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Abstract

This article is devoted to the investigation of the deformation (twist-
ing) of monoidal structures, such as the associativity constraint of the
monoidal category and the monotdal structure of monoidal fimctor, The
sets of twistings have a {non-abelian) cohomological nature. Using this
fact the maps from the sets of twistings to some cohiomology groups
(Hochschild cohomology of K-theory) are constructed. The examples of
monoidal categories of bimodules over some algebra, modules and comod-
ules over bialgebra are examined. We specially concentrate on the case of
free tensor category.
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1 introduction

According to Tannaka-Krein theory [4] a group-like object (group, Lie algebra
elc.) 1s In some sence equivalent to ils category of representation with natu-
ral tensor product operation plus forgetful functor to vector spaces. Accurately
speaking to extract the group (Lie algebra) from its representations category we
must regard some extra-structures (monoidal structures) on the category and
the functor (section 2).

Through this point of view the deformation (quantization) of the group (Lie
algebra) is the deformation of its representation category and forgetful functor.
In many cases {semisimple groups and Lie algebras) the deformation does not
change the category, tensor product on it and the forgetful functor. Se the de-
formation consists in a change of the monoidal structures of the category and
the funclor.

In the present paper we shall deal with only this kind of deformations.

It appears that this deformations are presented by a twistings of monoidal struc-
tures by the automorphisms of some monoidal functors (section 3).

The set of twistings can be identified with the non-abelian cohomology sels of
the cosimplicial complex naturally attached to the monoidal functor (section
4).

These non-abelian cohomologies can be abehanized by means of infinitesinal
methods (section 5) or algebraic K-theory (section 6).

The examples of monoidal categories of bimodules (section T), modules and co-
modules over bialgebra (section 8) and free tensor category (sections 9,10) are
examined.

The author is pleased to thank P.Deligne, A.Levin, A.Reznikov for useful dis-
cusstons and especially Yu.Bilu for calling his attention to the paper [23].

The author was partially supported by ISF grant (n M3E300) and grant of
RFFR. (n 93-01-1542). The author s very grateful to the Max-Planck-Institut
fiur Mathematik for stimulating atmosphere.

2 endomorphisms of functors

Fix a commutativering k. All categories and functors will be k-linear. It means
that all Hom-scts are k-modules and the functors induces k-linear maps between
Hom-sels.

For an associative k-algebra K we will denote by R — AMod the category of lefi
R-modules and by R — mnod the subcategory in R — Mod of finitely generated
modules. For example if & 1s a field then & — A od is the category of all vecior
spaces over & and k£ — mod is its subcategory of finite-dimensional spaces.
Another definion of k-huearity of the category A consits in assigning of the



which is associative respeciively tensor product in & — Mod. In this case &-
linearity of the functor F' between &-linear categories means that I preservs the
action of k — Mod.

Tt is easy to see that the second version of k-linearily implies the first. and in the
case of categories which have infinite (finite} products. The first version implies
the existence of the action of the category, which is non-canonically equivalent
to k —~ Mod (k — mod).

Here we shall use the second delinition of k-linearity.

Suppose that a faithful (injective on the morphisms) [16] &-linear functor F :
A =k — Mod have aleft (right) k-linear adjoint functor G : k& — Mod = A. It
means that morphisms of functors

f.‘!‘:idk_‘uod—)FG, ,B:G[‘y—+id,4,
are given and the compositions of endomorphisms

F F
F W FGF d F

a G(p
a—%crc®, ¢

arc identical (the definition of the right adjoint can be obtained from this by
replacing I by G).
The k-linearity of the functor ¢ involves that

GV)=E®V, Vek-Mo

for some object E from A. We will call this object. a generator (cogenerator in
the case when (7 1s a right adjoint to F'). The (co)generator F is called projective
(injective) if the morphism 4 («) of the corresponding adjunction is surjective
(injective).

Proposition 1 Let H : A — B be « right (left) exact functor between abelian
categories and E is a projective generator (injeclive cogencrator). Then the
homomorphism of algebras

]3?1.([(]‘{) — C[g,,du("(g))(H(EndA(E))),
which sends the endomorphism v lo ils specialization yg, is an isomorphism .

Proof:

Suppose that E is a projective generator (the proof in the case of injective
cogenerator can be oblained by the inversion of arrows).

For any object A from A consider the commutative diagram

H(A) 1By @ F(A)
"!Al ‘rsl
1(A) P4 By o F(A)



The surjectivity of H(#) implies that the homomorphism
End(H) = Endg(F)

is injective.
Couversely, consider the left exact sequence of functors

0 g P Ey® F—— H(E)® FK

where A is a kernel of 8. The clement » of the centralizer Crpawii(z)) (H{Enda(£)))
defines an endomorphisms of two right functors of this sequence and hence an
endomorphisim of H. IL is obvious that the specialization of this endomorphism
coincides with ».

3 monoidal categories

The (k-linear) tensor product G B H of two (h-lincar) categories G and #H is a
category, whose objects are the pairs of objects of G and H

(X,Y) NeEGYeEH
and morphisins are tensor product of morphisins from G and H
Homgru (X1, Y1), (X2, ¥2)) = Homg (X, X2) @ Homy (Y, o)
The tensor product of functors F : Gy = Hy and G : G2 = Ha is a functor

FRG: G RGy — Hi BHo, which sends the pair (X,Y) to (F(X),G(Y)). The

monolidal category is a category G with a bifunctor
®:GRG—¢ (X, Y)—»X®Y

which called fensor (or monoidal) product. This functor must be equiped with
a functorial collection of isomorphisms (so-called associativily constraint)

exvz XY RZ)=» (X®Y)®Z forany X,Y,Z &G

which satisfies to the lollowing pentagon aziom:
the diagram

XV, Z@W XQ@Y,Z,w

Yeo(¥e(Zze W)T—> XoY)Ie(z® WT—» (XeY)el)eoW
-')«@‘.’J\'.z.wl ]?x,r,z@lw

X®(Y®2)oWw) Frvesy

(Yo(Yeoz)ew



is commutative for any objects X, Y, Z, W € G

Consider two tensor products of objects Xy, .. \,, from G with an arbitrary ar-
rangement. of the brackets. The coherence t.heorem [16] states that the pentagou
axiom implies the existence of a unique 1somorphism between them, which 1s
the composition of the associativity constraints.

An object | together with the functorial isomorphisms

A IARI 2N A 1IN X
in a monoidal category G is called a unit if Ay = py and the diagrams

A .
1@(X®Y) el X®Y

(1exX)®Y

\®(l®} px@Iy ~XQY

(N@l)eY

PX®Y

Y®(Yel) > XY

NA

(XeY)®l

are commutative for any X, Y € G. It is easy to see that the unit object is
unique up to isonmorphism.

A monoidal functor between monoidal categories G and H 1s a functor F :
G — H | which is equipped with the functorial collection of isomorphisms {the
so-called monoidal structure)

Ty s FY@Y) = F(X)@ F(Y)  forany XY €0

for which the following diagram is commutative {or any objects X, Y, Z € G

PN @ (Y ©2)) 22 F(X) @ FY © 2) S (X) @ (F(Y) ® F(2))
F(vx:v.z)l 'J’F(x).m').mz)l
F((X®Y)® %) 22 p(x @ v) @ F(2) =22(F(X) @ F(Y)) & F(2)

o



A morphism f : FF — (' of monoidal functors 7 and ( is called monoidal if the
diagram

F(X®Y) -5 F(X) @ F(Y)
f):@rl fx®va
GXN®Y) 22 G(x) @ G(Y)

1s commutative for any X, Y € G.

Denote by Auf®(F) the group of monoidal automorphisms of the monoidal func-
tor I,

Monoidal categories G and H are equivalent (as monoidal categories) if there are
mutually inverse monoidal functors F : ¢ = H and G : H — G with monoidal
isomorphisms F oG =~ idy and G o I ~ idg. It is easy lo see thal monoidal
categories are equivalent if and only if there is a monoidal functor between them
which is an equivalence of categories.

Let us denote by Aut® (G} the group of monoidal autoequivalences of the monoidal
category G and by Aut(G,®) the group of autoequivalences of the category G
which preserves the tensor product ®.

The quotient ¢ o ™! of two associativity constraints ¥ and ¢ of the functor @
is an isomorphism of the functor @ o (® B id) = id®?. Thus we have a map

Q: MS(G) x MS(G) — Aut(id®®)

from the direct square of the sel. M S(G) = MS{G, ®) of all monoidal structures
of the category § with the tensor product @ (that is the set of all associaiivity
constraints of the tensor product ®) to the group Aut(id®?) of automorphisms
of the functor id®*.

Analogously, ithe goutient doc™! of two monoidal structures ¢ and d of functor
£ is an isomorphism of the functor ® o (F® F) = F®2 Thus there is a map

Q: MS(F) x MS(F) — Aut(F®?%)

from the direct, square of the set A S(F) of all monidal structures of the funclor
F to the group Aut(F9?).
It immediately follows lrom the definitions that these maps satisfy the conditions

Qz,z)=1 and Qz, Uy, ) = @z, 2)

The map
Qle,7) : MS(G) — Aut(id®?)

1s injective for any associativity constraint ¢ of the tensor product @ of the cat-
egory G. The image of this map consists of those isomorphisms o € Awt{id®?)



for which the diagram

YRV ®(ZaW) 25 (XY@ (ZeW) 2S5 (XeY)eZ) oW

’@&00111 Twou@l

Xe((yez)ow) (Xo(Yez)eWw

is commutative for any objects X, Y, Z, W € G.
FFor such o we call the monoidal category G{a) = (G, ) (o) = (G, rv) a twisted
Jorm (Lwisting by o) of the monoidal category (G, ©).

Similarly, the map

Qle,?) : MS(I') — Aut(F®?)
is jective for any monoidal structure ¢ of the functor /' and its image consists
of those isomorphisms o € Aut(F®?) for which the diagram

FIX® (Y ® 7)) =% F(X)® F(Y ® Z) 2L F(X) @ (F(Y) ® F(Z))

| |
FXQOY)®2) =5 F(X@Y)® F(Z) —cm—>®’(F’(.\') @ F(Y) e F(Z)
is commutative for any ohjects X, V¥, 7 € G.
The pair (F, ac) = (F,c}{a) = F(a) will be called a twisted form of the monoidal
functor (£ c).
The notion of the isomorphisim of monoidal functors defines an equivalence
relation ” ~ 7 on the set M S(F)

c~de (Fc)~ (F,d) c,d € MS(F).

Denote by Ms(F7) the factor of MS{F) by the relation ~.

The inclusion Q{c, ?) induces an equivalence relation on its image (and even on
the whole group Aut(#®?)):

o ~ (il there is an automorphism [ of the functor F such that the diagram

FIX®Y)—5 F(X)® F(Y)

Il !@fl
e . cof3 . .
FIX®Y)—= F(X)® F(Y)
is commutative for any objects X, Y € . It is ¢asy 1o see that this relation on
the group Aut(F®?) comes from the action of the group Aut(F).

In the case of the identity lunctor the set AMs(idg) has a group structure and
coincides with the kernel of the natural map

Aut®(G) = Aut(G,®).

|



is commutative for any objects X, Y € G. It is easy to see that this relation on
the group Aut(F7®?) comes from the action of the group Aul(F).

In the case of the identity functor the set A s(idg) has a group structure and
coincides with the kernel of the natural map

Aut®(G) = Aut(G,®).

In a similar way we can define the factor Ms(G) by the equivalence relation
2 ¥ on the set A{S(G), which corresponds to the equivalence of monoidal
categories. Since the definition of the relation ” & ” uses all autoequivalences
of the category it is often difficult to verify it. It is useful to consider a more
weak relation ” ~” which corresponds to the equivalence by means of identity
{functor [21].

Namely, ¢ ~ ¢ il the identity Tunctor idg can be equipped with a structure of
moneidal functor between (G, ®, ) and (G, ®, ).

The factor M S(G)/ ~ will be denoted by M s(G).

The corresponding relation on the image of inclusion @, 7) (on the group
Aut(idga)) has the form:

o ~ B iff there is an aulomorphism ¢ of the functor @2 such that the diagram

FIX® (Y ®2)) —> F(X)® F(Y ® 7) —% F(X)® (F(Y) ® F(%))

‘?°ﬂl goo,@l

F(X®Y)®Z) —> F(X®Y)® I(2) —3 (F(X)® F(Y))® F(Z)

is commutative for any objects X, Y. Z € G.

It. is evident that this relation on the group Aut(idga) comes {rom the action of
Aut(id€%) on it.

The group Aut(G,®) acts on the set. M s(G) in the following way:

Flo)xy,z = Flep-1(x),F-1(x),F-1(2))

where p € Ms(G) and I € Aw(G,®). The factor of this action coincides with
the set M s(G).

4 endomorphisms of monoidal functor

The coliection of the endomorphisins algebras of tensor powers of a monoidal
functer F can be equipped with the structure of cosimplicial complex E(#). =

End(F®-).

The image of the coface map

(‘):.1+1 L End(FO™) = End(FOH) 1=0,...,n+1



e

here ¢; 1s the unique isomorphism between F{...(X1®...)0X 1) = Fontl(x, Nngi)
and F...(X19...)@(Ni®@Xit1))®..)®Xns1). The specialization of the image
of the coboundary map

of_1 End(F®"Y) & End(FO"1Y) i=0,.,n~-1

1 3 .. . — . . . .
Un-l(a)/\:.m.)\n—x =O0X, XL X i X

We may also define the zero component of this complex as the endomorphism
algebra of the unil object of the category H which can be regarded as the
endomorphism algebra of the functor

F® .k — Mod — H, FOVy=v@!
The coface maps
O Endy(l) = End(F®'), i=0,1
has the form
Pfa) = plh@a)p™,  Bla) = A(h @A

here p and A are the structural isomorphisms of the unit object 1.

The mvertible elements of this complex of algebras form a cosimplicial complex
of the (generally non-commutative) groups A.(I") = Aut(#7®"). Nevertheless,
for small n the n-th cohomology of the complex A(F}. can be defined.

Let us consider the cosimplicial complex E. of algebras as a functor [9]

.8 — k- Alyg

from the category § of finite ordered sets with nondecreasing maps to the cat-
egory k — Alg of k-algebras. In paruicular, £, is the value of the functor £ on
the ordered set of n + 1 elements [n] = {0,1,...n} and

a:‘] = E(a:l):‘ a‘;’l = Ig(gfl)!

where

i is the increasing injection which does not 1ake the valuc i € [n],

o}, is the nondecreasing surjection which takes twice the value i € [n].

We say that the linking coefficient of two nondecreasing maps 7, m : [I] = [m] is
equal to n iff there are decompositions into the nonintersecting unions

Im(r) = Ay U UA,, A <...<A,

Im(r)=BU..UB, B <..<B5B s+t=n+1
and .‘l) S Bl S .42 S Bg

9



In particular the linking coefficient of &% and dit! is equal Lo
1, ifn=1, 2, ifn =2 2n—-3,ifn>3
ifi>j—1 then the linking cocfficient of % and 93 is equal to
1, ifn=2; 2, ifn=23 2n—5, ifn> 4.

The functor 5 : § — k — Alg (the cosimplicial complex of algebras E.) will be
called n-commutative if

E(r)(a) commutes with £(w)(b) for every a,b& E(1),

for any nondecrcasing maps 7,7 : [{] — [m] whose linking coeflicient is less or
iqual to n, if n < 3 and 2n -1, if n > 3.

For the cosimplicial comnplex of groups A. let us denote by 2" (A4.) C A, the set
of solutions of the equaition

l

H it = ] #5@
i=0 i= [ ]

and by ¥ ~ 7 the binary relation on the group A,:

a~beIee Ay a[[[o¥@) | = H a2+ (o) | b
Proposition 2 If A, is a n-commutative cosimplicial complex of algebrus, then
LAy ts a commulalive group for m < n
2.z2m(A) is a subyroup of Ay, for i <n
37 ~ 7 15 an eguivalence relation on the group A, (induced by the action of

Ay which preservs z, (A)) form < n+ 1

Prool: _
L.For m < n and for any a,b € Ay the commutator [0}, (a), O:TT_:I ()] is equal
to zero. So

[(l b] - o-m([()m+l m+i (b)]
2,3.For m < n and for any a,b € A,,

(=8]  [=2] (g
H E)m+1 @) H 3:::4-1 H dm+1 {ab)

i=0
and
0 . 0 _ o
IT oati@ I oitite) = J] 0% (ab)
i={%] i=[5] i=[%]



2,3.For i < n and for any a,b € A
3 = Yy a, ™m

(=] [=42] [=4]
II 2%t H 2y =TI 0%, (ab)
1i=0 i i=0

and
0

0 0
H oat!(a) H Oatila) = H G2t (ab)
(4] i=(4] i=[2)

It immediately follows from the definition of the coface maps that the com-
plex of automorphisins A.(F'} of a monoidal functor I is l-commutative.
The group

(1) = 2 A(F) = {a € Aut(F), 0(a) = 8)()05(a))

is the same as the group of monoidal automorphisms Aut® () of the functor
F.
The set

22 (F) = {o € Aut{F®?),03(0)03 (@) = O3(a) 0 (o)}

coincides with the image of the map Q(c,?) : MS(F) — Aut{F®?) and the
equivalence relation ~ on z2(F) coincides with the relation on the image of
(e, ?) which correspods to the isomorphism of inonoidal functors. So the second
cohomology of monoidal functor is isomorphic o the set of monoidal structures

W (F) = 2(F)] ~= Ms(F).

It follows from the functoriality of the automorphisms that the complex of au-
tomorphisms A. (idg) of the identity functor id is 2-commutalive,

The group structure on h*(G) = h*(idg) corresponds to the composition of
monoidal functors.

The set

(G) = 22(idg) = {0 € Aut(id®?), 00 ()07 ()04 (a) = 85 ()01 (o)}

is nothing alse then the image of the map Q(c,?) : MS(G) — Aut(id®¥),
The equivalence relation ~ on z%(G) coincides with the refation on the image of
Q(c, 7} which correspods to the equivalence of monoidal categories by means of
the identity functor. So the third cohomology of the monoidal category (of the
identity functor) is isomorphic to the set of monoidal structures

W3 (G) = 23(6)/ ~= Ms(G).



5 tangent cohomology

Let I be a k-algebra and G be a k-linear category.
The subcategory of K-modules G in G is a category of pairs (X, o) where X s
an object of G and o : N — Endg(X) is a homomorphism of k-algebras. The
morphism from (X, o) to (¥, f) in G is a morphism f from X to ¥ in G which
preserves the K-module structure (fo{c) = f(e)f for any ¢ € K).
The forgetful functor

gK — ga ("\:»Q) =X

has the right adjoint
G0k, Xo (K& X,i®lx)

if the category ¢ is sufficiently large (e.g. we can multiply any object by the k-
module ). Anyway we have no problem if /" is a finitely generated projective
k-module.

A functor F : G = H induces the functor

Fr Gk = Hy, F(‘\’,O‘) = (F(‘X)) F(Q‘))

such that the diagram of functors

Py
Gk —Hk
l P j
G—H
15 commutative.

Proposition 3 Let F : G — H is a right exact monoidal functor belween
abelian monoidal categories with right biexact tensor products.
Then for uny k-algebru K the homomorphism of cosimplicial complezes

Z(K) @ E°(F) = E*(Fr),  ¢®vux.a) = ale)y
is an isomorphism (where Z(K) is the center of the algebra K ).

Proof: It is easy to see that the statement of the proposition follows from the
following fact:
for the right exact functor F: ¢ = H the homomorphism of algebras

Z(R) Q@ nd(FY — End(Fg), c®Y(x,a) = ale)y

1s an 1somorphisi.
The proof of this fact is analogous to the proof of the proposition (1).

12



Proposition 4 The tangent space of the functor M (F) of cohowmologies of
monoidal functor I at the unit point (the class of idelity endomorphism) co-
incides with the cohomology H™(F} of the cochain complex associated with the
costmplicial complex E*(F) of abelian groups (the tangent cohomology of I ).

Proof

Since £*(Fa,) = Aa®g E*(F), any element of the kernel of the map A% (Fa,) —
AP(£) has the form 1 + e for some o € E™*(F).

The direct checking shows that the cocycle condition for 1 + e 1s the equation
dp(ax) = 0, where d,, = E:‘z"'ol(ul)"f)f,_,_l is a cochain differential. The cocycles
I+ cov and 1 4 ¢f is equivalent il and only if o and 8 differs by the coboundary.

For example, the firsi. cocycle module Z1( ) of the iangenl complex coincides
with the module of differentiations of the monoidal functor F

Diff(FY={l€ End(F),lxegy =lx @Iy + Ix @y}

whicl is a Lie algebra respectively the commutator in the algebra End (7}, The
first tangent cohomology H'(F) is a factoralgebra of this Lie algebra.
The tensor product of endomorphisms of the funtor

End(FF®") @ End(F®™) — End(F®"+™)
defines on E*(F) a structure of cosimplicial algebra

,_ _{ Biaes i<n
an-{-m-{-l(m ®ﬂ) - { n ®a:;,__|'_ll (’5), 1> n

Hence the assoclated cochain complex (£ (), d) is a differential graded algebra
dlo®@f)=da)®@ 4+ (-1)"a @ d(f).

In particular, the tangent cohomologies H*(F) form a graded algebra.

Let us also note that the muliplication is skew-symmetric on the first component
HY(F), because

a@f+4®a=d-af), fora,f € ZH(F).

The tangent cone in the tangent space al the point x € h(k) to the [unctor
h:k— Alg - Sels is the image of the map

ker(h(Ao} = h(K)) = ker(h(Ag2) = R{E)),
induced by the homomorphism of algebras

Ao = k[[e]] = k[e|c® = 0] = Ay, €= €.

13



In many cases it 1s sufficient (and more convinient) to consider the first appros-
imation of the tangent cone which is the image of the map

ker(h(Ag) = h(k)) = ker(h(A2) = h(k)),
induced by the homomorphisim of algebras

Az = klele? = 0] = k[c|e® = 0] = Ao, € C.

6 K-theory

In [19]) Quillen associated to an abelian (exact) category A a topological space
BQA such that exact functors between categories define the continuous maps
between the corresponding spaces and isomorphisms of functors define the ho-
motopies between the corresponding maps. I other words, Quillen’s space is a
2-functor from the 2-category of abelian (exact) categories (with isomorphisms
ol functors as 2-morphisms) to the 2-category of topological spaces.
Waldhausen [27] proved that the 2-functor &' = QB is permutable (in some
sence) with the product. Namely, he constructed the continuous map K(A) A
K(B) = K(C) for any biexact functor A x 8 — C.

The homotopy groups K. (A) = m.(A) of the Waldhausen space K (A) are called
ulgebraic K-theory of the category A.

Now we give the definition of Mochschild cohomology of topological ring spaces.
The topological space K with a continuous map 1 : KA KN — K is called a ring
space. A ring space (N, pt) is associative if there is a homotopy between pu{7 A p)
and p(p A D).

A bimodule over an associalive ring space (K, st) is a space M together with the
continuous maps

viMAKN o M, vi KAM— M
and the homotopies
viInp)y=swveAl), vIAv)=v(vAl), vl Av) =2 u(peAl)

For example the space of maps to the ring space is a bimodule over this ring
space.

Denote by [.X, Y] the set. of homotopy classes of continuous maps from X to ¥.
The Hochschild complez of a ring space K with coeflicienis in a bimodule space
M is a semicosimplicial comnplex of sets

C.(K, M), Cu(K, M) =[K", M]
with the coface maps 83, : C—y (N, M) = Cyr(K, M) defined as follows

. u(I A f), i=0
aS)=< JUN ApANAT), I <i<n
v(f A id), t=n+1{



I M is a loop space then C.(K, M) is a complex of groups and these groups are
abelian if M is a double loop space. I the second case the coliomology of the
cochain complex associated with C.(N, M) will be called Hochsclald cohomol-
ogy (HH*(KN,M)) of ring space K with coclficient in the bimocdule M.

A ring (bimodule) structure on a space induces a graded ring (bimodule) struc-
ture on its homotopy groups.

The natural map C. (N, M) to the Hochschild complex Cu(m{N), 7.(M)) of the
ring 7, (') with coefficients in the bimodule . (A1) induces the homomorphism
of Hochschild cohomology

HH (K, M) — HH.(ru(K), 7.(M)).

Proposition 5 Let F: G — H be an exact monoidal functor between abelian
monoidal categories with biexact tensor products. Then there is a map of semi-
cosimplicial complexes of groups

AdF) = Aut(F®) — C.(N(G), QK (H))
which defines the maps
W(F) — HHY(K.(G), Koy (H))

Proof:
The map Aut(F®*) — C,(K(G), QK (H)) sends the automorphism o € Aut(F78")
to the class of the corresponding autohomotopy of the map K (/7@").

The zero component of the previous map
R(F) — HH (Ko(G), K1(#H))
admits a more explicit describrion.
For an automorphism a € Awt(£9") the class [ax,, . x.] € K1(H) depends
only of the classes [.Xi],...,[X,] € Ko(G). Indeed, the exact sequence
0=Y,=2 X240

can be extended to the diagram with exact rows

0 _’-‘\’1 ®..Q® Ya ® o--®-'\'v1 E—— -‘\'1 ®..Q -’\'i ®..Q 1\’n __-_>"le ® ®Zl ® ---®‘x’n -
| | |
I — N ®.Yi®0.0X, — X, ®.X;0...9X, —mN1®.0Z;®.. 0N, —

which is commutative by the funclortality of o. Hence

ax,, . xiox.)=lox, v ox ]+ lax, Lz x.]



which mmeans that [ox,, . x,.] depends only of the classes [X,], ..., [X},] and can
be regarded as an element, @ of Hom(No(G)®", K1(H)). Now the direct checking
shows that the maps

Aut(F®™) — Hom(Ko(G)®", N1(H))

conumutes with the coface operators:

0:;4_1(0)([;\'1], o [Xng]) = [(‘)f:+1(ﬂ).\'l,...,x,‘+l] =

I= 0? [Il\.l @ OX:,---.Xn-H] = [’\'1]6([‘\7'3]3 ceey [‘\-ﬂ+1])
L<i<n, [ox,  xi@xin o xeg] = @([N1d, o [N [Nepa)s oo [Nnga])
i =n + ls [04\-1,...,){“ ® 1A’,+1T = a([“\'l]) ey [-’\’rl])[}{n-}—]]

= arl‘l-H (a-)([“\rl]n (S ] [“\’n+1])

Thus we have a map
RH(FP) — HHY(NG(G), K1 (1))

which asserts to the automorphism a the class f@l.

7 bimodules

A bimodule over an associative algebra R is a k-module A with the left and
right -module structures

RQM - M rQm = rm

MR- M me r—mr

(teft and right k-module struciures coinsides) sucli that.
r(ms) = (rm)s forany rse Ryome M.

A homomorphism (Hompg_p{M, N)) from a bimodule M 10 a bimodule N is a
k-linear map which preserves both left and right R-module structures,

For exatnple, the endomorphism algebra Endp_g(? ® R) of the bimodule
A ® R 1s isomorphic to the algebra R? @ R (R is the algebra with opposite
multiphication). Any element = € R°? @ R defines the homomorphism f, {for
decomposible z = @ s [, sends p® ¢ from R @, K to pr® sq). Conversely the
value of an endomorphism f of the bimodule R ®; R on the clement | @ 1 lies
i It @y IR,

The category R~ Mod — It of bimodules over / is an monoidal calegory with
respect to tensor product &g of bimodules and trivial associativity constraiut.



Proposition 6 The complex of endomorphisins
E.(R— Mod = R) = End(id§" .4 p)

of the identity functor of the category of bimodules R~ Mod — R is isomorphic
to the complex Z{R®**+1) whose coface maps

8, Z(R®"y — Z(R®"H)
are induced by the homomorphisms of alyebras
& o RO —y RO
B(M®.@r)=r®.0r®I®riy®..@r.
The isomorphis is realized by two mutially inverse maps:
End(id®” .4 p) — Z(RE™H)

which sends the endomorphism lo its specialization on the objects R®r R, ..., RQ,
R, and
Z(R®"F) — End(id®” 00 r)

which associates to an element r = Y. vl @ ... ® % the endomorphism o(r)
whose specialization on the objects My, ..., M, € R~ Mod— R is

_ . R R
0’("),\1,,...|11!..("'1 ®..Q0m,)= E rotmr] @ ... @ my,r,.
i

Proof:
The bimodule @ 1 1s a projective generator in the category R — Mod — 2.
Indeed the functor

k—Mod — R— Mod—R Ve RV ey R

is a righi adjoint of the forgetfull functor # — Mod — R — &k — Mod. The
adjunction is given by the iorphisns

R M. R—= M r®m@s— rms,

Vo RV Qe R v 1®@ve L.

Thus the endomorphism algebra End(idngUd_R) 1s isomorplic to the central-
izer of the subalgebra Endp_n(R ®; R)®R™ in the algebra Endjp_p(R®++1).
It is easy to see that the endomorphisin f from Endp_ (1% 1) which com-
mutes with the subalgebra Endr_g(R ®; R)®R" is defined by its value f(1 ®
..® 1) € R®"*! Indeed, since f comniutes with frg., we have

f(rl ®..Q 1'n+l) = f(("l @ l) Rnr ... ®n (I‘,,, @ 7'n+1)) =
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J({/ri01®r . QR [roor., ) (1O 1) ® r(1®1)) =

(fﬁ@l Qn ...Qn f"n@"n-{-l)(f( ®.Q ]))

Finally, R-polylinearity implice that f{l ® ... ® 1) lies in Z{R®"T1).

Since the algebras End(ulﬁ Mod— g) are commuiative, the cohomology /(R ~
Mod — R) = h™(idr_afoa—n) 18 defined for any n an(l coincides with the co-
homology of the cochain complex associated to the cosimplicial complex of
groups of invertible elements of the algebras Z(R®**!). In the case of com-
mutative algebra R this complex is called the Amitsur complea: of the algebra
R and its cohomology (H A*(R/k)) the Amitsur cohomology [20]. In particu-
lar ht(R — Mod — R) is isomorphic Lo the relative Picard group Pic{i2/k) and
h(It —~ Mod — ) Lo the relative Brauer group Br(ii/k).

Using the restriction 4™ (R — Mod — R) = " (R — mod — R) and the homomor-

phism from the cohomology of the identily functor to the Flochschild cohomology
of the K-theory we can define the following maps

HAMRJL) = HH™ Ko(R — mod — R), K1(/t — mod — R)),

for the commutative algebra R.
Iu the case of a Galois extension of fields X /& with the Galois group G [1] the
previous homomorphism is identical:

IMG, R = HAMR/E) = H U (Ko(R=1mod=R), K1(R—mod—R)) = H™(G, R").

Indeed, the category of bimodules R — mod — R over Galois extension N /& is
semisimple, its simple objects being parametrized by the elements of ¢, whence

K.(R = mod — R) = K.(K) ®z Z[G).

8 modules and comodules over bialgebra
A bialgebra [24] is an algebra H together with a homomoprhisms of algebras
A:HH®H (coproduct)

e =k {coumt)

for which
(A NA=({I@A)A (coassociativity),

e NA={I®c)A=1 (axiom of counit).

For example, the group algebra &[] of a group G is a bialgebra, where

AKG) = HGIQ kG  Alg)=9®y,
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e H ok (counit)

for which
(A® NA=(1®aA)A (coassociativity),

eNA=(I®e)A =1 (axiom of counit).

For example, the group algebra £[G] of a group ¢ is a bialgebra, where
A RG] = MG @ K[G] Al=y®y,

e k[G]— k elg) =1 g€eG.

Another example provided by the universal enveloping algebra {/{g] of the Lie
algebra g
A:Ulg] = UlJoUle Al =lel+16l

e:Ulg] = & eli=0 leg.

The coproduct allows to define the structure of H-module on the tensor product,
M @k N of two H-modules

hx(m®n)=AMN)mQn) hel,meMneN,

The coassociativity of coproduct implices that the standari associativity con-
straint for underlying &-modules

w  LQMON)—= (LOM)ON pl@men)=(1@men

induces an associativity for this tensor product.

The counit delines the structure of #/-module on the ground ring & which (by
counit axtom) is an unit object respectively to the tensor product.

By another words the category of (left) H-modules H — Mod is a monoidal
category. It is follows from the definition of tensor product in I/ — Mod that
the forgetful functor ' : H — Mod = &k~ Mod is a monoidal functor with trivial
monoidal structure.

Proposition 7 1.The complex of endomorphisms E.(F) = End(F®*) of for-
getful functor of the category of modules I — M od over bialgebra H is tsomorphic
to the bar complex H®** of H (the coface maps

O HO =1 —y [1®wn
¥

has the form

_ 1@ ®...Qh,, =0
0:](’11 ®..Q /l") = /l; ® ®AU!,) ®D...Q f!n, l < { <n
Me.eh,e1, i=n+41
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which associale to the element x € H®" the endomorphism of mulliplying by z.
2. The complex of endomorphisms E.(H—Mod) = End(idg'_Mod) of the identity
functor of the category H — Mod is isomorphic to the subcomplex of bar complex
of H which consisls of H-invariant elements (the subcomplez of centralizers
Cre«(A(H)) of the images of diagonal embeddings).

Proof:

We will proof more general statement.

Let f : F — H be a homomorphismm of bialgebras (it means that f is a
homormorphism of algebras and Af = (f ® f)A). The restriction functor
[T H — Mod = F — Mod is monoidal and the complex of its endomorphisms
coincides with the subcomplex Cye. (A(f(F)) in the bar complex of the bial-
gebra H. The proposition follows from this fact, because the forgetful functor
from ihe category H — Mod ts the restriction functor, which corresponds to
the unit. embedding £ — H, and the identity functor is the restriction functor,
which corresponds to the identity map ff — H.

The forgetful functor from the category H — Mod have a right adjoint

k—Mod — H—Mod Ve HQpV

which endomorphism algebra coincides with an algebra of endomorphisms of
H-module H and is isomoprhic to #°P (the clement h € H defines the endo-
morphism ry of right multiplying by h).

Thus the endomorphism algebra End((f*)®") is isomorphic to the centralizer
of Endy(H)®" in the algebra Endp(H®").

It is follows from the direct checking thal an element f of this centralizer is
defined by its value f(1 ® ...® 1) € H®", Indeed, since f commutes with right
multiplications by elements of H wc have

S ®..®@hy) = f((rn, @ @ )(1®..®1)) = (1, ®...0 . )1 ®...® 1)

The composition of endomorphisms from Cpy g reny (Endyy (H )®™) corresponds
to the multiplication of its falues in H®"

fole. . oy=flyle..el)= f(Z hii @ .. @ hiy) =

JU® .. D hin®..@hin)=/1®..0 g1 ®...0 1).

Fially, F-polylinearity of f means that f(1®...® 1) lies in the cetralizer of the
image of diagonal embidding A(F) in H®",

The first cohomology h'(F) = ='(F) of the forgetful functor I : H — Mod —
& — Mod colucides with the group of invertible group-fike elements of the bial-
gebra H [24]

GH)={ye H,Alg) =g @y}
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The elements of £2(F) corresponds to the twistings of the coproduct in the Hopf
algebra H [6]. Namely, the adjunction

AT () =zAh)e™!, he H
of the coproduct. A by the element from
APy ={z € (%), (1®)(/®A)(z) = (z®1)(A® I)(x)}

also satisftes to the coassoctativity axiom.
If = also satisfies 1o the condition

e@Nx) =) =1

{which may be attained by the substitution of & by some equivalent to it), then
the triple (H, A% €) is a bialgebra (twisted form of bialgebra H).

It is follows from the definitions that the complex of endomorphisms of the
wwisted form F{z) of forgetful functor I coincides with the bar complex of the
twisted form (H, A% ) of bialgebra H.

The set. h?(F) accepts also another describtion. Namely, 72(F7) coincides with
the set of Galots H-module coalgebras Galg—coaig( ), which is isomorphic to
H as H-modules [26].

The H-module coalgebra is a coalgebra L which coproduct is a homomorphisim
of H-modules. The H-module coalgebra L is Galois [2] if the map

HOL—=L®L  h®l— (he hA(d)

is an isomorphism.
We have a map
[)2(]‘1) — Galy_coatg (1),

which sends the class of cocycle z € z*(F) to the calss of coalgebra (7, A.),
where Ag(h) = AWz~ he H.
The first cohomology ' (H — AMod) = ='(idg_ptea) of the identity functor co-
incides wilh the centre of thie group of invertible group-like elements of the
bialgebra H

Z(GH)) ={ge2(l),0(y) =9 @4}

The kernel of the map of punctured sets
W(H — Mody = h*(F)

(the stabilizer of the action of the group 4% (H — M od) on the set £2( 7)) coincides
with the kernel of natural homomorphisim

Outpiarg(H) = Oulaig(H)
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from the group Oulpiatg(H) of outer automorphisms of bialgebra H (the factor
of the group of automorphism of bialgebra H modulo conjugations by group-like
elements of /1) to the group Quiqy(H ) of outer automorphisms of the algebra
H. Indeed, an elementi of second kernel is a conjugation by an element i € H*
such that y = A(M)(h ® R)~! lies in the centralizer Cpe:(A(H)). Hence, y
represents the element of h?(H — Mod) which trivialises in h2(F).

For example, in the case of the group bialgebra 4[G] the first cohomology h!(F)
of forgetful functor is isomorphic to the group G. The second cohomology (')
coincides with the set Galg(() of Galois G-extension of k. The kernel of the
tmap

RE(R[C] — Mod) — h*(F)

coincides (in the case of finite group ¢ and the field & such that char(k) [/|G])
with the factorgroup of locally-inner automorphisms of ¢ (an automorphisins
which not moves the conjugacy classes) modulo inner.

The cohomology of forgetful and identity funclors in the case of the univer-
sal enveloping algebra U[g] of the Lie algebra (over the fild k) are trivial. It
follows from the absence of non-trivial invertible elements in U[g), which can
be deduced from Poincare-Birkhofl-Witt theorem. But non-trivial invertible
elements appears if we extend the scalars {ground ring 4). For example, the
tangent cohomology of forgetful and identity functors are non-trivial in general.
It was shown in [6] that the natural homomorphism

A"g=ANHY(F)— H*(F),

mduced by the multiptication in #*({") 1s an isomorphism. The first approxi-
mation of the tangent cone in H*(F) is given by the equation

ffoa] = 0,
where [[, ]] is a component of the Lie superalgebra structure on A*g [5]
ey A Awg, A A ]l =

Z(—l)i'*'j[u:;,yj] AZIA LATIALAZ AN AT AN AY,

i)
where Z means that z not accours in the product, .
1t follows from the result of {7] that the tangent cone in H?(F) coincides with
its first approximation.
In particular, for any Cartan subalgebra b the space A%h (the so-called in-
{inttesimal Sudbery famiy} lies in the first approximation and in the tangent
cone (8, 22].
It can be deduced from the description of H*(F") thal the tangent cohomology of
the identity functor H™(U[g]— M od) coincides with g-invariant elements in A™g.
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There is another type of monoidal categories which can be associated to the
bialgebras, nanely categories of comodules.

A (right) comodule over a bialgebra H [24] is a k-module A with the homomor-
phism ¢ : M — M @ H such that

(@AY =(v@1)¢ (coassociativity of comodule structure),

(IQe)p=1 {counttarily).

For example, the ground ring A& has the comodule structure
La>bt®@H=H, e e® ) =cl.

Another example provides by the bialgebra H with the coproduct A regarded
as a comodule structure.

A morphism of comodules (M, ) and (N, ¢) is a k-linear map f : M = N
which preserves the comodule structure:

of =@

We will denote the set of morphisms of comodules by Hom!! (M, N). For exam-
ple, the endomorphism algebra End™ (/) of comodule H is isomorphic to the
Homyg(H, k) (dual algebra to H) with the multiplication (conuvolution)

prg=(p@q)A, p,q € Homy(H k).

Indeed, an endomorphism f € End™ (H) defines a map pr=cef € Homg(H, k).
Conversely, a linear map p: H — k defines an endomorphism f, = (p ® HA.

The product pi: H ® H — H of the bialgebra H allows to define a comodule
structure on the tensor product (over &) of any two comodules (M, ¥} and (N, ¢)

v MIN->MON®H, Y= ({uen ®)tun(t ® @)

The associativity of the product g implices that the (wrivial) assocociativity
constraint of underling k-modules is an associativity for tensor product ®; in
the category of comodules Comod — H. It is emmideatly follows from the
definilions that the comodule & is a unit object of this category and the forgetful
functor FF : Comod — H = k — Mod is a monoidal functor with trivial monoidal
structure,

Proposition 8 [.The complex of endomorphisms E.(F) = End(F®") of for-
getful functor of the calegory of comodules Comod — H over bialgebra M s
isomorphic lo the cobar complex Homy (H® k) of H (with coface maps

& Homy (H®"=1 kY — Homy (H®™ k)
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which are induced by the homomorphisms di, . HO® —y H®7-1

' eM)®...® hy, i=190
d&(h®..9h,)= M. Qhihi®..QM,, 1<i<n
h®.. @celhy), i=n+|

codeyeneration maps are induced by the homomorphisms st . H®" — @7+
S .0 =M. QAL ®..0N))
The wisomorphism is realized by two mulially inverse maps:
End(F®"y — Hom(H®" k)
which sends the endomorphism lo ils specialization on the objects H, ..., H, and
Hom(H®" k) — End(F®)

which associate to the element x € Hom(H®" k) the endomorphism of convo-
lution with x.

2. The complex of endomorphisms E.(Comod — ) = End(idg;mud_ﬂ) of the
wdentity functor of the category Comod — H Is isomorphic to the subcomplex
of the cobar complex of H which consists of H-coinvariant elements (the sub-
complex of centralizers Cyom(yron 1y(8(Hom(H, k))) of the images of diagonal
embeddings of Hoin(IH k) ).

Proof:
As in that case of inodules over bialgebra we can proof more general staiement.
Let f: 1 = F is a homomorphisin of bialgebras. The corestriction functor

fo 0 H—=Mod - F - Mod, (M )y = (M (TS )

is a monoidal and the complex of its endomorphisms coincides with the sub-
complex Chropner py(6(f(Hom (I k))) in the cobar complex of the bialgebra
H. The proposition follows from this fact., because the forgetful functor from the
category H — AMod is the corestriction functor which corresponds to the connit
H — k and the identity functor is the corestriction functor which corresponds
to the identity map H — H.

The forgetful functor from the category Comod — H have a left adjoint

E—Mod — Comod—H Ve V@, H

which endormorphism algebra coincides with the algebra of endomiorphisms of
comodule H.

Thus the endomorphism algebra End((f*)®") is isomorphic to the centralizer
of End™(H)®" in the algebra End® (H®™).

It is follows from the direct checking that the clement o of this centralizer is
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defined by the map po = (€ ® ... ®e)f € Hom(H®"). It is easy to see that
the composition of the endomorphisins o and 8 from C'E,ldF(”®n)(Elld”(['[)®n)
correspouds to the convolution of p, and pg. Finally, F-polylinearity of a ineans
that p,, lies in the cetralizer of the image of diagonal embidding §( Hom(F, k))
in Hom{H® k).

For a cocommutative bialgebra H (cocommutativity means that {A = A, where
t is a pertnutation of factors) the cobar complex is co-comutative. In particular,
the cohomology h* (F') of forgetiut fuctor #' : Comod— H — K — M od coincides
with the cohomology of identity functor 4" (Comod — H) and is well defined for
any n.

This cohomology was considered by Sweedler [25]. He proved that in the case of
group bialgebra of the group G the cohomology of forgetfull functor is isonor-
phic to the group cohomology of ¢ with coefficients in the (trivial G-module)
of invertible elements of the groun ring &

h"(’l'—'COnwd—k[G]) ~ 0™ (G, A7)

and in the case of universal enveloping algebra U[g] of the Lie algebra g the
cohotnology of forgetfull functor coincides with the cohomology of Lie bialgebra
g with cocflicients in the groun ring &

h‘n(FComad—U[g]) = H—"(G, ’\)

Let us note that for the category of comodules over group algebra of the group
G the homomorphism from the cohomology of the forgetful functor to the
Hochschild cohomology of K-theory

H™MG, k") = 0™ (Foomod—k(c)) = A H*(Ko(Comod—k[G), Ko(k—Mod)) = H™(G, k")

15 identical.

[t follows from the fact that the category Comod — k[G] (the category of -
graded vector spaces) is a semisimple and alt its simple objects arc invertible
{and parametrized by G).

9 free tensor category. unitary R-matrices

Let now & is a field. The free k-linear (abelian) tensor category Ty [4] is a
cartesian procuct

X k[Sn]— mod

n20

of the categories of finite-dimensional representations of the symmetric groups
Sh.

For the field of characteristic zero 7y is a semisimple category whose siimple
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of the categories of finite-dimensional representations of the symmetric groups
Sh.
For the field of characteristic zero Ty is a semisimple category whose simple
objects correspond to the partitions. We will denote by S#¥ X the simple object
of 7x, labeled by the partition . Specifically, the object | = S{®) X corresponding
to the (trivial) partition of 0 is a unit object in 75 and the object X = S()X
which corresponds to the (trivial) partition of 1 is a tensor generalor in 7y (any
object of Ti 18 a direct sutnmund of some sum of tensor powers of X'). Note
that
k[Su), n=m

0, n#m

It was pointed by Yu.l.Manin [13] that a monoidal functor from the category
T Lo the calegory of k-veclor spases & — Mod is nothing as a unitary solu-
tion of the quaniwm Yang-Bazier cquation (unilary quantum R-malriz), ie. an
automorphism R € Aut(1V"®2) of tensor square of some vector space ¥ such that.

Homy(X®" XO™) = {

RiRaR) = Ra R\ R, RI=1,

where Ry = R® Iy and Ry = Iy @ R are an automorphisms of tensor qube of
V.

Indeed, the value F(7) of the monoidal functor £ on the automorphism r €
Aut(X®?) (the generator of Sy) is a unitary quantum R-matrix on the vector
space V = F(X). The condition 2 = 1 is obvious and quantum Yang-Baxter
equation follows from Coxeter relation in S3. The pair (F(X), F'(7)) is defined
the functor F because the category 7Ti is generated by the object X and the
morphism 7.

It is natural to ask when the lunctors Fp and Fig, corresponding to the qnantum
R-matrices R, and S are isomorphic as functors {are twisted forins of each other
as monoidal functors).

it is easy to see Lhal two additive functors ¥ and (& between semisimple cate-
gories A and B are isomorphic if and only if they induces the same homomor-
phisim between Grothendieck groups

1\'0(F) = [\o(G) : l\’o(./-l) g 1\:0(8)‘

In the case of characteristic zero the Grothendieck ring of the free tensor category
Ti coincides with the free A-ring (generating by one element ¢ = {X]) and is
isomorphic (as a ring) to the ring of polinomials of infinitely many variables [12]

Ko(T) = Zlz, X%, A2, ],

where A2 = [A"X] is a class of the simple object A™X corresponding to the
non-trivial one-dimensional representation of 5,,. The homomorphism [ from
Ko(Tx) to Z = Ko(k—rod) is defined by its values f(A™x) or by the formal series
He(ty = 3, 50 FIA )™ (Hilbert series of f). This term comes rom the fact
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that A*X = @5, A" is a graded algebra in (appropriate extension of) the
category T (ezterior algebra of X). For any monoidal functor £ : Ty = k—mod
F{A*XY) is a graded algebra and H . ()(t) coincides with its Hilbert series.

Proposition 9 Two R-matrices R and S (over the field k of characleristic
zero) defines isomorphic monoidal functors

Fr,Fs: Te = k—mod
if and only if ils Hilbert series Hp(t) = Hpg (1), Hs(t) = Hps (1) coincides.

The functor # : G — H between mmonoidal categories is called quasimonoidal if
it preservs the teusor product

FIX®Y)~ F(X)® F(Y), forany X,Y €¢.

For the quasimonoidal functor £ : Ty — k — mod the nonegativity of values
of Ko(J") on the classes of simple objects $*.X implies some conditions on the
Hilbery series H g (r(t).

Proposition 10 Lel k is an algebraically closed field of characteristic zevo. The

homomorphism [ : Ko(Ti) = Z is a cluss Ko(I') of some quasimonoidal functor

F o Te = k—mod if and only if there are real positive a;, b;, i =1,...,n, j=

1, ...,m such that .,

Hy(t) = —n",;D“ *ail)
i:O(“ — bit)

Proof:

It is not hard to verify that the homomorphism /7 : Kq(A) = Ko(B) be-

tween Grothendieck rings of semisimple &-linear monoidal categories with finite-

dimensional spaces of morhisms is a class of some quasimonoidal functor F' :

A — B T the values of f on the classes of simple objects of A are non-negative

(has non-negative cocflicients in expressions via the classes of simple objects of

B).

The class s*2 of the object S#.X as an element of K(7x) can be written as

polinomial of A*z. Namely [12, 15]

ste = det (/\”:’_H'jm) ,
1<i,j<n

where ¢/ = (p}, ..., ) is a dual partition for partition y (s = [{J, 15 > i}).

Hence the non-negativily of values of the homomorphism f : Ko(7;) — Z on

stz for all partitions g means total positivity of the sequence {f(A*z)} (by

definition total positivity [10] of the sequence {a,} is non-negativity of all finite

minors of the infinite Tepliz matrix

g [¢37

0 ag
0 0 ap



-

It is known [10] that the generating function Y ., a, of the total positive
sequence {ap} have the form

pot Lizof! +ast)
1-120(1 - bit) ’

for some real positive ¢;, b, ¢ such that 3 . a; + b; < co.

Hence the generating fuuction is meromorphic in {4, |¢] < 1} and hLas finitly
many zeros and poles in this circle. One theorem of Salem [23] im])lifes that
this function is rational.

The Hilbert series of t-matrix can be expressed in terms of some its symbolic
invariants.

Proposition 11 [[4] Consider the series

Wpe(t) = (dimV)t+ D tr(Ry. Ry )t

n>

for the R-matriz R. Then

Ha(t) = exp U w(n)
Proof:

The object A™.X is a image of the idempotent
| .
Pauy = = z styn(o)o.
€S,
Hence the dimension of I7p(A”X) can be expressed in terns of the traces of
some products of R-matrix R
T L1 A4 l ;
dimFr(A"X) = Tr(Fp(Panx)) = = 3 sign(e)T7{R,),
n!
gES,

where R, = Fp{c). Since any permutation ¢ is similar to the product of
independent cycles 7.7 (of lenght {1, ..., Ix respectively), then

Tr(Ry) =" ., where ¢}y = tr(Ry...Ri_1) (dimV,l = 1),
The number of permutations in S, which has the cyclic structure corresponding

to the partition g = {st1, ..., ftzn) € Py of the number n (3 4 = n) equals
nt

T The sign of these partitions is (—=1)**™ where m = 3" pt;. Hence
e

_ { My
rrEnpex) = ¥ 0r T (F2) L

L
HEP, i i
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and

He) =3 (0" > 1 (—,_T'-NRY‘ %

n>0 HeP, 1 /

On the other side,

exp (/ wdt) = Z% Z(-t)-’% =

n>0 " \i>0

e TI(=2)

|
4!
HEPW i fhi

Example 1 If K is a unitary R-ratrix, then S = — R is also unitary K-maltrix.
Since
f.?‘(Sl...Sn_l) = (—l)n_lf.r(Rl...RH_l),

then
We(t) = dimVi =Y tr(Ry. Ry )(~1)" = =¥p(—t)

n>2

Hg(t) = exp (/ w(ﬂ') =czp (— f w+(t)dt) = Hp(~t)"'.

So the sel of R-matrices with Hilbert series H(t} is isomorphic to the set of
R-matrices with Hilbert series H{—t)"!.

and

Example 2 Let A be a commutative algebra, « € A ® A an element such that
alla) =1{t: AQA = A®A is a permutation of the factors) and M a A-module.
Then

R=R{A a, M)= Lia}t € Aut(M @ M)

is a unitary f-matrix on the vector space M (here L(a) is a operator of lefi,
multiplying by a}. Indeed,

RiRuRy = L((llg)[lL(ag:x)fvglz((tlz)h =

L((llgtl ((123)5112(”12)”11‘21(.1 = L((Ilgﬂls(jgg)t]t-ﬂ,] -

On the other hand

]?21?]1?3 = L((lgg)!gL(ﬂlg)tlL((!'_ga)t:g =
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L{azsta(arz)taty (aza))tabity = L{asaeiaars)iutty.
Hence the quantum Yang-Baxter equation for R fotlows from commutativity of
A®3 and Coxeier relation for the permutation {. The unitarity of R follows from
the condition at(a) = 1.
Define some invariant of elements « € A ® A for which af(a) = 1. Since algebra
A is commutative, then the multiplication g : A ® A — A is a homomorphism
of algebras and

1= plet(e)) = pla)p(t(a)) = (p(a))*.

So p{a) = £1.
Now we can calculate the Hilbert series of R. Since

R.]...R'n_[ = L((llg)tl...L((ln_ln)'."_..l =

L((ll'_)jl((1.23)...’-1...f.n,.1((ln_]ﬁ))’,l...fn.,[ = L(“l'.!---“ln)"l~~~’-n—11

then
“'(R[...R"_l) = [-7‘(1.:((113...(11,;)’-1...Ifﬂ_[) =
r(plary...ara)tidyoq) = (;t(a))"'ldir‘uil/!.
Hence M1
Vp(t) =dimM Z(p(a))"_l(—t)" = %
n>1
and

HR(t) = exp (/ %(It) = (1 + [l((l)l)“(“)di""”,

10 free tensor category. Hecke algebras

This section is devoted to the investigation of the monoidal structures on the
category Ti.

We begin with the classification of (guasi}monotdal autoequivalences of the cat-
egory Tr..

Proposition 12 Let [ is a graded homomorphism Ko(Ti) = Ko(T:) for which
flz) ==, f(M2)= A2, and

fls#2) = Z Nys¥x, where ny, > 0.

Then f is identical.
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Proof:

Let us prove the lemma by the induction on the degree.

Suppose that f{s*z) = s#2 for any partition g € P, where m < n.,

To prove that f(s#x) = s#= for p € P4y it is sufficient to show that f(A"Hlz) =
At I follows from the partial case of the Littlewood-Richardson formula

z-ste = E s

uCwe,lv\pj=t
that
JOM ) £ fs™Ya) = fla - A2) = ad e = APy 4 50y,

The suminand f(s" 1)) can not equal to zero, because in this case

P Ahe = fsP2) f(Ae) = (%2 - X)) = f( Z s x) = 0.

vC(n,1) I

By another side the expression of f(s(™Yz) can not contain A**+!x, because the
right (and hence left) side of the equality

f(s(n,l)m) + f(S("_l'l'l):L') + f(S("_l'z);!!) - f(-i: . s("_l‘l):c) — S(ﬂ_l'lldl —
s("’l)n: + S("_l'l‘])ﬂ: + .'-,‘("_]’2);1,'

not. contain it.
Hence f(s(™Vz) = sy and f(A"H1e) = An+y,

Using the previous proposition we can describe the (quasi)monoidal autoequiv-
alences of Tx.

Proposition 13 There is unique non-identical {(quasi)monoidal autoequivalence
F of the category Ty which is defined by the seting

Proof:

Let G is a quasimonoidal autoequivalence of the category 7.

Firstly let us show that the automorphisin No{C) of the Grothendieck ring
Ko(Ts) either identical or coincides with Ko(F) which sends s#z 10 s*' 2 (where
p' 15 a dual partition to p).

It is easy Lo see that the quasimonoidal autoequivalence must send the simple
object to the simple. In particular, G(X) = X, since X is unique object of
Tr whose square is a sum of two simple objects. For G(A%X) there are two
posibilites A2X and S2X. If G(A’X) = S%X we may replace G by FG, so
we can assuime that G{A2X) = A2X. Hence Ao(G) is identity by the previous
proposition.



The case of monoidal autoecquivalence is more easy. [From the previous con-
sideration follows that such autoequivalens sends the generator .\ to itself and
the direct checking shows that there are only two solutions in End{X®%) of the

equations
o

- =1, filaly = latyls.
Namely, the standart { = 7 and t = —7.

Now we will construct of the map

a: Ms(Ty) — k.

Let i some associativity constraint of the category 7. Consider two homomor-
phisms of algebras

S Ja o Endr(X®) 5 Endr(X®°),  filg)=9® 1, Lloy=¢""I®4)¢,

here A®3 means X @ (V' @ X).
As an algebras

Endp(X®?) = Endy (A*X)® Endr (S*X)~ k@ k
and
Endr(X®?%) = Endr (A’ X)@ Endr (SCHDX@SCY XN@Endr (5*X) = koM, (k)dk,

here (2, 1) is a partition of the number 3.
Since

AN @ N = A®XN @ SC U x

the images p; = fi(p) of the projector p € Endr(X®%) on the A®?X have the
decompositions (1, F;,0) € k@ My (k)@ k. Tn addition the projectors P € My(k)
has rank I, hence

PPy Py =aPy, PyPiPy=abPs for somea = a(y) € k.

Example 3 A Hecke algebra H,(q), ¢ € k is an algebra with generators {;, i =
l,...,n— 1 and defining relations

tiliviti = tigilitigy, i=1,..,n—2,
Lty = i, |f—ji>2,
(t,-+1)(t,--—q):0, i:l,...,”—l.

It is known [3, 17] that in the case when ¢ is not a root of unity the alge-
bras H,(¢) are semisimple for any n and its irreducible representations are
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parametrized by the partitions.
A free heckian category generaled by one object Ty 4 is a cartesian product

Tiq = XupoHn(q) — mod,

(here Hg(q) = Hi(¢) = k) with the tensor procuct, which is induced by the
homomorphisis of algebras

[-{ﬂ(q}® Hm((l) - Hn+rn(q): tl' ® | — t‘ix 1®{l — tn+1'~

We will denote by 1,.¥ Lhe objects of Ti 4 which corresponds to the unique
one-dimensional representations of Ho(q), /1(g) and by AF X the objects corre-
spouding to the one-dimensional representations of H,;(¢) which sends ¢; to —1.
The term free heckian category is explained by the fact that the category Tx ¢
is generated (as a monoidal category) by the object X and the automorphism
l € Eru[—;—q(.\'®2) such that (t'4+ 1){t — q) = 0 and )tety = 42189, where as
usually £y =t ® 1, ty = | @t € Endy, (X®3).

It is known that (for the case of characteristic zero) the Littlewood-Richardson
coefficients of the category Ty 4 coincides with the Littlewood-Richardson coef-
ficients of the category 7i. Hence the monoidal category Ty 4 is the category T
with another associativily constraint .

Let us note [3, 17] that A X is a image of the projector

1 !
C = E _1)He)
P;\")\ - ”! ( l) !‘01

aES,

(here {{e) = m and ¢y = &,..t;,, f ¢ = 7;,...7, 1s an uncancelled decompo-
sition of the permutation ¢ in the product of Coxeter generators). Using this

fact it is not hard to verify that a(p,) = Zq—f]—v
Example 4 The crystal [11] is a set £3 with the maps
fi & B = BU{0},

where + € N, for which

filwh = v o é&{v)=u for any w,v € B3,

and the functions }
$i(w) = maz{k >0, fF(v) # 0},
ei(u) = maz{k > 0,85 (v) # 0}
has finite value for any v € B.
The morphism f of crystals By and B3 is a map of the sets f: By — By U {0}

such that

Tfi=Ff, fa=é&f vi
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The category of crystals will be denoted by Crystals.
A tensor product By @ B2 of crystals By and By is the set B x B with the

maps .
flu®v) = filW) @ v, ¢i(u) > &i(v)
filu@s) = { u® fi(v), ¢ilu) <e€ifv)

)

. _ EilW)@uv, ¢ilu
Ei(u®v) = { u® Ei(v), éilu)
it 1s easy to see thal the tensor product of two crystals is also a cristal and that
the category Crystals is monoidal with identical associativity constraint.
The element b € B is called highest weight if &(b) = 0 Vi. The set of
highest. weight clements of the crystal 8 will be denoted by B*. It follows from
defimition of the tensor product that

(1 ® B2)" C B ® By,

Let us counsider the crystal X = {z;,7 € N} with the maps
éie;) =dijorwj1 files) = dijeizja

It is easy to verify that any connected component of X®" contains only one
highest, weight element and two components ) and 3, are isomorphicafl

$(b1) = ¢(ba) Vi, where B = {b,), B} = {b2}.

It can be proved by the induction that the sequence {¢(b)}, where b € (XO™)5,
satisfies to the condition )_; i¢(b) = n.
It other words indecomposible objects of the monoidal subcategory Ty in Crystals
generated by the object X are parametrized by the partitions. It follows from
the results of [18] that the Littelwood-Richardson coellicients of tensor product.
in 7o coincides with the standart.
The k-linear envelope Crystals; of the category of crystals is a category with
the same objects and whose morphisims are (finite) k-linear combinatious of the
morphisms of Crystals

HO"’Crystalsk(Bl » ]ji.') = (HO”‘Cryuala(Bl; B"))k-

The category Crystalsy is a semisimple monoidal category. In particular, the
k-linear envelope T o of the subcategory To in C'rystals is a category Ty with
another associativity constraint g.

It can be verified directly, using the identifications

1\3,\' = {‘.t:,'l ®..8z;, € .-\'G", h<..< i,,},

that a(wq) = 0.
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Proposition 14 Let k is a field of characteristic zero. The fibres of the map
a: Ms(Te)y— k
over k* \ {m,o € Q} consists of one point.

Proof:

Let # is a associativity constraint lor the category 7.

The direct checking shows that the endomorphism é = g1={g+1)p € Endr(XN®?),
wliere m?ﬁ; =« and p is a projector over A®X, satisfies to the equations

(L+ N[ —q) =0, gty = tatite.

[ndeed, the first. equation follows from the condition p* = p and the second from
Pipap1 = apy,  papipz = apa.

Using the freedom properiy of the category 7y 4 we can define the monocidal
functor

Iy 2 Teg = Ty ¥),

which sends the gencrator of the Hecke algebra H;(g) to the endomorphism t.
This funcior sends the objects X and :\g.—\' of T q to X and ACX respeclively.
If a(¢) = a € k= \ {3(cos(lu 7.0 € @7}, then ¢ is not a nontrivial root. of
unity and the Grothendieck ring Ko{7g q) coincides with Ro(7x). The functor

F, induces the homomorphism Ko(7x) = Ko(7x), which preservs @ and Az.
Hence it 1s an equivalence by the proposition 12.
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