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Further Results on Supernumary Polylogarithmic Ladders

Abstract

With the help of the PARI computer program a number of matters left unresolved from
previous work have now been settled. In particular, ladders of the base 'ljJ (see [1]) have
been extended to the sixth order, and involve a new index, 60, found by the PARI prograrn.
The base from (p, q) = (11,7) has an additional index 20, and this combines with earlier
results to produce a valid ladder. The apparent "barren" feature of certain equations is now
explained in terms of a need to work with a sufficient number of results. It is confirmed that
the equation with (p, q) = (5,3) does not indeed possess any SUpelTIUmary results.

A complete investigation of the Salem number from an equation of the fourth degree is given:
it possesses results to the 8th order. An introduction is given to similar, ongoing, studies for
the smallest Salem number, which conjecturally extends to the 16th order.

Some ladder results for combined bases are found, with one such formula deducible from a
three-vatiable dilogarithmic functional equation.

1. Introduction

The concept of supemumary ladders was first introduced in [1] in relation to the base equation
uP + u q = 1, which, for general integral values of p and q, possesses 8 generic cyclotomic
equations, leading to six dilogarithmic ladders and finishing with a single formula at the fifth
order. For the many details the reader is referred to the original paper. However, there are
particular values of p and q for which additional cyclotomic equations can be found, and
which, in some cases, at least, lead to valid ladders that are not part of the generic set; it is
these that are referred to as "supemumary". A number of features were left unresolved in the
reference paper. They have now been further studied and are reported on here, together with
additional results on Salem numbers and on combined bases.

2. Ladders for the Base 'ljJ

2.1 This base satisfies the equation

(1)

and in [1] two supemumary cyclotomic equations of indices N = 30 and 42 were found. The
former gave valid ladders as far as the 4th order and the latter to the second only. The reason
that it went no further has now been traced to a programming error, and when this was rectified
it, too, extended to the 4th order: and when combined with the other supemumary result of
index 30, the two between them were found to extend to the fifth order. This is not enough,
however, to yield anything at n = 6; a further result is needed. Using a method due to Zagier
[2]a further cyclotomic equation, of index 60, has been located, and this, in conjunction with
the others, extended to give a unique result at the sixth order. This augments the number of
such bases that give valid ladders beyond n = 5 (the limit of Kummer's equations) from 3
to 5, since the additional base <p, satisfying <p4 + <p = 1, gives closely related formulas. And,
as reported later, some Salem numbers do so tao.



2.2 From (5.14) of [1], define

Ln(42,~) =li(n,42) -li(n,21) -li (n,14)+li(n,7) -2li(n,6)

+ 2li (n, 2) - li (n, 1)

with the shorthand notation

li (n,N) = Lin(~N)/Nn-l

Then, from (5.16), L~2)(42,~) = 0 when n = 2, where

L~2)(42,~) = 42 Ln(42,~) - 37 Ln(2,~) - 8 ((2) 1(n - 2)

with

At n = 3 the combination

(2)

(3)

(4)

(5)

(6)

is found numerically (to 50 decimal accuracy) to equal 9 ((3). A combination, free of ((3),
of the same nature as (5.39) to (5.42) of [1] (to which the reader is referred for notation) is

and this, by construction, is zero at n = 3. At n = 4 it is found that

IS zero. A combination, valid at n = 5, is found as

This is as far as the results can be taken without fOTmulas with a new index.

2.3 The following cyclotomic equation was found by Zagier's method, and is readily confirmed
by algebraic manipulation of the base equation (1). (It is the only additional cyclotomic
equation satisfied by ~)

and leads to constructing the ladder

Ln(60, ~) =li (n, 60) - li (n,20) - 3li (n, 15) - li (n,12)

+ 3li (n,5) -li (n,2)

Define

(11)

L~2) (60, ~) = 60 Ln (60, ~) + 13 Ln (2, ~) + 13 ( (2) 1(n - 2) (12)
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(16)

Then it is found numerically that this is zero at n = 2. A combination free of ((3) and zero

at n = 3 is found as

Define
L~5) (60, 'l/J) = L~4

) ( 60, 'l/J) + 232 L~4
) ( 10, 'l/J) + 1747 ( (4) 1(n - 4) (14)

This expression is zero at n = 4, and at n = 5 it is found that

156L~5)(60,'l/J) + 1104L~5)(30,'l/J) + 17892L~5)(18,'l/J) = 28747 ( (5) (15)

Along with the original (5.46) of [1], two expressions clear of ((5) can now be constructed:

L~6) (42, 'l/J) =637 L~5) (42, 'l/J) - 5768 L~5) (30, 'l/J) + 41688 L~5) (24, 'l/J)

- 9525 L~5) (18, 'l/J)

and
L~6) (60, 'l/J) =1456 L~5) (60, 'l/J) + 10304 L~5) (30, 'l/J) - 229976 L~5) (24, 'l/J)

+ 80751 L~5) (18, 'l/J)

Both of these are zero at n = 5. At n = 6 it is then found that

69390L~6)(60,'l/J) +419310L~6)(42,'l/J) +651115309( (6) = 0

(17)

(18)

It may be noticed that the coefficients of the leading terms in (16) and (17), namely 637

and 1456, are both simple multiples of 91. The number 91 itself seems to be an artifact of
the precise choice of terms used to construct the ladders; a different choice would lead to
a different number. However, the fact that the coefficients of the leading terms contain a
substantial common factor seems to be a more general property, and is exhibited strongly in

the results for the Salem numbers described later.

3. Ladder Combinations and the Case xlI + x 7 = 1

3.1 If x satisfies an irreducible equation of degree n with 2n _ complex roots and (n+ - n_)

real roots, then Zagier has indicated that, at the level of the dilogarithm, n_ component­
ladders are independent, so that (n_ + 1) are needed to form a valid ladder result. This helps

to explain why some of the cylotomic equations in [1] were considered "barren": they needed
to be combined with furtheT results to form a valid ladder, and if these are not forthcoming,
no results will ensue, supemumary cyclotomic equations notwithstanding. A case in point is

the base determined by [1]:

(19)

for which two supemumary and two available generic results exist. Equation (19) factorises

as
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and the irreductible 9th degree polynomial has one real root and foUT complex pairs. Thus

(n_ + 1) = 5, so an additional relation is needed to produce a valid result.

3.2 A new cyclotomic equation of index 20 has now been generated, making possible a test

of the above assertion. It is found that

with a corresponding dilogarithmic component-ladder:

L (20) = li (20) - li (10) - 21i (4) + li (3) - li (2) + li (1) - 5 log2 (x) (22)

where li (N) = Li2(x N )/N. The remaining equations were found in [1] and lead to defining

L (10) = li (10) - li (5) + li (3) + li (2) - li (1) + (5/2) log2 x (23)

L (9) = li (9) + li (3) - li (2) +2 log2 x (24)

L (7) = li (7) + (11/2) log2 x (25a)

L (30) = li (30) - li (15) - li (6) + li (3) + 2 log2 x (25b)

Of these the last two are generic and the others are supemumary. With the required five

relations the resulting valid ladder can now be readily found:

15 L (30) - 10 L (20) - 5 L (10) +9 L (9) - 14 L (7) + 2 ( (2) = 0 (26)

Since, according to Zagier, (n+ +n_) further results are needed to reach a valid result at the

third order, these fOTmulas cannot be expected to extend beyond the dilogarithm.

3.3. The new cyclotomic equation (21) of index 20 was generated by Zagier' s program, which

is, in principle, exhaustive. The same program was applied to the equation x 5 + x 3 = 1, and

it confirmed that, for this base, no supemumary results exist, though several were found in
[1] for p = 5, q = 1, 2 and 4.

4. Smallest Degree Salem Number

4.1 The Salem numbers have their complex roots on the unit circle, and have been extensively

studied by Boyd [3].

The smallest degree is given 'by the quartic

with real root in (0, 1)

~4 _ ~3 _ ~2 _ ~ + 1 = 0

Vf3 +1- v2Vf3 - 2
x = 4 = .5807.....
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The remaining real root is I/x, and there are two complex roots on the unit circ1e.

Eleven cyclotomic equations have been located, of indices from 3 to 36 :

6 ( 2)3( )-2I-x = I-x I-x x

8 ( 4) ( )-2 3I-x = I-x I-x x

(29a)

(29b)

(29c)

(29d)

(2ge)

(29f) .

(29g)

(29h)

(29i)

(29j)

(29k)

These are arbitrary, though convenient, combinations of factors. Clearly (29f), for example,
could be combined into (29k) to give alternative fOIDls. Doing so would affect the correspond­
ing numbers appearing in the ladders, but would not change their basic character. However,
there may be combinations that yjeld slightly smaller coefficients. In the ensuing printout the
leading teIDls at the fifth order, for example, contain a common factor 7349; conceivably a
superior choice at the lower levels could ehminate it, though at the sixth order only a modest

factor 13 is common to the leading teIDlS.

4.2 According to Zagier's construction, the ladders should combine in pairs, with ((2), to

give 11 - 1 = 10 independent results at the second order. They should also combine in
pairs, with ((3), to give 10 - 1 = 9 results at the third order, or 8 without ((3)- this is a
requirement for extension to the fourth order; and so on. The reason that only 2 rather than
3 (= n+) are used up is that the real roots occur in inverse pairs for this symmetrical base
equation, so the number of independent real roots is halved, leading to a net loss of only
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(n+ - n_) /2 + n_ = (n+ +n_) /2 = 2. This schema is in fact found, and is shown in the
following. printout, wherein z m _ ((m) and

item 3 defines the modified polylogarithm, along the lines of (3).

item 4 defines a logarithmic term similar to (5)

items 5 to 15 define 11 polylogarithmic ladders 1N (n) of index N, (3 to 36), and
order n.

items 16 to 25 define the 10 ladder combinations 1TI N (n) which, along with ((2),
are zero at n = 2.

items 26 to 33 define the 8 ladder combinations n N (n) which are absent any
((3) term, and are all zero at n = 3.

items 34 to 40 define the 7 ladder combinations p N (n) which, along with ( (4),
are zero at n = 4.

items 41 to 45 define the 5 ladder combinations q N (n) which are absent any ((5)
term, and are all zero at n = 5.

items 46 to 49 define the 4 ladder combinations rN (n) which, along with ( (6),
are zero at n = 6.

items 50 and 51 define the 2 ladder combinations s N (n) which are absent any
( (7) teim, and are each zero at n = 7.

item 52 defines the sole ladder combination t N (n) which, along with ((8), is
zero at n = 8.

The arbitrary choice of factors entering the component-Iadders notwithstanding, this final

result is unique, since the leading terms containing Lis (x 36
) and Lis (x 30

) must occur here,
with the coefficients as specified. Any common factors have already been eliminated in
this result. Thus the 26 digit multiplier of ( (8), enormous though it is, seems unavoidable.
However, it can be written as a product involving the highest common factors of the leading

terms of the previous three ladders, namely 7349, 13 and 11033267 to give a net coefficient
13 x 7349 x 11033267 x M where

M = 16450174632074 (30)

This strongly suggests that there may be alternative formulations with more modest coeffi­
cients.
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Polylogarithmic Ladders ror Salem Number

1 \prec111oo-100
2 ._re.1«rootl(yA6_yA3_yA2_y+1»(1),
3 11(0,k)-po1y10;(0,xAk)/k A (D-1)
4 1(D)-10;(x)AO/(DI)
5 13(D)-11(D,3)+11(D,1)+2*1(D)
6 16(D)-11(D,6)-3*11(D,2)+2*11(0,1)+1(0)
7 18(0)-11(0,8)-11(0,6)+2*11(0,1)+3*1(0)
8 110(D)-11(0,10)-2*11(D,S)-11(0,2)-1(D)
9 111(D)-11(D,11)+5*11(D,1)+8*1(D)
10 112(n)-11(D,12)-11(D,6)-2*11(D,6)+2*11(D,2)+1~n)

11 114(n)-11(D,14)-11(D,7)-11(D,2)+3*11(D,1)+'*1(0)
12 118(n)-11(0,18)-11(0,9)-2*11(D,6)+11(n,3)+11(0,2)+1(D)
13 120(n)-1i(D,20)-11(D,10)-11(0,5)-11(D,4)+11(D,2)+11(D,1)+2*1(n)
14 130(n)-1i(D,30)-11(D,1S)-11(D,5)-11(D,3)-3*11(D,2)+3*11(D,1)+2*1(D)
15 136(D)-11(D,36)-11(D,18)-3*11(D,4)-11(0,3)+3*11(0,2)+3*11(0,1)+6*1(D)
16 m6(D)-3*16(D)-9*13(D)+4*z2*1(D-2)
17 m8(D)-8*18(D)-9*13(D)~3*z2*1(D-2)

18 m10(D)-10*110(n)-9*13(D)+8*.2*~(D-2)

19 m11(n)-11*111(D)-36*13(D)-8*12*1(0-2)
20 m12(n)-12*112(D)+15*13(D)-13*.2*1(D-2)
21 m14(D)-1*114(n)-18*13(D)+.2*1(D-2)
22 m18(n)-3*118(D)+2*13(D)-2*z2*1(D-2)
23 m20(n)-20*120(D)-9*13(D)-8*z2*1(D-2)
24 m30(n)-30*130(n)-99*13(D)+32*z2*1(D-2)
25 m36(n)-18*136(D)-37*z2*1(n-2)
26 n10(D)-40*m10(D)-63*m6(D)·22*m8(D)
27 n11(n)-22*m11(n)-21*m6(D)-78*m8(D)
28 n12(n)-12*m12(n)+33*m6(n)-10*m8(D)
29 n14(n)-14*m14(n)-15*m6(n)-14*m8(n)
30 n18(n) -36*m18 (n) +17 *m6 (n) -2 *m8 (.n)
31 n20(n)-16*m20(n)+15*m6(n)-22*m8(n)
32 n30(n)-40*m30(n)-4S7*m6(n)-166*m8(D)
33 n36(n)-J6*mJ6(n)+16S*m6(D)-218*m8(D)
34 pll(n)-J3*Dll(n)-75*D10(n)+826*z4*1(D-4)
35 p12(n)-114*n12(n)+30*n10(n)-637*.4*1(n-4)
36 p14(n)-798*n14(D)-330*D10(n)+3131*z4*1(n-6)
37 p18(n)-171*n18(n)+6S*n10(n)-275*z4*1(n-4)
38 p20(n)-142S*n20(n)-1935*D10(D)+3647*z6*1(n-4)
39 p30(n)-8SS*nJO(n)-4S4S*D10(n)+45044*z4*1(n-4)
40 p36(n)-684*n36(n)-2700*n10(n)+11825*z4*1(n-4)
41 q14(n)-S1443*p14(n)-549670*p11(n)-448632*p12(n)
42 q18(n)-66141*p18(n)+468787*p11(n)+S68482*p12(n)
43 q20(n)-29396*p20(n)-3672757*p11(D)-4510188*p12(D)
44 q30(n)-7349*p30(D)+634524*p11(n)+1318488*p12(n)
45 qJ6(n)-22047*p36(n)-3300946*p1l(D)-3812480*p12(D)
46 r18(n)-1381536*q18(n)+1726844*q14(D)+2009631208533*.6*1(D-6)
47 r20(n)-6S0*q20(n)-5880*q14(D)-5244121467*z6*1(D-6)
48 r30(n)-959400*q30(n)+2736S80*q14(D)+3500076239803*z6~1(n-6)

49 r36(n)-921024*q36(n)-6189316*q14(D)-7172856338635*z6*1(n-6)
50 830(n)-275831675*r30(D)-697481757*r18(D)-83660467200*r20(n)
51 s36(n)-99299403*r36(n)+601178907*r18(D)+94027038400*r2O(n)
52 t36(n)-1SS097*136(D)-9083232*130(D)+17339886100376329220502046*z8*1(D-8)

5. Salem Number with Smallest Mahler Measure

5.1 It was eonjeetured [4], and this has been supponed more recently by ealculations of Boyd,

that the Salem number with thesmallest Mahler measure is a root of the equation

~lO + ~v _ ~7 _ ~6 _ ~5 _ ~4 _ ~3+ ~ + 1 =0 (31)

This polynomial possesses twO real roots, :2: = ·8501. .. and its inverse, and 4 eomplex pairs on

the unit eirele. Thus n._ = 4. '11+ - n_ = 2, and at the even order 4+ 1 = 5 ladders eombine
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to give a valid result. At the odd order there is a net loss of 5 in going from odd to even
orders (including the elimination of ( (n)). Since there exists a grand total of 71 cyclotomic

equations, there should exist 71 - 4 = 67 valid dilogarithmic ladders, 67 - 5 = 62 results

(free of ((3)) at n = 3, and so on, leading eventually to 4 results at n = 16. It is conjectured

that this is the highest order for which valid ladder results for any base may exist. Results

for n = 2 are reported in [5], and the generation of the higher order fOTffiulas is cUITently

under investigation, and has led to the expected 4 ladders at the sixteenth order.

6. Combination oe Different Bases

6.1 As a rule, attempts to combine different bases do not lead to interesting ladder results; no

cyclotomic equations are produced, the matter ending there. An exception exists for the bases

'ljJ and </> introduced in section 2, since the two are closely related. Their product x = 'ljJ </>

can be shown to satisfy

(32)

but this is insufficient to generate a valid ladder. More fruitful is the ratio y = </> / 'ljJ. It
satisfies the sextic

(33)

for which n_ = 2. Hence three cyclotomic equations lead to three component-ladders which

should combine to give a valid result.

Algebraic manipulation of (33) yjelds

6 ( 3)2( 4)( )-1 -41-y = 1-y 1-y 1-y y

(34)

(35)

(36)

(37)

From these, fOUT component-ladders, of indices 4,6, 10and 24, can be constructed. The index

24 ladder is somewhat simpler if the index 6 and 4 ladders are subtracted from jt, leading

to defining

L(4) = 2li(4) -li(2)+3l (38a)

L (6) = li (6) - 2 li (3) -li (4) + li (1) - 4l (38b)

L (10) = li (10) - 2 li (5) + li (4) -li (2) + li (1) +3l (38c)

L (24) = 2li (24) - 2li (12) - 3li (8) - li (6) + li (4) + li (2) (38d)
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with li (N) = Li2 (yN)/N; 1= ~log2 (y). Then it is found numerically that

10 L (10) - 6 L (6) - 8 L (4) = 3((2)

12 L (24) +L (4) = 3( (2)

(39)

(40)

The former of these can be obtained from (2.40) of [5] for which the base equation is (2.42):

(41)

With m = 0, p = 3, n = 4, q = 5 this becomes 1-2u4 +u8-u3+u5 = 0 which, on abstracting
a factor (1 - u2), reduces to (33). But no analytic derivation of (40) is currently known.
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