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1. Introduction.

Let G, = Aff(R™) be the group of affine transformations of R”. The group G,, is the
semidirect product GL,(R) x R, where R" is identified with its group of translations. A
subsemigroup S of G, is said to act properly discontinuously on R™ if for every compact
subset K of R™ the set {g € S : gK N K # (} is finite. If a discrete group consists
of isometries, then it acts properly discontinuously on R™. But this is not true for an
arbitrary discrete subgroup of G, e.g. for an infinite discrete subgroup of GL,(R). A
subsemigroup S of G, is called crystallographic if S acts properly discontinuously on R”
and there exists a compact subset K of R" such that USE g sKy=R"

If the signature of a nondegenerate quadratic form B on R™ is (n—1, 1), then the form
B is called hyperbolic. Let O(B) (resp. SO(B)) denote the orthogonal (resp. special
orthogonal) group of B. Let G be the subgroup of G,, leaving the form B invariant. It



is clear that G is the semidirect product O(B) x R™.
The motivating question here is the following:

Question (H.Abels, G.Margulis, G.Soifer). Is the Zariski closure of a crystallographic

affine semigroup leaving a hyperbolic form invariant a virtually solvable group ?

Our interest in this questions has two aspects. One is conceptual: Does the geome-
try of an action determine the algebraic properties of the acting semigroup? The sec-
ond aspect came from our joint works with H.Abels and G.Margulis on the Auslan-
der conjecture and our study of the dynamic of the action of affine transformations
([AMS1],[AMS2],|AMS3],]AMS4], [AMS 5]). The purpose of the present work is to relate
Margulis’ sign of an affine transformation to the study of the action of affine semigroups.
We introduce the notion of subsets X (5, K) and X (S) of the unit sphere S™(0,1) C
R™ for a semigroup S of the affine group G,, and a compact subset K C R" (see 2.4 for
definitions). These sets play an important role in the study of dynamics of affine trans-
formations [AMS 5]. Roughly speaking X, (S) is the set of all possible directions “at
infinity” for the translation part of an affine transformation s of S. Remark, X (S, K) C
Xoo(S) for every compact subset K of R™.
The goal of the present work is to prove the following

Main Theorem. Let S C Aff(R™),n <3 be a subsemigroup. Assume that there exists

a compact subset K of R™ such that X,(S,K) = S3(0,1). Then the Zariski closure of S

15 a virtually solvable group.

Using the same arguments and slightly changing the proof reader can show that if X (5)
is dense in S3(0, 1) then the Zariski closure of the semigroup S acting properly discontin-
uously is a virtually solvable group.

By Lemma 2.5 (3), we have Xo(S) = X (5, K) = 5™(0,1). for a crystallographic semi-

group S and every compact subset K C R"™. Hence



Corollary 1 Let S C Aff(R™),n <3 be a crystallographic semigroup. Then the Zariski
closure of S is a virtually solvable group.

Remark. There is no hypothesis about an invariant form in the main theorem and

corollary 1. It is absolutely unclear if a semigroup which acts properly discontinuously on
R™ such that X (5) = 5™(0,1) is a crystallographic semigroup.
Obviously we have

Corollary 2 ( see [GF]) Let I' < AfAR™),n < 3 be a crystallographic group. Then I' is

a virtually solvable group.
We remark that the proof in [GF] is based on completely different ideas. W.Goldman and
Y. Kamishima proved in [GK] the following theorem

Theorem Let 1 be a crystallographic group leaving a hyperbolic form invariant, then T’
15 virtually solvable.

Let us state the following conjecture

Conjecture Let S be a semigroup (or a group), S C Gy, where B is a hyperbolic form.

Assume that X (S) is a dense subset of the unit sphere S™(0,1) of R"™. Then the Zariski

closure of S is a virtually solvable group.

Since the Zariski closure of S is virtually solvable, using almost the same arguments
as we have used in the final stages of the proof of Theorem 2 in ( [GS 2]), one can show
that
A crystallographic semigroup S of Aff(R"),n < 3, leaving a hyperbolic form invariant is
a group.

The example below shows that there exists a semigroup S which is not a group, such
that S acts properly discontinuously R".

Example. Let T = {vy,...,v} be a set of vectors of R". Assume that the convex
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hull Conu(T') of T does not contain the zero vector. Let S be a subsemigroup of Aff{R")
generated by the translations T = {tu,s...,ty,}. Let us show that S acts properly dis-
continuously on R". Indeed, since 0 € Conuv(T), there exists vy € R" such that the scalar
product (vg,v;) > 0,7 =1,..., k. Put ng = min;<;<x(vo, v;). Clearly, ny > 0. Let s be an
element of the semigroup S. Then s is a translation by a vector vs, where vy = njv; +
ce g,y € Zyng > 0,0 = 1,..., k. Assume that ||vs]| < ¢. Then we have c||vg| >
|(vs,v0)| > 10 Y25 my. Thus, 0 < n; < ¢l|vg||/no for all i = 1,..., k. Therefore the set of
vectors {v € S|||v|| < ¢} is finite for every constant c. Hence S acts properly discon-
tinuously on R™. In contrast to this, the group generated by the set T is not discrete in
general and therefore does not act properly discontinuously on R".

It is clear that if R® = Conu(T) then for the semigroup S generated by T' there exists
a compact subset K of R" such that (J, ¢ sKo = R™. By using the technique presented
in our paper [AMS 5] and the ideas of the example above it is possible, but not obvious,
to construct a free subsemigroup S of G g acting properly discontinuously on R™ in case
B is a quadratic form of signature (k,k — 1) where k is even and 2k — 1 = n. On the
other hand, by choosing a subset 7' such that 0 € Conv(T), it is possible to construct
a free semigroup S of G'p, such that there exists a compact subset Ky of R™ such that
Uses sKo = R™. However it will not act properly discontinuously on R".

I would like to thank my coauthors H. Abels and G. Margulis for arousing my interest
in this question. I would like to thank the referee for essential suggestions and important
remarks. The author would like to thank several institutions and foundations for their
support : SFB 701 ”Spektrale Strukturen und Topologische Methoden in der Mathe-
matik”, USA-Israel Binational Science foundation under BSF grant 2004010, the Emmy
Noether Research Institute for Mathematics, Bar-Ilan University and the Israel Science

Foundation under ISF grant 657/09 and Max Plan Institute for Mathematics, Bonn.



2. Preliminaries.

In order to make the exposition as self-contained as possible, we first collect the infor-
mation needed in the proofs.

In this section we introduce the terminology we will use throughout the paper and

recall terminology and results from [A], [AMS 1], [AMS 2], [AMS 3], [AMS 4], [AMS 5]
and [BG|. We will prove some basic lemmas about the geometry and dynamics of the
action of an affine transformation under the assumption that its linear part is hyperbolic.
2.0. Let V be a finite dimensional vector space over a local field & with absolute value
| - |, and let P = P(V') be the projective space corresponding to V. Let g € GL(V) and
let xg(A) = [T=;(A — Xi) € k[A] be the characteristic polynomial of the linear transfor-
mation g. Set Q(g) = {A : [Mi| = maxi<j<, [Aj[}. Put x1(A) = I),cq)(A — M) and
x2(A) = [neam A — Ai). Then xi and 2 belong to k[A] since the absolute value of
an element is invariant under Galois automorphisms, . Therefore xi(g) € GL(V) and
x2(g9) € GL(V'). Let us denote by V(g) (resp. W(g)) the subspace of V' corresponding
to ker(x1(g)) (resp. ker(xa(g))). We will often use for an element g € GL(V') the follow-
ing notation, V(g) = V*(g), W(g) = W~(g), V(¢~!) = V" (g9) and W(g™") = W*(g).
Let A_(g) = max{|\ | : X is an eigenvalue of ¢ of absolute value less than 1 }. Let
Ai(g) = min{|A | : X is an eigenvalue of g of absolute value more than 1}. Put A(g) =
max{A'(9), \_(g)}. It is clear that A(g) = A(g™1).
2.1. Recall that ¢ € GL(V) is called prozimal if dim(V*(g)) = 1. A proximal el-
ement g has a unique eigenvalue of maximal absolute value. Hence this eigenvalue
has algebraic and geometric multiplicity one. For S C GL(V) set Qy(S) = {g € S :
gand g lare proximal}. A semisimple element g € Qo(GL(V)) is called dipole.

Let g be a semisimple element in GL(R™). Then the space R" can be decomposed into

the direct sum of three subspaces A% (g), A~ (g) and A°(g) determined by the condition



that all eigenvalues of the restriction g | A™(g) (resp. g | A=(g), ¢ | A%(g) ) have an
absolute value more than 1 (resp. less than 1, equal to 1). Put D" (g) = A™(g) ® A%(g)
and D~ (g) = A= (g) ® A%(g). Obviously D*(g) N D~ (g) = A%g). Let G be a subgroup
of GL(V). If dim(A%(g)) = min{dim A°(¢)|t € G}, then g is called reqular of G.
2.2. Let || .|| and d denote the norm and metric on R” corresponding to the standard
inner product on R”. Let P = P(R") be the projective space corresponding to R". Let
9]+ be the norm of the restriction g|4-(4). Denote by ||g||- = [[¢g7'||+ and put s(g) =
max{||g|l+, [lg]|-}. A regular element g is called hyperbolic if s(g) < 1. Let w : R"™\ {0} —
P be the natural projection. For a subset X of R™ not containing 0, we put 7(X) =
r(X\{0})

The metric ||. || on R™ induces the metric d on the projective space P = P(R™). Thus

for any point p € P and a subset A C P, we can define

~

d(p, A) = inf d(p, a).

a€A

Let A; and As be two subsets of P. We define

~

d(Ah AQ) = inf c/l\(al, CLQ).

a1€A1,a2€A2

~ ~

For two subspaces V' C R" and W C R"™ we put d(V, W) = d(=(V/{0}),7(W/{0})). Let
B be a quadratic non-degenerated form. et where ¢ > 0, ¢ € R. A hyperbolic element g €
SO(B) is called e-hyperbolic,

d(A™(g), D™ (g9)) > €

and

d(A™(g), D*(9)) > .

Two different hyperbolic elements g; and g, are called transversal if A*(gy)(D¥(go) =
{0} and A*(go) N DF(g1) = {0}. Let us make a simple but very useful remark. Let g €
SO(B). For a regular element g € SO(B), the space A™(g) ( resp. A~ (g)) is the unique
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maximal isotropic subspace of D (g) ( resp. D~ (g)) Therefore two hyperbolic elements
g1 and g, are transversal, if and only if, AT(g1) N A (¢2) = @ and A~ (g1) N AT (g2) = @.
We prove now the following useful proposition

Proposition 2.3 Let S be a Zariski dense semigroup of SO(B), where B is a quadratic

from of the signature (2,1). Let A = {Ay,..., A} be a finite set mazimal B—isotropic
subspaces of R3. Then there exists a hyperbolic element s € S such that A™(s) ¢ A and
A= (s) ¢ A.

Proof. . Let § be the set of regular elements of SO(B). This set is Zariski open. It is
clear, that the set Q) = {w € SO(B)|wA; N A; = {0} for all i = 1,...,r} is non-empty
and Zariski open. Therefore Q; N QNS # &. Let s € Q3 NQNS. Assume that (A*(s) U
A= (s)) N A # @&. Then for some i,1 < i < r we have sA; = A;. Contradiction. Clearly,
there exists N such that s™ is a hyperbolic element for n > N, A*(s") = A*(s), and
A~ (s"™) = A~ (s). This proves the statement. ]

Two transversal hyperbolic elements g; and g, are called e- transversal,

o~ ~

min {d(A*(g.), D™(g;)), d(A~(g:), D*(9,))} > .

1<i#j<2

Let | : G,, — GL,(R) be the natural homomorphism (see [A]). Recall that [(g) is called
the linear part of an affine transformation g. Let X C G, then the set I(X) = {l(z),z €
X} is called the linear part of X. It is clear that G = {x € G,, | l(x) € O(B)} and
that [(Gp) = O(B). An affine transformation is called dipole (respectively hyperbolic,
e — hyperbolic) if I(g) is dipole (respectively I(g) is hyperbolic, {(g) is e- hyperbolic). Two
affine transformations g; and g, are called transversal (respectively e — transversal) if the

linear parts [(g1) and [(g2) are transversal (respectively € -transversal).



Let ¢ € Gp be a hyperbolic element without fixed points. Then there exists a g—

invariant line L,, and the restriction of g to L, is a translation by a non- zero vector ¢,.
Let us note that all such lines are parallel; ¢, does not depend on the choice of L, and
l(g)ty = t,. We will assume that we have fixed some point in the affine space R” as a
point of origin and we define L, to be the g -invariant line closest to it . Define affine
subspaces Cj) = L, +A%(g), C; = D" (g)+ Ly, C; = D™ (g)+ Ly. Clearly, C;;NC, = Cy.
Let as recall the following useful observation. If a subsemigroup S C Gpg acts properly
discontinuously and g € S is a hyperbolic element, then g acts without fixed points. Then
the linear part [(g) of every hyperbolic element g € S has 1 as an eigenvalue ([A], Lemma
6.1) and thus t, # 0 and [(g)t, = t,. Actually Lemma 6.1 [A] says that every element of
S of infinite order has 1 as an eigenvalue.
2.4. For a non-zero vector v, v € R" we denote by L = {tv,t € R;t > 0}. Let S be
a semigroup of G,, and M C S. Let K be a compact subset of R". We consider the set
of norm one vectors X (M, K) defined as follows: v € X (M, K) if ||v]] = 1 and there
exist a constant C' = C'(v, K) and a sequence of points {p;}ien € K and a sequence of
elements {s;}ien € M such that d(s;p;, p;) — oo and d(s;p;, L) < C. Obviously, s;p; —
pi/||sipi — pi|| — v when i — oo

Clearly Xoo(M, K1) C Xo(M, Ks) if K7 C Ky. It is easy to see, that for every com-
pact K and element s of S we have X (M, K) = Xo(Ms,s 'K). Let U(0, R) be the
closed ball of R™ with center at 0 of radius R. Let X, (S5) be the closure of the set
Usen XS, U(0,N))

Lemma 2.5. Let S be a semigroup S C G,,. Then

1. For every two compact subsets Ki and Ky in R" K C Ky and M C S we have
Xoo(M, K;y) C Xoo(M, Ks)

2. For every v € X(S) and s € S, we have sv/||sv] € X (S).



3. If S s a crystallographic semigroup, then for every compact subset K we have

Xoo(S, K) = 8"(0,1). Therefore Xo(S) = S™(0,1).

Proof. The proof is straightforward. m

Assume that S C Gp is a semigroup such that the linear part [(S) is Zariski dense in
SO(B) where B is a non-degenerated quadratic form of signature (p, q),p > ¢ Denote by
Q.(S) = {s € S| s is an e-hyperbolic element }. Let us recall the following result ([AMS
1], Theoreml). Let I" be a Zariski dense semigroup of SO(B). Then there exist an ¢ =
(') and a finite set of elements g = {71,...,7%} C S, r < (p + q)? such that for every
~v € T" there exists a suitable element ~; of the set 'y such that yv; € Q.(T")

Lemma 2.6 Let K be a compact subset. Then there exists a compact set K; such that

Xoo(S, K) C Xoo(02:(5), K1).

Proof. Let v be a vector of X, (S, K). Then there exist two sequences {g,}neny C S
{kn}nen € K and a constant C' = C'(K,v) such that g,k, — k,/||gnkn — kn| — v when
n — oo. By the theorem above, there exists a finite subset Sy C S such that for every
sTIK s

gn we have g,s; € Q.(9) for a suitable s; € Sp,i = i(n). The set K; = Useso

compact, since the set Sy is finite. Clearly, v € X (Q:(S), K1). O

Now we will recall an important definition first introduced by G. Margulis [GM 1] for
n = 3, generalized in [AMS 2] for the case when the signature of the quadratic form is
(k4 1,k) and finally for an arbitrary quadratic form in [AMS 4]. We will follow along
the lines of [AMS 4]. Let B be a quadratic form of signature (p,q), p > ¢,p + ¢ = n.
Let vy,v9,...,vp, wy,Wa,...,w, is a basis of R" such that for a v of R" v = zv; +--- +

TpUp + Yrwy + -+ + Yw,, we have
B(v,v):xf+---+x§—yf—---—y§.

9



Consider the set ¥ of all maximal B-isotropic subspaces. Let X be the subspace spanned
by {v1,vs,...,v,} and Y be the subspace spanned by {wy, ws,...,w,}. It is clear that
R"= X @Y. Define the cone

Cp ={v € R"|B(v,v) < 0}.
Clearly Y C Cg. We have the two projections
mx :R" — X andny :R" — Y

along Y and X, respectively. The restriction of 7wy to V € W is a linear isomorphism
V — Y. Hence if we fix an orientation on Y, then we have also fixed an orientation
on each V € . For V € VU let us denote the B-orthogonal s of V by V+ = {2z €
R"™ ; B(z,V)=0}. We have V C V+ since V is B-isotropic. We also have

dimV+ =dimV + (p — q) = p.

The restriction of 7x to V* is a linear isomorphism V+ — X. Hence if we fix an
orientation on X, then we have also fixed an orientation on V* for each V € W. Thus
we have orientations on both V and V+ and we have naturally induced an orientation on
any subspace W, such that V: = W @ V. If V; € ¥ and V, € U are transversal, then
W = Vit NVt is a subspace that is transversal to both V; and V; therefore W @ V) =
VlL and WV, = VQL. So there are two orientations w; and wo on W, where w; is defined
if we consider W as a subspace in V;-. We have [AMS 3,Lemma 2.1]

Lemma 2.7. The orientations defined above on W are the same if q is even and they
are opposite if q is odd.

2.8. Assume now that B is of signature (k+ 1, k). Let V' be a maximal B-isotropic space
and W = V. Following along the procedure above we choice and fix a positive orientation

on W, namely, we have an oriented basis vy,vy...,v; in V and a vector vp,, € W such
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that the bases vy, vy ..., Vg, Vg1 is positively oriented. Hence an anisotropic vector w €
W is called positive (resp. negative)if B(v,vg41) > 0 (resp B(v,v41) < 0.)

Let g be a hyperbolic element without fixed points, g € Gg. Then, D (g) = (A*(g))L
and D~ (g) = (A (g9))", dim A*(g) = dim A~(g) = k and dim 4°(g) = 1. We define an
orientation on the space A°(g) induced by an orientation on DT (g) (see [AMS 2], [AMS
4]). Let vg(g) be the corresponding vector, with B(vg(g),vo(g)) = 1. Then vy is a positive
vector of D7(g). On the other hand,A%(g) C D~ (g). Let wy(g) be a positive vector of
D~ (g), wo(g) € A%g), B(wo,wp) = 1. Then by Lemma 2,7, we have B(vg,wp) = (—1)*.
Clearly B(vp,wg) = —1 when the signature of the form B is (2,1).

Thus C%(g) is a g-invariant line and the restriction g | C%g) is a translation by a
non-zero vector t,,t, € A%g) . Since t, € A%(g), we have B(t,,t,) > 0. It is easy to
check that if p is an arbitrary point in R and ¢, = gp— p, then B(t,,vo(g9)) = B(t,, vo(9g))-
Note that there exist two non-zero constants c;(e) and cy(¢) such that for every € and
an e-hyperbolic element g, and any vector v € A%g), we have ¢i(e)B(v,v) < |jv]] <
c2(e)B(v,v). As in [AMS 3|, define the sign «a(g) of a hyperbolic affine transformation g
by

a(g) = B(tg,vo(9))-
Clearly,

a(g) = B(ty,v0(9)),

since B(t,,vo(g)) = B(tg,v0(g)) for an arbitrary point p € R™. Let us recall the following
important observation called the opposite sign lemma [A, Lemma 8.4]: if a semigroup S C
Aff(R™) contains two hyperbolic transversal elements g; and g such that a(g;)a(gs) < 0,
then S does not act properly discontinuously on R™.

2.9. Let us explain main ideas of the proof of Main Theorem. The crucial point in the
proof is to show that [(S) is not Zariski dense in SO(B). On the contrary we suppose
that [(S) is Zariski dense in SO(B). Let vy, v, w1 be a basis of R? such that for every
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vector v = x1v; + Tovy + yrw; we have B(v,v) = 22 + 22 — y?. Let g and h be two
hyperbolic elements, g € Gg,h € Gp. Assume that A*(g) = AT (h) and A= (g) (resp.
A~ (h)) spanned by the vector w; + vy ( resp. w; — vy). Suppose that ggo — qo = hqo =
go = —w. (see Figure 1)

Let us show that a(g) > 0 and a(h) < 0. Indeed, let v(g) € D (g) N X (resp.
v(h) € D7 (h) N X) be a vector such that w; + vy,v(g) (resp.wy — vy,v(h)) forms a
positively oriented basis in D~ (g) (resp. D~ (h) ). It follows from our definition ( see
2.7) that v(g) = —wv(h), since mx(wy + v1) = v1 = —7wx(w; — v1). Denote by v the
vector of A*(g) = AT (h) such that 7y (v) = wy. Let vg(g) (resp. vo(h)) be the vector of
A%(g) (resp. A°(h)) such that v,vo(g) ( resp. v,vo(h)) is the positively oriented basis of
D7 (g) and B(vo(g),v0(g)) = 1 (resp. Dt (h) and B(vg(h),ve(h))). By Lemma 2.7, w; +
v1, —vo(g) (resp. wy; — vy, —vg(h)) is positively oriented basis of D~ (g) (resp. D~ (h). By
the explanations given in the beginning of (2.8) the vectors vy(g) is a positive vector of
D7 (g). Therefore vy(g) is a negative vector of D~ (g). Hence we have B(vy(g),v(g)) < 0
since v(g) is a positive vector of D~ (g). By the same arguments, B(vo(h),v(h)) < 0. Thus
B(vg(h),v(g)) > 0, since v(g) = —v(h). Hence my(v9(g)) = —my (vo(h)). Consequently
we have a(g) = B(ggo — o, vo(9)) = B(w1,v0(g)) > 0 and a(h) = B(hgo — qo, vo(h)) =
B(wy,vo(h)) < 0.

Assume now that there exist € and two sequences {g, tnen € S and {hy, }nen C S of -
hyperbolic, € -transversal elements with the properties that for n — oo we have A (g,) —
A¥(g), A*(ha) — A*(h) = A*(g), A~(g.) — A~(g), A~(hn) — A~(h). Suppose that
there exist a compact set K and two sequences {g, }nen C K and {p, }nen such that ¢,,q, —
Gn/A(GnGn, Gn) — w1, and hypp, — pn/d(hppp, pn) — w1, Tt is easy to see that there exists
N such that for n > N we have a(g,) > 0 and «a(h,) < 0. Thus by Lemma 2.7 S does
not act properly discontinuously and consequently, I(.S) is not Zariski dense in SO(B).

The proof falls naturally into the following steps. First we will show that there ex-
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D1y

Figure 1: Opposite sign

ist four hyperbolic, transversal elements ¢y, g2, g3, g4 such that wy € A= (g1) + A (g2) N

A~ (g1) + A~ (g2). Then we will show that there exists a sequence {hy}nen is a sequence
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12 — wy and ||hngo — qo]| —

of e-hyperbolic elements , h,qo — qo/|B(hnqo — o, hnGo — qo)|
oo such that it is be possible to choose two elements g;, g; of g1, g2, 93, ga in a way that

the elements h,g; and h,g; have an opposite sign for sufficiently big n.

3. Main results.

We begin by recalling known facts on hyperbolic elements in Gg [AMS 3], [AMS4].
Assume that g and h are two hyperbolic elements. Let € be a positive number such that

g and h are e- hyperbolic and d(A*(g), A*(h)) > €. Since D*(g) = (A%(g))* it is casy
to see, that there exists a constant c(e) such that (?(AJr(g), Dt (h)) > ¢(g). Thus we can
conclude:

Lemma 3.1 Let g and h be two -hyperbolic elements such that

min{d(A*(9), A” (), d(A™(g), A" ()} > .
Then there exists a constant c(e) such that the two e-hyperbolic elements g and h are

c(e)-transversal
Remark 3.2 Let B be a hyperbolic form of signature (2,1), and let g be an element of Gg.

Then g is hyperbolic if and only if g is dipole. Hence in this case we have A%(g) = VE(g)
and D*(g) = W*(g). Taking into account Lemma 3.1, we will say that two hyperbolic,

-~

transversal elements g and h of Gg are e-hyperbolic, e—transversal if d(A*(g), A= (g)) >

~ ~ ~

g, d(AT(h),A=(h)) > e and d(A*(g), A= (h)) > e,d(AT(h), A" (g)) > € respectively.

Lemma 3.3.[AMS 3] There exists s(e) < 1 and c(g) such that for any two e-hyperbolic
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e-transversal elements g, h € SO(B) with s(g) < s(¢) and s(h) < s(e), we have
(1) the element gh is €/2-hyperbolic and is € /2—transversal to both g and h;

(2) d(A*(gh), A*(g)) < c(2)s(g));
) < c(e)s(h));

(3) d(A~(gh), A= (h)
(4) s(gh) < c(e)s(g)s(h).

From now on we will assume that n=3 and B is a quadratic form of signature (2, 1).
Assume that the linear part [(.S) is Zariski dense in SO(B). It follows from Lemma 2.3 that
there exist a pair of hyperbolic transversal elements g and h in S such that A*(g) # AT (h)
and A~ (g) # A~ (h) . Fix these elements and consider the two subspaces C(g) = AT (g) ®
A~(g) and C(h) = AT(h) ® A=(h) of R3. It follows from Lemma 3.3 that for any § > 0
there exists N, N € Z, N > 0 such that d(AT(g™h"), AT (g)) < 6, d(A*(hng™), A*(h)) <
J, c/l\(A_(gmh"),A_(h)) < 0 and j(A_(h"gm),A_(g)) <6 forn > N, m > N. Any two
chosen elements in Cp with the same B -norm are conjugate by an element from SO(B).
Hence we can conjugate S by an element from Gp such that C(g)(C(h) =Y. Thus we

have

Lemma 3.4. If the Zariski closure of the linear part 1(S) is SO(B), then there are

two hyperbolic transversal elements g and h in S such that C(g)(C(h) =Y. Choosing
a suitable positive number €, we can and will assume that the elements g and h are e-

hyperbolic and e- transversal.
Lemma 3.5. Let S be a semigroup, S C G such that [(S) is Zariski dense in SO(B).
Then there exists a set {g1, ga, ga, g1} of hyperbolic transversal elements of S such that for

every non-zero vector v € A=(g1) @ A (g2) N A~ (g3) ® A~ (g4) we have B(v,v) < 0.

Proof. Tt follows from Proposition 2.3 that there exists a set A = {s;,1 < ¢ < 4} of a

hyperbolic transversal elements of S. We can order the set A such that we have B(v,v) <
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0 for every non-zero vector v of A=(s1) & A (s2) N A~ (s3) B A~ (s4). O

Figure 2: Positive and negative parts

3.6. We will use notations and definitions from 2.6. Let V, V C R"™ be a maximal
B-isotropic subspace and let v be a vector from V such that V is spanned by v and

7y (v) = w; (see Figure 2 below ). Let vy be a vector from V- N X such that B(vg, vy) =
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1 and the basis mx(v), vy has the same orientation as vy,vy. Let W be a maximal B-
isotropic subspace, W # V . Then dim(V+- (W) = 1. There exists a unique vector
wo(W), we(W) € VEN W such that wo(W) = vo+ a(W)v. Set &) = {W € &| (W) >
0} and @, = {W € @|a(W) < 0}. Since vy € X, we have B(vg, w;) = 0. Therefore
B(wo(W)),w;1) = a(W), B(v,w;) = —a(W). We conclude that for every vector w € @7,
(resp. w € ;) we have B(w,w;) < 0 (resp.B(w,w;) > 0). From Lemma 2.7 and the
choice of hyperbolic elements g and h, it immediately follows that @fl = ®F and q)jfz =
7 . Assume that we choose two different B-isotropic spaces 1, and W3 such that w, €
Wy @ Wy and V N W; @ Wy = {0}. Clearly, if W; belongs to C ®;, then Wy C Phi;, and

viceversa.

Proposition 3.7.  Let S be a semigroup, S C Gg. Assume that S acts properly discon-

tinuously on R™ and that there exists a compact subset Ko of R"™ such that X (S, Ko) =
S™(0,1). Then the linear part I(S) of S is not Zariski dense in SO(B).

Proof. Assume that [(S) is Zariski dense in SO(B). Let A = {s1, 2, 53,54} be the

set of hyperbolic transversal elements which fulfill the requirements of Lemma 3.5.Let

di = mini<;jeaiz{d(A*(s:), AT (s))}, dp = minicjesig{d(A(s:), (A (s;))}, ds =
minlgi’j§4{(/1\<z4+<8i), A~ (s;))}. Set dy = min{dy, ds.ds}. Let Ky be a compact subset of R"
such that X (S, Koy) = 5™(0,1). Then w; € X (S, Ky). Therefore there are two infinite
subsets {l,,,n € N} C Ky and {g,,n € N} C S such that

(1) ||gnln — 1n]| — oo when n — oc;

(2) gnlyn — U/ d(gnln, 1) — w1 when n — oo.

By Lemma 2.6, we can and will additionally assume that g, is € = £(.5)-hyperbolic for
all n € N. The projective space P is compact. Hence we can and will assume that the
sequences {m(A%(gn))}neny and {m(A7(gn)) }nen converge. Denote lim,, ., 7(AT(g,)) =

~

p1 € P and lim,, o (A" (g,)) = p2 € P. Note that d(p1,p2) > e.
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It follows from Proposition 2.3 that there exists a hyperbolic element sq transver-
sal to every element from A such that {m(A*(so)),m(A (s0))} C P\ {p1,p2}. Set 6; =
min{d((p1,), A~ (s0)), d((ps, ), A*(s0))} and 05 = minjcicg d(A*(s;),, A" (s0)). Put § =
min{d;, 85, £(S)}. There exists Ny € N such that d((py, A*(gn)) < 6/4 and d((p2, A~ (gn)) <
d/4 for n > Ny. Thus we conclude, that for n > Ny the hyperbolic elements g,, and sq are
d—transversal and §;—hyperbolic. Put ¢ = s(sg). Clearly, s(sk) = ¢*. Thus by Lemma 3.3
we conclude, that there exists N; = N;(d) such that the element g, sk is 6/2-hyperbolic,
d(A= (gnsk), A~ (s0)) < ¢*% and s(gnsk) < ¢¥/2 for all n > Ni. For every k > N; we

consider the sequence {ggk)slg }nen such that
(1) the sequence ﬂ(A*(gflk)s’g)) converges in P to a point ay, for every k > N;

2) {98 M new € {0¥ Y nen

Clear, that there exists a sequence {k;};en such that k; < ki1 and the sequence of points
{ag, }ien converges. Set ag = lim; o ay,.

Let V' be the subspace of R? such that 7(V) = ag (See Fig. 2). Tt it easy to see that
min{d(ao, A~ (s1)), d(ag, A= (s2))} > do/2 or min{d(ag, A= (s2)),d(ao, A (s4))} > do/2.
Clearly that without lost of generality we can assume that min{cf(ao, A (s1)), cf(ao, A= (s9))} >
do/2. Therefore (see (3.6)), since the vector wy € A~ (sy) @ A~ (sg) we have A~ (s1) U
A~ (s9) C @}, U Py, We will suppose that A~ (s;) C @7 and A~ (s3) C P;,. On account
of (3.6) for a positive vector wo(A~(s1)) we have B(wo(A™(s1)),w;) > 0 and for a posi-
tive vector wo(A™(s2)) we have B(wo(A™(s2)),w;1) < 0. It is obvious that there exists an
go such that for every maximal B-isotropic spaces Vg, Wy, W5 such that c?(ao, Vo) < eo,
d(A=(s1), W1) < o, and d(A~(s), Ws) < £, we have W; C @7 and Wy C ®F.

Put dp = min{dy/4,0/2 e¢/4}. Let ¢(dp) and ¢(do/2) be the constants which fulfil
the requirements of (2), (3) Lemma 3.3. Let N3 € N be a positive number such that

~

q"(c(dp) + c(09/2)) < 60/4 and d(ag,,ap) < do/8 for r > N3 and k; > Nj3. Choose k; >
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N5 and denote ry = k;. From c/l\(ak ag) < 0p/8 and ag, = lim, o, (AT (gn (ro) s’) follows
that there exists Ny, Ny € N such that d(A+( (TO) ar,) < 0o/8. Denote g, = g,ﬁ’ﬂw
Clearly, d(AT(G,), a0) < d(AT (g5, any) + d(ay,, ag) < 8o/4 < e. Recall that the elements
gn and sy are d;—transversal and d;—hyperbolic. Hence they are dp—transversal and &o—
hyperbolic. Thus from (3) Lemma 3.3 and the choice of ry we obtain J(A_(ﬁn), A (s0)) =
J(A_(gflﬁ%w),A_(sg)) = c/l\(A_(g:;‘ﬂrN‘lsgo),A_(so)) < ¢(09)q™ < 6o/4. Hence we have
d(A=(G), AT (s1)) > d(A=(s0), AT (5:)) — d(A~(Gn), A= (50)) > 80/2. Recall, that

min{c;l\(ao,A*(sl)),&\(ao,A’(SQ)) > dp/2 > d9/2. Therefore the elements gy and s; are

do/2-hyperbolic and §y/2-transversal. From Lemma 3.3 we obtain

)

U

(1) d(A*(Gust), A*(Gn)) < c(00/2)5(90) < (d0)s(50)"™ < do/4 < eo.
(2)

Thus from (2) we obtain

)

(A= (gnst), A (s;)) < c(dp/2)s(s;)" for i =1,2.

(3) There exists Ry such that d(A (GnsTot™), A= (s;)) < 00/4 < go where i = 1,2
Set /g\ﬁf) = §n3f0+1 for i =1,2 and 19— =55""s; (ROH)ln. Then
(4) gv(z)ln l)/d(/\(l l(i), lﬁf)) — w; for n — oo.

Let vg(gn ) be the positive norm one vector of D*(A(z)) Thus from (2),(3) for all n we
have B(vo(gé)),wl) > 0 and B(vo(gg)),wl) < 0. Moreover limn_,ooB(vo(fq\,(ql)),wl) >0
and lim,, B(vo(@(lz)), wy) < 0. Hence there exists £ such that for any vector w, [|w|| =1
and |Jwy — @/|| < & we have lim,,_..o B(vo(Ge”), @) > 0 and lim n — coB(ve(35), @) < 0.

Thus there exists a positive integer M such that n > M we have
B(vo(g), g1 = 119) > 0

and

B(uo(3), g1 — 117) < 0

n n
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Hence there are two transversal hyperbolic elements in S of opposite sign. Hence S
does not act properly discontinuously on R™ by opposite sign lemma (see 2.8) . This

contradiction completes the proof. ]

Proof. (Main Theorem) Suppose that the Zariski closure of S is not virtually solvable.
Let Sy be a semisimple part of the Zariski closure of G = [(5). If Sy is a compact group,
then by [GS 2|, this group is trivial. Contradiction. Therefore we can assume that Sp
is a non-compact simple group. Recall (see 2.8) that every element from the Zariski
closure of I(S) has 1 as an eigenvalue. Hence, Sy is isomorphic to SLs(R since Sy is a
subgroup of SL3(R). Thus we have a representation p : SLy(R) — SL3(R). There are two
possible cases: either p(SLy(R)) = SO(2,1) and G = SO(2,1), or p is the direct sum of
the standard and trivial representations of SLs(R). It follows from Proposition 3.5 that
the first case is impossible. Then we have two possibilities:

(a) there is an one-dimensional subspace V' such that I(s)v = v for every s € S

(b) there is a [(S)-invariant subspace V, dim V' = 2.

(a). Fix a hyperbolic element g. Let L, be the unique g-invariant line and let vy(g)
be the unique Euclidean norm one vector such that for a point p,p € L,, we have gp —
p = a?vy(g). Let Ky be a compact subset such that X, (S, Ky) = S3(0,1). Hence
vo(9), —v0(9) € Xoo(5, Kp). It follows from Lemma 2.6 that there exist a positive number
g, a set of e- hyperbolic elements g,, g, € S and a subset {p,, p, € Ko,n € N} such that
(1) gnpn = P/l gan — Pull — —vo(g) When n — oo;

(2) || gnpn — Dul| — 00 when n — 0.

For every element s € S, we have [(s)vg = vg. Therefore sg¢,p, — pn/l|SgnpPn — Pull —
—vp(g) when n — oo and for ¢, = s 'p,, we have ¢,5¢, — ¢n /905G — @l — —vo(9)
when n — oo. Note that {g,,n € N} is a subset of a compact set s™' K. Thus, we can
assume that the sequence {A*(g,) tnen (resp. {A7(gn) }nen) converges to AT (resp. A7)
and C/Z\(AJF, A%(g)) > 0 (resp. c/l\(A’, A*(g)) > 0. Hence there exists a e- hyperbolic element
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h transversal to g such that for a point p from the unique A invariant line Lj,, we have hp—
p = —[%v(g). Then, using the same arguments as in opposite sign lemma [A, Lemma
8.4], we conclude that there exist infinite sets N and M such that h™g¢" Ky () Ko # 0 for
all m € M, n € N. This is impossible because S acts properly discontinuously.

(b). Consider an affine space A = R3/V | a projection 7y : R* — A and an induced
homomorphism py : Aff(R?) — Aff(A).Obviously, dim A = 1. Let K be a compact subset
of K. It is clear that there exist a positive number ¢ and sequences {g;}iren and {hy }ren
of 6-hyperbolic elements such that we have for a point k € K
(1) |gik — k| — oo, |k — k| — oo when t — oo;

(2) (g:k — k)(hk — k) < 0 for all t € N;
(3) g: and h; are d-transversal for all ¢ € N.
On the other hand the representation p of the linear part [(S) determines the following

representation of S.

@13 a2 Q13 *

Q21 Q22 QA23 *

=
0 0 1 a4
0 0 0 1

where
air G2 Q13
p(l(s)) = | as axn ax

0 0 1
It is easy to see that py(s) = a,. Hence by (1),(2) and (3) above there exist two
0-hyperbolic, d-transversal elements g and h such that apay < 0. Let Ly (resp. Ly) be

the unique g-invariant (resp /ﬁ-invariant) line. Fix a point p and a Euclidian distance d in
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R3. Then by [AMS 2, Lemma 2.4] there exists a positive ¢ = ¢(g, h) such that

d(p, Lymy.) < cld(p, Ly) + d(p, Ly)]

for all positive numbers m and n. Since o = na, and ayap < 0, there are infinite sets of

positive numbers N and M such that |ag: + o | < ¢/2 for n € N,m € M. Consider the
ball U(p,2¢c). Then for n € N;m € M the set {ﬁmﬁnU(p, 2¢)(U(p,2¢)} is non-empty.

This is a contradiction, which proves the theorem. Il
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