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THE NORMALIZED CURVE SHORTENING FLOW 

AND HOMOTHETIC SOLUTIONS 

The curve shortening problem, by now widely known, is to 

understand the evolution of regular closed curves y: E/Z --> M 

moving according to the curvature normal vector: 

it = kN = - "the L2 gradient of arc length". One motivation for 

this probl~m has been the view expressed in this connection by 

C. Croke, H. Gluck, W. Ziller, and others, that it would be desirable 

to improve on some complicated and ad hoc constructions that have 

been used in the theory of closed goedesics to iteratively shorten 

curves. 

As a test case it has been a goal to prove the conjecture that 

kN generates a flow on the space of simple closed curves in the 

plane, preserving embeddedness and making any such curve circular 

asymptotically as length approaches zero. However, the evolution 

equation for the curvature of Yt turns out to be quite subtle, 

and the conjecture is not yet settled. Indeed, in the non-simple 

case one generally expects singular behavior, and part of the 

intrinsic interest of the problem lies in the fact that the global 

condition of embeddedness is apparently recognized by the 

"near-sighted" equation. 

What is known thus far is that the conjecture is true for 

convex curves, that simple curves do in fact remain simple (provided 

curvature stays bounded), and that short time solutions to the 
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equations exist in full generality; these results are due to 

M. Gage and R. Hamilton (see [G1), [G2], [G-H]). 

In Section 1 of the present paper it is shown that by adding 

on a reparametrizing tangential vector bT to kN (thus leaving 

the flow geometrically unchanged) one obtains an apparently nicer 

evolution equation for the curvature of y: m/z --> M2 (see 

Theorem 1), which readily yields useful information (see, e.g., 

Propositions 1.7, 1.9). 

In particular, one is led quite directly to a very tractable 
. , 

equation (2.3) for homothetio solutions in the plane, Le., curves \rthich 

evolve simply by scaling. The equation is integrable by quadrature, 

and essentially this faot makes it possible to give a complete 

classification of all closed homothetic solutions in ~2 (Theorem 

2), the main result of Section 2. In agreement with the above con

jecture, the circle is the only embedded closed homothetic solution, 

but there are infinitely many others which are not embedded. 

Part of the significance of the homothetic ,solutions is that 

they represent the possible asymptotic limits for the ourve shor

tening flow in an arbitrary 2-manifold; this statement is made 

preoise in Section 3 (see Theorem 3). Section 3 CXIl1Cludes with SCI1e ~ 

convergence results for certain trajectories of the curve shortening 

flow. 

Another interesting aspect of the homothetic solutions is 

that there is reason to regard them as possible comparison solutions 

for the flow. This point is discussed in Section 4, where the 

existence of all closed homothetic solutions is explained 
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heuristically by relating these curves to multiply covered 

circles, on the one hand, and to singular limits, 

on the other. This discussion is based on computations in the 

spirit of linear stability analysis. 

An appendix contains some technical results which are 

crucial to the complete classification of closed homothetic 

solutions • 

. Finally , -it should be noted that the authors have heard 

that E. Calabi has also obtained some results regarding homoth~tic 

solutions of the curve shortening flow (though apparently not 

for closed curves). 
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1. The Normalized Flow 

Our notation regarding trajectories of the curve shortening 

flow will be as follows. We will denote by Y : [O,tO) xm./Z -> M 

a smooth one-parameter family of regular closed curves in a 

Riemannian manifold M. The circle m/z will be parametrized 

by a € [0,1] (or by s € [0,1] in case of arclength· Rarametri

zation). We will write yt(a) = y(t,o) and, for fixed t, denote 

the speed, curvature, unit tangent and unit normal vectors of 

Yt by a = I~I, k, T, and N, respectively. Derivatives with 

respect to a (or s , will often be denoted by primes and deri

vatives with respect to t by dots. 

Now let us suppose y as above happens to be generated from 

some initial curve YO by the curve shortening flow, i.e., accor-

ding to • y = kN • Then we can always reparametrize in the a 

variable (smoothly in t) to obtain a new y for which the curves 

Yt all have constant speed, i.e., a depends only on t. Of 
• course, this new y no longer satisfies y = kN ; rather, it 

evolves according to an equation of the form 

(1.1 ) • y = W = bT + kN , 

where b [O,to' xlR/z -> lR is some smooth function. 

Proposition 1.1 If Y satisfies equation (1.1) then each 

has constant speed if and only if YO has 

constant speed and b satisfies 
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b' -= a 

Equation (1.1) and the Frenet equations yield 
a 2 2 at a = 2<VWY"Y'> = 2<Vy W,y'> = 2a(b'-ak ) 

by a 2 and differentiating with respect to o , one 

which proves both directions: constant speed parametrization implies 

that :0 Ina vanishes and hence that b~ - k 2 is constant 

along each Yt' Now the periodicity requirement on b determines 

the constant and gives 1.2. Conversely, by 1.2 the right hand side 
a of (*) vanishes and therefore the condition ao lna = 0 is 

preserved under the flow. 

o 

Since equation (1.2) determines b up to an additive constant 

we may fix b, henceforth, by the requirement 

(1 .3) o = a v (b) = f ~ b ( 0) do 

we wish to further modify the original flow by replacing 

the variable t by a new time parameter T according to 

(1 .4) 
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This change makes the flow equivariant with respect to 

dilations and the advantages will become evident below; for the 

moment we note only that for a circle in lR 2 to shrink to a point 

requires finite t but infinite L • This follows from the general 

fact that a(t) - i.e., the length of a curve Yt - decreases 

according to 

(1 .5) 

(1. 6) 

da = b'-ak2 
dt 

The normalized curve shortening flow can now be defined by 

, 

where b satisfies (1.2), (1.3). The resulting one-parameter 

families of constant speed closed curves will be denoted Y(L,a) • 

We consider now how, normalization affects the evolution of 

curvature (we restrict ourselves here to the simpler two-dimen-

sional case - the only case we will need). 

Proposition 1.2 

(1. 7) 

If M2 has curvature RO(p) and Y(L,a) is 

a trajectory of the normalized curv~ shortening 

flow then the curvature of Y satisfies the 

evolution equation 
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Proof: In general, if a curve 

evelues in time T according to 

y in a Riemannian manifold 

~ = V , for some vectorfield 

V along y, then the curvature of y evolves according to 

(see [LS1]). Applying this formula to V = a2 (bT + kN) and 

using the Frenet equations easily yields the result. 

c 

We recall that for the original flow if = ~~ (where the 

speed a depends also on cr) the curvature evolves according to 

~hus, the benefit of normalization is that the "Laplace Beltrami" 

operator (which is troublesome because it II changes" with the 

curve) is replaced by the ordinary Laplacian. The price one pays, 

of course, is that the lower order terms become more complicated. 

(Actually, the equation will assume a much simpler form, below.) 

It will also be useful to consider a "rescaled" flow where 

the curves YT all have unit length. In Euclidean space one can 

simply enlarge Y T by homothety: Y T -> ~ Y T • In the general 

Riemannian case we can view Y as evolving in a manifold 
T 

whose metric is itself evolving conformally according to 
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(1 .8) • 

For the Euclidean case this amounts to the same thing, as scaling 

of the metric is induced by homothety. We will sometimes refer to 

this "rescaled normalized curve shortening flow" as the 

rescaled flow. 

To describe the evolution of curvature under the-rescaled 

flow we observe first that rescaling affects the curvature of y~ 

and of M2 according to: k --> ak, RO --> a2Ro • Setting 

(1 .9) 

we have 

Theorem 1 

K = ak 

B = ab 
2 

R = a RO 

If Y is. a trajectory of the rescaled curve shortening 

flow in M2 then the curvature K of y evolves according to 

(1.10) 

Pt'oof: Using equations (1.5), (1.7), and (1.9) one computes 

(1.11) • 

Also, equations (1.2), (1.9) yield 

(1.12) 
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Combining equations (1.11), (1.12) gives (1.10). 

c 

We remark that the utility of equation (1.10) is actually 

independent of its interpretation in terms of the rescaled flow; 

one may choose to regard it as an equation describing the unre

scaled (normalized) flow via formal substitutions (1.9). 

For the remainder of this section we restrict our attention 

to the special case M = R2 • Since R. 0 in this case, the right 

hand side of (1.10) is a derivative. This is very suggestive of 

a fact about the original curve shortening flow: 

Corollary 1.3. The total absolute curvature 

T (y) = ~ I kids = f ~ I K I do 

shortening flow. In fact, 

is non-increasing under the curve 

~T T(y) < 0 unless k' vanishes when-

ever k does. 

Proof: For any time T we can divide y into countably many 

curves Yi : [ai/bi ) --> R2 for which the curvature vanishes at 

both endpoints and does not change sign in the interior. (here we 

are assuming the curvature vanishes somewhere on Y , but if not, 

then T. 2'1f • (rotation number of y) on a C2 neighborhood of 
dT 

y I hence di(y) • 0 ). 

Where K+O we clearly have a aT sgn(K) = 0 and, on the 

interior of an interval for which K vanishes identically, 

equation (1.10) implies 0 = ~ = ~ . Thus, letting aT aT 
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sqn(i) = sein(1( (0», a E (ai ,bi ) , we can wite 

~t T (-N .. ~t f~ aqn (IC) ICda = f~ sqn (IC) :~ do 

b1 a = t sqn(i) f. -a (IC' + alC)do = t sqn(i) (IC' (bi ) - IC' (a1 » 
i a i a i 

Clearly no term in the last sum can be positive, and the sum will 

be neqative unless 1C'(ai ) = IC' (bi ) = 0 for all i. 

c 

Since a plane curve y is convex (in the weak sense) if and 

only if T(y) = 2w , we have at once 

Corollary 1. 4 Convex curves remain convex under the curve 

shorteninq flow. 

Some less obvious applications of the rescaled flow equations 

concern estimates on derivatives of IC. In particular, while 

Corollary 1.3 shows that the L1 norm of IC remains bounded under 

the flow, it will be seen below that a sliqhtly stronqer bound -

e.q., anL2 bound on IC - would imply that all derivatives of IC 

are bounded. 

In order to prove this and other results we first establish 

two essential lemmas regarding the time behavior of the Sobolev 

seminorms of 

(1.13) i 2 )lfJ = fta IC) 
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Here we use the shorthand notation f in place of f1 ds . We 
a 

adhere to the convention that the derivative operator 

is applied only to the term immediately to the right. 

Lemma 1.5 The time derivatives satisfy the estimates 

(1.14) 

and for j ~ 1 , 

(1.15) 

Proof: To begin with we have by interpolation 

(1.16) x x. ::l x x. 
J.L J IJ.-v J+ V 

for 

Secondly, since 

II aJ.L(K2-x o) llao ~ ~ f I alJ.+ 1 (K 2-XO) I 

1J.+1 J.L+1 
~ ~ v~O (J.&~1) flaVKllaJ.&+1-VKI:S~ v~O (1J.~1) ~ v'xlJ.+1-V 

inequality (1.16) gives, for all IJ. i1: a , 

(1.17) 

Similarly, since 
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IIKaVK!! =-1f'KaVKds! + 21 J 13(KaVK)! 
00 0 

=- r'xOxV + ~ IX1 Xv + ~ r'XOXV+ 1 

we obtain also 

(1.18) 

At this point we invoke the rescaled flow equation (1.10) 

to compute 

Xj = 2 J ajKajK = 2 J ajK U j +2K + aj +1 (aK) ) 

j +1 . . 
= -2Xj +1 + 2 V~O (j~ 1 ) ra v a aj +1- v K aJ K 

:I -2X j +1 + fa a(a j K)2ds + 2(j+1)J aa(a j K)2ds + 2(4)j 

= -2xj +1 + (2j+1) J (K2-XO) (a j K)2ds + 2<Pj , 

where we have set 

• 

Because of (1.17) the above yields 

(1.19) 

In particular, this gives inequality (1.14) of the lemma. To 

obtain the second inequal~ty of the lemma it remains to bound 

<Pj for j ~ 1 I 
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'Pj ,= 

= 

j-1 j+1 ~ 2 
$ ~~1(~+1)1 la (K -XO)\ \~ IXj_~ I:Kj 

j-1 
+ v~o(~)1 IKaVKI I~ IX j _V I:Kj 

Using the estimates (1.16) and (1.17), (1.16) and (1.18), 

respectively, we bound each term separately: 

j-1 , 
2C1>j $ 2 t (J+ 1 ) 2~ IXOx1 xJ' ~=1 ~+1 

+ 2 (xo + IXOx1, Xj 

= (3 j +1-(2j+3» IXOx1 Xj 

Inequality (1.15) now follows from (1.19). 

Lemma 1.6 The geometric mean m = 1XOx1 obeys 

(1.20) 

c 
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and for j;: 1 one has 

(1.21) 

Proof: Using inequalit1~s (1.14) and (1.15) and then (1.16) 

one computes in a straightforwar~ manner 

• • • 7{xOx1 xOx1 
2 2mm = xOx1 + xOx1 ~ -2xOx2 + + 4xOx1 

2 2 (- m2 \ -2 x + {xOx 1 xOx1 ~ 4m 2' + 2m + XO) 1 \ Xo 

Inequality (1.21) follows from (1.15) and (1.16). 

D 

We are now in a position to bound the higher Sobolev norms 

more precisely, our bounds will be given in 

terms of the quantities 

C (T) = max { Xo (T I ) o ~ TI~ T } 

Note that C (T ) ;: 4'11'2 > 32 • 

Proposition 1.7 The functions m (T) and Xj (T ), j ii= 1 , are 

bounded on the whole existence interval in terms 

of C(T) and the initial data ro(O) and 

xl (0) , ••• ,x j (0) , respectively •.. Asymptotically, 
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i.e., for t;C(T) sufficiently large, one has the 

following bounds depending only on CIt) : 

(1 .22 ) 

(1.23) 

Proof: Observe first that the right hand sides of (1.22), (1.23) 
. 

are both non-decreasing. Thus it will suffice to prove that expo-

nential decay holds for mIT) as long as (1.21) is violated, and 

to argue similarly for Xj • 

a) A direct calculation shows that 

as long as 

Therefore, it follows from inequality (1.20) that one has ~ ~ - i m 

2 2 as long as m{T);:: 3C(T) (>2XO(T) + !xO(t» . 

b) By inequality (1.21) one has • j+10 x S -2 x 
j j 

as long as 

Xj:ii X j _ 1 (1.3 j + 1m + 2 j +1C(T)2) holds. By induction, the bounded-

ness of X j , j ~ 1 , now follow from the bounds on m and x. 1 • )-

In order to obtain the estimate (1.23) we may assume T'C(L) 

large enough so that meT) ~ 3C(T)2 • One then argues inductively 

using 1.3 j +1m + 2 j + 1C(T)2:ii 3 j +2C(T)2 

c 
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Remark The asymptotic bounds of Proposition 1.7 reflect the 

partially smoothing nature of the flow. This phenomenon is due 

to the Laplacian on the right side of equation (1.10) and to this 

extent comparison with the behavior of the heat equation is appro-

priate. However, the non-linear lower order term generally disrupts 

the familiar total smoothing phenomenon. In fact, the existence 

of the homothetic solutions, obtained below, shows that one can-

not expect the Xj to decay to zero for j ~ 1 even if re-

mains bounded. In this sense, Proposition 1.7 provides the best 

possible general set of estimates. 

Moreover, even when Xo is not bounded - so the flow is 

approaching a singularity - the above estimates are adequately 

describing· the behavior of the Xj • This is the essential point 

of the following complementary proposition, which gives large 

lower bounds on the Xj when K is L2-far from constant. 

Proposition 1.8 Letting II 111 denote the L' -norm, one has 

(1 .24 ) for p ~ 2 , 

and for all j ~ 1 , 

(1 .25 ) 

Proof: (1.24) follows directly from H61der's inequality. Using 

this estimate with p=4 and (1.17) one obtains 

• 
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This proves (1.25) in case j = 1 • Inequality (1.16) now yields 

the general result by induction. 

Finally, we have the following general estimate on the 

existence interval for trajectories of the flow: 

Proposition 1.9 Xo satisfies the differential inequality 

(1 .26 ) 

Therefore the solution exists at least as long as·· 

t<tE II 4XO(O)-2 

o 

Proof: The differential inequality follows from (1.14) because 
1 3 of IXOx1 Xo S 2oX1 + '8 xo (which is just a special case of 

rao S ~ (~ + Eb» • Note that Proposition 1.7 implies K is 
<Xl 

C 

as long as xO(t) is bounded. Hence, integrating the comparison 

equation yields the estimate on the existence interval. 

o 
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2. Closed Homothetic Solutions 

As the nonlinear evolution equations of curve shortening 

apparently do not lend themselves to a general partial differen

tial equations approach, the possibility of writing down some 

special solutions analytically is of particular interest. It is 

natural to look first for homothetic solutions in Dt., i.e., 

curves which do not change shape at all under the curve shortening 

flow, only size. 

To begin our study of closed hornothetic solutions we observe 

first that any such constant speed curve y: lR/Z -> JEt repre

sents a "steady state", i.e., time independent solution of the 

rescaled evolution equation (1.10). Thus, y would have to satisfy 

a system of the form 

(2.1) 
K' = -ale + "'1 
a' = K2 + "'2 

for appropriate constants "'1''''2 and some fUnction a having 

average value zero. Since by definition K depends only on the 

similarity class of yit will be sufficient to consider only 

~ speed curves y: JR/Z -> JR2 • In this case iC" is actually 

the curvature of y (we prefer not to write k since k should 

be thought of as evolving in time, even for homothetic solutions). 

From (2.1) we will shortly derive much more useful equations, 

but we first note that so~e Significant information can be read 

off directly: 
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Proposition 2.1 Let y be a C4 (hence 
0> 

C ) closed curve 

representing a homothetic solution. Then the 

curvature of y is nowhere vanishing. Thus, we 

might as well assume from now on that K > 0 • 

Proof: Suppose K vanishes somewhere. Since the total absolute 

curvature of y obviously does not change under the curve 

shortening flow it follows from Corollary 1. that K,K' must 

vanish simultaneously. uniqueness of solutions to the initial value 

problem for eq. (2.1) now implies K:: 0 , which is absurd. 

The periodicity of K and B has important consequences. 

We claim that ~1 is actually zero and we observe that ~2 is 

in fact negative, as it is the average value of 

rewrite (2.1) as 

K' = -BK 
(2.1' ) 

2 -K . Thus, we 

To prove the claim we note first that taking ati antideri-

c 

vative fa preserves periodicity since 

Therefore, the functions f = KefB and 

B has average value zero. 

ft = (-SK+).I.1) efB+Sf = IJ.1 eIS 

are also periodic. But sign(f-') = sign(~1) = constant, so 

evidently ~1 = 0 • 

From (2.1') one readily verifies the following 
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Let y : :nvz -> -nf be a smooth closed curve 

of unit speed representinq a homothetic 

solution. Then the function 

B = 2 In.!£ ). 

satisfies the steady state eguation: 

(2.3) 

Such an equation is particularly welcome as it yields a 

first inteqral: 

(2.4) , 

with n a non-neqative constant. Indeed, the solution B to 

the steady state equation is obtained by invertinq the inteqral 

Remark: 

a (B) • L IB -;d:::Y;;:;:::;: 
2), 0 {n-V (y) 

Any such normalized homothetic solution y (unit speed, 

lenqth one) determines a whole conformal class of homothetic 

solutions (unit speed, lenqth .. ) y : m/ .. Z -> nf defined by 
J. 

). .. (s) • .. ).(~) • This evident scalinq property of homothetic 
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solutions corresponds to the fact that the differential equations 

(2.1') and (2.4) continue to hold when K,a,A,B are replaced by 
1 s 1 s 1 s 

KI,(S) = i K(i) , 61,(S) = 1 6 (1) , AI, = 1 A , BI,(S) = B(i) , 

respectively. The important point here is that the constant n 

appearing in equation (2.4) is unaffected by this transformation. 

Bence, n should be thought of as determining the shape of y 

and A. (which is inversely proportional to 1,) as measuring the 

scale of y. The initial condition B(O) = BO for equation (2.4) 

is geometrically inSignificant as it affects only the location 

of the initial point yeO) on the curve. 

Our aim now is to use the above equations to find all smooth 

closed curves y representing (normalized) homothetic solutions. 

We begin by noting that solutions to (2.3) (hence also (2.1'» 

are globally defined as functions on m since the first integral 

implies a uniform bound on B • We remark that even system (2.1) 

with arbitrary constants ~1'U2 

the differential inequality 
r---

~ I(K2+S2) '. I = I ~1 K+J12S1 S ~~+J1~ 
bound. 

has only global solutions since 

also gives an a priori 

Thus, given a solution B of equation (2.3), equation (2.2) 

and the Frenet equations determine a curve 2 
Y : lR ->:R • Of 

course, the resulting y mayor may not be cloned. JIQwovor, WE' 

at least have 

Proposition 2.3 Any solution B of equation (2.3) is periodic 

and oscillates between the roots B+, B of 
.' 

the equation 
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(2.5) n = V(B) 

As the constant n tends to its lower limit, zero, the period 

of B tends to 17 W/A • In general, we have 

period(n,A) = * period(n,1) 

Proof: Given that B is periodic, the last statement is apparent 

from the above Remark. That B is bounded by B+, B_ follows 

at once from equation (2.4). The fact that B actually achieves 

these bounds - i.e., that B has finite period - can be seen as 

a consequence of the Sturm Comparison Theorem. 

Specifically, we ~ewrite equation (2.3) as 
B 

B" + 2A2T(B)B • 0, where T(B) = e ;1 • We note that T(B) 

is a positive, monotone increasing function of B, hence 

o < T (B_) S T (B) S T (B+) • It follows that 

2 1T S period (B) S 2w • As n tends to zero, B+ 

~A2T(B+) 12A2T(B_) 

and B also tend to zero, so T(B) is forced to ~pproach 

T (0) = 1 • 

To settle the closedness question we must still investigate 

the global behavior of curves y arising from equations (2.2), 

(2.3) and the Frenet equations. The global situation is easily 

clarified via 

D 
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proposition 2.4 Let K, B satisfy equations (2.2), (2.3) and 

Proof: 

let y be a unit speed curve 2 
y : lR -> lR 

having curvature K. Then the vectorfield 
I 

J = KT + ~ N extends to a non-constant Killing 
K 

field on lR2 " thus giving rise to a natural 

polar coordinate system (r , e) on 

origin being the zero of J. In fact, 

J = A 2 ~e I . 
y 

In general, if y is a curve in a simply connected space 

form M2 , a vectorfield J along y extends to a Killing field 

on M2 if and only if <VTJ,T> = 0 and <VTVTJ,N> = 0 (see [LS1]). 

For the above J equations (2.1') yield 2 
VTJ = ).. N , so J 

obviously satisfies the general criterion. The last statement now 

follows from the observation that at a critical point of K we 

have T = J so on the one hand, iJTi 
the other hand, we know that 

Corollarl 2.5 If we set y (s) = (r (s) , e (s) ) then the extrema 

of r (s) satisfy 

rmax r 
,,-2 min = - = - . 

Kmax Kmin 

In fact, r (s) is explicitly related to K(S) by 

K = C-e 
i)..2r2 

, 
where C is a constant"determined by A and n . 

c 
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proof: Note that at extrema of r , J and T are parallel. 

Therefore the proposition shows that extrema of rand K 

coincide. The first statement now follows upon comparing J and 

at an extremum of K(S) • 

To obtain the formula for K we note first tliat equations 
K' 2 2 2 K (2.2), (2.4) yield (j() + K = A (n+1 + 2lnr) • ~nce, 

our initial point so that r min = reO) and noting that 

choosing 
a ar is 

a unit vector perpendicular to J we have 

f s a = < T, i}r > ds 
o 

= 

__ .:do:,;;K ____ = 1in+1+2 In-r 
). K In + 1 + 2 ln .!£ 

). 

1 
- - K 

).2 min 

Using the first part of the corollary and solving for K gives 

the desired formula. 

Proposition 2.6 All non-circular homo the tic solutions are 

transcendental curves. 

c 

Proof: Observe first that the curvature function of an ~1gebr~ic 

curve with respect to any algebraic parameter is algebraic. If the 
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non-circular homothetic solutions were algebraic then 2 
r would 

be such an algebraic parameter. Hbwever Corollary 2.5 states 

that K depends exponentially on r2 

c 

Thus, in each period of K, Y behaves as follows 

(we might as well assume Kmin = K (0) : y begins at a point of 

tangency to an inner circle r = r . 
m~n 

point of tangency to an outer circle 

then returns. The angular progress of 

1 
= --2 K. ,proceeds to a ). m~n 

1 r = r = -- K , and max ).2 max 
y per period coincides' 

with the angular change of the unit tangent vector T per period, 

and y closes up smoothly if and only if this change ~e is 

rationally related to TI. [Note that these curves behave quali

tatively like cyclids, but that Proposition 2.6 rules out the 

possibility that any non-circular homothetic solution actually 

is a cyclid.] 

Consequently, in order to describe all closed homothetic 

solutions in ~2 it remains only to investigate the behavior 

of ~e over the set of solutions to (2.3). Using equations 

(2.2), (2.4), and setting L = perK, we obtain 

(2.6) 
L = f K ds 
o 

dB 

le- B (n-V(B) ) 

Proposition 2.7 As n increases from zero to infinity 0(n) 

decreases monotonically from I! TI to 1T • 
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The verification of the monotone behavior of 6(n) presents 

considerable technical difficulties and we therefore treat the 

integral e (n) in the appendix. 

To summarize the discussion of this section we have 

Theorem 2 Let 2 Y : lR/Z-> lR be a regular closed curve 

representing a homothetic solution of the curve shortening flow. 

Then y is an m-covered circle Ym' m = 1,2,3, ••• , or Y is a 

member of ,the family of closed homothetic solutions {Ym,n} 

having the following description: if m> 1 and n are integers 

satisfying ~ < ~ < 4 there is (up to congruence) a unique curve 

Ym,n which closes up in n periods of its curvature function 

K > 0 - a solution to equations (2.2), (2.3) - while making m 

orbits about the fixed point of the associated Killing field J • 

Six of the solutions Ym,n are pictured in Fi~re 1 below 

(the scale is not consistent, but only the similarity class 

matters anyway). The curves were generated by computer by investing 

gen) and then solving the system (2.1 1 ) together with the Frenet 

equations, using the initial conditions aCO)- 0 , KeO) - Kmin(n). 

This system is particularly well behaved because the right hand 

side is quadratic in terms which can be estimated linearly, given 

a uniform bound on K. 



m 

m "" 
n 
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m ... 3 
n ... 5 
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3. Asymptotic Behavior of Curves on 2-Manifolds 

Suppose 2 
Y = YO: lR/Z -> M is a smooth immersion for 

which the rescaled curve-shortening trajectory y'[ is defined 

for all time '[ > 0 • In Section 1 it was proved that the L' norm 

of K remains bounded (at leas~ in the planar case). If we assume 

that in fact converges in L1 then, owing to our knowledge 

of homothetic solutions in the plane, a great deal can be said 

about the possible asymptotic behavior of y'[ • To begin with, 

we have 

Proposition 3. If K,[(O) = K('[,O) is an all time solution to 

the system (1.10), (1.12) which converges in 

L 1 (JR/S) as '[ + 00 then the limit K = Koo is in 

COO (JR/Z) and satisfies equation (2.3) (with B 

defined by equation (2.2». 

Proof: We begin by integrating equation (1.10) twice: 

• 

Since K converges in L1 , the right hand side of the above 

equation clearly converges in L1 to some function H(o) • We 

claim that in fact H(o) = 0 • For suppose H(OO)· Ho > 0 for 

some °0 ; then for all sufficiently large '[ , 

a °0 u °0 
2 iT f f dldvdu > HO ' hence J JUKdvdU must tend to infinity, 

o 0 0 0 
'contradicting convergence of K. 
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Setting the right hand side of the above equation equal to 

zero, it follows by induction that K is 
00 c 

twice and observing that KR tends to zero in 

we recover equations (2.1'). 

Differentiating 

L 1 as 't ~ 00 

We would like to interpret the above result in terms of 

o 

convergence of curves. For plane curves this is particularly easy 

to do since th~ homothetic curvature K i's just the ordinary 

curvature k, once we rescale curves by homothe;y to have unit. 

speed. Since we are interested in asymptotic behavior as curves 

shrink to a point it is appropriate to generalize this to mani

folds via the exponential map. 

To be specific, suppose 

Then for sufficiently large 't 

TpM by -, 
Y't = expp (Y't)/L(yT ) . 

is just YT rescaled as above. 

converges to a point 

we can define a curve 

Of course, if M2 = ~2 

2 pEM . 

in 

then 

Theorem 3. Suppose 2 
Y eM 

T 
is an all time solution to the 

normalized curve shortening flow and suppose K converges in 
T 

L' . Then either Y't converges c' to a geodesic or Y't' converges 

to a point p E M2 , and Y T converges C' to one of the 

(similarity classes of) homothetic solutions or of 

Theorem 2. 

Proof: Suppose YT does not converge to a geodesic. Then there 

exist constants TO' Co> 0 such that l' > 1'0 implies 



- 30 -

Hence, equation (3) implies ~ < C (13 • If follows that d,. 

L(y,.) tends to zero. 

We claim that in fact converges to a point 2 pEM • 

To see this, we consider "i + GO and, for each i, a "strongly 

convex set" 2 r i eM (i.e. ari has strictly positive inward 

, curvature) which contains y,. and has diameter a bounded 
i 

m\ll tiple of diam (y ). For ,. > ,. i ' the curve Y,. must remain 
"i 

inside the fixed set ri J if Y,. ever touches ari ,the cur-

vature normal kN is actually pointing inward in a small neigh

borhood of any point of first order contact. So Y,. can never 

cross ari • We thus have a nested family of compact sets whose 

diameters tend to zero. 

It now makes sense to define for sufficiently large ,. . 
Since the Christoffel symbols for normal coordinates tend to 

zero at the origin, the curvature of Y,. approaches K,. as 

,. + GO • The theorem now follows from Proposition 3.1 and Theorem 2. 

[We remark· that the above theorem would still hold if Y,. were 
- 2 -2 defined simply as the rescaled trajectory, Y t e (M , g = (I gO) , 

and convergence of y were appropriately defined. Since the ,. 
curvature of (M2,g) converges to zero at any point p, it is 

clear how to define the limit of as a plane curve.] 

Since the trajectories of the curve shortening flow are 

necessarily regular homotopies one can be still more specific 

c 
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about asymptotic behavior if one specifies topological informa

tion about the initial curve YO 

Corollary 3.2 A M2 ssume, e.g., is topologically m2 or the 

2-torus, and YT converges as in Theorem 3. Then if YO is a 

simple curve (or regularly homotopic to a simple curve) either 

Y'[' converges to a geodesic or YT converges to'a circle. 

Proof: Suppqse YT does not converge to a geodesic. Then Yt 

must converge ~ to one of the Ym or Ym,n' and the same 

statement must hold when the rf·gular homotopy Y T is lifted 

to the universal cover m2 • But now the Whitney-Graustein 

Theorem implies that the limit must have rotation index ± 1 • 

Hence, m = 1 , so the curves are ruled out. 

For M = s2 one would need an additional geometric 

hypothesis 1 for there are only two regular homotopy classes of 

immersed circles in 52 (see [S]) , and simple curves are 

regularly homotopic to curves resembling Y for any odd ,m,n 

m • The proof of Theorem 3 provides one such hypothesis: 

Corollary 3 .. 3 The previous Corollary holds for arbitrary M2 

if YO 'is assumed also to lie in a strongly convex domain 
2 

rc:~ . 

c 
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Finally, we observe that application of Theorem 3 yields 

a particularly simple proof of some ~-convergence results 

for the curve shortening flow: 

Corollary 3.4 Suppose YO :E/Z --> M2 is not nUll-homotopic 

and not regularly homotopic to a geodesic; alter

natively, suppose YO: JR/Z->lR2 has rotation 

index zero (e.g., YO looks like a figure eight). 

Then the (normalized) curvature 

ting curve shortening trajectory 

converge in V . 
y .. 

T 

of the resu1-

cannot 

Before stating the second non-convergence result we recall 

that for closed curves c: lVz +"B2 the algebraic area A (c) is 

defined in terms of an integral of the winding number N(x,c) 

over almost all points x in JR2 

A (c) : = J N (x , c) dx = ~ J de t (c , C I ) da • 
. :RI c 

The criterion will also involve the rotation index 

Proposition 3.5 

m-Ind(c) = ~ f kds. 
c 

Suppose Y is a regular closed curve in JR2 

satisfying one of the following two conditions: 

i) A(y)~O and A(y}.Ind(y)~O 

11) k~O along y and N(p,y) <0 for some point pEJR2 • 

Let Yt b~ the trajectory of the curve shorteninq 

flow with initial curve y. 
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2 Then the L - norm of the rescaled curva-

ture K diverges before the length of Yt approa

ches zero, hence, within finite time L(t). 

i) For any differentiable family of curves c t : JR/Z -+JR2 

the differential of the algebraic area can be calculated in a 

straightforward manner: 

Using the flow equations (1.1) we obtain 

and by assumption i) , 

d -A(y )= -r kds = -21Tm, dt t "Yt 

We make use of Corollary 1.3 to bound the winding numbers: 

and we deduce a uniform positive lower bound on the enclosed 

area, i.e., on area{x: N(x'Yt)~ oJ. Thus, the isoperimetric ine

quality yields a uniform positive lower bound 'on the length of Y t' 

However, according to the proof of Theorem 3, the length 

would have to approach zero if the flow existed for all L>O. In 

view of Proposition 1.7.the L2-norm of K must therefore diverge. 

ii) In this case we look at the set 

2 Ft:={X€E : N(X,Yt )$ -1}, and its area, a t := area(Ft ). 

By hypot?esis aO>O. Our goal is to show that at is non-decreasing, 

then again use the isoperimetric inequality and finish the proof 

as above. 
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Notice that for an arbitrary differentiable family of 

curves c t : p./Z -+-lR2 the function t -+- at is only Lipschitz rather 

than c1 (differentiability may be lost at non-transversal inter

sections). The upper and lower Dini derivatives are given as 

·follows: 

D~ at = f max{det (ct/ I ct. 1 , ~tCt) (a) : a€c~ 1 {p} }ds (p) 

aFt 

D; at = f min{det(ct/lc~1 '~tCt) (a) :a€c~1{p}}dS(P) • 

ai\ 

In our case, since kt~O (by Corollary 1.3), we obtain the desired 

estimate: 

D~ at = f min{k(a): a€c;1{p}} ds(p) ~ O. 

aFt 

Actually, for trajectories of the curve shortening flow, at is 

differentiable, since kt is constant in almost all fibers c;1{p}. 

Figure 2, below, shows some initial curves which must 

develop singularities by the preceeding criterion. 

c 
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a) b) c) 

Figure 2 

Remark: In view of such examples as the figure eight, a full . 

account of asymptotics of the curve shortening flow would require 

that convergence be discussed in the sense of distributions. For 

example, for a standard symmetrical figure eight it is an open 

question whether the limiting curvature will be a sum of two 

Dirac measures 6=n(6 0 -61) or some other type of singularity. 
2 
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4. Homothetic Solutions as Saddle Points 

In the discussion of the homothetic solutions y in Sec-m,n 
tion 2 it was natural to regard the closed curves y as belonging m,n 
to a larger family of homothetic solutions which are not necessarily 

,closed. Viewed in this context the curves y . occur almost inci-m,n 
dentally; by continuity, the real number Ae(=angular progress per 

period) must sometimes be rational. Moreover, the proof that 

11'< Ae < ~11' (in the appendix) leaves the condition 1 <!!! <12 looking 2 n 2 

rather arbitrary. 

One goal of the present section is to impart the opposite 

impression - namely, that there is a good reason for the existence 

of each Ym,n - and, at the same time, to offer a partial explanation 

for the following rather curious coincidence: the classification of 

the (non-circular) closed 

plane (critical pOints of 

same arithmetic condition, 

( see [ LS 1 ]) • 

free elasticae am,n in the hyperbolic 

f ak2 ds : Imm (S 1 ,H) .. lR) follows the very 

.1. <!!! < 12 , and qualitative description 
2 n 2 

The point is that the curves Y (a ) are precisely the m,n m,n 
saddle type' critical pOints one is led to expect if one combines 

stability computations for the multiple circle solutions ym (am) 

with knowledge of trajectories tending to Singular curves. 

Before proceeding to concrete results we first describe the 

overall picture. Observe that y is "fixed" by the group G=G(m,n)= m,n 
<g>mZn ' where 9 corresponds to rotation by e=2~m. Figure 3 des-

cribes, for the case m=2, n=3, a G-equivariant regular homotopy 
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beginning at ym, passing through y , and tending to a singular m,n 
curve r . m,n 

m 
y 

a) b) c) 

Figure 3 

r m,n 

d) e) f) 

A reasonable conjecture associated with this picture is that 

if £>0 is a small number and N is the outward pointing normal 

along y , then the rescaled curve shortening flow carries m,n 

y + = Ym,n + £N to ym and y _ = Ym,n - EN to a singular curve resembling 

r of Figure 3(f). m,n 

The evidence for such a conjecture comes in two parts. By 

Proposition 3.5, any' curve resembling (~ or~)' of Figure 3 must 

tend to such a singular curve; though Proposition 3.5 does not 

directly apply to (d), the direction of the curvature normal vec-

tor kN implies that after a short time t>Q the hypothesis will be 

satisfied. [In this connection it is interesting to note that by 

Corollary 2.5 there exist homothetic solutions of unit diameter 

with arbitrarily small "positive centers". Hence,. Figure 3 (d) rep

resents an extreme case for such a general divergence argument.] 
m On the other hand, Proposition 4.2, below, suggests that Y 

ought to detract curves -resembling (b) of Figure 3. We note that 
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this requires the condition ~ < I{ , while the condition ~< ~ is 

implicit in Figure 3(d): for each of the n petals must contribute 

at least ~ to the total rotation 2~m. Thus, the arithmetic condition 

of the classification will have been explained. 

We turn now to the linear stability analysis for circles. The 

The multiple circles ym have curvature functions K m-2nm, which rep

resent critical points of the rescaled flow on the manifold 

O={KECC»(lR/Z): if yes) has \mit length and curvature IC(S) then y is a 

mgular closed curve }. 

Setting a(u}=,bK(S)dS, we can write 

O=b:E CC»(lVZ) : f6 Kds=21fm, m an integer, and f6 e ia (s) ds = O}. 

It follows that the tangent space to ° at KEO can be identified 

with TKO={hECC»(lt/Z): 0= f~h(S)ds = Jd f; h61) du eia(s) ds} = 

{hE:CC» (:R/Z) : 0=f~hds=f6h(S)f~eia(S)dOOs}. In particular, the tangent 

space at the m-fold circle is given by 

(4.1 ) 

We wish to consider now the linearization of the flow . 
K=K"+ (SK)' aP(K) at some fixed KEO: 

(4.2) h=OP(K)h= h"+(Sh)' +(OS(K)h· K)'.Lh, 

where 

(4.3) 

For the special case K=K .2~m , equations (4.2), (4.3), and the m 

facts B(Km)=O , fcihdS=O, imply that the linear map L:TK~+ TKmO 

is given by: 
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The multiple circles ym, Iml>1, are linearly 

unstable critical pOints of the rescaled flow. 

Proof: Set h(s)=cos2ns. Then for m¢±1, h€T K • Thus we have found 
m 

a positive eigenvalue: Lh=4n 3 h. 
c 

Remark: We note that the above proposition has a simple geometric 

interpretation. Consider, e.g., the case m=2. Then varying K2-4H 

in the direction of h=cos2ns corresponds to shrinking one circle 

of y2 while enlarging the other (one should picture a pair of tan

gent circles of slightly different radii, one inside the other). 

The proposition may be interpreted as saying that the flow does 

not tend to restore such perturbations to circularity, but rather, 

it amplifies the inequality in size. This shows once again the 

striking difference between the embedded and non-embedded cases of 

the curve shortening problem. 

On the other hand, we will show now that if one restricts L 

to the appropriate subspace of "symmetric" vectors in TK S1 then 
m 

positive eigenvalues no longer appear. Specifically, we consider 

the group G=G(m,n)=<g>aZn introduced above,which acts on S1 by 

(4.5) gK(S) = K(s-2nm/n). 

Let gG be the fixed point set of G, nG={K€S1: gK=K}. Note 

that the flow on o restricts to a flow on the submanifold OG. 
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Now the tangent space to gG is given by T~gG={hETKg: gh=h}. In 

particular, it follows from equations (4.1) and (4.5) that any 

hETK gG has Fourier series representation of the form 
m 

(4.6) 
00 

h(s) = t a j COS(2n j ns) + b J,Sin(2n j nS) 
j=1 

(in fact aj=bj=O in cas.e jn=m). 

(4.7) 

substitution of the series (4.6) into formula (4.4) yields 

00 

Lh=(2n)2 t (2m2-j2 n2) (a j COs(2n j nS) + b j sin(2n j ns». 
j=1 

From formula (4.7) follows at once 

Proposition 4.2 The linear map from T gG(m,n) to itself has 
K m 12 

strictly negative spectrum precisely when I~I< 2; 

In this case the eigenvalues Ai of·L are bounded 

from above by Ai« ~ -. ~) <0. In other words, 

the flow on gG(m,n) is linearly stable at K 
m 

exactly when m and n satisfy the above inequality. 
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s. Appendix 

Here we discuss the function e (O,~) --> R which 

arose in Section"2: 

B 
e (n ) ::: f + --;=:;:::dB==== 

B Ie -B (n-V ( B) ) 

The convex potential function B V(B) ::: e -B-1 assumes any value 

n ~ 0 at precisely two points B_ (n) :;; 0 :;; B+ (n) • Thus it defines 

1 a bijection 2(B+-B_) : [O,~) --> [O,~) . The inverse of this 

bijection will be denoted by p. The parameter w::: p-1 (n) 

will be useful since it provides explicit analytic expressions: 

Lemma 5.1 

Proof: 

Setting ,,= (sinh w) /w , one has 

p (w) = w coth w-1 + In a 

B + = B + 0 p (w) ::: w - ln a 

B ::: B_ 0 P (w) ::: -w - ln a 

In addition to we shall consider 

from which we conclude 

w = e U sinh w 

1+n ::: e U cosh w-u 
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Eliminating u by means of the first of these two equations 

yields the desired expression for P • The other claims are 

also immediate from 

u = -In o. 

When discussing monotonicity and range of e we can replace e 

by eop • In the following computation, and thereafter, we will 

simplify notation by suppressing the arguments pew) and n 

in the functions B+ and B_ 

c 

9op(w) = (fBO_ + fOB+)' e lB _..;;;d=B __ 
Ip (w) -v (B) 

= JP(W)h(n) dn 
o ,"-n"7"( -P ..,..( w'""l)---n'T'") 

where 

(5. 1 ) ) - 9 

Thus we have 

(5.2) 1 dx 9°p(w) • f h(p(w).x) ° Ix (1-x) 

ProEosit1on 5.2 
11m 9(n) = 11m 9op(w) = 1f{7 

n+O w+O 

lim 9 (n) ·:'lim 9 o p(w) = 1f 
n+CD W+ClO 

I 
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Proof: Clearly 
0 B -> -00 

IVTBf -> 12 as B 0 
B '2 -> 

2·sinh '2 
1 B -> 00 

It follows that 

{ n, as n(n) -> 
n -> 0 

n -> 00 

f ' dx -- 1T • This yields the claim, since 
o (x(1-x) 

Computer plots of the functions 1 - e op 
1T 

and hop will 

provide some intuition for further analysis (see Figure 4) . 

1.2 1 -90 p (w) 
1T 

o 

10 
1.0~--~----+----+----~~-r----~--~--~~--~--~----+----+-- w 

hop (w) 

Figure 4 
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We observe - and later in this section will actually prove -

that hop is monotone decaying for small w. In view of formula 

(5.2) this fact implies that 0 0 p is actually decaying in the 

same neighborhood of 0 • However the graph also indicates that 

hop is not globally decaying; thus for large w the monotonicity 

of 0 0 p has to be derived from other ideas. We carry out these 

arguments next. 

The concave function B --> e-B(n-V(B» takes its maximum 

at B = -n ; for large n this point gets arbitrarily close to 

B + 1 (c.f. Lemma 5.1). This motivates the following splitting

(for w ~ 1 ) : 

0 1 (n) fB_+1 dB = 
B Ie -B (n-V (B) ) -

(5.3) 

B+ dB O2 (n) = f 
B +1 Ie -B (n-V (B) ) 

Lemma 5.3 0, is monotone decaying and lim 0 1 (n) = a • 
n-+oo 

Proof: A direct calculation yields (x:= B-B 

O () f ' dx 1 0P w = o I -B -x f(1+xe -)e -1 

= f1 
o /(1 +xT (2w) ) e -x_ 1 

dx 

This already proves the lemma, since the function 

T(2w) = (e 2W-1)/2w is monotoniy and tends to infinity with w. 

D 
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Lemma 5.4 
_____ e _)1 
T(2w)+1-e 

Proof: Setting O(x) = (1-xT(-2w»ex-1 , the sUbstitution 

x = B -B yields 
+ -

9 2 O p(w) f 2w- 1 dx = 
0 IDTXT 

hence, 

1 2T' (-2w) xe x dx 1 = . - + f 2w- 1 (92 o p)' (w) - 2 
0 o (x) Ii5lXf 10 (2w-1) 

= -
T' (-2w) • + (_e )1 

1-e+T (2w) T(-X)-T(-2w) 

The claim follows, since by the monotonicity and convexity 

properties of T we have 

T' (-2w) 
T(-x)-T(-2w) 

Observe that for w c: 2 one has 

T' (-2w) 

1-T(-2w) 

T' (-2w) 

1-T(-2w) 

= 1 1-(1+2w)e-2w 1 

4w2 • 1-(1-e-2w)/2w ~ 4w2 

c 
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Hence we conclude: 

(5.4) 1 (02 o p) I (w) ~ - -2 0 op (w) 
4w 2 

(
e 2W- 1 )-1 

+ - 1 
2w 

Proposition 5.5 The function 0 0 p is monotone decreasing 

and hence >n on the interval [5.22,=) • 

Proof: Since e = 01· + 02 ' it is sufficient in view of 

Lemma 5.3 to prove the claim for 02 0 p • We already know that 

(5.5) lim e 2 0 P (w) = lim 0 0 p (w) - lim ° 1 0 p (w) = n 
w~= W w~m 

A computation yields 

for we: [5.22,=) • 

From equation (5.4) we thus get on this interval the differential 

inequality 

(O op)' (w) :Ii - --L (020P (w) - n + 6 '10- 4) 
2 4w2 

-4 which gives decay wherever °2 0 p > n - 6·10 • The result now 

follows from equation (5.5). 

D 
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As mentioned earlier, for O:S w :s 5.22 monotonicity is 

going to be deduced from monotonicity of hop • Setting 

o = (sinh w) /w as before, one computes 

ho p (w) = IP1Wf (1T12Wl + 1T1-2W1 J 
T(2w)-1 1-T (-2w) 

( w/2 e -w/2 ) 
(5.6) = IP1Wf ra e w + 

oe -1 1-oe-w 

[cosh w +0 (-1 +lno) ] 1. 2 sinh!: • 
1 + 0 = 2 2 (sinh 2w) /w -0 --1 

For the purpose of analyzing hop in detail it is more 

convenient to pass to the variable x = w2 and consider 

H(x) : = hOp(/:K) • We then use the function 

(5.7) a(x) = sinh rx 
IX 

= 00 
1: 

k=O (2k+')! 

_, ___ xk 

For later use we state some elementary facts regarding 0 

Lemma 5.6 

i) 

ii) 

iii) 

o· (x) = 00 

1: k+1 xk 

k=O (2k+3) ! 

222 2w 0' (w ) = cosh W -0 (w ) 

20(4x)-1-0(x)2 = 20(4X)-1-! (cosh(2/X)-1) 

= ax r 2k+3 (4x)k 
kiaO (2k+4)! 
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We now rewrite equation (5.6) in terms of a and a' 

H (x) = xho' + a IX no • a (~4) • 1 + a (x) 
2a(4x)-0(x)2_1 

In order to show that H is monotone decaying we compute its 

logarithmic derivative: 

(5.9) 

where 
f1 = 1 [In (20' + a Ina) ] , 2' x 

f2 = 1 ~ (!) 4 a 4 

1 1+50' 
f3a= 5 · 1+0 

f - 1 1 
3b- '5 'f+(j 

f4 = (In (k!O ~~;!4) 1 Xk)) , 

We will need to make use of the following elementary 

l1li 
Lemma 5.7 Let A(x) = I and b(x) = 

k=O 
be 

the power series with positive coefficients ak , bk ' converging 

on Dc::R • If ak/bk is a non-:1ncreasing sequence then the 

function A(x)/B(x) is non-increasing on 0 n [0,l1li) • 

Combining this lemma with the previous formulas and the 

power series representations for 0, a' , and a" , we obtain 
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Lemma 5.8 The functions are 

positive and non-increasing. 

The next step will be to write f1 in terms of monotonic 

functibns) too. For this purpose it will be useful to consider 

the auxiliary functions 

(~) -1 lno 1 o (x2 ) (5.10) r(x) = • -- - 1 = 30 x + 0 x 

q> (x) 0" 1+x(- - 0' 
-) 

0' , 
1 +x (In - ) 1 2 1--x+O(x) = = = 

0' 0 0 15 

Lemma 5.9 0< q>(x) S q>(0) = 1 , and q> is monotonic. 

Proof: Using i) of Lemma 5.6 and formula (5.7) we calculate 

q>(w2 ) +~ d ' 2 w d 1 1 = 1 dw (In L (w » = 1 - 2" dw (In - (coth w --) ) 2 0 w w 

1 w sinh (2w) 2w 2 -= "2 w sinh (2w) - cosh (2w) + 1 

Using 2 x = w , the numerator and denominator can be represented 

by power series as 

x ~ 1 (4x)k 
k=O (2k+3)! 

and 

2x r 2k+2 (4x) k 
k=O (2k+4)! 

respectively. Monotonic1ty now follows from Lemma 5.7. 

c 
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r~O 

1 +r:S.1 
q) 

i) 

ii) 

iii) r and r -3+r 
are non-decreasing. 

Proof: i) The function a' 1/1 (x) : = x - -a ln a vanishes at 

x = 0 and has derivative 

non-increasing). 

ii), iii) We compute: 

r' 

1/1' = x (~)' :s 0 a 

a' 1 -= - (5!.: _ ~) + - -1 +r 

_> r' 

a' a a ln a 

= 1 ( 1 - q,(x) ( 1 +-r» x 

x 

(recall that a' 
a is 

Observe that r' (0) = 1/30 • Hence the right hand side will stay 

positive since q) is monotone decaying. This proves all the 

remaining claims. 

This lemma enables us to write f1 in terms of monotonic 

functions. Setting ln a 9 = 20' + a - , we have x 

ln a a' a ln a q' = 20" + a' - + x X - x2 

hence 

(5.11) 2 a" 1+r a' r 1 
= 3+r 0' + 3+r a "J'+r i 

c 

, 
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We consider intervals [u,v]c[O,~) and put: 

1 ( 0'" 1 0' I ) r a I 
F + (u,v) = 3+r ~ + 2';- (u) + (f2+f3a) (v) + 3+r (v), 20' (u) 

(5.12 ) 

F_ (u,v) 1 .-2v 

Lemma 5.8, formula (5.11) and Lemma 5.10 iii) now yield 

(5.13) 
HI. 
H(X) ~ F(u,v) = F+(U,v) - F_{u,v) , VxE [u,v] 

This estimate provides a numerical criterion for proving rnonoto-

nicity of the positive function H. In fact, the following table 

establishes the proposition below: 

wi 
2 2 

F_(wi,wi +,) 
2 2 F(w.,w· 1)· 
l. l.+ 10 4 

0 .2883 -.349 1.6502 .2618 -.373 2.3296 
2.82 .2397 -.439 

3.2076 .2222 -.328 

3.5278 .2083 -.314 

3.7996 .1972 -.309 

4.0352 .1881 -.305 

4.2426 .1806 -.364 

4.4268 .1743 -.334 

4.5924 .169 -.304 

4.7418 .1644 -.358 

4.8778 .1604 -.344 

5.0024 .1569 -.348 

5.117 .1538 -.331 

5.2226 • 1511 -.331 
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The functions hop and Sop are decaying 

In view of Proposition 5.5 we have monotonicity of the 

functions S and Sop on [O,~) , and the range of e can 

be read off from Proposition 5.2. 
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