
Max-Planck-Institut für Mathematik
Bonn

Affine semigroups acting properly discontinuously on a
hyperbolic space

by

G. A. Soifer

Max-Planck-Institut für Mathematik
Preprint Series 2010 (117)





Affine semigroups acting properly
discontinuously on a hyperbolic space

G. A. Soifer

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Department of Mathematics
Bar-Ilan University
52900 Ramat-Gan
Israel

MPIM 10-117





Affine semigroups acting properly discontinuously on a

hyperbolic space

G.A. Soifer

December 16, 2010

1. Introduction.

Let Gn = Aff(Rn) be the group of affine transformations of Rn. The group Gn is the

semidirect product GLn(R)nRn, where Rn is identified with its group of translations. A

subsemigroup S of Gn is said to act properly discontinuously on Rn if for every compact

subset K of Rn the set {g ∈ S : gK ∩ K 6= ∅} is finite. If a discrete group consists

of isometries, then it acts properly discontinuously on Rn. But this is not true for an

arbitrary discrete subgroup of Gn, e.g. for an infinite discrete subgroup of GLn(R). A

subsemigroup S of Gn is called crystallographic if S acts properly discontinuously on Rn

and there exists a compact subset K0 of Rn such that
⋃

s∈S sK0 = Rn.

If the signature of a nondegenerate quadratic form B on Rn is (n−1, 1), then the form

B is called hyperbolic. Let O(B) (resp. SO(B)) denote the orthogonal (resp. special

orthogonal) group of B. Let GB be the subgroup of Gn leaving the form B invariant. It
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is clear that GB is the semidirect product O(B)nRn.

The motivating question here is the following:

Question (H.Abels, G.Margulis, G.Soifer). Is the Zariski closure of a crystallographic

affine semigroup leaving a hyperbolic form invariant a virtually solvable group ?

Our interest in this questions has two aspects. One is conceptual: Does the geome-

try of an action determine the algebraic properties of the acting semigroup? The sec-

ond aspect came from our joint works with H.Abels and G.Margulis on the Auslan-

der conjecture and our study of the dynamic of the action of affine transformations

([AMS1],[AMS2],[AMS3],[AMS4], [AMS 5]). The purpose of the present work is to relate

Margulis’ sign of an affine transformation to the study of the action of affine semigroups.

We introduce the notion of subsets X∞(S, K) and X∞(S) of the unit sphere Sn(0, 1) ⊂
Rn for a semigroup S of the affine group Gn and a compact subset K ⊂ Rn (see 2.4 for

definitions). These sets play an important role in the study of dynamics of affine trans-

formations [AMS 5]. Roughly speaking X∞(S) is the set of all possible directions “at

infinity” for the translation part of an affine transformation s of S. Remark, X∞(S,K) ⊆
X∞(S) for every compact subset K of Rn.

The goal of the present work is to prove the following

Main Theorem. Let S ⊆ Aff(Rn), n ≤ 3 be a subsemigroup. Assume that there exists

a compact subset K of Rn such that X∞(S, K) = S3(0, 1). Then the Zariski closure of S

is a virtually solvable group.

Using the same arguments and slightly changing the proof reader can show that if X∞(S)

is dense in S3(0, 1) then the Zariski closure of the semigroup S acting properly discontin-

uously is a virtually solvable group.

By Lemma 2.5 (3), we have X∞(S) = X∞(S, K) = Sn(0, 1). for a crystallographic semi-

group S and every compact subset K ⊂ Rn. Hence
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Corollary 1 Let S ⊆ Aff(Rn), n ≤ 3 be a crystallographic semigroup. Then the Zariski

closure of S is a virtually solvable group.

Remark. There is no hypothesis about an invariant form in the main theorem and

corollary 1. It is absolutely unclear if a semigroup which acts properly discontinuously on

Rn such that X∞(S) = Sn(0, 1) is a crystallographic semigroup.

Obviously we have

Corollary 2 ( see [GF]) Let Γ ≤ Aff(Rn), n ≤ 3 be a crystallographic group. Then Γ is

a virtually solvable group.

We remark that the proof in [GF] is based on completely different ideas. W.Goldman and

Y. Kamishima proved in [GK] the following theorem

Theorem Let Γ be a crystallographic group leaving a hyperbolic form invariant, then Γ

is virtually solvable.

Let us state the following conjecture

Conjecture Let S be a semigroup (or a group), S ⊆ GB, where B is a hyperbolic form.

Assume that X∞(S) is a dense subset of the unit sphere Sn(0, 1) of Rn. Then the Zariski

closure of S is a virtually solvable group.

Since the Zariski closure of S is virtually solvable, using almost the same arguments

as we have used in the final stages of the proof of Theorem 2 in ( [GS 2]), one can show

that

A crystallographic semigroup S of Aff(Rn), n ≤ 3, leaving a hyperbolic form invariant is

a group.

The example below shows that there exists a semigroup S which is not a group, such

that S acts properly discontinuously Rn.

Example. Let T = {v1, . . . , vk} be a set of vectors of Rn. Assume that the convex
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hull Conv(T ) of T does not contain the zero vector. Let S be a subsemigroup of Aff(Rn)

generated by the translations T̃ = {tv1 , . . . , tvk
}. Let us show that S acts properly dis-

continuously on Rn. Indeed, since 0 6∈ Conv(T ), there exists v0 ∈ Rn such that the scalar

product (v0, vi) > 0, i = 1, . . . , k. Put n0 = min1≤i≤k(v0, vi). Clearly, n0 > 0. Let s be an

element of the semigroup S. Then s is a translation by a vector vs, where vs = n1v1 +

· · · + nkvk, ni ∈ Z, ni ≥ 0, i = 1, . . . , k. Assume that ‖vs‖ ≤ c. Then we have c‖v0‖ ≥
|(vs, v0)| ≥ n0

∑k
1 ni. Thus, 0 ≤ ni ≤ c‖v0‖/n0 for all i = 1, . . . , k. Therefore the set of

vectors {v ∈ S |‖v‖ ≤ c} is finite for every constant c. Hence S acts properly discon-

tinuously on Rn. In contrast to this, the group generated by the set T̃ is not discrete in

general and therefore does not act properly discontinuously on Rn.

It is clear that if Rn = Conv(T ) then for the semigroup S generated by T there exists

a compact subset K0 of Rn such that
⋃

s∈S sK0 = Rn. By using the technique presented

in our paper [AMS 5] and the ideas of the example above it is possible, but not obvious,

to construct a free subsemigroup S of GB acting properly discontinuously on Rn in case

B is a quadratic form of signature (k, k − 1) where k is even and 2k − 1 = n. On the

other hand, by choosing a subset T such that 0 ∈ Conv(T ), it is possible to construct

a free semigroup S of GB, such that there exists a compact subset K0 of Rn such that
⋃

s∈S sK0 = Rn. However it will not act properly discontinuously on Rn.

I would like to thank my coauthors H. Abels and G. Margulis for arousing my interest

in this question. I would like to thank the referee for essential suggestions and important

remarks. The author would like to thank several institutions and foundations for their

support : SFB 701 ”Spektrale Strukturen und Topologische Methoden in der Mathe-

matik”, USA-Israel Binational Science foundation under BSF grant 2004010, the Emmy

Noether Research Institute for Mathematics, Bar-Ilan University and the Israel Science

Foundation under ISF grant 657/09 and Max Plan Institute for Mathematics, Bonn.
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2. Preliminaries.

In order to make the exposition as self-contained as possible, we first collect the infor-

mation needed in the proofs.

In this section we introduce the terminology we will use throughout the paper and

recall terminology and results from [A], [AMS 1], [AMS 2], [AMS 3], [AMS 4], [AMS 5]

and [BG]. We will prove some basic lemmas about the geometry and dynamics of the

action of an affine transformation under the assumption that its linear part is hyperbolic.

2.0. Let V be a finite dimensional vector space over a local field k with absolute value

| · |, and let P = P(V ) be the projective space corresponding to V . Let g ∈ GL(V ) and

let χg(λ) =
∏n

i=1(λ − λi) ∈ k[λ] be the characteristic polynomial of the linear transfor-

mation g. Set Ω(g) = {λi : |λi| = max1≤j≤n |λj|}. Put χ1(λ) =
∏

λi∈Ω(g)(λ − λi) and

χ2(λ) =
∏

λi /∈Ω(g)(λ − λi). Then χ1 and χ2 belong to k[λ] since the absolute value of

an element is invariant under Galois automorphisms, . Therefore χ1(g) ∈ GL(V ) and

χ2(g) ∈ GL(V ). Let us denote by V (g) (resp. W (g)) the subspace of V corresponding

to ker(χ1(g)) (resp. ker(χ2(g))). We will often use for an element g ∈ GL(V ) the follow-

ing notation, V (g) = V +(g), W (g) = W−(g), V (g−1) = V −(g) and W (g−1) = W+(g).

Let λ−(g) = max{|λ | : λ is an eigenvalue of g of absolute value less than 1 }. Let

λ+(g) = min{|λ | : λ is an eigenvalue of g of absolute value more than 1}. Put λ(g) =

max{λ−1
+ (g), λ−(g)}. It is clear that λ(g) = λ(g−1).

2.1. Recall that g ∈ GL(V ) is called proximal if dim(V +(g)) = 1. A proximal el-

ement g has a unique eigenvalue of maximal absolute value. Hence this eigenvalue

has algebraic and geometric multiplicity one. For S ⊆ GL(V ) set Ω0(S) = {g ∈ S :

g and g−1 are proximal}. A semisimple element g ∈ Ω0(GL(V )) is called dipole.

Let g be a semisimple element in GL(Rn). Then the space Rn can be decomposed into

the direct sum of three subspaces A+(g), A−(g) and A0(g) determined by the condition
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that all eigenvalues of the restriction g | A+(g) (resp. g | A−(g), g | A0(g) ) have an

absolute value more than 1 (resp. less than 1, equal to 1). Put D+(g) = A+(g)⊕ A0(g)

and D−(g) = A−(g) ⊕ A0(g). Obviously D+(g) ∩D−(g) = A0(g). Let G be a subgroup

of GL(V ). If dim(A0(g)) = min{dim A0(t)| t ∈ G}, then g is called regular of G.

2.2. Let ‖ ¦ ‖ and d denote the norm and metric on Rn corresponding to the standard

inner product on Rn. Let P = P(Rn) be the projective space corresponding to Rn. Let

‖g‖+ be the norm of the restriction g|A−(g). Denote by ‖g‖− = ‖g−1‖+ and put s(g) =

max{‖g‖+, ‖g‖−}. A regular element g is called hyperbolic if s(g) < 1. Let π : Rn�{0} →
P be the natural projection. For a subset X of Rn not containing 0, we put π(X) =

π(X�{0}) .

The metric ‖ ¦ ‖ on Rn induces the metric d̂ on the projective space P = P(Rn). Thus

for any point p ∈ P and a subset A ⊆ P, we can define

d̂(p,A) = inf
a∈A

d̂(p, a).

Let A1 and A2 be two subsets of P . We define

d̂(A1, A2) = inf
a1∈A1,a2∈A2

d̂(a1, a2).

For two subspaces V ⊆ Rn and W ⊆ Rn we put d̂(V,W ) = d̂(π(V/{0}), π(W/{0})). Let

B be a quadratic non-degenerated form. et where ε > 0, ε ∈ R. A hyperbolic element g ∈
SO(B) is called ε-hyperbolic,

d̂(A+(g), D−(g)) ≥ ε

and

d̂(A−(g), D+(g)) ≥ ε.

Two different hyperbolic elements g1 and g2 are called transversal if A±(g1)
⋂

D∓(g2) =

{0} and A±(g2)
⋂

D∓(g1) = {0}. Let us make a simple but very useful remark. Let g ∈
SO(B). For a regular element g ∈ SO(B), the space A+(g) ( resp. A−(g)) is the unique
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maximal isotropic subspace of D+(g) ( resp. D−(g)) Therefore two hyperbolic elements

g1 and g2 are transversal, if and only if, A+(g1) ∩A−(g2) = ∅ and A−(g1) ∩A+(g2) = ∅.

We prove now the following useful proposition

Proposition 2.3 Let S be a Zariski dense semigroup of SO(B), where B is a quadratic

from of the signature (2, 1). Let A = {A1, . . . , Ar} be a finite set maximal B–isotropic

subspaces of R3. Then there exists a hyperbolic element s ∈ S such that A+(s) /∈ A and

A−(s) /∈ A.

Proof. . Let Ω be the set of regular elements of SO(B). This set is Zariski open. It is

clear, that the set Ω1 = {w ∈ SO(B)|wAi ∩ Ai = {0} for all i = 1, . . . , r} is non-empty

and Zariski open. Therefore Ω1 ∩ Ω ∩ S 6= ∅. Let s ∈ Ω1 ∩ Ω ∩ S. Assume that (A+(s) ∪
A−(s)) ∩ A 6= ∅. Then for some i, 1 ≤ i ≤ r we have sAi = Ai. Contradiction. Clearly,

there exists N such that sn is a hyperbolic element for n > N , A+(sn) = A+(s), and

A−(sn) = A−(s). This proves the statement.

Two transversal hyperbolic elements g1 and g2 are called ε- transversal,

min
1≤i6=j≤2

{d̂(A+(gi), D
−(gj)), d̂(A−(gi), D

+(gj))} ≥ ε.

Let l : Gn → GLn(R) be the natural homomorphism (see [A]). Recall that l(g) is called

the linear part of an affine transformation g. Let X ⊆ Gn, then the set l(X) = {l(x), x ∈
X} is called the linear part of X. It is clear that GB = {x ∈ Gn | l(x) ∈ O(B)} and

that l(GB) = O(B). An affine transformation is called dipole (respectively hyperbolic,

ε−hyperbolic) if l(g) is dipole (respectively l(g) is hyperbolic, l(g) is ε- hyperbolic). Two

affine transformations g1 and g2 are called transversal (respectively ε− transversal) if the

linear parts l(g1) and l(g2) are transversal (respectively ε -transversal).
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Let g ∈ GB be a hyperbolic element without fixed points. Then there exists a g–

invariant line Lg, and the restriction of g to Lg is a translation by a non- zero vector tg.

Let us note that all such lines are parallel; tg does not depend on the choice of Lg and

l(g)tg = tg. We will assume that we have fixed some point in the affine space Rn as a

point of origin and we define Lg to be the g -invariant line closest to it . Define affine

subspaces C0
g = Lg +A0(g), C+

g = D+(g)+Lg, C−
g = D−(g)+Lg. Clearly, C+

g ∩C−
g = C0

g .

Let as recall the following useful observation. If a subsemigroup S ⊆ GB acts properly

discontinuously and g ∈ S is a hyperbolic element, then g acts without fixed points. Then

the linear part l(g) of every hyperbolic element g ∈ S has 1 as an eigenvalue ([A], Lemma

6.1) and thus tg 6= 0 and l(g)tg = tg. Actually Lemma 6.1 [A] says that every element of

S of infinite order has 1 as an eigenvalue.

2.4. For a non-zero vector v, v ∈ Rn, we denote by L+
v = {tv, t ∈ R, t > 0}. Let S be

a semigroup of Gn and M ⊂ S. Let K be a compact subset of Rn. We consider the set

of norm one vectors X∞(M,K) defined as follows: v ∈ X∞(M,K) if ‖v‖ = 1 and there

exist a constant C = C(v, K) and a sequence of points {pi}i∈N ⊆ K and a sequence of

elements {si}i∈N ⊆ M such that d(sipi, pi) → ∞ and d(sipi, L
+
v ) ≤ C. Obviously, sipi −

pi/‖sipi − pi‖ → v when i →∞
Clearly X∞(M,K1) ⊆ X∞(M, K2) if K1 ⊆ K2. It is easy to see, that for every com-

pact K and element s of S we have X∞(M, K) = X∞(Ms, s−1K). Let U(0, R) be the

closed ball of Rn with center at 0 of radius R. Let X∞(S) be the closure of the set
⋃

N∈NX∞(S, U(0, N))

Lemma 2.5. Let S be a semigroup S ⊆ Gn. Then

1. For every two compact subsets K1 and K2 in Rn K1 ⊂ K2 and M ⊂ S we have

X∞(M, K1) ⊂ X∞(M,K2)

2. For every v ∈ X∞(S) and s ∈ S, we have sv/‖sv‖ ∈ X∞(S).
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3. If S is a crystallographic semigroup, then for every compact subset K we have

X∞(S, K) = Sn(0, 1). Therefore X∞(S) = Sn(0, 1).

Proof. The proof is straightforward.

Assume that S ⊂ GB is a semigroup such that the linear part l(S) is Zariski dense in

SO(B) where B is a non-degenerated quadratic form of signature (p, q), p ≥ q Denote by

Ωε(S) = {s ∈ S| s is an ε–hyperbolic element }. Let us recall the following result ([AMS

1], Theorem1). Let Γ be a Zariski dense semigroup of SO(B). Then there exist an ε =

ε(Γ) and a finite set of elements Γ0 = {γ1, . . . , γr} ⊂ S, r ≤ (p + q)2 such that for every

γ ∈ Γ there exists a suitable element γi of the set Γ0 such that γγi ∈ Ωε(Γ)

Lemma 2.6 Let K be a compact subset. Then there exists a compact set K1 such that

X∞(S, K) ⊂ X∞(Ωε(S), K1).

Proof. Let v be a vector of X∞(S,K). Then there exist two sequences {gn}n∈N ⊂ S ,

{kn}n∈N ⊂ K and a constant C = C(K, v) such that gnkn − kn/‖gnkn − kn‖ → v when

n → ∞. By the theorem above, there exists a finite subset S0 ⊂ S such that for every

gn we have gnsi ∈ Ωε(S) for a suitable si ∈ S0, i = i(n). The set K1 =
⋃

s∈S0
s−1K is

compact, since the set S0 is finite. Clearly, v ∈ X∞(Ωε(S), K1).

Now we will recall an important definition first introduced by G. Margulis [GM 1] for

n = 3, generalized in [AMS 2] for the case when the signature of the quadratic form is

(k + 1, k) and finally for an arbitrary quadratic form in [AMS 4]. We will follow along

the lines of [AMS 4]. Let B be a quadratic form of signature (p, q), p ≥ q, p + q = n.

Let v1, v2, . . . , vp, w1, w2, . . . , wq is a basis of Rn such that for a v of Rn v = x1v1 + · · ·+
xpvp + y1w1 + · · ·+ yqwq, we have

B(v, v) = x2
1 + · · ·+ x2

p − y2
1 − · · · − y2

q .
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Consider the set Ψ of all maximal B–isotropic subspaces. Let X be the subspace spanned

by {v1, v2, . . . , vp} and Y be the subspace spanned by {w1, w2, . . . , wq}. It is clear that

Rn = X ⊕ Y . Define the cone

CB = {v ∈ Rn|B(v, v) < 0}.

Clearly Y ⊂ CB. We have the two projections

πX : Rn −→ X and πY : Rn −→ Y

along Y and X, respectively. The restriction of πY to V ∈ Ψ is a linear isomorphism

V −→ Y . Hence if we fix an orientation on Y , then we have also fixed an orientation

on each V ∈ Ψ. For V ∈ Ψ let us denote the B–orthogonal s of V by V ⊥ = {z ∈
Rn ; B(z, V ) = 0}. We have V ⊂ V ⊥ since V is B–isotropic. We also have

dim V ⊥ = dim V + (p− q) = p.

The restriction of πX to V ⊥ is a linear isomorphism V ⊥ −→ X. Hence if we fix an

orientation on X, then we have also fixed an orientation on V ⊥ for each V ∈ Ψ. Thus

we have orientations on both V and V ⊥ and we have naturally induced an orientation on

any subspace W , such that V ⊥ = W ⊕ V . If V1 ∈ Ψ and V2 ∈ Ψ are transversal, then

W = V ⊥
1 ∩ V ⊥

2 is a subspace that is transversal to both V1 and V2; therefore W ⊕ V1 =

V ⊥
1 and W ⊕V2 = V ⊥

2 . So there are two orientations ω1 and ω2 on W , where ωi is defined

if we consider W as a subspace in V ⊥
i . We have [AMS 3,Lemma 2.1]

Lemma 2.7. The orientations defined above on W are the same if q is even and they

are opposite if q is odd.

2.8. Assume now that B is of signature (k+1, k). Let V be a maximal B–isotropic space

and W = V ⊥. Following along the procedure above we choice and fix a positive orientation

on W , namely, we have an oriented basis v1, v2 . . . , vk in V and a vector vk+1 ∈ W such
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that the bases v1, v2 . . . , vk, vk+1 is positively oriented. Hence an anisotropic vector w ∈
W is called positive (resp. negative)if B(v, vk+1) > 0 (resp B(v, vk+1) < 0.)

Let g be a hyperbolic element without fixed points, g ∈ GB. Then, D+(g) = (A+(g))
⊥

and D−(g) = (A−(g))
⊥
, dim A+(g) = dim A−(g) = k and dim A0(g) = 1. We define an

orientation on the space A0(g) induced by an orientation on D+(g) (see [AMS 2], [AMS

4]). Let v0(g) be the corresponding vector, with B(v0(g), v0(g)) = 1. Then v0 is a positive

vector of D+(g). On the other hand,A0(g) ⊂ D−(g). Let w0(g) be a positive vector of

D−(g), w0(g) ∈ A0(g), B(w0, w0) = 1. Then by Lemma 2,7, we have B(v0, w0) = (−1)k.

Clearly B(v0, w0) = −1 when the signature of the form B is (2, 1).

Thus C0(g) is a g-invariant line and the restriction g | C0(g) is a translation by a

non-zero vector tg, tg ∈ A0(g) . Since tg ∈ A0(g), we have B(tg, tg) > 0. It is easy to

check that if p is an arbitrary point in R and tp = gp−p, then B(tp, v0(g)) = B(tg, v0(g)).

Note that there exist two non-zero constants c1(ε) and c2(ε) such that for every ε and

an ε-hyperbolic element g, and any vector v ∈ A0(g), we have c1(ε)B(v, v) ≤ ‖v‖ ≤
c2(ε)B(v, v). As in [AMS 3], define the sign α(g) of a hyperbolic affine transformation g

by

α(g) = B(tg, v0(g)).

Clearly,

α(g) = B(tp, v0(g)),

since B(tp, v0(g)) = B(tg, v0(g)) for an arbitrary point p ∈ Rn. Let us recall the following

important observation called the opposite sign lemma [A, Lemma 8.4]: if a semigroup S ⊆
Aff(Rn) contains two hyperbolic transversal elements g1 and g2 such that α(g1)α(g2) < 0,

then S does not act properly discontinuously on Rn.

2.9. Let us explain main ideas of the proof of Main Theorem. The crucial point in the

proof is to show that l(S) is not Zariski dense in SO(B). On the contrary we suppose

that l(S) is Zariski dense in SO(B). Let v1, v2, w1 be a basis of R3 such that for every
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vector v = x1v1 + x2v2 + y1w1 we have B(v, v) = x2
1 + x2

2 − y2
1. Let g and h be two

hyperbolic elements, g ∈ GB, h ∈ GB. Assume that A+(g) = A+(h) and A−(g) (resp.

A−(h)) spanned by the vector w1 + v1 ( resp. w1 − v1). Suppose that gq0 − q0 = hq0 =

q0 = −w1. (see Figure 1)

Let us show that α(g) > 0 and α(h) < 0. Indeed, let v(g) ∈ D−(g) ∩ X (resp.

v(h) ∈ D−(h) ∩ X) be a vector such that w1 + v1, v(g) (resp.w1 − v1, v(h)) forms a

positively oriented basis in D−(g) (resp. D−(h) ). It follows from our definition ( see

2.7) that v(g) = −v(h), since πX(w1 + v1) = v1 = −πX(w1 − v1). Denote by v the

vector of A+(g) = A+(h) such that πY (v) = w1. Let v0(g) (resp. v0(h)) be the vector of

A0(g) (resp. A0(h)) such that v, v0(g) ( resp. v, v0(h)) is the positively oriented basis of

D+(g) and B(v0(g), v0(g)) = 1 (resp. D+(h) and B(v0(h), v0(h))). By Lemma 2.7, w1 +

v1,−v0(g) (resp. w1 − v1,−v0(h)) is positively oriented basis of D−(g) (resp. D−(h). By

the explanations given in the beginning of (2.8) the vectors v0(g) is a positive vector of

D+(g). Therefore v0(g) is a negative vector of D−(g). Hence we have B(v0(g), v(g)) < 0

since v(g) is a positive vector of D−(g). By the same arguments, B(v0(h), v(h)) < 0. Thus

B(v0(h), v(g)) > 0, since v(g) = −v(h). Hence πY (v0(g)) = −πY (v0(h)). Consequently

we have α(g) = B(gq0 − q0, v0(g)) = B(w1, v0(g)) > 0 and α(h) = B(hq0 − q0, v0(h)) =

B(w1, v0(h)) < 0.

Assume now that there exist ε and two sequences {gn}n∈N ⊆ S and {hn}n∈N ⊆ S of ε-

hyperbolic, ε -transversal elements with the properties that for n →∞ we have A+(gn) →
A+(g),A+(hn) → A+(h) = A+(g), A−(gn) → A−(g), A−(hn) → A−(h). Suppose that

there exist a compact set K and two sequences {qn}n∈N ⊂ K and {pn}n∈N such that gnqn−
qn/d(gnqn, qn) → w1 , and hnpn− pn/d(hnpn, pn) → w1. It is easy to see that there exists

N such that for n > N we have α(gn) > 0 and α(hn) < 0. Thus by Lemma 2.7 S does

not act properly discontinuously and consequently, l(S) is not Zariski dense in SO(B).

The proof falls naturally into the following steps. First we will show that there ex-
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D+(h)

D+(g)

A0(g)

A0(h)
w1 − v1

w1

w1 + v1

v(g)

v(h)

v

v0(h)

v0(g)

D−(h)

D−(g)

X

A+(g) = A+(h)

Figure 1: Opposite sign

ist four hyperbolic, transversal elements g1, g2, g3, g4 such that w1 ∈ A−(g1) + A−(g2) ∩
A−(g1) + A−(g2). Then we will show that there exists a sequence {hn}n∈N is a sequence

13



of ε-hyperbolic elements , hnq0 − q0/|B(hnq0 − q0, hnq0 − q0)|1/2 → w1 and ‖hnq0 − q0‖ →
∞ such that it is be possible to choose two elements gi, gj of g1, g2, g3, g4 in a way that

the elements hngi and hngj have an opposite sign for sufficiently big n.

3. Main results.

We begin by recalling known facts on hyperbolic elements in GB [AMS 3], [AMS4].

Assume that g and h are two hyperbolic elements. Let ε be a positive number such that

g and h are ε- hyperbolic and d̂(A+(g), A+(h)) ≥ ε. Since D±(g) = (A±(g))⊥ it is easy

to see, that there exists a constant c(ε) such that d̂(A+(g), D+(h)) ≥ c(ε). Thus we can

conclude:

Lemma 3.1 Let g and h be two ε-hyperbolic elements such that

min{d̂(A+(g), A−(h)), d̂(A−(g), A+(h))} ≥ ε.

Then there exists a constant c(ε) such that the two ε-hyperbolic elements g and h are

c(ε)-transversal

Remark 3.2 Let B be a hyperbolic form of signature (2, 1), and let g be an element of GB.

Then g is hyperbolic if and only if g is dipole. Hence in this case we have A±(g) = V ±(g)

and D±(g) = W±(g). Taking into account Lemma 3.1, we will say that two hyperbolic,

transversal elements g and h of GB are ε–hyperbolic, ε–transversal if d̂(A+(g), A−(g)) >

ε, d̂(A+(h), A−(h)) > ε and d̂(A+(g), A−(h)) > ε , d̂(A+(h), A−(g)) > ε respectively.

Lemma 3.3.[AMS 3] There exists s(ε) < 1 and c(ε) such that for any two ε–hyperbolic

14



ε–transversal elements g, h ∈ SO(B) with s(g) < s(ε) and s(h) < s(ε), we have

(1) the element gh is ε/2–hyperbolic and is ε/2–transversal to both g and h;

(2) d̂(A+(gh), A+(g)) ≤ c(ε)s(g));

(3) d̂(A−(gh), A−(h)) ≤ c(ε)s(h));

(4) s(gh) ≤ c(ε)s(g)s(h).

From now on we will assume that n=3 and B is a quadratic form of signature (2, 1).

Assume that the linear part l(S) is Zariski dense in SO(B). It follows from Lemma 2.3 that

there exist a pair of hyperbolic transversal elements g and h in S such that A+(g) 6= A+(h)

and A−(g) 6= A−(h) . Fix these elements and consider the two subspaces C(g) = A+(g)⊕
A−(g) and C(h) = A+(h) ⊕ A−(h) of R3. It follows from Lemma 3.3 that for any δ > 0

there exists N, N ∈ Z, N > 0 such that d̂(A+(gmhn), A+(g)) ≤ δ, d̂(A+(hngm), A+(h)) ≤
δ, d̂(A−(gmhn), A−(h)) ≤ δ and d̂(A−(hngm), A−(g)) ≤ δ for n > N, m > N . Any two

chosen elements in CB with the same B -norm are conjugate by an element from SO(B).

Hence we can conjugate S by an element from GB such that C(g)
⋂

C(h) = Y . Thus we

have

Lemma 3.4. If the Zariski closure of the linear part l(S) is SO(B), then there are

two hyperbolic transversal elements g and h in S such that C(g)
⋂

C(h) = Y. Choosing

a suitable positive number ε, we can and will assume that the elements g and h are ε-

hyperbolic and ε- transversal.

Lemma 3.5. Let S be a semigroup, S ⊆ GB such that l(S) is Zariski dense in SO(B).

Then there exists a set {g1, g2, g4, g4} of hyperbolic transversal elements of S such that for

every non-zero vector v ∈ A−(g1)⊕ A−(g2) ∩ A−(g3)⊕ A−(g4) we have B(v, v) < 0.

Proof. It follows from Proposition 2.3 that there exists a set A = {si, 1 ≤ i ≤ 4} of a

hyperbolic transversal elements of S. We can order the set A such that we have B(v, v) <

15



0 for every non-zero vector v of A−(s1)⊕ A−(s2) ∩ A−(s3)⊕ A−(s4).

V

W2 ∈ Φ−
VW1 ∈ Φ+

V

V ⊥

W1
W2

v0

W⊥
1

W⊥
2

v

Φ+
V

Φ−V

Figure 2: Positive and negative parts

3.6. We will use notations and definitions from 2.6. Let V, V ⊆ Rn be a maximal

B-isotropic subspace and let v be a vector from V such that V is spanned by v and

πY (v) = w1 (see Figure 2 below ). Let v0 be a vector from V ⊥ ∩X such that B(v0, v0) =

16



1 and the basis πX(v), v0 has the same orientation as v1, v2. Let W be a maximal B-

isotropic subspace, W 6= V . Then dim(V ⊥ ⋂
W⊥) = 1. There exists a unique vector

w0(W ), w0(W ) ∈ V ⊥ ⋂
W⊥ such that w0(W ) = v0 +α(W )v. Set Φ+

V = {W ∈ Φ|α(W ) >

0} and Φ−
V = {W ∈ Φ|α(W ) < 0}. Since v0 ∈ X, we have B(v0, w1) = 0. Therefore

B(w0(W )), w1) = α(W ), B(v, w1) = −α(W ). We conclude that for every vector w ∈ Φ+
V

(resp. w ∈ Φ−
V ) we have B(w,w1) < 0 (resp.B(w, w1) > 0). From Lemma 2.7 and the

choice of hyperbolic elements g and h, it immediately follows that Φ±
a1

= Φ∓
a3

and Φ±
a2

=

Φ∓
a4

. Assume that we choose two different B–isotropic spaces W1 and W2 such that w1 ∈
W1 ⊕W2 and V ∩W1 ⊕W2 = {0}. Clearly, if W1 belongs to ⊂ Φ+

V then W2 ⊂ Phi−V and

viceversa.

Proposition 3.7. Let S be a semigroup, S ⊆ GB. Assume that S acts properly discon-

tinuously on Rn and that there exists a compact subset K0 of Rn such that X∞(S,K0) =

Sn(0, 1). Then the linear part l(S) of S is not Zariski dense in SO(B).

Proof. Assume that l(S) is Zariski dense in SO(B). Let A = {s1, s2, s3, s4} be the

set of hyperbolic transversal elements which fulfill the requirements of Lemma 3.5.Let

d1 = min1≤i,j≤4,i6=j{d̂(A+(si), A
+(sj))}, d2 = min1≤i,j≤4,i6=j{d̂(A−(si), (A

−(sj))}, d3 =

min1≤i,j≤4{d̂(A+(si), A
−(sj))}. Set d0 = min{d1, d2.d3}. Let K0 be a compact subset of Rn

such that X∞(S, K0) = Sn(0, 1). Then w1 ∈ X∞(S, K0). Therefore there are two infinite

subsets {ln, n ∈ N} ⊆ K0 and {gn, n ∈ N} ⊆ S such that

(1) ‖gnln − ln‖ → ∞ when n →∞;

(2) gnln − ln/d(gnln, ln) → w1 when n →∞.

By Lemma 2.6, we can and will additionally assume that gn is ε = ε(S)-hyperbolic for

all n ∈ N. The projective space P is compact. Hence we can and will assume that the

sequences {π(A+(gn))}n∈N and {π(A−(gn))}n∈N converge. Denote limn→∞ π(A+(gn)) =

p1 ∈ P and limn→∞ π(A−(gn)) = p2 ∈ P. Note that d̂(p1, p2) ≥ ε.
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It follows from Proposition 2.3 that there exists a hyperbolic element s0 transver-

sal to every element from A such that {π(A+(s0)), π(A−(s0))} ⊆ P \ {p1, p2}. Set δ1 =

min{d̂((p1, ), A
−(s0)), d̂((p2, ), A

+(s0))} and δ2 = min1≤i≤4 d̂(A+(si), , A
−(s0)). Put δ =

min{δ1, δ2 , ε(S)}. There exists N0 ∈ N such that d̂((p1, A
+(gn)) < δ/4 and d̂((p2, A

−(gn)) <

δ/4 for n > N0. Thus we conclude, that for n > N0 the hyperbolic elements gn and s0 are

δ1–transversal and δ1–hyperbolic. Put q = s(s0). Clearly, s(sk
0) = qk. Thus by Lemma 3.3

we conclude, that there exists N1 = N1(δ) such that the element gns
k
0 is δ/2–hyperbolic,

d̂(A−(gnsk
0), A

−(s0)) ≤ qk/2 and s(gns
k
0) ≤ qk/2 for all n ≥ N1. For every k > N1 we

consider the sequence {g(k)
n sk

0}n∈N such that

(1) the sequence π(A+(g
(k)
n sk

0)) converges in P to a point ak for every k ≥ N1

(2) {g(k+1)
n }n∈N ⊂ {g(k)

n }n∈N

Clear, that there exists a sequence {ki}i∈N such that ki < ki+1 and the sequence of points

{aki
}i∈N converges. Set a0 = limi→∞ aki

.

Let V be the subspace of R3 such that π(V ) = a0 (See Fig. 2). It it easy to see that

min{d̂(a0, A
−(s1)), d̂(a0, A

−(s2))} > d0/2 or min{d̂(a0, A
−(s2)), d̂(a0, A

−(s4))} > d0/2.

Clearly that without lost of generality we can assume that min{d̂(a0, A
−(s1)), d̂(a0, A

−(s2))} >

d0/2. Therefore (see (3.6)), since the vector w1 ∈ A−(s1) ⊕ A−(s2) we have A−(s1) ∪
A−(s2) ⊂ Φ+

V ∪ Φ−
V , We will suppose that A−(s1) ⊂ Φ+

V and A−(s2) ⊂ Φ−
V . On account

of (3.6) for a positive vector w0(A
−(s1)) we have B(w0(A

−(s1)), w1) > 0 and for a posi-

tive vector w0(A
−(s2)) we have B(w0(A

−(s2)), w1) < 0. It is obvious that there exists an

ε0 such that for every maximal B–isotropic spaces V0,W1, W2 such that d̂(a0, V0) < ε0,

d̂(A−(s1),W1) < ε0, and d̂(A−(s2),W2) < ε0, we have W1 ⊂ Φ+
V0

and W1 ⊂ Φ+
V0

.

Put δ0 = min{d0/4, δ/2 ε0/4}. Let c(δ0) and c(δ0/2) be the constants which fulfil

the requirements of (2), (3) Lemma 3.3. Let N3 ∈ N be a positive number such that

qr(c(δ0) + c(δ0/2)) ≤ δ0/4 and d̂(aki
, a0) ≤ δ0/8 for r > N3 and ki > N3. Choose ki >
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N3 and denote r0 = ki. From d̂(aki
, a0) ≤ δ0/8 and aki

= limn→∞ π(A+(g
(r0)
n sr0

0 ) follows

that there exists N4, N4 ∈ N such that d̂(A+(g
(r0)
n ), ar0) < δ0/8. Denote g̃n = g

(r0)
n+N4

.

Clearly, d̂(A+(g̃n), a0) ≤ d̂(A+(g
(r0)
n ), ar0)+ d̂(ar0 , a0) ≤ δ0/4 < ε. Recall that the elements

gn and s0 are δ1–transversal and δ1–hyperbolic. Hence they are δ0–transversal and δ0–

hyperbolic. Thus from (3) Lemma 3.3 and the choice of r0 we obtain d̂(A−(g̃n), A−(s0)) =

d̂(A−(g
(r0)
n+N4

), A−(s0)) = d̂(A−(gr0
n+N4

sr0
0 ), A−(s0)) < c(δ0)q

n0 < δ0/4. Hence we have

d̂(A−(g̃n), A+(si)) > d̂(A−(s0), A
+(si))− d̂(A−(g̃n), A−(s0)) ≥ δ0/2. Recall, that

min{d̂(a0, A
−(s1)), d̂(a0, A

−(s2)) > d0/2 > δ0/2. Therefore the elements g0 and si are

δ0/2–hyperbolic and δ0/2–transversal. From Lemma 3.3 we obtain

(1) d̂(A+(g̃nsk
1), A

+(g̃n)) ≤ c(δ0/2)s(g0) ≤ c(δ0)s(s0)
r0 ≤ δ0/4 < ε0.

(2) d̂(A−(g̃nsr
i ), A

−(si)) ≤ c(δ0/2)s(si)
ri for i = 1, 2.

Thus from (2) we obtain

(3) There exists R0 such that d̂(A−(g̃nsR0+1
i ), A−(si)) ≤ δ0/4 < ε0 where i = 1, 2

Set ĝ
(i)
n = g̃ns

R0+1
i for i = 1, 2 and l

(i)
n = s−r0

0 s
−(R0+1)
i ln. Then

(4) ĝ
(i)
n l

(i)
n − l

(i)
n /d(ĝ

(i)
n l

(i)
n , l

(i)
n ) → w1 for n →∞.

Let v0(ĝ
(i)
n ) be the positive norm one vector of D+(ĝ

(i)
n ). Thus from (2),(3) for all n we

have B(v0(ĝ
(1)
n ), w1) > 0 and B(v0(ĝ

(2)
n ), w1) < 0. Moreover limn→∞ B(v0(ĝ

(1)
n ), w1) > 0

and limn→∞ B(v0(ĝ
(2)
n ), w1) < 0. Hence there exists ε̃ such that for any vector w̃, ‖w‖ = 1

and ‖w1− w̃/‖ ≤ ε̃ we have limn→∞ B(v0(ĝ
(1)
n ), w̃) > 0 and lim n →∞B(v0(ĝ

(2)
n ), w̃) < 0.

Thus there exists a positive integer M such that n ≥ M we have

B(v0(ĝ
(1)
n ), ĝ(1)

n l(1)
n − l(1)

n ) > 0

and

B(v0(ĝ
(2)
n ), ĝ(2)

n l(2)
n − l(2)

n ) < 0
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Hence there are two transversal hyperbolic elements in S of opposite sign. Hence S

does not act properly discontinuously on Rn by opposite sign lemma (see 2.8) . This

contradiction completes the proof.

Proof. (Main Theorem) Suppose that the Zariski closure of S is not virtually solvable.

Let S0 be a semisimple part of the Zariski closure of G = l(S). If S0 is a compact group,

then by [GS 2], this group is trivial. Contradiction. Therefore we can assume that S0

is a non-compact simple group. Recall (see 2.3 ) that every element from the Zariski

closure of l(S) has 1 as an eigenvalue. Hence, S0 is isomorphic to SL2(R since S0 is a

subgroup of SL3(R). Thus we have a representation ρ : SL2(R) → SL3(R). There are two

possible cases: either ρ(SL2(R)) = SO(2, 1) and G = SO(2, 1), or ρ is the direct sum of

the standard and trivial representations of SL2(R). It follows from Proposition 3.5 that

the first case is impossible. Then we have two possibilities:

(a) there is an one-dimensional subspace V such that l(s)v = v for every s ∈ S;

(b) there is a l(S)-invariant subspace V , dim V = 2.

(a). Fix a hyperbolic element g. Let Lg be the unique g-invariant line and let v0(g)

be the unique Euclidean norm one vector such that for a point p, p ∈ Lg, we have gp −
p = α2v0(g). Let K0 be a compact subset such that X∞(S,K0) = S3(0, 1). Hence

v0(g),−v0(g) ∈ X∞(S,K0). It follows from Lemma 2.6 that there exist a positive number

ε, a set of ε- hyperbolic elements gn, gn ∈ S and a subset {pn, pn ∈ K0, n ∈ N} such that

( 1) gnpn − pn/‖gnpn − pn‖ → −v0(g) when n →∞;

(2) ‖gnpn − pn‖ → ∞ when n →∞.

For every element s ∈ S, we have l(s)v0 = v0. Therefore sgnpn − pn/‖sgnpn − pn‖ →
−v0(g) when n → ∞ and for qn = s−1pn, we have gnsqn − qn/‖gnsqn − qn‖ → −v0(g)

when n → ∞. Note that {qn, n ∈ N} is a subset of a compact set s−1K0. Thus, we can

assume that the sequence {A+(gn)}n∈N (resp. {A−(gn)}n∈N) converges to A+ (resp. A−)

and d̂(A+, A±(g)) > 0 (resp. d̂(A−, A±(g)) > 0. Hence there exists a ε- hyperbolic element
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h transversal to g such that for a point p from the unique h invariant line Lh, we have hp−
p = −β2v0(g). Then, using the same arguments as in opposite sign lemma [A, Lemma

8.4], we conclude that there exist infinite sets N and M such that hmgnK0

⋂
K0 6= ∅ for

all m ∈ M , n ∈ N . This is impossible because S acts properly discontinuously.

(b). Consider an affine space A = R3/V , a projection πV : R3 → A and an induced

homomorphism ρV : Aff(R3) → Aff(A).Ȯbviously, dim A = 1. Let K be a compact subset

of K. It is clear that there exist a positive number δ and sequences {gt}t∈N and {ht}t∈N

of δ-hyperbolic elements such that we have for a point k ∈ K

(1) |gtk − k| → ∞, |htk − k| → ∞ when t →∞;

(2) (gtk − k)(htk − k) < 0 for all t ∈ N;

(3) gt and ht are δ-transversal for all t ∈ N.

On the other hand the representation ρ of the linear part l(S) determines the following

representation of S.

s 7→




a11 a12 a13 ∗
a21 a22 a23 ∗
0 0 1 αs

0 0 0 1




where

ρ(l(s)) =




a11 a12 a13

a21 a22 a23

0 0 1




It is easy to see that ρV (s) = αs. Hence by (1),(2) and (3) above there exist two

δ-hyperbolic, δ-transversal elements ĝ and ĥ such that αbgαbh < 0. Let Lbg (resp. Lbh) be

the unique ĝ-invariant (resp ĥ-invariant) line. Fix a point p and a Euclidian distance d in
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R3. Then by [AMS 2, Lemma 2.4] there exists a positive c = c(ĝ, ĥ) such that

d(p, Lbhmbgn) ≤ c[d(p, Lbg) + d(p, Lbh)]

for all positive numbers m and n. Since αn
s = nαs and αbgαbh < 0, there are infinite sets of

positive numbers N and M such that |αbgn + αbhm| ≤ c/2 for n ∈ N, m ∈ M. Consider the

ball U(p, 2c). Then for n ∈ N, m ∈ M the set {ĥmĝnU(p, 2c)
⋂

U(p, 2c)} is non-empty.

This is a contradiction, which proves the theorem.
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