-symmetrizer P(k)

− is always
applied at the positions 1, 2, . . . , k. Formula (2.10) was proved in [G] in a little bit different
normalization of the Hecke symmetries.

Let us assume the rational function P−(t) to be noncancellable. Let m (respectively n) be
the degree of its numerator (respectively, denominator). The ordered couple (m|n) is called the
bi-rank of the symmetry R.

If R is a skew-invertible symmetry (involutive or Hecke) and its by-rank is (m|n) then the
operators B and C (2.2) have a few additional properties:

BC = q2(n−m)I, TrB = TrC = qn−m(m− n)q. (2.11)

5



Proposition 1 If R is a skew-invertible Hecke symmetry and its bi-rank is (m|0), then

TrR(k+1...m)P
(m)
− = q−m(m−k)kq!(m− k)q!

mq!
P(k)
− , (2.12)

where we use the notation kq! = 1q2q . . . kq and the standard agreement 0q! = 1.

Proof. The proof of this claim is a direct consequence of recurrence (2.10) and properties of
R-trace. Indeed, in virtue of the condition on the bi-rank and (2.11) we have

TrRI = TrC = q−mmq,

while formula (2.3) means that TrR(k)Rk−1 = Ik−1. Now we can calculate a typical trace:

TrR(k)

(
qk−1I − (k − 1)qRk−1

)
=
(
qk−m−1mq − (k − 1)q

)
Ik−1 = q−m(m− k + 1)qIk−1,

where at the last step we used the relation

qabq − qbaq = (b− a)q.

Thus, we have

TrR(m)

(
qm−1I − (m− 1)qRm−1

)
= q−mIm−1

and consequently,

TrR(m)P
(m)
− =

q−m

mq
P(m−1)
− .

Upon applying the R-trace once more, we get

TrR(m−1,m)P
(m)
− = q−2m

2q
mq(m− 1)q

P(m−2)
− = q−2m

2q!(m− 2)q!

mq!
P(m−2)
− .

Now, using the reasoning by recursion, we arrive to formula (2.12).

3 Braided Lie algebras and their affinization

Now, consider a unital associative algebra generated by matrix elements of N × N matrix
L̃ = ‖lji ‖ which obey the system of quadratic-linear relations:

R L̃1R L̃1 − L̃1R L̃1R = R L̃1 − L̃1R. (3.1)

We call this algebra the modified RE algebra and denote it L̃(R).
If q2 6= 1 the algebras L(R) (1.1) and L̃(R) are isomorphic to each other. The isomorphism

is realized by the following map

L̃ 7→ L+
1

q − q−1
I. (3.2)

Due to this reason we treat the algebra L̃(R) as a modified form of the algebra L(R). In
[GPS2] we have constructed a representation category of the algebra L̃(R) similar to that of
the algebra U(gl(N)). The isomorphism (3.2) enables us to convert any L̃(R)-module into a
L(R)-one.

Here, we want to mention only three L̃(R)-modules. The first one is the basic space V . The
corresponding vector representation is defined by

ρV (lji ) . xk = Bj
kxi.
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where the notation . stands for the action of a linear operator.
The second L̃(R)-module, called covector, is defined in the dual space V ∗ by the following

action on basis elements
ρV ∗(l

j
i ) . x

k = −xlRkj
li .

The third module, called adjoint, is identified with V ⊗V ∗. The action of the elements lji on
this module is defined by means of the following coproduct

∆(lji ) = lji ⊗ 1 + 1⊗ lji − (q − q−1)
∑
k

lki ⊗ l
j
k. (3.3)

Onto the whole algebra L̃(R) this coproduct is extended by means of the braiding REnd(V ). In
this sense we speak about a braided bi-algebra structure of the algebra L̃(R). The reader is
referred to [GPS2] for details. Note, that the coproduct (3.3) arises from the braided structure
of the RE algebra discovered by Sh.Majid [M].

Another way to define the adjoint representation is based on a braided analog of the Lie
bracket. It is defined as follows. The system quadratic-linear relations (3.1) on the generators
of the algebra L̃(R) can be rewritten as

lji ⊗ l
l
k −R(lji ⊗ l

l
k) = [lji , l

l
k],

where
R : End(V )⊗2 → End(V )⊗2 and [ , ] : End(V )⊗2 → End(V )

are two operators. The operator R is defined below (see (3.9)).
Emphasize that if q = 1 the operators R and REnd(V ) coincide with each other but for a

generic q it is not so.
Then the adjoint representation of the algebra L̃(R) can be defined as followed

ρEnd(V )(l
j
i ) . l

l
k = [lji , l

l
k]. (3.4)

Proposition 2 The action (3.4) defines a representation of the algebra L̃(R).

In order to prove this claim it suffices to show that the action (3.4) coincides with that
discussed above. It can be also shown by straightforward computations.

Definition 3 The space End(V ) equipped with the operators R and [ , ] is called braided Lie
algebra and is denoted gl(VR).

Also, the algebra L̃(R) plays the role of the enveloping algebra of the braided Lie algebra
gl(VR) in virtue of Proposition 2.

Besides the property formulated in Proposition 2, the braided Lie algebra gl(VR) has the
following features.

1. Its bracket [ , ] is skew-symmetric in the following sense: [ , ]P = 0. Here P : End(V )⊗2 →
End(V )⊗2 is a symmetrizer, constructed in [GPS2]. Note that in comparison with the above
projectors P± acting in tensor powers of the space V , the symmetrizer P acts in (spanK(lji ))

⊗2.
Such symmetrizers and analogical skew-symmetrizers were constructed in [GPS2] for the tensor
powers 2 and 3 of the space spanK(lji ).

2. This bracket is REnd(V )-invariant in the same sense as in (2.8). In the case related to the
QG Uq(sl(N)), this bracket is also covariant with respect to the action of this QG.

As for (3.4), we treat it as a braided analog of the Jacobi identity. Note that if R is an
involutive symmetry, then the corresponding Jacobi identity can be written under the following
form, similar to the classical (or super-)one:

[ , ][ , ]12(I +R
End(V )
1 R

End(V )
2 +R

End(V )
2 R

End(V )
1 ) = 0. (3.5)
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Also, note that the right hand side of (3.1) can be obtained by applying the product ◦ (2.7) to
its left hand side. This follows form the relation

◦L1R12L1 = L1Tr(1)B1R12 = L1I2.

Now, introduce the following useful notation. We put5

L1 = L1, Lk = Rk−1Lk−1R
−1
k−1, k ≥ 2. (3.6)

With the use of this notation, we can rewrite the system (1.1) in a form similar to (1.2):

R1L1 L2 − L1 L2R1 = 0. (3.7)

The adjoint action can also be written as

L1 . R1 L1 = L1 −R
−1
1 L1R1 ⇔ L1 . L2 = L1R

−1
1 −R

−1
1 L1 = L1R1 −R1 L1, (3.8)

where in the last equality we use the following consequence of Hecke condition (1.3):

R−1 = R− (q − q−1)I.

As for the operators R and REnd(V ), they can be respectively presented as

R(L1 ⊗ L2) = R−1(L1 ⊗ L2)R, REnd(V )(L1 ⊗ L2) = L2 ⊗ L1. (3.9)

Below, we use similar notations for dealing with the so-called braided Yangians.
Now, consider the element

` = TrRL = Tr(CL) ∈ End(V ).

In order to stress the difference between the R-traces TrR and trR (see (2.6)) note that trRL = I.
We have

trR` = Ck
k =

(m− n)q
qm−n

.

Let us suppose that m 6= n and consequently trR` 6= 0. Then the elements

f ji = lji − δ
j
i

`

trR`

are well defined and traceless: trRf
j
i = 0. This enables us to define a braided analog sl(VR) of

the Lie algebra sl(N). The reader is referred to [GPS2] for details.
Now, consider the affinization procedure of the braided Lie algebras gl(VR). For the algebras

sl(VR) it can be done in a similar manner. Following the classical pattern, we consider the
algebra

gl(VR)[t, t−1] = gl(VR)⊗ K[t, t−1].

This algebra is generated by elements lji [a] := lji ⊗ ta, a ∈ Z. The braided Lie bracket in it is
also defined according to the classical pattern:

[X[a], Y [b]] := [X,Y ][a+ b], X, Y ∈ gl(VR).

To construct the central extension of gl(VR)[t, t−1] we introduce a vector space

gl(VR)[t, t−1]⊕ K c
5 Note that the QM algebras as introduced in [IOP], are defined in a similar way, but with the help of the

second braiding F , in a sense compatible with R: L
k

= Fk−1Lk−1
F−1
k−1.
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where c is a new generator commuting with any elements of gl(VR)[t, t−1]. Besides, we extend
the action of the operator R in a natural way

R(X[a]⊗ Y [b]) = R(X ⊗ Y )[b][a], R(X[a]⊗ c) = c⊗X[a], R(c⊗X[a]) = X[a]⊗ c.

Here, the notation R(X ⊗ Y )[b][a] means that we attribute the label b to the first factor and
that a to the second one.

Now, define the affine braided Lie algebra ĝl(VR) by introducing the following bracket

[X[a], c] = 0, [X[a], Y [b]] = [X,Y ][a+ b] + ω(X[a], Y [b]) c,

where
ω(X[a], Y [b]) := a〈X,Y 〉δ(a+ b).

Here 〈 , 〉 is the pairing (2.9) in the algebra gl(VR) and a discrete δ-function δ(a) is defined in
the standard way:

δ(a) =

{
1 if a = 0

0 if a 6= 0.

We do not know what is the Jacobi identity in the braided Lie algebra ĝl(VR), provided R is
a Hecke symmetry. However, if R is an involutive symmetry, the corresponding Jacobi identity
is similar to (3.5). This claim can be easily deduced from the following property of the term ω.

Proposition 4 If R is an involutive symmetry, then the following holds

ω [ , ]23
(
(I +R

End(V )
1 R

End(V )
2 +R

End(V )
2 R

End(V )
1 )(X[a]⊗ Y [b]⊗ Z[c])

)
= 0.

In virtue of this property the term ω can be called braided cocycle.

The enveloping algebra U(ĝl(VR)) can be also defined in a natural way as the quotient of

the free tensor algebra of ĝl(VR) over the ideal, generated by the elements

c lji [a]− lji [a] c, X[a]Y [b]−R(X[a]⊗ Y [b])− [X[a], Y [b]]− ω(X[a], Y [b])c.

In a similar manner it is possible to define the enveloping algebra U(sl(VR)). In fact, we suggest
a new way of introducing quantum analogs of affine Lie algebras.

In our subsequent publications we plan to study the center of the algebras U(gl(VR)) and
U(sl(VR)) in the spirit of the Kac’s approach.

4 Characteristic polynomials for generating matrices

In this section we suppose that the bi-rank of a given skew-invertible Hecke symmetry R is
(m|0), m ≥ 2. As was shown in [GPS1], the generating matrix L of the corresponding RE
algebra meets the following Cayley-Hamilton identity

Lm − qLm−1e1(L) + q2Lm−2e2(L) + ...+ (−q)m−1Lem−1(L) + (−q)mIem(L) = 0, (4.1)

where
e0(L) = 1, ek(L) := TrR(1...k)(P

(k)
− L1 L2 . . . Lk), k ≥ 1,

are quantum analogs of the elementary symmetric polynomials. Here P(k)
− : V ⊗k → V ⊗k is the

skew-symmetrizer (2.10).
Note that quantum analogs of these and other symmetric polynomials (Schur polynomials,

power sums) are also well defined in all QM algebras and they generate a commutative subalgebra
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called characteristic. As we said above, in the RE algebra the characteristic subalgebra is central.
By this reason, it does not matter on what side of the powers of the matrix L we put the
coefficients in the Cayley-Hamilton identity and in its generalizations called Cayley-Hamilton-
Newton identities. An important consequence of this fact is the possibility to introduce the
quantum spectrum of L, the quantum eigenvalues µi of L belong to an algebraic extension of
the center of RE algebra. This quantities allows one to rewrite the Cayley-Hamilton identity
(4.1) in a factorized form:

N∏
i=1

(L− µiI) = 0.

By contrary, in other QM algebras the elements ek are not central and their position in
the Cayley-Hamilton identity (in front of a matrix power or behind it) is important. Besides,
in these algebras the powers Lk should be replaced by their quantum counterparts, which also
exist in two forms. We refer the reader to the paper [IOP], where the Cayley-Hamilton identity
(and its generalization called the Cayley-Hamilton-Newton identity) is proved for the generating
matrices of all QM algebras, the RTT and RE algebras included.

Remark 5 In [IO] the notion of a half-quantum algebra was introduced. Similarly to a QM al-
gebra a half-quantum algebra is defined with the help of a couple (R,F ) of compatible braidings,
but the defining relations on generators are less restrictive than those for the QM algebras. The
point is that analogs of symmetric polynomials can be also defined in half-quantum algebras and
a version of the Cayley-Hamilton-Newton relations can be established. Nevertheless, in general,
the ”symmetric polynomials” in these algebras do not commute with each other.

As follows from formula (4.1), the characteristic polynomial for the generating matrix L of
the RE algebra is

Q(t) =
m∑
k=0

tm−k(−q)kek(L), (4.2)

since Q(t) is the m-th order polynomial with the unit coefficient at the highest power tm which
possesses the property Q(L) ≡ 0.

Our current aim is to present this polynomial in a form useful for finding the characteristic
polynomial for the generating matrix of the modified RE algebra. By passing to the limit q → 1,
we get a characteristic polynomial for the generating matrix of the algebra U(gl(N)).

Proposition 6 The polynomial Q(t) defined in (4.2) is identically equal to the expression:

Q(t) = qm TrR(1...m)

(
P(m)
− (tI − L1)(q

2tI − L2)...(q
2(m−1)tI − Lm)

)
. (4.3)

Proof. Consider the following polynomial in m indeterminates ti:

Q̂(t1, . . . , tm) = qm TrR(1...m)

(
P(m)
− (t1I − L1)(t2I − L2) . . . (tmI − Lm)

)
.

By developing the product of linear factors in the above expression, we get a sum with the
typical term

qmσk(t1, . . . , tm) TrR(1...m)

(
P(m)
− (−L1) . . . (−Lm−k)

)
,

where σk(t1, . . . , tm) are the elementary symmetric polynomials in t1, ..., tm:

σk(t1, . . . , tm) =
∑

1≤i1<...<ik≤m
ti1 . . . tik .

10



Here, we use an essential fact that the factors Li under the R-trace can be “shifted” to the most
possible left position. This means that the following identities hold

TrR(1...m)

(
P(m)
− Ls1Ls2 . . . Lsk

)
= TrR(1...m)

(
P(m)
− L1L2 . . . Lk

)
for any set of integers 1 ≤ s1 < s2 < . . . < sk ≤ m. Emphasize that this property is specific for
the RE algebra. It fails if the matrices Lk are defined via a braiding F different from R (see
footnote 5).

By using Proposition 1, we can present the polynomial Q̂ as follows

Q̂(t1, . . . , tm) =
m∑
k=0

(−1)kq−m(m−k−1) kq!(m− k)q!

mq!
σm−k(t1, . . . , tm) ek(L). (4.4)

Now, we take into account a result from q-combinatorics:

σk(t, q2t, ..., q2(k−1)t) = tkσk(1, q2, ..., q2(k−1)) = qk(m−1)
mq!

kq!(m− k)q!
tk.

So, specializing tk = q2(k−1)t in the above expression (4.4) we precisely get the formula (4.2).
Therefore

Q(t) = Q̂(t, q2t, . . . , q2(m−1)t),

which proves the claim in virtue of the the definition of Q̂.

It is obvious, that formula (4.3) can be written as follows:

Q(t) = qm TrR(1...m)

(
P(m)
− (tI − L)1(q

2tI − L)2 . . . (q
2(m−1)tI − L)m

)
.

From this form of the characteristic polynomial (4.3) for the matrix L we can get the character-
istic polynomial for the matrix L̃.

Corollary 7 The characteristic polynomial Q̃(t) for the matrix L̃ is equal to

Q̃(t) = qm TrR(1...m)

(
P(m)
−

m∏
k=1

(
q2(k−1)

(
t− q−k+1(k − 1)q

)
I − L̃k

))
, (4.5)

where the factors are placed in ascending order in k from the left to right.

Proof. The generating matrices L and L̃ are connencted by a linear shift (3.2). Introducing a
new indeterminate

t̃ = t+
1

q − q−1
,

we obviously have tI −L = t̃I − L̃. Therefore, rewriting L and t in (4.3) in terms of L̃ and t̃ we
get the polynomial Q̃(t̃) with the property Q̃(L̃) = 0 (we return to the notation t instead of t̃
at the end of transformations).

Note, that the value m in the above formulae is in general independent of the parameter
N = dimV except for the restriction m ≤ N . If a given Hecke symmetry is a deformation of the
usual flip (the Uq(sl(N)) Drinfrld-Jimbo R-matrix as a well-known example), then its bi-rank
is (N |0). By passing to the limit q → 1 we get the following claim.

Corollary 8 Let M = ‖mj
i‖ be the generating matrix of the enveloping algebra U(gl(N)), where

mj
i 1 ≤ i, j ≤ N is the standard basis of gl(N). Then the following polynomial is characteristic

for this matrix

Q(t) = Tr(1...N)

(
P(N)
− (tI −M1)((t− 1)I −M2)...((t−N + 1)I −MN )

)
,

where P(N)
− is the usual skew-symmetrizer in V ⊗N , that is we have Q(M) = 0.

11



Emphasize that usually the characteristic polynomial for the matrix M is constructed by
means of the Capelli determinant.

Also, note that the claim of the corollary 7 is valid for the generating matrix of any modi-
fied RE algebra corresponding to a skew-invertible involutive symmetry R, provided R can be
approximated by a family of Hecke symmetries.

Remark 9 Along with the characteristic polynomial for the generating matrix of the enveloping
algebra U(gl(N)) one usually exhibits a similar polynomial for its transposed matrix M t (see
[Mo]). In our setting the matrix M t should be replaced by the generating matrix of the modified
RE algebra defined by

R1L2R1L2 − L2R1L2R1 = R1L2 − L2R1. (4.6)

It is treated as the enveloping algebra of the algebra of right endomorphisms of V . For the
generating matrix of this algebra the characteristic polynomial is similar to (4.3) but the R-
trace should be defined via TrRL = Tr(BL) and all the matrices Lk should be replaced by Lk

where
Lm = Lm, Lk = R−1k Lk+1Rk, 1 ≤ k ≤ m− 1.

5 Braided Yangians

Let R(u, v) be a current quantum R-matrix. This means that it is subject to the quantum
Yang-Baxter equation

R12(u, v)R23(u,w)R12(v, w) = R23(v, w)R12(u,w)R23(u, v).

Consider an analog of the RTT algebra, associated with such an R-matrix defined by the system

R(u, v)L1(u)L2(v) = L1(v)L2(u)R(u, v), (5.1)

where the matrix
L(u) =

∑
k≥0

L[k]u−k, L[k] = ‖lji [k]‖1≤i,j≤N , (5.2)

expands in a series in non-positive powers of the parameter.
Thus, the system (5.1), being rewritten via the generators lji [k], leads to an infinite family

of quadratic equations on the generators lji [k], whose number is also infinite, but each equation
is a polynomial in the generators.

The R-matrix R(u, v), we are dealing with, are of two classes:

R(u, v) = R− a

u− v
I, R(u, v) = R− (q − q−1)u

u− v
. (5.3)

In the first formula in (5.3) R stands for a skew-invertible involutive symmetry, whereas in
the latter one R = R(q) is a skew-invertible Hecke symmetry. The fact that these R-matrices
meet the quantum Yang-Baxter equation can be verified by a straightforward calculation [GS1].
The procedure of constructing such current R-matrices via symmetries R is often called Yang-
Baxterization.

Note that the Drinfeld’s Yangian corresponds to the famous Yang R-matrix, which is defined
via the first formula (5.3) with R = P .

Observe that the second current R-matrix in (5.3) is actually depending on the ratio u/v
of the parameters. There exists another (so-called trigonometrical) form which can be obtained
via the change of variables u 7→ qu, v 7→ qv. After such a transformation the current R-matrix
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will depend on the difference u− v. Below, we deal with the rational form (5.3) of the current
R-matrix.

All Yangian-like algebras defined via (5.1) but with other current R-matrices are called
Yangians of RTT type.

The well-known examples of Yangians of RTT type are the so-called q-Yangians (see [Mo]).
In the lowest dimensional case such a q-Yangian is associated with the following current R-matrix

R(u, v) = R− (q − q−1)u
u− v

I =


−qv+q−1u

u−v 0 0 0

0 (−q+q−1)v
u−v 1 0

0 1 (−q+q−1)u
u−v 0

0 0 0 −qv+q−1u
u−v

 . (5.4)

Note that each Yangian of RTT type has a bi-algebra structure. On the generators the
corresponding coproduct is defined as follows

∆(1) = 1⊗ 1, ∆(lji (u)) = lki (u)⊗ ljk(u).

Now, consider the so-called evaluation morphism

T (u)→ T +
T

u
.

This map induces a morphism of algebras, if R is a Hecke symmetry and the matrices T and T
meet the following relations

RT1 T2 = T1 T2R, RT 1 T 2 = T 1 T 2R, RT 1 T2 = T1 T 2R.

Thus, the target algebra generated by the entries of the matrices T and T is a couple of RTT
algebras connected by the last relation.

Note that in the case of q-Yangians one usually imposes some additional conditions on the
matrix L[0].

In [GS1] we suggested another candidate for the role of the q-Yangian. Consider an algebra
generated by entries of a matrix L(u) subject to the relations

R(u, v)L1(u)RL1(v)− L1(v)RL1(u)R(u, v) = 0, (5.5)

where R is just the involutive or Hecke symmetry entering the current R-matrix (5.3). Besides,
in the expansion (5.2) we assume that L[0] = I. We denote this algebra Y(R) and call it the
braided Yangian.

Below, we use the notation similar to (3.6):

L1(u) = L1(u), Lk(u) = Rk−1Lk−1(u)R−1k−1, k ≥ 2.

By using this notation, it is possible to cast the defining relations (5.5) in a form similar to the
Yangians of RTT type

R(u, v)L1(u)L2(v)− L1(v)L2(u)R(u, v) = 0.

The braided Yangian, corresponding to the R matrix (5.4) and its higher dimensional analogs
are called braided q-Yangian.

Let us mention some of properties of the braided Yangians. First of all, any braided Yangian
has a braided bi-algebra structure. The corresponding coproduct is defined on the generators
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by the same formulae as in the Yangians of RTT type but it is extended on the whole algebra
via the braiding REnd(V ) in a way similar to that in the RE algebra.

Another important property of the braided Yangians is that their evaluation morphisms look
like the classical one

L(u)→ I +
M

u
. (5.6)

The target algebra generated by entries of the matrix M , is described by the following claim
proved in [GS1].

Proposition 10

1. If R is an involutive symmetry, then the map (5.6) defines a surjective morphism Y(R)→
L̃(R). Besides, the map M 7→ L[1] defines an injective morphism L̃(R)→ Y(R).

2. If R is a Hecke symmetry, then the map (5.6) defines a morphism Y(R)→ L(R).

Thus, the type of the target algebra depends on the type of the initial symmetry R. This
proposition enables us to construct a large representation category of each braided Yangian. We
describe it for the braided q-Yangian Y(R).

Consider the category of finite dimensional Uq(sl(N))-modules which are deformations of the
U(sl(N))-ones. Each of its objets can be endowed with a structure of the L̃(R)-module where
R is coming from the QG Uq(sl(N)). This fact follows from the method of constructing the
category of L̃(R)-module as was done in [GPS1]. Finally, by using the isomorphism (3.2) we
can convert any L̃(R)-module into L(R)-one. Now, it remains to apply the above proposition.

One of the most remarkable properties of the Yangians of all types is that analogs of some
symmetric functions are well defined in these algebras. Also, analogs of the Cayley-Hamilton-
Newton identities are valid in these algebras. Note that these identities can be presented in
different form. Below, we exhibit them in a form which differs from that of [GS1, GS2].

First, define analogs of powers Lk(u) and skew-powers L∧k(u) of the matrix L(u), generating
a braided Yangian:

Lk(u) := L(q−2(k−1)u)L(q−2(k−2)u) . . . L(u),

L∧k(u) := TrR(2...k)

(
P(k)
− L1(u)L2(q

−2u) . . . Lk(q−2(k−1)u)
)

k ≥ 2,

where it is convenient to set by definition L0(u) = I and L∧1(u) = L(u).
Here, we would like to emphasize a difference between the braided Yangians and these of

RTT type. In the latter ones analogs of the matrix powers and skew-powers can be also defined,
but only in the braided Yangians analogs of the matrix powers are defined via the usual matrix
product of the generating matrices (but with shifted parameters).

In the braided Yangians quantum analogs of the power sums and elementary symmetric
polynomials are respectively defined by

pk(u) = TrRL
k(u) = TrRL(q−2(k−1)u)L(q−2(k−2)u) . . . L(u),

ek(u) = TrRL
∧k(u) = TrR(1...k)

(
P(k)
− L1(u)L2(q

−2u) . . . Lk(q−2(k−1)u)
)
. (5.7)

Now, we are able to exhibit the Cayley-Hamilton-Newton identities in the braided Yangians.

Proposition 11 The following matrix identities hold true for the generating matrix of a braided
Yangian

(−1)k+1kqL
∧k(u) =

k∑
p=1

(−q)k−pLp(q2(k−p)u)ek−p(u) ∀ k ≥ 1. (5.8)
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Proof can be done by the considerations similar to these from [GS1], namely, by sequential use
of the recurrent formula (2.10). However, first, we present the skew-power L∧k(u) as follows

L∧k(u) = TrR(2...k)

(
L1(q

−2(k−1)u)L2(q
−2(k−2)u) . . . Lk(u)P(k)

−

)
.

Then we apply the method used in [GS1].
Note, that in the cited paper we got a different form of the Cayley-Hamilton-Newton identi-

ties: the elementary symmetric functions appeared there on the left of matrix powers of L and
the matrix powers were defined by more complicated expressions than those written above.

If the bi-rank of the Hecke symmetry R is (m|0) (in particular, for the braided q-Yangian it
is (N |0), i.e. m = N), then the highest nonzero skew-power is

L∧m(u) = qmem(u) I,

where em(u) is the highest nonzero elementary symmetric polynomial, which is a quantum analog
of the determinant.

Consequently, on setting in (5.8) k = m we get the Cayley-Hamilton identity

m∑
p=0

(−q)pLm−p(q−2pu)ep(u) = 0.

By applying the R-trace to the identities (5.8), we get a family of the quantum Newton
identities

pk(u)− qpk−1(q−2u)e1(x) + (−q)2pk−2(q−4u)e2(u) + . . .

+ (−q)k−1p1(q−2(k−1)u)ek + (−1)kkqek(u) = 0 ∀ k ≥ 1.

Emphasize that the quantum analog of the determinant em(u) is central in the braided
Yangian Y(R) for any symmetry R, whereas in the Yangians of RTT type its centrality depends
on R (see [GS1]). The other analogs of elementary symmetric polynomials ek(u), 1 ≤ k ≤ m
and power sums pk(u), k ≥ 1, commute with each other and generate a commutative Bethe
subalgebra. This is true also for the Yangians of RTT type.

6 Shifted braided q-Yangian and its q = 1 limit

Let r(u, v) be a classical r-matrix, i.e. gl(N)-valued function in parameters u and v (assumed
to be rational), which meets the classical Yang-Baxter equation

[r12(u, v), r13(u,w)] + [r12(u, v), r23(v, w)] + [r13(u,w), r23(v, w)] = 0.

Suppose that the map

L(u)⊗ L(v) 7→ {L1(u), L2(v)} = [r(u, v), L1(u) + L2(v)], (6.1)

is skew-symmetric and consequently it defines a Poisson bracket. Also, suppose that the matrix-
function L(u) = ‖lji (u)‖ expands in a series (5.2). Thus, this Poisson bracket, defined on the
commutative algebra Sym(gl(N)[t−1]), can be expressed via the coefficients L[k], k ≥ 0.

By using the standard R-matrix technique, it is easy to show that the elements TrLk(u)
commute with each other with respect to this Poisson bracket:

{TrLk(u),TrLl(v)} = 0, ∀ k, l ≥ 0 (6.2)
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for any values u and v.
The simplest non-constant example of an r-matrix is the following one

r(u, v) =
P

u− v
. (6.3)

The corresponding Poisson bracket is an important ingredient of the rational Gaudin model and
its quantization.

Let us emphasize that the elements TrLk(u) (or their R-counterparts) do not commute any
more in the enveloping algebra U(G) of the Lie algebra G defined by formula (6.1) with the
same r-matrix (6.3). D.Talalaev [T] succeeded in finding a Bethe subalgebra in this enveloping
algebra.

Now, consider the map

L(u) 7→
K∑
k=1

Mk

u− uk
, (6.4)

where uk ∈ K areK fixed points, and the matricesMk generateK copies of the algebra U(gl(N)).
This means that each matrix Mk generates the enveloping algebras gl(N) and entries of any
two matrices of this family commute with each other. Then, the map (6.4) defines a Lie algebra
morphism G→ g = gl(N)⊕K and consequently a morphism of the enveloping algebras of these
Lie algebras.

In fact, the map (6.4) can be treated as an analog of the evaluation morphism Y(gl(N))→
U(gl(N)), combined with the morphisms u 7→ u− uk and the usual coproduct.

The image of the Bethe subalgebra in the algebra U(G) under the map (6.4) is a Bethe
subalgebra in the algebra U(g). Some quadratic elements of the latter algebra play the role of the
Hamiltonians of the rational Gaudin model. Talalaev’s result gives rise to higher Hamiltonians
of this model.

Let us emphasize that constructing a Bethe subalgebra in the algebra U(G) was performed
by Talalaev via using a Bethe subalgebra in the Yangian Y (gl(N)). It is tempting to replace
the r-matrix (6.3) by that corresponding to R-matrix (5.4) and upon using the same method,
to find a Bethe subalgebra in the enveloping algebra of the corresponding Lie algebra.

Unfortunately, this method fails though a Bethe subalgebra in the q-Yangian of RTT type
exists and is known (see [GS1]). This failure is due to the fact that in the q-Yangian of RTT type
it is not possible to find elements of this Bethe subalgebra which have a controllable expansion
in the deformation parameter h.

We claim that the Talalev’s method is still valid in the braided q-Yangian. Namely, below
we exhibit elements of the Bethe subalgebra of this generalized Yangian which has the necessary
expansion property. This enables us to find a Bethe subalgebra in the enveloping algebra U(Gtrig)
of the Lie algebra Gtrig, which arises (similarly to the rational case) from linear Poisson structure
corresponding to this braided q-Yangian (see [GS1]). Besides, an analog of the map (6.4) can
be also found and used for constructing a Bethe subalgebra in the algebra U(g).

As claimed in [GS1, GSS], the quantum elementary symmetric polynomials ek(u) defined by
(5.7) commute with each other in the braided Yangians Y(R). Also, we consider the following
elements

êk(u) = TrR(1...m)

(
P(m)
− L1(u)L2(q

−2u) . . . Lk(q−2(k−1)u)
)
,

which differ from ek(u) by a modification of the skew-symmetrizers and the positions where the
R-traces are applied. According to Proposition 1 any element êk(u) differs from that ek(u) by
a non-trivial (for a generic q) numerical factor. Consequently, the elements êk(u) also commute
with each other.

By using the relation

q−2∂uf(u) = f(q−2u)q−2∂u , where ∂u = u
d

du
,
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we can present the elements êk(q−2u) as follows

êk(q−2u) = TrR(1...m)

(
P(m)
− (q−2∂uL1(u))(q−2∂uL2(u)) . . . (q−2∂uLk(u))

)
q2k∂u . (6.5)

Now, change the basis of the braided q-Yangian in a way similar to (3.2):

L(u) = (q − q−1)L̃(u) + I. (6.6)

Also, we put q2 = exp(h) and expand the elements ê(q−2u), expressed via the matrix L̃, in h.
Since the factors entering formula (6.5) expand as

q−2∂uLp(u) = (1− h∂u + o(h))(I + hL̃p(u) + o(h)) = I + h(L̃p(u)− I ∂u) + o(h),

we get the following expansion of the elements êk(q−2u)

êk(e−hu) = TrR(1...m)

(
P(m)
− (I +h(L̃1(u)− I ∂u) + o(h))...(I +h(L̃k(u)− I ∂u) + o(h))

)
(1 + o(1)).

Also, note that L̃p(u) = L̃p(u) + o(1) for all p.
Following [T], consider the elements

τk(u) =
k∑

p=0

(−1)k−p
k!

p!(k − p)!
êp(u),

commuting with each other in the braided q-Yangian.
We state that the expansion of the element τk(e−hu) begins with a term proportional to hk.

Thus, the elements h−kτk(e−hu) expand as follows

h−kτk(e−hu) = QHk(u) + o(h).

This entails that the elements QHk(u), k = 0, 1...,m commute with each other in the algebra
which is the limit of the braided q-Yangian as h → 0. Let us compute the defining relations of
the limit algebra. Being expressed via the matrix L̃ the defining system of the braided q-Yangian
is

(R− (q − q−1)u
u− v

I)L̃(u)1RL̃(v)1 − L̃(v)1RL̃(v)1(R−
(q − q−1)u
u− v

I) = −[R,
uL̃1(u)− vL̃1(v)

u− v
].

Consequently, the defining relations of the limit algebra are

[L̃1(u), L̃2(v)] = [P,
uL̃1(u)− vL̃1(v)

u− v
] = [

P

u− v
, uL̃1(u) + vL̃2(v)]. (6.7)

We denote Gtrig the Lie algebra with the bracket, defined by the right hand side of this
formula. Thus, in the basis L̃(u) the braided q-Yangian turns into the enveloping algebra
U(Gtrig) of this Lie algebra as q → 1 (or h→ 0).

Thus, similarly to [T] we have the following.

Proposition 12 The elements

QHk(u) = Tr(1...m)P
(m)
− (L̃1(u)− I∂u)(L̃2(u)− I∂u)...(L̃k(u)− I∂u)1, 1 ≥ k ≥ m

commute with each other in the algebra U(Gtrig).

Observe that here the trace and skew-symmetrizer are classical.
The commutative subalgebra generated by the elements QHk(u) in the algebra U(Gtrig) is

called the Bethe subalgebra.
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Remark 13 Note that similarly to (3.2) the map (6.6) converts a quadratic algebra in a quadra-
tic-linear one. However, the defining relations of the limit algebra do not depend on the concrete
form of the Hecke symmetry R.

Now, describe an analog of the map (6.4).

Proposition 14 The map

L̃(u) 7→
K∑
k=1

Mkuk
u− uk

,

where the family (M1, ...,MK) generates the Lie algebra g = gl(m)⊕K (in the same sense as in
(6.4)), defines a Lie algebra morphism Gtrig → g and consequently, a morphism of the enveloping
algebras of these Lie algebras.

The corresponding version of an integrable model will be considered elsewhere.
Let us point out two main differences of our result from that of [T]. First, our ∂u is the

”multiplicative derivative”: u d
du . Second, the Lie algebra Gtrig cannot be presented under

the form (6.1). The Poisson structure, corresponding to this Poisson bracket, is exhibited in
[GS2]. Also, a comparative analysis of the Poisson structures related to different types of the
deformation Yangians is presented there. Emphasize that the Poisson structures corresponding
to the braided Yangians do not also depend of the concrete form of the Hecke symmetry as well.
Up to a factor, it equals the right hand side of formula (6.7).

Completing the paper, emphasize once more that the Talalaev’s method is still valid since
we are dealing with the braided version of the Yangians.
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