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1. Introduction and definitions

Nearly forty years ago, a class of combinatorial formulas for random variables were recast by Rota as identities in
the theory of Baxter maps [3]. The key result was the solution of the word problem, for associative commutative
algebras endowed with such maps [28, 29]; see also [6]. This showed the equivalence of the combinatorics of
fluctuations with that of classical symmetric functions. Since then, operators of the Baxter type kept showing
up in all sorts of applications, and lately in the Connes–Kreimer Hopf algebraic approach to renormalization [8,
12, 15]. However, in many instances the algebra in question is not commutative. We revisit and solve the word
problem, and find the corresponding identities, in the general case. Roughly speaking, we are led to replace
symmetric functions of commuting variables by quasi-symmetric functions of non-commuting ones. Sequences of
‘noncommutative Spitzer identities’ ensue; they are related with Lam’s approach [20, 21] to the Dyson and Magnus
expansions for ordinary differential equations. We arrive at those formulae by use of the Dynkin idempotent of
free Lie algebra theory.

Definition 1.1. Let K be a field of characteristic zero. Let A be a K-algebra, not necessarily associative nor
commutative nor unital. An operator R ∈ End(A) satisfying the relation

RaRb = R(Ra b+ aRb) + θR(ab), for all a, b ∈ A, (1)

is said Rota–Baxter of weight θ ∈ K. The pair (A,R) is a weight θ Rota–Baxter algebra (RBA).

The Rota–Baxter identity (1) prompts the definition of a new product a ∗R b := Ra b+ aRb+ θab, a, b ∈ A.

Proposition 1.1. The linear space underlying A equipped with the product ∗R is again a RBA of the same weight
with the same Rota–Baxter map. We denote it by (AR, R). If A is associative, so is AR.

We call ∗R the Rota–Baxter double product. Clearly R becomes an algebra map from AR to A. Note that
R̃ := −θidA −R is Rota–Baxter as well, and ∗R̃ = −∗R. One may think of Rota–Baxter operators as generalized
integrals. Indeed, relation (1) for the weight θ = 0 corresponds to the integration-by-parts identity for the
Riemann integral; the reader will have no difficulty in checking duality of (1) with the ‘skewderivation’ rule

δ(ab) = δa b+ aδb+ θδaδb.

For instance, the finite difference operator of step −θ, given by δf(x) := θ−1(f(x−θ)−f(x)), is a skewderivation.
The summation operator Zf(x) :=

∑

n≥1 θf(x + θn) is Rota–Baxter of weight θ, and we find δZ = id = Zδ on

suitable classes of functions. Scaling R → θ−1R reduces the study of RBAs of nonvanishing weight to the case
θ = 1. For notational simplicity we proceed with this one, returning to general weight when convenient. We
assume henceforth we are dealing with associative RBAs; non-associative ones will arise later in an ancillary role.

2. Main result

We extend to our noncommutative setting Rota’s notion of standard RBA. Let X = (x1, . . . , xn, . . . ) be a
countably infinite, ordered set of variables and T (X) the tensor algebra over X . The elements of X are called
noncommutative polynomials (over X). Consider the pair (A, ρ), where A is the algebra of countable sequences
Υ ≡ (y1, . . . , yn, . . . ) of elements yi ∈ T (X) with pointwise addition and product, and ρ given by

ρΥ = (0, y1, y1 + y2, y1 + y2 + y3, . . . ).
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By abuse of notation we regard X itself as an element of A. The component yp of Υ is denoted Υp.

Lemma 2.1. The algebra A together with ρ ∈ End(A) defines a weight θ = 1 Rota–Baxter algebra structure.

This is a straightforward verification. We remark that ρ is left-invertible.

Theorem 2.1. The Rota–Baxter subalgebra (R, ρ) of A generated by X is free on one generator in the category
of K-RBAs.

In detail, our assertions are the following.

• X ∈ R.
• The product in R is associative.
• ρ is a Rota–Baxter operator.
• Let (A,R) be any associative RBA and a ∈ A. There is a unique algebra map h : R → A with h(X) = a

and such that R ◦ h = h ◦ ρ.

The pair (R, ρ) is what we call the standard RBA. The point of course is that the theorem allows us to prove
the validity for any RBA A of an identity involving one element of A and R, by proving it for X in (R, ρ).

Only the last assertion above asks for proof. We sketch the main argument, following Rota and Smith [29] insofar
as possible; a full-blooded proof will appear in [17]. The adaptation to the noncommutative setting requires some
care. The lexicographical ordering <L for noncommutative monomials over X is useful; for any noncommutative
polynomial P we write SupP for the highest monomial in P for <L and extend the lexicographical ordering of
noncommutative monomials to a partial ordering on T (X). Namely, we write P <L P ′ whenever SupP <L SupP ′.
Note that, for P, P ′ homogeneous noncommutative polynomials and z, t in T (X), we have P <L P

′ ⇒ Pz <L P ′z
and z <L t ⇒ Pz <L Pt. Henceforth we just employ the generic R for the Rota–Baxter map on the standard
RBA; this should not lead to confusion.

Proof. (Main steps.) Let us call End-algebra any associative algebra W provided with a distinguished endomor-
phism TW , so that an End-algebra morphism f from W to W ′ satisfies f ◦ TW = TW ′ ◦ f . Write L for the free
End-algebra on one generator Z. The elements of L are linear combinations of all symbols obtained from Z by
iterative applications of the endomorphism T and of the associative product; they look like ZT 2(TZ T 3Z), and
so on. We call these symbols L-monomials. A RBA A is an End-algebra together with relation (1) on TA ≡ R.
Denote by F the free RBA on one generator Y . Between the three algebras L, F , and R there are the following
maps: unique End-algebra maps F,U from L to F , respectively R, sending Z to Y , respectively X ; and a unique
onto Rota–Baxter map h′ sending Y to X . Moreover U = h′ ◦ F .

We have to show the existence of an inverse for h′ in the RBA category. Clearly kerF ⊆ kerU . We need only
prove that kerU ⊆ kerF .

Any l ∈ L can be written uniquely as a linear combination of L-monomials. We write Max l for the maximal
number of T ’s occurring in the monomials, so that, say, Max(ZT 2(ZTZ) + Z3T 2Z Z) = 3. We call α, a L-
monomial, elementary iff it can be written as either Z i, i ≥ 0 or as a product Zi1Tb1 Z

i2 · · ·Tbk Z
ik+1 , where

the bis are elementary, and i2, . . . , ik are strictly positive integers, while i1 and ik+1 may be equal to zero; this
definition makes sense by induction on Maxα. It turns out that every element l of L can be written as the sum
of a linear combination of elementary monomials with an element rl such that F (rl) = 0. This is due to the fact
that, up to the addition of suitable elements in kerF , products like Tc Td can be iteratively cancelled from the
expression of l using the Rota–Baxter relation (1).

We claim that for p large enough and l 6= l′, with l, l′ elementary monomials, we have SupU(l)p 6= SupU(l′)p,
from which the required kerU ⊆ kerF follows. Our assertion can be verified by induction on Max l, using that U
is an End-algebra map. �

Corollary 2.1. The images of the elementary monomials of L in R form a linear basis of the free RBA on one
generator.

3. Two pertinent Hopf algebras

Inductively define in a general RBA (A,R),

Ra[n+1] = R
(

Ra[n]a
)

and Ra{n+1} = R
(

aRa{n}
)

.

with the convention that Ra[1] = Ra = Ra{1} and Ra[0] = 1 = Ra{0}, with the unit adjoined if need be. These
iterated compositions with R appear in the context of Spitzer-like formulas; of course there is no difference between

Ra[n] and Ra{n} in the commutative context.
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Coming back to the standard RBA (R, R), notice that:

R(y1, y2, y3, . . . )
[2]

= R
(

R(y1, y2, y3, . . . ) (y1, y2, y3, . . . )
)

= (0, 0, y1y2, y1y2 + y1y3 + y2y3, . . . ).

This begins to give the game away. In general, the (n + 1)-th entry of R(y1, y2, y3, . . . )
[k]

is the elementary
‘symmetric’ function of degree k, restricted to the first n variables, the (n + 2)-th entry is given by the same,
restricted to n+ 1 variables, and so on. The quotes on ‘symmetric’ remind us here that the yi do not commute.
The pertinent notion here is Hivert’s quasi-symmetric functions over a set of noncommuting variables [4, 22].
Denote as usual by [n] the set of integers between 1 and n. Let f be a surjective map from [n] to [k]. Then the
quasi-symmetric function Mf over X associated to f is by definition Mf X =

∑

φ xφ−1◦f(1) · · ·xφ−1◦f(n), where φ

runs over the set of increasing bijections between subsets of N of cardinality k and [k]. Let us represent f as the
sequence of its values, f = f(1), . . . , f(n), in the notation Mf . We also denote by M l

f the image of Mf under the
map sending xi to 0 for i > l and to itself otherwise. For example,

M1,3,3,2X = x1x3x3x2 + x1x4x4x2 + x1x4x4x3 + x2x4x4x3 + . . . and M3
1,3,3,2X = x1x3x3x2.

The linear span NCQSym(X) of the Mf is a subalgebra of the completion of the algebra of noncommutative
polynomials overX which is naturally related to the Coxeter complex of type An and the corresponding Solomon–
Tits and twisted descent algebras [25]. Finally, write [n] for the identity map on [n] and ωn for the endofunction
of [n] reversing the ordering, so that Mωn

X = Mn,n−1,...,1X . Then we have

RX [n] = (0,M1
[n]X,M

2
[n]X, . . . ,M

l
[n]X, . . . ), n ≥ 1,

where M l
[n]X is at the (l + 1)-th position in the sequence. Similarly

RX{n} = (0,M1
ωn
X,M2

ωn
X, . . . ,M l

ωn
X, . . . ), n ≥ 1.

Proposition 3.1. The elements RX [n] generate freely a subalgebra of A (respectively generate freely a subalgebra
of the double RBA AR).

The proofs are omitted for the sake of brevity; the first uses the observation that, for l big enough, we
find Sup(M l

[n1]
X · · ·M l

[nk]X) > Sup(M l
[m1]

X · · ·M l
[mj ]

X) with n1 + · · · + nk = m1 + · · · + mj iff the sequence

(n1, . . . , nk) is smaller than the sequence (m1, . . . ,mj) in the lexicographical ordering. The second is a bit more
involved, but the reader should have no problems to provide the details.

The algebra NCQSym of quasi-symmetric functions in noncommuting variables is naturally endowed with
a Hopf algebra structure [4]. On the elementary quasi-symmetric functions M[n], the coproduct ∆ acts as on a

sequence of divided powers: ∆
(

M[n]

)

=
∑n

i=0 M[i]⊗M[n−i]. Thus the M[n] generate a free subalgebra of NCQSym
naturally isomorphic as a Hopf algebra to the classical descent algebra, which is a convolution subalgebra of the
endomorphism algebra of T (X) [27] —or equivalently, to the algebra of noncommutative symmetric functions

(NCSF) described in [18]. The same construction goes over to the free algebras over the RX [n] for the pointwise
product as well as the Rota–Baxter double product ∗R. The first one is naturally provided with a cocommutative

Hopf algebra structure for which the RX [n] form a sequence of divided powers, that is:

∆
(

RX [n]
)

=
∑

0≤m≤n

RX [m] ⊗RX [n−m];

this is just the structure inherited from the Hopf algebra structure on NCQSym. We call this algebra the free
noncommutative Spitzer (Hopf) algebra on one generator, or the Spitzer algebra for short, and write S for it.
When dealing with the ∗R product, the right subalgebra to consider, as it will emerge soon, is the algebra freely

generated by the RX [n]X . We also make it a Hopf algebra by requiring the free generators to form a sequence of
divided powers, that is

∆∗

(

RX [n]X
)

= 1 ⊗RX [n]X +
∑

0≤m≤n−1

RX [n−m−1]X ⊗RX [m]X +RX [n]X ⊗ 1.

Thus it is convenient to set RX [−1]X = 1. We call this Hopf algebra the double Spitzer algebra, and write C for
it. We shall need the antipode S for both Hopf algebras. For obtaining it, recourse to Atkinson’s theorem [2]
seems the simplest method. Recall that we assume θ = 1.

Theorem 3.1. (Atkinson) Let (A,R) be an associative unital Rota–Baxter algebra. Fix a ∈ A and let x and y

be defined by x =
∑

n∈N
tnRa[n] and y =

∑

n∈N
tnR̃a

{n}
, that is, as the solutions of the equations

x = 1 + tR(x a) and y = 1 + tR̃(a y),
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in A[[t]]. We have the following factorization

x
(

1 + at
)

y = 1, so that 1 + at = x−1y−1.

Corollary 3.1. Let (A,R) be an associative unital Rota–Baxter algebra. Fix a ∈ A and assume x and y to solve
the equations in the foregoing theorem. The inverses x−1 and y−1 solve the equations

x−1 = 1 − tR(a y) and y−1 = 1 − tR̃(x a),

in A[[t]].

One checks that xx−1 = x−1x = 1 by using the definitions and the Rota–Baxter property. Similarly for y−1.

Corollary 3.2. The action of the antipode S on the Spitzer algebra S, is given by

S
(

RX [n]
)

= −R
(

X R̃X
{n−1}

)

.

Indeed, the Spitzer bialgebra is naturally graded. The series
∑

n∈N
RX [n] is a group-like element in S. The

inverse series computes the action of the antipode on the terms of the series. The corollary follows, since
(

∑

n∈N

RX [n]
)−1

= 1 −R

(

X
(

∑

n∈N

R̃X
{n}

)

)

.

Corollary 3.3. The action of the antipode S on the double Spitzer algebra C is given by

S
(

RX [n]X
)

= −
(

X R̃X
{n}

)

. (2)

For the proof, one can observe that the operator R induces an isomorphism of free graded algebras between C
and S (which is the identity on scalars). That is, for any sequence of integers i1, . . . , ik, we have:

R
(

RX [i1]X ∗R · · · ∗R RX
[ik ]X

)

= RX [i1+1] · · ·RX [ik+1].

Hence (2).

Corollary 3.4. The free ∗R subalgebras of A generated by the RX [n]X and the XR̃X
{n}

are canonically isomor-

phic. The antipode exchanges the two families of generators. In particular, the XR̃X
{n}

form also a sequence of
divided powers in the double Spitzer algebra.

4. Enter the Dynkin map

The classical Dynkin operator is defined on the tensor algebra T (X) :=
⊕

n≥0 Tn(X) overX by the left-to-right
iteration of the associated Lie bracket,

D(x1 . . . xn) = [· · · [[x1, x2], x3] · · ·, xn],

where [x, y] := xy − yx, with D|T0(X) = 0 and D|T1(X) = idX . The Dynkin operator can be shown to be a

quasi-idempotent —that is, its action on an homogeneous element of degree n satisfies D2 = nD. In fact, we
have D : T (X) → Lie(X) since T (X) is canonically the enveloping algebra of the free Lie algebra Lie(X) over X ,
and the associated projector D/n sends Tn(X) to the component of degree n of Lie(X), see [27]. Now, D can
be rewritten in purely Hopf algebraic terms as S ? N , where N is the grading operator and ? the convolution
product in End(T (X)). This definition generalizes to any graded connected cocommutative or commutative Hopf
algebra [26]. One actually deals there with a more general phenomenon, namely the possibility to define an action
of the classical descent algebra on any graded connected cocommutative or commutative Hopf algebra [24].

Theorem 4.1. Let H be an arbitrary graded connected cocommutative Hopf algebra over a field of characteristic
zero. The Dynkin operator D ≡ S ? N induces a bijection between the group G(H) of group-like elements of H
and the Lie algebra Prim(H) of primitive elements in H. The inverse morphism from Prim(H) to G(H) is given
by

h =
∑

n∈N

hn 7−→ Γ(h) :=
∑

n∈N

∑

i1+···+ik=n,

i1,...,ik>0

hi1 · · ·hik

i1(i1 + i2) · · · (i1 + · · · + ik)
. (3)

This corresponds to Theorem 4.1 in our earlier work [16], establishing the same formula for characters and
infinitesimal characters of graded connected commutative Hopf algebras. The proof follows from the one in that
reference by dualizing the notions and identities, and thus can be omitted. In the particular case where H is a
free associative algebra over a set of graded generators y1, . . . , yn, . . . and H is provided with the structure of a
cocommutative Hopf algebra by requiring the yi to be a sequence of divided powers, the images of the generators yi
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under the action of D forms a sequence of primitive elements of H that generate freely H as an associative algebra.
This stems directly from our theorem. Two examples of such a situation are well known. In the classical descent
algebra the abstract Dynkin operator sends the identity of T (X) to the classical Dynkin operator. This was put
to use in [27]. Second, if H is the NCSF Hopf algebra, then H is generated as a free associative algebra by the
complete homogeneous NCSF, which form a sequence of divided powers, the corresponding primitive elements
under the action of the Dynkin operator being known as the power sums NCSF of the first kind [18].

The same machinery can be used to rederive the already known formulas for commutative RBAs, and moreover
prove new formulas in the noncommutative framework. Let us compute the action ofD on the generators of C; that
will give the action on the generators of S, too. Denote for this purpose by π∗ the product on C. Using N(1) = 0

and N(X) = 1, there follows D(RX [0]X) = (S?N)(X) = π∗◦(S⊗N)◦∆∗(X) = π∗ ◦(S⊗N)(X⊗1+1⊗X) = X .
We then find:

D
(

RX [n−1]X
)

= (S ? N)
(

RX [n−1]X
)

= π∗ ◦ (S ⊗N)
(

∑

0≤p≤n

RX [p−1]X ⊗RX [n−p−1]X
)

=
∑

0≤p≤n

S
(

RX [p−1]X
)

∗R N
(

RX [n−p−1]X
)

=
∑

0≤p≤n−1

(

S
(

RX [p−1]X
)

∗R N
(

RX [n−p−1]
)

X + S
(

RX [p−1]X
)

∗R RX [n−p−1]X
)

=
∑

0≤p≤n−1

S
(

RX [p−1]X
)

∗R N
(

RX [n−p−1]
)

X − S
(

RX [n−1]X
)

=
∑

0≤p≤n−1

R
(

S
(

RX [p−1]X
)

∗R N
(

RX [n−p−2]X
)

)

X

−
∑

1≤p≤n−1

S
(

RX [p−1]X
)

R̃
(

R
(

N(RX [n−p−2]X)
)

X
)

− S
(

RX [n−1]X
)

.

In the fourth line we used vanishing of (S ? id)(RX [n−1]X), then the simple identity a ∗R (Rb c) = R(a ∗R b)c −

aR̃(Rb c); the rest should be clear. After further simple manipulations, using (2) it comes

D
(

RX [n−1]X
)

= R
(

D(RX [n−2]X)
)

X +XR̃
(

D(RX [n−2]X)
)

. (4)

The calculation suggests the introduction of a new product.

Definition 4.1. Let (A,R) be an associative Rota–Baxter algebra. Consider the binary operation

a •R b := Ra b− bRa− ba = [Ra, b] − ba = Ra b+ bR̃a, (5)

and the elements c(1)(a1) := a1 and c(n)(a1, . . . , an) :=
(

· · ·
(

(a1 •R a2) •R a3

)

· · · •R an−1

)

•R an for n > 1. We

further define c(n)(a) as the n-times iterated product c(n)(a, . . . , a) =
(

· · ·
(

(a •R a) • a
)

· · · •R a
)

•R a. As well

C(n)(a) := R
(

c(n)(a)
)

.

All these parenthesis are unavoidable, as the composition •R is not associative. Nevertheless, it is (left) Vinberg
or pre-Lie. Recall that a left pre-Lie algebra V is a vector space, together with a bilinear product • : V ⊗V → V ,
satisfying the left pre-Lie relation (a • b) • c− a • (b • c) = (b • a) • c− b • (a • c), for a, b, c ∈ V . This is enough for
the commutator [a, b]• := a• b− b•a to satisfy the Jacobi identity. Hence the algebra of commutators of elements
of V is a Lie algebra, justifying the nomenclature. The reader verifies that a •R b := [a,Rb] − ba defines a right
pre-Lie product. See [7] for more details on pre-Lie structures.

Lemma 4.1. Let (A,R) be an associative Rota–Baxter algebra. The binary composition (5) defines a left pre-Lie
structure on A, which we call the left Rota–Baxter pre-Lie product.

The lemma follows by direct inspection. In conclusion, we have proved:

Theorem 4.2. The action of the Dynkin operator D on the generators RX [n] of the Spitzer algebra (respectively

on the generators RX [n]X of the double Spitzer algebra) is given by

D(RX [n]) = C(n)(X), respectively by D(RX [n]X) = c(n)(X).

Together with Theorem 4.1 this immediately implies
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Theorem 4.3. (First fundamental identity for noncommutative RBAs) We have the following identity in the
Spitzer algebra S

RX [n] =
∑

i1+···+ik=n,

i1,...,ik>0

C(i1)(X) · · ·C(ik)(X)

i1(i1 + i2) · · · (i1 + · · · + ik)
. (6)

Proposition 4.1. (Second fundamental identity for noncommutative RBAs) We have the following identity in
the double Spitzer algebra C

RX [n−1]X =
∑

i1+···+ik=n,

i1,...,ik>0

c(i1)(X) ∗R · · · ∗R c(ik)(X)

i1(i1 + i2) · · · (i1 + · · · + ik)
.

The Theorem and Proposition follow readily from our Theorem 4.1 by applying the inverse Dynkin map (3).

5. Generalized Bohnenblust–Spitzer identities

If (A,R) is a commutative Rota–Baxter algebra of weight θ with Rota–Baxter operator R, then on A[[t]] the
following identity by Spitzer holds [3, 31]:

∑

m∈N

tmRa[m] = exp
(

θ−1R log(1 + θat)
)

= exp
(

−
∑

m>0

(−tm/m) θm−1Ram
)

. (7)

In the framework of the commutative standard RBA this becomes Waring’s formula relating elementary and
power symmetric functions [30, Chapter 4]. From (7) for θ = 1 it follows

n!Ra[n] =
∑

σ

(−1)n−k(σ)Ra|τ1|Ra|τ2| · · ·Ra|τk(σ)|.

Here the sum is over all permutations σ of [n] and σ = τ1τ2 · · · τk(σ) is the decomposition of σ into disjoint
cycles [29]. We denote by |τi| the number of elements in τi. By polarization one obtains the classical formula [29]:

∑

σ

R
(

R
(

· · · (Raσ(1))aσ(2) · · ·
)

aσ(n)

)

=
∑

π∈Pn

(−1)n−|π|
∏

πi∈π

(mi − 1)! R
(

∏

j∈πi

aj

)

. (8)

Here π now runs through all unordered set partitions Pn of [n]; by |π| we denote the number of blocks in π; and
mi := |πi| is the size of the particular block πi. Those are often called Bohnenblust–Spitzer formulas. Incidentally,
they are very useful in proving identities for articulated graphs in renormalization theory [13].

The generalization to noncommutative Bohnenblust–Spitzer formulas springs here from Theorem 4.3 and Propo-
sition 4.1.

Theorem 5.1. Let (A,R) be an associative Rota–Baxter algebra. For ai ∈ A, i = 1, . . . , n, we have
∑

σ

R
(

R
(

· · · (Raσ(1))aσ(2) · · ·
)

aσ(n)

)

=
∑

σ

R
(

aσ(1) �1 aσ(2) �2 · · · �n aσ(n)

)

, where (9)

aσ(i) �i aσ(i+1) =

{

aσ(i) ∗R aσ(i+1), max (σ(j)|j ≤ i) < σ(i+ 1)

aσ(i) •R aσ(i+1), otherwise;

furthermore consecutive •R products should be performed from left to right, and always before the ∗R product.

The proof of this theorem involves some subtleties to be expounded elsewhere [17] in more detail. The reader
might wish to ponder the first few cases. One readily finds

R
(

Ra1 a2

)

+R
(

Ra2 a1

)

= Ra1Ra2 +R(a2 •R a1) = R
(

a1 ∗R a2 + a2 •R a1

)

= R
(

a2 ∗R a1 + a1 •R a2

)

.

In quantum field theory, with R the Riemann integral, this formula gives the relation at second-order between
the Dyson and Heisenberg representations for the scattering matrix. To check by direct calculation that

∑

σ∈S3

R
(

R
(

Raσ(1) aσ(2)

)

aσ(3)

)

= R(a1 ∗R a2 ∗R a3) +R
(

a1 ∗R (a3 •R a2)
)

+R
(

a2 ∗R (a3 •R a1)
)

+R
(

(a2 •R a1) ∗R a3

)

+R
(

(a3 •R a2) •R a1

)

+R
(

(a3 •R a1) •R a2

)

= Ra1Ra2Ra3 +Ra1R(a3 •R a2) +Ra2R(a3 •R a1)

+R(a2 •R a1)Ra3 +R
(

(a3 •R a2) •R a1

)

+R
(

(a3 •R a1) •R a2

)

is already somewhat tedious. We give a practical rule for the decomposition in (9). Given any permutation σ
of [n], place a vertical bar to the left of σi+1 iff it is bigger than all numbers to its left. For instance, for n = 3 we
obtain in the one-line notation the ‘cut permutations’ (1|2|3), (21|3), (312), (1|32), (321), (2|31). The cuts indicate
where the ∗R products, if any, should be located. Alternative rules could be devised, as (9) is symmetrical in its
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arguments —a non-obvious fact on the right hand side, demanding the pre-Lie properties for its verification. For
the decomposition of

∑

σ R
(

aσ(1)R(aσ(2) · · ·Raσ(n)) · · ·
)

a rule is: place a vertical bar to the right of σi iff σi is

smaller than all numbers to its right, and perform consecutive right pre-Lie products, •R, from right to left, and
always before the ∗R product. For n = 3 the ‘cut permutations’ are then (1|2|3), (21|3), (31|2), (1|32), (321),
(231); note the differences. In the commutative case a •R b reduces to −ab from any of the two previous forms,
and we recover the classical Bohnenblust–Spitzer identities.

6. Remarks and applications

1. Lemma 4.1 is related to more recondite properties of RBAs [9]. Let (D, ∗) be an associative algebra and
assume that it is represented on itself, from the left and from the right, with commuting actions. We write �
and ≺ for the left and right actions, respectively. Assume moreover that we have a ∗ b = a ≺ b+ a � b; then D is
by definition a dendriform dialgebra. In detail, the dendriform properties are

(x ≺ y) ≺ z = x ≺ (y ≺ z + y � z); (x � y) ≺ z = x � (y ≺ z); (x ≺ y + x � y) � z = x � (y � z). (10)

Conversely, the latter relations are enough to ensure associativity of (D, ∗). We refer to [19] for information on
dendriform dialgebras. Now, any dendriform dialgebra D gives rise to a pre-Lie algebra and, in two different ways,
to the same Lie algebra. The pre-Lie algebra structure is given by x • y := x � y − y ≺ x. As observed already
in [9], generalizing an observation made by Aguiar for the weight-zero case [1], the notion applies in particular to
weight θ 6= 0 RBAs, since the associative and pre-Lie products ∗R and •R, respectively, are composed from sums
and differences of the binary operations a ≺R b := −aR̃b and a �R b := Ra b, that satisfy equations (10) and
define therefore a dendriform dialgebra structure on any associative Rota–Baxter algebra. In the case of the Rota–
Baxter pre-Lie composition, we indeed see that [a, b]•R

= [Ra, b]+[a,Rb]+θ[a, b] = a∗R b−b∗Ra =: [a, b]∗R
. Since

free dendriform algebra is embedded in free RBA [10], most of our formulae can also be interpreted as universal
formulae for the former.

The proof of the following proposition is left as an exercise.

Proposition 6.1. Let (A,R) be an associative Rota–Baxter algebra. The left pre-Lie algebra (A, •R) with the left
Rota–Baxter pre-Lie product is a Rota–Baxter pre-Lie algebra of the same weight, with Rota–Baxter map R.

2. The formulae developed in this paper actually apply without restriction to any associative RBA, in particular
to the solution of differential equations —to reestablish general weight in the pre-Lie product formulas amounts
simply to replace in (5) the product ba by θba, thus the case θ = 0 is included in our considerations. We actually
drew inspiration for this paper from that subject: mainly from the path-breaking papers by Lam [20, 21] and
recent work by two of us [5]. In fact, Theorem 4.3 yields the most efficient way to organize the terms coming
from two standard methods to solve differential equations, the Dyson–Chen expansion and the Magnus series; the
advantage of writing the Magnus series in this way has been recently recognized by the practitioners [23]. Lam

did obtain our formulas for Ra{n} for the case θ = 0; this arose from the need to prove deep theorems with strong
physical roots on approximations to quantum chromodynamics. Part of the magic of the subject is how little
needs to change when θ 6= 0. In regard to the following remark, if we define the Magnus series coefficients Kn by

d/dt logx(t) =
∑∞

n>0 t
nKn, for x = x(t) =

∑

m∈N
tmRa[m]. Then the relation between the C(n) and the Kn is

precisely the one between power sums NCSF of the first and of the second kind [18].

3. It would be nice to be able to derive the new Bohnenblust–Spitzer identities at one stroke from an equation
like the commutative Spitzer formula (7). On the one hand, one of us participated in an attempt in this direction
a few years ago by [11], with the net result that in the noncommutative case

∑

m tmRa[m] is still a functional
of log(1 + at), through a non-linear recursion (for which existence and unicity were proven) called, for want
of a better name, the Baker–Campbell–Hausdorff recursion, e.g. see [14]. However, in practice work with this
functional was painful. On the other hand, there is a direct link between that recursion and the Magnus series.
Explicit expressions for the latter are known; and so in some sense the solution to the Baker–Campbell–Hausdorff
recursion has been staring at us for a while. Concretely, consider the generating series ψ(t) =

∑∞
n>0 t

−nC(n)(X).

From (4) it follows that the generating series x(t) :=
∑

m∈N
tmRX [m] solves the initial value problem

dx(t)/dt = x(t)ψ(t); x(0) = 1.

The exponential form for the solution of this equation amounts precisely to the aforementioned relation between
power sums NCSF of the first and of the second kind [18]. However, these formulas are rather clumsy. They will
be revisited elsewhere [17].

4. Last, but not least, we comment on an important application. Use of general Spitzer-like identities for
noncommutative Rota–Baxter algebras is bound to deepen the Connes–Kreimer algebraic understanding of re-
normalization in perturbative quantum field theory [8]. Bogoliubov’s counterterm recursion has been examined
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in the light of RBAs and Atkinson’s theorem [11, 12, 15]. The above presented treatment for the equations in
Theorem 3.1 applies, therefore pointing to a closed expression for the recursive process of renormalization. As
shown in [16], the Dynkin operator is a key ingredient for the mathematical understanding of the combinatorial
processes underlying the Bogoliubov recursion. One can envisage a complete solution of the latter with our kind
of Lie algebraic tools; this will be dealt with in forthcoming work [17].
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