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Tie transformations of Dynkin graphs and

singularities on quartic surfaces

§ 0. Introduction

This article is the continuation of my previous one [9].
We continue to study possible combinations of rational double

points on quartic surfaces in the prodjective space of dimension

3.

Now, in [9] I proposed a certain converting procedure on
Dynkin graphs. It was called an elementary transformation. This
notion was natural and simple. However, it had a limit in its
application and we had to check certain arithmetic conditions

for the application.

In this article we would like to propose another procedure.
The new procedure is called a tie transformation. By one tie
transformation we can make the number of vertices in the Dynkin
graph larger by one. This is the different point from elementary
transformations. By elementary transformations we can never make
the number of vertices larger. Because of this property by tie
transformations we can treatimany interesting examples of K3
surfaces whose Picard number is the maximal 20. (Creollary 0.3,

Persson [6], Wall [16].)



A part of this article was announced in Urabe [8]. (In
Urabe [8], [10] we called the above new procedure a "connection".
However, this name is confusing. Therefore we would like to change

the name and to call it a tie transformation.)

We assume that every variety is algebraic and is defined

over the complex number field T .

As in the previous article [9] we obey the following con-

ventions on Dynkin graphs.

(1) A disjoint finite union of connected Dynkin graphs of type

A, B, D or E 1is called a Dynkin graph.

(2) Any given Dynkin graph consisting of only a unique vertex is
beforehand determined to be of type A1 or of type B1 .

(3) Assume that the Dynkin graph has a component of type B . If
it is of type Bk with k 2 2 , the vertex at the top of the

double edge with the arrow is called the vertex corresponding to

a short root. If it is of type B1 , the unique vertex is the one

corresponding to a short root. The other vertices and any vertices

of any graph ot type A , D or E are called the vertices

corresponding to long roots.

(4) When we make a connected Dynkin graph G into the extended

Dynkin graph of the corresponding type by adding a new vertex ‘and



a few edges, the new vertex is regarded as the one corresponding

to a long root, if G is not of type B1 . If G 1is of type

B1 , the new vertex corresponds to a short root.

(5) Assume that a Dynkin graph G contains a of connected

k

components of type Ak ’ bl of components of type DZ v S
of components of type Em , and dn of components of type

Bn (k 21, 224, m=6,7,8, nz21) . Then we denocte

G=J]aA+]bD +JcE +]dB .

Definition 0.1. Assume that applying the following procedure to
a Dynkin graph G , we have obtained the Dynkin graph G . Then

we call the following procedure a tie transformation of Dynkin

graphs.

(1) Attach an integer to each vertex of G by the following rule:
Now, let a1 ,az PR ,ak be the fundamental system of roots
aisociated with a connected component G0 of G . Let

iE} n,o, be the associated maximal root. Then the attached integer

to the vertex corresponding to ay is n, . \

(2) Add one vertex and a few edges to each component of G and
make it into the extended Dynkin graph of the corresponding type.

Attach moreover the integer 1 to each new vertex.

(3) Choose in an arbitrary manner subsets A , B of the set



of vertices of the extended graph G satisfying the following

conditions:
<a> A NB = ¢

<b> Choose arbitralily a component 51 of the extended
graph G and let V be the set of vertices in 51
Let N be the sum of the numbers attached to elements
in B nv . (If BnV=4¢ , N=20.) Then, the

greatest common divisor of N and the numbers

attached to elements in A N V is necessarily 1.
(4) Erase out all attached integers.

(5) Remove veftices belonging to A together with the edges

issuing from them.

(6) Draw another new vertex called 6 . Connect 6 and each

element in B following the rule below: If v € B corresponds

8 v
to a long root, we connect 6 and v by a single edge. om0 .

If- v € B corresponds, to a short root, then we connect 6 and

v by a double edge with an arrow in the direction from 6 to v
8 v .
O >0 .

Remarks. (1) The new vertex 6 1is regarded as the one corres-

ponding to a long root.



(2) Often the resulting graph G after the above procedure
(1) - (6) is not a Dynkin graph. We consider only the cases
where the resulting graph G is a Dynkin graph and then we call

the above procedure a tie transformation.

Theorem 0.2. Assume that G' is a Dynkin graph obtained by an
elementary transformation or a tie transformation from one of
the following 9 basic Dynkin graphs. Assume moreover that
applying an elementary transformation or a tie transformation to
G' once more, we have obtained a Dynkin graph G without any
vertex corresponding to a short root. Then there exists a normal
guartic surface in the projective space of dimension 3 whose

combination of singularities just agrees with G

The basic Dynkin graphs:

11+*Eg + 2Dg+ By,

D12+BS' E, +B

2E, +B

Corollary 0.3. There is a normal quartic surface with any one

of the following combinations of singularities.

Ao+ A

187 By A

+ A 2D, + A, + A

Big + DPig* Ay D 17782 7 “Pg TRyt Ry

18

2E8+A2+A1 ’ A15+2A2 r -« 5 etec.

froof. Consider. the Dynkin graph A, +Eg . . We apply a tie trans-

formation to it. At the second step we get the. following graph.
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Set A = {ao ,81} and B = {a11 ,82} . For the component AL,

the sum N of numbers attached to B is 1 and the number

attached to A is 1. Their G.C.D. is 1. For E6 , N =1,

the number attached to 2 1is 2 and their G.C.D. is 1. Under

this choice we get the graph A17+A1 as the result of the
tie transformation. Applying it once more to A,|7+A1 , we
can obtain A19 R D18+A1 ’ A18+A1 ’ A174-A2 etc.

If we start from other basic graphs, we can obtain various

other graphs.

We conjectured in Urabe [8] that the converse of Theorem

0.2. also holds. However, there are counter-examples for this



conjecture. G = A10-+A7-+2A1 etc. There is a normal quartic

A1O+A7+2AT .

+ A, 4 2A1 cannot be obtained by tie

surface with the combination of singularities
But the Dynkin graph Asp
transformations repeated twice from any one of the basic 9 graphs.

Since- Ajg * Ry +'2A1 has 19 vertices, we can never obtain it
from any one of the basic graphs, if we use an elementary trans-
formation. In the last section of this article we discuss these
counter-examples.

Any Dynkin graph obtained from one of the basic graphs by
using a tie transformation has to satisfy a certain condition in
the theory of lattices. (Section 1, Theorem 1.1.) We could not

succeed in.writing down this condition explicitly in terms of
the arithmetic theory. At the present stage the best theorem

.giving a necessary and sufficient condition is the following.

Theorem 0.4. Let G = ) aA +) bDo+ ] c E  (a finite sum)
be a Dynkin graph with components of type A , D or E only.
Set r =) ak+] b t+) cm . Then the following conditions

(p) , (B) and (C) are eguivalent.

(A) There exists a normal quartic surface in the projective
space of dimension 3 whose combination of singularities just
agrees with G and ﬁéreover one of the following conditions
<1> , <2> , €3> holds for the root lattice Q = Q(G) of type

G . By d(Q) we denote the discriminant of A

<1> r = 18 , and for every prime number p , EP(Q) =1 .



2

<2> r 17 , and for every prime number p , d(Q) ¢ Q;

= {-1, d .
or e_(Q) ( (Q))p
<3> r < 16 .
(B) One of the following (B-1) , (B-2) holds.

(B-1) G 1is a Dynkin graph obtained from one of the 9 basic

Dynkin graphs in Theorem 0.2
<1> by elementary transformations repeated twice

<2> by an elementary transformation following after a

tie transformation

or <3> by a tie transformation following after an elementary™

transformation
such that it has no vertex corresponding to a short root.
(B-2) G 1is a Dynkin graph obtained from one of the following
11 sub-basic Dynkin graphs by one elementary transformation such
that it has no vertex corresponding to a short root.

The sub-basic Dynkin graphs:

5 v 2A7-+2A1-+B2



BijgtBg*t By s

A74-3A3+-A2 ’

2A9 ' 2A7+A3+A1 ’ A7+A6+A3+A2 ’
3A6 ’
(C) G has no vertex corresponding to a short root and G 1is
a Dynkin graph obtained by one elementary transformation from

one of Dynkin subgraphs of the modified Coxeter-Vinberg graph

1
s -
Remarks. (1) r = the number of vertices in G = rank Q .

(2) By ep(Q) we denote the Hasse symbol of the inner product

space Q ® @ . For every prime number p , ep(Q) has values

1 ., The symbol (a ,b)p (a,b€eP,a*x0,b+0) is the Hilbert

symbol. For every prime number p , (a ,b)p = x1 . mp is the
field of p-adic numbers, i.e., the quotient field of the ring
*2 2
of p-adic integers % = lim Z/p" Z . = {a“]a € ,a+0}
2 g p =& /p Q, I 2,

(Serre [7], Urabe [9]).

(3) The sub-basic Dynkin graphs are the maximal graphs in the

set of Dynkin graphs G satisfying the following conditions:

<1> G cannot be obtained from any one of the 9 basic graph

by one tie transformation.

<2> The root lattice Q = Q(G) of type G has a full

embedding into the odd unimodular lattice of signature

(18, 1).
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(4) The modified Coxeter-Vinberg graph 2;8 is described as
follows. (Vinberg-Kaplinskaja [15]). It has 24 vertices. The
vertices €, 71 €5 1«00 s €py correspeond to long roots. Any two
of them are either connected by a single edge or not con-
nected. They form a tetrahedral subgraph 2:8 as is illus-
trated in the following Figure o . (The numbering is different

from that in Vinberg-Kaplinskaja [15].)

Figure o Figure B Figure vy

The remaining two vertices B8 , Yy correspond to short roots.
Figure B8 and Figure Yy show their connections with 2:8 . The
vertex B is connected with €17 and 49 only by a double
edge with an arrow in the direction to B . The vertex Yy is
connected with three vertices €, 1 €55 1 €55 only by a broken
edge. Moreover, the vertex B 1is connected with the vertex vy

by a single edge accompanied with the mark « (or by a heavy

B o Y
edge) . o—o0
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]
We would like to explain what J},g is in the following.

First we explain the Coxeter-Vinberg graph 218 associated
with the integral orthogonal transformation group 018,1( Z) of
the unimodular lattice with signature (18,1). (Vinberg-Kaplinskaja
[15], Vinberg [14], Conway-Sloane [2]). The graph 218 has 37
vertices and 218 contains 2;8 as a subgraph. Among them 22
vertices correspond to long roots and they form a subgraph iso-
morphic to 278 in Figure o . Therefore Z:S < 2;8 S 218 .

Here note that 2:8 has an action of the symmetric group S4

of degree 4. The graph 218 has the action of S4 extending

that on 2:8 . (However, 2;8 does not have an action.) The
remaining 15 vertices of 218 correspond to short roots. Three
.0f 15 short vertices are conjugate to B with respect to S4
and they are called the vertices of the first kind. The remaining

12 of 15 short vertices are conjugate to vy with respect to

S4 and they are called the vertices of the second kind.

(1) Vertices of the first kind are connected among themselves by

single edges accompanied with the mark = ,

(2) Vertices of the second kind are connected among themselves

by broken edges. O===-- o .

(3) A Vertex a-' of the first kind is connected to a vertex
b of the second kind by a broken edge if in Z:B there is no

vertex connected both to a . and to b- and there are no two



mutually connected vertices, one of which is connected to
and the other to b . Otherwise a and 'iq are connected by

a single edge accompanied with the mark *

Now, let us consider an unimodular lattice U of signa-

ture (18,1). U 1is uniquely determined up to isomorphism.

(Milnor-Husemoller [4].) The quadratic form on U= 219 has
the following form.

2 _ _ .2 2 2 _ 19
x“=(x,x) = X" v XD F o v XgT x_(x0 P X g ey x18)€ Z .

By 0{8 1(Z) we denote the group of integral linear transfor-
’
mations on U preserving the quadratic form. Let C denote the

negative cone in U ® R .

2

C={E€U®R | £°<0} .

\

Let o € U be an element with a2 =1 or 2 . Then o de-

fines an integral orthogonal transformation Sy € 018 1(Z) by

saﬁx) =x - 2(x,0) a/(a., ), x €U

The transformation Sa is called the reflection with respect
to a and has order 2. On U ® B it induces the reflection
with respect to the hyperplane orthogonal to o . The subgroup
18 of 018,1(Z) generated by all reflections S, with o € U

and a2 = 1,2 has a fundamental polyhedron P18 contained in

c . P18 is a connected component of C minus the union of all



hyperplanes orthogonal to some éelement® € U with a? = 1 or 2.

The graph 218 is the one describing P The vertices

18 °
of 218 have one-to-one correspondence with the facets of P,g
{18-dimensional walls of P18) . Any two vertices of 218 are

governed by the ffollowing rules:

(1) If the corresponding two facets are orthogonal, then they

are not connected.

(2) If the facets have an angle #/3, then they are connected

by a single edge.

(3) If the facets have an angle /4 , then they are connected
by a double edge with an arrow in the direction to the vertex

corresponding to a short root.

(4) If the facets are parallel in C , in other words, if the
intersection of the two facets has a non-empty intersection with
C - {0} (C denotes the closure of C) , and if it has no inter-
section with C , then they are connécted by a single edge

accompanied with the mark «

(5) If the facets have no intersection in C , then they are

connected by a broken edge.

The modified graph 218 is a subgraph of 218 such that
any Dynkin subgraph of 2;8 is conjugate to a subgraph of 218

with respect to S4 :



We can also show the following theorem.

Theorem 0.5. Let G be a Dynkin graph without .components of
type B . If G can be obtained by one tie transformation from
one of the 11 sub-basic Dynkin graphs. in Theorem 0.4 , then
there exists a normal quartic surface in the projective space of
dimension 3 whose combination of singularities just agrees with

G .

The plan of this article is like the following. In section
1 we develope the theory of tie transformations. We explain
that the notion of tie transformations of Dynkin graphs is as
natural and simple as that of elementary transformations. In sec-
tion 2 we study the unimodular lattice with signature (18,1)
The reason why the sub-basic graphs are chosen is explained. In
the last section section 3 we discuss the counter-examples to
the converse of Theorem 0.2 and Theorem 0.5. We use Nikulin's

lattice theory as the main tool in this section (Nikulin [5])-,

I would like to express thanks to the Max-Planck-Institute,
in particular to Professor F. Hirzebruch and Professor D. Zaagier
for warm hospitality. I would like to thank also my wife for
making the exact list of maximal Dynkin subgraphs of 218 . This

article is dedicated to my wife.
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§ 1. The notion of tie transformations.

First of all, we recall the results in Urabe [9] .

By Urabe (8], Theorem 1.15 the problem on the combina-
tions of rational double points is reduced to the problem on the
embedding of the lattice S = Z A" ® Q(G) into the unimodular
even lattice with signature (19,3) . Here ).~ is an element

2

with AT = -4 and Q(G)i is the root lattice associated with

the Dynkin graph G

Recall moreover several ideas in [9] in the lattice

theory.

(1) We can pass from the unimedular even lattice A to the
guotient quasi-lattice A/ Z)X equipped with the canonical bi-
linear form with values in @ , where X €A 1is an element with

Az ==-4 .,

(2) By the above passage the isotropic element u appearing in

the condition (b) in Urabe [9] Theorem 1.15 corresponds to
a short root in A/ZX . Because of this reason, we need to

consider also Dynkin graphs of type B .

(3) Since A/Z) contains an odd unimodular lattice with

index 2 , we can apply the theory of odd unimodular lattices.

(4) After decomposing the indefinite even unimodular lattice A

into a direct sum A = A®H of another unimodular lattice A



and a hyperbolic plane~ H , we can pass from A to A .

The notion of tie transformations is based on the above

fourth idea.

Recall that a submodule M of a root module L 1is said to
be full, if any element n, in the primitive hull of M in L

such that n2 =1 or 2 belongs to M .

Theorem 1.1. Let A be an even unimodular lattice with signa-
ture (16+N,N) , N22 , and A be an even unimodular lattice
with signature (15+N,N-1) . Let A € A be an element with
%2 = -4 . Let G be a Dynkin graph with at most one component

of type B and Q = Q(G) be the root lattice of type G . The

following three conditions are egquivalent.

(1) There is a full embedding Q < A/Z) satisfying the following

condition <*>

<x> There are a fundamental system A < Q of roots of

, a.long root a € & in A ,. and an isotropic element

L @]

€ A/BY such that u + B = 0 for any B°€ & with B * a

cl

nd u - a=1.

fu

(2) There are an element X € A with Az =-4 and a Dynkin

graph G with at most one component of type B satisfying the

following conditions <a> and <b>
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<a> There is a full embedding Q(G) < A/ ZA

<b> G is obtained from G by one tie transformation.
(3) There are an element X € A with AZ =-4 and a maximal
positive-definite root sublattice Q < A/ ZX such that G is

obtained by one tie transformation from the Dynkin graph G of

Q

" Our Theorem 0.2 is a consequence of above Theorem 1.1.
Indeed, let G'' be one of the 9 basic Dynkin graph and G'
be a Dynkin graph ebtained from G'' Dby one elementary trans-

formation or a tie transformation.

By Urabe [9] Corollary 3.10 there is an element
A€ Q(2E8) ® H with Az = -4 such that the root system
R(Q(ZEB) ® H/ Z)) is of type G'' . In particular, there is a
full embedding Q(G'') c Q(ZEB) ® H/ ZX . If G' 1is obtained

by an elementary transformation, then by Urabe [9] Proposition

4.2 there is a. full embedding Q(G') < (Q(2E8) ®@ H/ Z)) & H

Q(2Eg) @ H @ H/ Z) . (Here we identify X € Q(2Eg) @ H with
A ® 0 €Q(2E;) 6 HOH.) - If G' is obtained by a tie trans-
formation, then by above Theorem 1.1 {(2) = (1) there is a full

embedding Q(G') < Q(2E8) ® H® H/ ZX

Next assume that G is a Dynkin graph without components

of type B and that G 1is obtained from G' by an elementary

transformation or a tie transformation. Then by Urabe [9]
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Proposition 4.2 or Theorem 1.1 we have a full embedding

i1 Q(G)) , where

Q(G) < Q(2E8) @ H®H® H/ ZX . Set S
T o Q(2E8) ®HSHS®H — Q(2E8) ® H® H® H/ Z) is the
canonical surjective morphism. By Lemma 2.7, Corollary 2.8
and Lemma 4.1 in Urabe [9] we see that S = ZX @ Q(G) and
that S satisfies the condition (a) and (b) in Urabe [9]
Theorem 1.15 (2). Thus there is a normal quartic surface with

the combination of singularities G

In the rest of this section we give the proof of Theorem
1.1. Note that the implication (3) = (2) 1is obvious, since

maximality implies fullness.

First in the following we show the implication (2) = (1) .
We assume the condition (2). We decompose G into a sum of
connected Dynkin graphs G = G1-+G2-+ - *G . Let Ai_= A(Gi)
be a fundamental system of roots of the root lattice Q(Gi)

associated with the connected Dynkin graph Gi . Let ny be the

maximal root associated with Ai . It can be written in the form

ni = z niaa . niu is a positive integer depending on
aeAi
- — + — —
th?.type of G - . Set ni'_ni =1 . 8set A =AU { ni} '
m m
b= Ua, and "= uaT.
i=1 i=1 °

The vertices of the extended graph ¢ have one-to-one
correspondence with elements in a* . Thus corresponding to the
procedure of the tie transformation, we have subsets A < At ’

B c A" satisfying the following (1), (2) and (3).
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(1) AnNB

Il
s

(2) For every i with 1 Sism, AN Ai+ £ ¢ .

(3). For every i with 1 £ i s m , the greatest common divisor

of the set of numbers

+
n, , N, (B e€anA, )
aEBnAi+ 1o ig 1
is necessarily 1.
Let H =Zu+ Zv (u2 = v2 =0, us+sv=vs+su-=1) be the

hyperbolic plane. The lattices A & H and A are isomorphic

and moreover we have an isomorphism © : A & H —> A of lattices
such that ¢(X ® 0) = X , since any two elements £ € A with

52 = -4 are conjugate with respect to the orthogonal transforj
mation group. (Milnor-Husemoller [4], Nikulin [5] Theorem 1.14.4.)
Via this ¢ we identify A @ H and A . Then A&/ EX is
identified with (A/ ZX) @ H . Here note that

A" < Q(G) = A/ ZA . We define a sublattice QO of A/ Z\A @ H

as follows.

o= .., Za+ ) Z(o-u) +Z(u+v) «c A/ ZX @ H .
0€A - (AU B) a€B '

Set 5 =[a"-(auB)] U {a-ula€ B} U {u+v} . We can check
that A is a fundamental system of roots, whose Dynkin graph is

G. Q is a root lattice of type G . It is easy to see that
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the condition <«%> is satisfied. Therefore we only have to

show that O is full in A/ ZXA ® H

Set R' = {0 € P(Q, A/ Z) ® H)[a2 =1 or 21} and
R = {a € (T)lu2 = 1 or 2} = the root system generated by A
Here for a submodule M in a free Z - module L of finite
rank, by P(M, L) we denote the primitive hull of M in L .

P{M,L) = {x € LImx € M for some non-zero integer m .}

Under the above definition obviously R < R' . We would

like to show R = R'

Lemma 1.2. If R # R' , then there is an element £ € R'-R

with the following form.

8 = ) aa+ ) a,(B-u) , (a_,a, € Q@)
wer™Z(auB) ¢ pes P @

Proof. The last condition is equivalent to B - u = 0

Let Q' be the submodule of A/ ZX & H generated by R' .
Q' is the root lattice of R' . Set P = {x € Q'|x-u = 0}
P is a primitive sublattice of Q' . Let {81, 82, een g Bi}
be a fundamental system of roots of the root system of P
2 £ rank”P = rank'Q' - 1 = rank Q-1 ...On-.the other hand since
2-{u+v} c P, the number of elements in A = rank é.é L+ 1

Thus £+ 1 = rank.Q' . By this equality and by the primitiveness

cof P one knows that there is a root BO € Q' such that



{8, P Bysoans ,82} . is a fundamental system of roots of Q'

If Bi ¢ R for some i with 1 £ i1 £ & , then setting
B = Bi for this i , this B satisfies the condition in the
lemma. Therefore in what follows we deduce a contradiction
assuming Bi € R for every i with 1 s 1 £ % . Since Q'
has a basis BO ,81 re+. s By and since Q' # Q , Bo £ R

under this assumption.
On the other hand setting

B. = a o+ Za (a-—u) +b{u+v)(a ,beq .,
0 sea*l(aum) * EB © @

we have b = BO- u'€ ¥ since BO € A/ ZN & H . Moreover we

have
bZ ={x-ulx€Q'}>o{x-ulxe€Qlo{clu+rv) -ulcez}=18.

Thus b = * 1 and a, g T for some L Qg e At -na since

0
BO £ R
Now, since u+v € Q € Q' , we have integers
L
c0 ,c1 ress 1 €y such that u+v = iZociBi . Since
1= (u+v) -u = COBO eu = cob , we have Cy = b=%+1 ., More-

over, since 'Bi €R for 1 &1 < 2 , we can write it in the

form
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B, = y e. o ) e, (a-u)(e, €2) .
Pogeat(aum) Y% *aep i® L@

By these equalities we have

) aa+ ) a (a-u} = ) e a+ ) e (a-u)
«€s*-(auB) * a€B © a€s™-(auB) * a€B
2
where e, E c.e.y - Since A is linearly independent, we
i=1
have *a_ = e  for every a € At-a . In particular ta = e .
a o o oy

However, the left-hand side of this equality is not an integer,

while the right-hand side is an integer. This is a contradiction.

Now, assume R # R' . Choose an element £ as in Lemma

1.2. Let B be the A/ ZX - component of B .

B = aa+ ) ao = a_a
0L€A+§(AUB) ¢ aEB “ J

This B belongs to the primitive hull of Q(G) in A/ ZXx 7

Since Q(G) is full in A/ ZX , B 1is an element in Q(G)
Corresponding to the direct sum decomposition
m

Q(G) = ® OQ(G,),we:canwrite it in the form: B8 = } B, ,

i=1 1 i=1 *
B. € Q(G,) . Then we have B, = ¥ a_o
* i 1 gen.*-a @

i
. 2 =2 .
Since B = B8" =1 or 2 and since G has at most one

component of type B , B = Bj for some unique j with
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1 $ 3 &m and Bi 0 if i+ 3, 1Tsism

Let us fix

a number i with i +#+ j and 1 £ i £ m for a while . We
have I a e = 0 .

Q€A =R

i
Case_1. —ni-E A .

Then we have A+i - (AUB) = &, - (AUB) and B 0 Ai+
. + + o+
Thus the.set IAi -(AUB) ]V [BﬂAi ] = Ai - A = - A

of a basis of Q(Gi) It implies that a = 0

a € AT—A
1

Case 2. -n; ¢ A

Set a: = a for simplicity.

aEAi-A
= Y ao-a; } n;o
a €A,-A aEA
i i
= ) (a,-a; n; )a- ; a
aEAi—A a € A.NA
Since Ai is a basis of Q(Gi) ro@; Dy T 0
ae;Ar1Ai and a, = ai nia =0 for g ¢ Ai - A
A{1Ai #.¢ and n,, + 0 , we have a:.L = 0 ., Thus a,
+
for every a € Ai - A = (Ai-A) u{- ni}

Here note that by the above arguments until here,

g = ) a0 + y

aeA‘;— (AUB) OLEBI’]‘AjHF

aa(a -u)

for

for every

B

n

is a part

Besides since

and

0

A,

i
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In particular -Brv = ) a is an integer,
since BeA/mx &H .

Next we consider the number 3J .

™
M

Case 1. - n

1]

The set Aj+ - A=A, - A isapart of a basis of Q(Gy) .

J
Thus a, € 2 for every o € Aj+ - A,

Case 2. -~ nj:¢ A
Set b = a_, for simplicity .
)
B = ”\2 a o + b(-n.)
a€h.-n © J
J
= ta.-bn, da - ) b n .
a €A, -A & Ja C€EA.NA Jo

Since Aj is a basis of Q(Gj) , one knows the following * .

a, - bnja € X for o € Aj - A

bn. € Z for a € AL N A .
Ja J J

It
[
o
b=



Here consider the following equality.

}y f(a_-bn, ) = Yy, a_-b n,
@ aEAj+nB o uEAj+nB Ja

If '”j ¢ B, since Aj nB=A4A, NB, this equality holds.

In case —nj € B, since Aj+r1 B = (Aj11B) U {-nj} and

since nj -n. ° 1 , it holds. Namely this equality always holds.
3
Now, since the left-hand side and the first term of the right-
hand side of this equality are integers, b }, Do
- afA, NB
J
is an integer. On the other hand by condition (3} we have in-

tegers p , q, such that

p )7 n, + v g n, =1
c€r™nB 1% g€altna ¢ 3¢
j - J
Thus b = p(b n, ) + ;. g (bn. ) is an integer.
a € A+j%B J o € f_\.+jﬂA o jo g
By this fact and by * , one knows that a, € Z for every
a € A.+-A
]
Conseguently
B = ) a a + Y a_{(a~-u), (a_€2)
aEIA+j—(AUB) @ a.€A+j ne ¢ ¢

and we have B € R, which contradicts the choice of 38

R' and Q is full in A/%) ® H . It concludes

Therefore R
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N

the proof of the implication (2) = (1) .

Next we will show the implication (1) = (3) in Theorem 1.1.

We assume the condition (1) . We take A4, o and u satis-

fying <*> and fix them. Set Au= {a, B, ,..., B -

Lemma 1.3. Let L be the orthogonal complement of &X in A
We identify L itself with the image of the composition of the

natural morphisms L — A —-A/Z2

(1) L {x € A/zX 1x2 'is an even integer.}

{x € i/ZX | x+y € B for every y € A/Z%.}

{2) There is a canonical isomorphism of quasi-lattices between

- - *
A/Z) and the dual module L = Hom(L,Z) such that under this

*
isomorphism the canonical bilinear form L x L > 2 1s iden-
tified with the restriction (AR/ZX)'x:L, —> @ of the bilinear

form on A/ZX .

Proof. Easy.

Lemma 1.4. (1) There is an element 51 € A/EX with 31 = 0

and \-)':I'L_l=1.

I
=1
o
2}
1

(2) For every element x € A/ZX , X - 51 and

integers.

=]
—
m
=
~
N
>

Proof. (1) Assume u = a 51 with a € Z and



- 27 -

Obviously a + 0 and 612 - 0 since a2

ﬁ1 € L by Lemma 1.3 (1). We have 1 = o -

2 = 52 = 0 . Thus

= aq - u1 and

a=+t*1-since a oﬁ1 € Z by Lemma 1.3 (1) again. It implies’

1
u

that Zu is primitive in &/ Z) . By Lemma 1.3 (2) we have an
element 52 € L with 52- u=1. Since L is even, we can
write 522 = 2b with b € Z . The element 51 = 52-bﬁ satis-

fies the condition.

(2) It is obvious by Lemma 1.3 (1).

The sublattice ﬁ1 = Zu + Z§1 of rank 2 with the basis

u » v, 1is a hyperbolic plane. Let M, be the orthogonal

complement of ﬁ1 in A/ ZX . Since ﬁ1 is a unimodular

lattice and since ﬁT c L , one knows A/ Zxr = M, ® ﬁ1

(orthogonal direct sum}. We have decompositions in the following

form.
‘a = a+-aﬁ4-§1
By = B, +b.u (1 S is 2)
(o ,Bi € M1 , a ,bi € Z)
set e = 0. Ei . Note that e, = 0 or -1 .

We have the following equalities.



a“ +2a=0a“=2,.a°=0a+0a =2 - 2a

o, o B. =a-§i (1sisg) .

Next we define the Eichler-Siegel transformation
Y : A/ZX ——> h/Z)X associated with the isotropic element u

and the element o with a~u =0 by

P(x) = x+ (x.a)u - (x.u) a+ (a=1) (x= W)u .

(Ebeling [3] pp. 331). We can check that ¢ 1is an iso-
morphism preserving the bilinear form. The inverse of Y

is given by the following.

lJ)—1(y) =y - (y-a)u+(y-u) o+ (a=1)(y-1u) u .

It is easy to show:

"
et

¥ (u)

]
o]

Y(a) + v,

w(?,i)f By * eia (1sis?t) .

Setting v = w-1(§1) , we have the following lemma.

Lemma 1.5. There is an element Vv € A/Z)X satisfying the

following conditions:

a4 -v=1, ve=0, a-.-v=1,

™l
<
I
w
Q

(1sise) .



Set H =2%u + 2V . H is a hyperbolic plane. Let M
be the orthogonal complement of H in A/ZX . A/ZX = M @ H
(orthogonal direct sum). o = u+v . If Bi +a =0, then
- - - - ' 5
Bi €EM . If Bi « o =-1, then Bi = Bi - u with. Bi €M .
Let 7 : A —> A/ZX denote the canonical surjective
morphismn.

Lemma 1.6. For every element x € R/ZX such that %2 is an
even integer, there is a unique element X € A with
m(x) = x and x-.Xx = 0 . Moreover, for this element the equa-

lity x+y = X -#i(y) holds for every y € QA

Proof. It is obvious by Lemma 1.4.

By Lemma 1.6 we have elements u, VEA with

u, "(v) = v, u¢ =v° =0, u-v =1 and-

3
o
il

ve ¥ =0 . H=2%2Zu+ Zv 1is a hyperbolic plane. Let

c
>1
n

A1 be the orthogonal complement of H in A . One knows

A = Ay ® H (orthogonal direct sum), A€ A, and A, = w—1(M)

A1 is an even unimodular lattice with signature (154N,N—1) .

We have an isomorphism p : A1 —> A of lattices. Setting

A = @(A) , we identify Ay and A, » and A via ¢ . Then

M is identified with A/EX . M

A/EX
set P = {x € Q|x*u = 0} . P is a root lattice and
A=A - {a} = A& - {4+v} is a fundamental system of roots

of P.PcM+2Zu.Llet p : M + Zu —> M denote the
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projection to the M-factor. The restriction p|P is an
isomorphism of lattices onto the image. Let ﬁ be the
primitive hull of the image p(P) in M . Then the guotient
g/p(ﬁ) is a finite cyclic group. (Urabe [9] Proposition 2.9 (3)).
Let Q be a maximal positive—définite root sﬁblattice of M
containing g . The torsion part of Q/p(P) 1is cyclic. Thus
p(ﬁ) is obtained from @ by an elementary transformation.
(Urabe [9] Proposition 2.9 (4)). Namely there is a fundamental
system A of roots of @ such that p(Z_) is a subset of

A+ . Here A+ is the extended fundamental system, which is the
union of A and (-1) times maximal roots associated with

the irreducible components of A . Set

A+—p(3_)

T
H

jus)
[

{p(B)|B € A_, a-B #+ O}

If we recall the rule which we use when we make the Dynkin
graph or the extended Dynkin graph from the fundamental system
of roots, and if we ignore the condition (3) <b> in Definition
0.1, then we know that the Dynkin graph G of the fundamental
system A of roots of Q is obtained from.the Dynkin graph
G of Q by one tie transformation. The subsets A,B which
we have to choose on the way of the tie transformation are the
ones corresponding to the above A,B . The new vertex ©
corresponds to o =u+ v .

Thus we only have to show that the condition on G.C.D, in
Definition 0.1 (3) <b> is satisfied. This follows from the

following proposition, since Q is full.



Proposition 1.7. Let Q be an irreducible root lattice of

type A,B,D or E, A = {a1,a2,...,u£} be a fundamental system
of roots of Q , and n = 2 na.ai be the maximal root associated
with A . (Every n,. is a po;itive integer.) Set n_n = 1 and
set AT = AU {-n} .lLet A c A+, B < AT be subsets such that

A+ ¢, ANB=¢ and B contains at most three elements. Let

H = Zu + Zv (u2 = v2 = 0, u*v = v-.u = 1) Dbe the hyperbolic

plane. We define a sublattice 5 of Q ® H as follows:

Q = n) Za + ) E(a-u) + Z(u+v) .
a€A - (AUB) a€B

Finally by n we denote the greatest common divisor of the

numbers

zn,n(BEA).

«€s & B

Under these assumptions, if n % 1, then there is an
element vy in the primitive hull of Q in Q ® H such that

vy =1 or 2, yyu=0 and vy £ Q

This proposition is a consequence of the following property

of root systems.

Fact 1.8. Let Q,A,n,nu and AT be the same as in Proposition

1.7. Let p > 1 be a prime number and S = {a € A+|na is a

multiple of p.}. If S % ¢ , then there are integers

m, (¢ € A%) such that (] ,mal® =1 or 2 and such that
a€h
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It is easy to see that if S # ¢ , then Q 1is neither
of type A nor of type B, and p = 2,3 or 5. With the
help of the tables at the end of Bourbaki [1] we can check

Fact 1.8.

Proof of Proposition 1.7. Assume n *AT . Let p be'a prime
number dividing n , and set S = {a € A+|na is a multiple of p.}.
We have ¢ # A < S . Thus we have integers mu(a € A+) as in

Fact 1.8. Set E

BN (A7-s), F=(a"-S)-E . Set s_=n_ - pm

6 (03 o

(o € A+) and set

=
y=-={)sa+ Ys (a“u)) .
P\yer © a€E @

Note that EcB and F c A+—(AUB) since A < S ., Thus

{ala € F} U {a - u|a € E} is a part of a basis of Q . The above
Yy 1is an element in 6 ® @ . Besides for o € E U F 'Sa = ng + 0

(mod p) . Thus v ¢ Q .

On the other hand } s = J (n-pm ) = Yn = Y n =0
wEE ¢ g€g ¢ @ afE ¢ aéB ¢
(mod p) . Thus e = su/p is an integer.
‘ cEE
Yy = - 1 1. (n -pm )o + eu
P qer’-s

m o + eu (since jn o =0 ) .
o o
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One knows that vy € Q & H, vy:u = 0 and Y2

"
s
=
e
e
3]
]
—
(0]
H
N

We complete all the proof of Theorem 1.1.

§ 2. Coxeter groups on a hyperbolic space

In this section we would like to verify Theorem 0.4.
First of all, the following proposition treats the
arithmetic conditions in Theorem 0.4 (A). By d(Q) we denocte

the discriminant of a lattice Q . The symbol EP(Q) is the

Hasse symbol and ( , )p is the Hilbert symbol. (Serre [7])
Proposition 2.1. Let Q be a positive-definite lattice of
rank r and A be an element with A2 = -4 . Set

S = Z) ® Q (orthogonal direct sum). Assume that there is an
embedding § < Q(2E8) ® H® H®H = A . The following conditions
are equivaleﬁt.
(1} The orthogonal complement of S in A contains an
isotropic element.
(2) One éf the following <1», <2>, <«<3> holds,
<1> r = 18 , and for every prime numbgr P, EP(Q) = 1
<2> r = 17 , and for every prime number p, d(Q) £ m;z or
e (Q) = (-1,d(Q))p

P
<3> r s 16
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We omit the proof because it is the same as that of
Urabe [9]'éorollary 3.3.

By Proposition 2.1 and the theory developed in Urabe [9]
one knows that the condition (A) in Theorem 0.4 is equivalent
to the following (C'f . Let X € Q(2E8) ® H® H be an element
with Az = -4 . Such an element A 1is unique up to orthogonal
transformations.

(C') There is a positive—definité primitive submodule T' of
Q(2E8) ® H & H/ZX such that G is obtained from the Dynkin

graph of the rodt system R(T') of T' by one elementary

transformation.

Set U = {x € Q(2E8) & Ho H/Zklx2 € Z} . U is a sublattice
of the quasi-lattice. Q(ZEB) & H® H/Z) , and is odd, unimodular
and with signature (18,1). Under a suitable isomorphism U 2 19

the quadratic form on U is given by

2 _ . . 2 2 2
x" = (x,x) = X ¥ X + ...+ X418
_ 19
for x = (xo,x1,...,x18} € X .
Since R(T') « U , the above. (C'}) is equivalent to the

following (C")

(C") There is a positive-definite primitive submodule T of
U such that G 1is obtained from the Dynkin graph of the

root system R(T) of T by one elementary transformation.
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By the following proposition one knows that the condition
(C) in Theorem 0.4 is equivalent to (C"). Therefore we have

the equivalence (A) <= (C)

PrOposition 2.2. The following three sets of Dynkin graphs
coincide. |

(1) The set of the Dynkin graph of the root system R(T) where
T runs over all,pdsitive—definite primitive submodules of .the
unimodular lattice U. of signature (18,1).

(2) The set of any Dynkin graph isomorphic to a subgraph of

the Coxeter-Vinberg graph 218

(3} The set of any Dynkin graph isomorphic to a subgraph of

the modified Coxeter-Vinberg graph ziB .

Proof. First we show that the set (1) contains the set (2).
Assume that the Dynkin graph G is a subgraph of 218
Associated with vertices of G , we have a set S of facets

of the fixed fundamental polyhedron P = . Let A Dbe the

P18
set of roots in U perpendicular to some member of S and
directing outwards from P . Let R be the root system generated
by A . A 1is a fundamental system of roots of R . Let Q be
the submodule generated by R in U . Q is a root lattice

and Q,R and A are of type G . Let. T be the primitive

hull of Q in U . Obviously R < R(T) . Let V = {x.€ U @ R|
xy = 0 for every y € Q.} be the orthogonal complement of

Q in U @R . V coincides with the orthogonal complement of

T in U @R . V intersects with the negative cone C . Let
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o € R(T) be an arbitrary element. The associated reflection
54 fixes every point on C N V . By the theory. of Coxeter
groups (Bsurbaki (1] Chap.S § 3) the subgroup of F18 of all
eiements fixing every point on C N V cocincides with the
group generated by sB's with B € A . -It implies ao € R .
Thus R = R(T) and R(T) is of type G .

Conversely, the set (1) is contained in the set (2). Let
T be a positive-definite primitive submodule of U . Let
V={x €U@®R|xy =0 for every y € T.} be the orthogonal
complement of T in U @R . Let py € VN C be a general
point. Choosing Py generally enough, one can assume
T = {y € U|p0-y = 0} . Thus the subgroup I'(py) of I'ig
generated by all reflections whose mirrors pass through Py
coincides with the Weyl group (of the root system) of T . Now,
we apply Vinberg's algortihm with respect to the point Py and
try to construct a fundamental polyhedron of P18 . (Vinberg [12]
section 3 Proposition 4.) By his algorithm we obtain 218 by
‘extending the. Dynkin graph of F(po) . Thus the Dynkin graph
of T is a subgraph of 218

Here.note that the root system R(T) in (1) has at most
one component of type B; Thﬁs any Dynkin subgraph of 218 has
at most one component of type B.

The equivalence between (2) and (3) is obviocus by the
definition of 258 and by the above proberty of Dynkin
subgraphs of 218" Any Dynkin subgraph of 215 is conjugate

to a subgraph of EiS with respect to the action of S4

Q.E.D.
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Lemma 2.3. (1) Any Dynkin subgraph of § has at most

18
one component of type B.

(2) Any maximal Dynkin subgraph G of has either. 17 or

L1g
18 vertices. If G has 17 vertices, then there is a subgraph
F of 218 containing G such that every connected component
of F 1is an extended Dynkin graph of some type. (The type of

G and the type of F do not necessarily coincide.)

Proof.. (1) is a corollary of Proposition 2.2.

(2) Let C, be one of the two connected components of the
negative cone C containing the fixed fundamental polyhedron

P = P18 . The gquotient C+AR+ can be regarded as the Lobadevskil
space containing P[R+ . By Vinberg [14] section 3 number 2 and
Vinberg [15] Theorem 1 P/R, is a finite polyhedron with finite
volume. Namely there are a.- finite number of non-zero vectors
Vi1Vys...,v, belonging to the closure of C_ and P is the
interior of the minimal convex body containing the set

L
UR V. where R v, = {tv.|{t €R, t > 0} .
P A T +3 J|

3=1

Note that by definition of P , for each vj, 153 £ 8%,
there are linearly independent 18 roots a1,a2,...,u18 €U
depending on vy such that vytey = 0 for 1 S is 18

Let G be a maximal Dynkin subgraph of 218 . The.set of
vertices of G <corresponds to a set 8 of facets of P . Let
Q be the sublattice in U generated by all roots perpendicular
to some facet in S . Q 1is a positive-definite roo£ lattice of
type G and the orthogonal complement V of Q in U @ R

intersects with C . Thus the intersection of V with the
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closure of P 1is a non-empty convex body in V . In particular
V contains vj for some j with 1 5 j § & . Take and fix

such a Jj with vj € V. Let S' be the set of.facets of P
passing through Vj . We have S <« §' . Let F be the subgraph
of 218 whose set of vertices corresponds to S'.. By definition
F contains G . We have 2 cases.

Case 1, vj € C .

The orthogonal complement A of ZVj in U 1is a positive-
definite lattice of rank 18. F 1is the Dynkin graph of the root
system of A . Since A contains 18 linearly independenttroots»
a1,...,a18 ; the number of vertices in F is 18. On the other
hand by maximality F = G . Thus G has 18 vertices.

Case 2. Vj € ?3C = C —.C-

Note that vj2 = 0 . Let A Dbe the orthogonal complement
of ZVj in U . A 1is a positive semi-definite lattice of
rank 18 with xvj cA . Set I = ij N A . The guotient A/I
is a positive definite lattice of rank 17. Let F' be the
Dynkin graph of A/I . Now, the iﬁage of a; €A (1 s i s 18)
is also a root in A/I and they span a root subla£tice of
rank 17. Thus F' has 17 vertices. The graph F is the
corresponding extended Dynkin graph to F' . Since G is a

maximal Dynkin subgraph contained in F, G has 17 vertices.

Q.E.D.

By Lemma 2.3 and by the symmetry of {18 , it is not
difficult to make the 1ist of all conjugacy classes with

respect to S, of maximal Dynkin subgraphs of 218 .
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The list contains 178 classes with 18 vertices and 27
classes with 17 vertices.

Among them we have 4 conjugacy classes of type 2D8 + By
and for any one .of the following 8 types we have 2 conjugacy

classes.
By * Eg + By v Ay By v B Ay
By + Eg + By *+ Ay, By v By + Ayt Ay * A,
Bp * Dyy 5 By + A, + 2Dy
Ajqg T Byt 2R, Big * A,

For the other 162(s 178 - 2 x 8) classes with 18 vertices
and 23(= 27 - 4 x 1) classes with 17 vertices, the conjugacy
class is uniquely determined by the type of the Dynkin graph.

The number of items in the list is too large for the list
to be contained in this article.

Next we show that the condition (C) in Theorem 0.4 implies
(B) .

Assume that a Dynkin graph G 1is obtained from a Dynkin
graph G' by one elementary transfo;mation and G' has an
embedding ¢ : G' —> J.o as a subgraph of ] . . Let G*
be a maximal Dynkin graph of 218 containing the image w(G')
By Urabe [9] Proposition 2.9 one knows that G can be obtained
also from the Dynkin graph G* by one elementary transformation.
Thus replacing ¢{(G') by G* , one can assume that ©(G') is
a maximal Dynkin subgraph in 218 ; in other words, ¢ 1is a

maximal embedding. In the following we assume this assumption.
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We have a positive-definite primitive submodule T of U
whoge root system R{(T) 1is of type G' by the prqof of
Proposition 2.2 (2) = (1). The module T is associated with
©(G') and depends on the choice of the fundamental polyhedron
P = P18 cCcU®R . For a fixed P, T 1is uniquely determined
depending on @{G'}) . If one chooses another P , then the
obtained T 1is conjugate to the original T with respect to
the group F18 .

We have three cases.

(1) For some maximal embedding ¢ , the orthogonal complement

of T in U contéins an isotropic element.

(2) For some maximal embedding ¢ , the sublattice Q of T

generated by RI(T) satisfies the condition <*> in Theorem

1.1 (1). (Note that Q ¢ T c U c Q(2Eg) ® H & H/ZX. )

(3) For any maximal embedding ¢ , for any fundamental system

of roots A < R(T) and for any isotropic element

u € Q(2Eg) ® H @ H/ZX , the inequality ) lasu| 2 2 holds.
oA

In case (1) by the results in Urabe [9] G' is obtained
from one of the 9 basic Dynkin graphs by one elementary trans-
formation. Thus we have the case (B-1) <1>

In case (2) by Theorem 1.1 we have an element
Af € Q(ZEB) ® H with A'z ='—4 and a maximal positive-definite
root sublattice Q < Q(2E8) ® H/Z)' such that G' is obtained
by one tie transformation from the Dynkin graph G" of Q .
Besides by Urabe [9] Corollary 3.10 G" is one of the basic 9

Dynkin graphs. Thus we have the case (B-1) <2>
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Now, we have to consider case (3). We would like to
reduce (3) to a simpler condition. Let us consider about the
choice‘of ¢ . Recall the action of S, on 218
Kaplinskaja [15] Theorem 2 any automorphism of the graph 218

By Vinberg-

is induced by an orthogonal transformation of U . Any ortho-
gonal transformation on U can be extended to Q(2Eg) & H ®/Z) .
Thus in order to check (3) it suffices to check it only for the

representatives of S4—conjugacy classes of the embedding P

w : G' —> 218
Secondly we consider the choice of A . Let S be the set
of facets of P corresponding to the vertices of ¢{(G') . Let

30 be the set of roots perpendicular to some facet in S and

directing outwards from P . The set ZO = A{w) is a fundamental

system of roots of T and is uniquely determined by ¢(G')

For any fundamental system of roots A « R(T) , we have an element

g of the Weyl group of T with o(A) = & and o induces

0 r
an orthogonal transformation of Q(2E8) ® H® H/E)N . Thus we

only have to check the condition on EO

(3) is equivalent to the following (3%).
(3*) Let RN 7 be the representatives of S4rconjugacy
classes of the maximal embeddings ¢ : G' —> Z18 . For any

@, 1 £ 31 5 2 and for any isotropic element .u in

Q(2E8) & H & H/Z), Z|a-u|‘g 2 , where the sum is taken over

all elements o in the fundamental system of roots EO = E(mi)

associated with oi .

‘Now, we have special isotropic elements, namely, the

vectors spanning 1-dimensional egdes of the fundamental
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polyhedrom P 1lying on the boundary of C . We call an

element u € U an isotropic element at infinity of P , if

u # 0, u2 = 0 , and #u belongs to the closure P

We consider the following condition depending on an
embedding ¢ : G’ ——>-E18 .
(3'"-p) For any isotropic element u at infinity of P.,
Y|a-u| 2 2 , where the sum is taken ovef all elements in
by = Blo)

One can calculate any isotropic element u at infinity
of P -by the following method. (Vinberg [11) § 3)

(1) Choose a subgraph F of isomorphic tc an extended

e

Dynkin graph of rank (= the number of vertices minus the number
of connected components) 17.

(2) Let F be a connected component of F . Let S be the

0

218 corresponding to F, and A" be the

set of roots perpendicular to some facet in Sow and directing

0
set of facets of

outwards from P

(3) Then u

i

m ) n o for some integer m , where n 's are
a€A+ o : o
the coefficients of the maximal root, which are positive

integers uniquely determined depending on the type of F0 .

The resulting element Znaa depends on the subgraph F ,

but it does not depend on the choice of F0

It is easy to see that any S4—conjugacy class of subgraphs

of 218

uniquely determined by its type and its type is cne of the

isomorphic to extended Dynkin graphs of rank 17 is

following 9. They coincide with our basic Dynkin graphs

(Vinberg [13])
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A, D.. + B

11 6 8 17 16 1
2D8 + B1, A15 + B2, 2E7 + B3
Dyjy * Bgr  Eg * Bgy Big -

Conseguently, it is possible to check the condition

(3'-w) for all maximal Dynkin subgraph of Note that

L -
if it satisfies (3'-y) , then it has 18 vertices by Proposition

2.3 (2). Thus it suffices to check it only for representatives

of S4—conjugacy classes of maximal Dynkin subgraphs of 218

with 18 vertices.

Proposition 2.4. (1) A maximal Dynkin subgraph of 218 satisfies

the condition (3'-y) if and only if it is S,-conjugate to one

4

of the 13 graphs explained below. (We write below the vertices
to be omitted to obtain the desired graph. For vertices in the
tetrahedral subgraph Z:B we write only the number of the
vertex.)

B, + A11 + A5 : 4,10,16,19,22 , all of the 1st kind except B8 ,

all of the 2nd kind.

B2 + Ag + A6 + A1 : 3,10,16,19,22 , all of the 1st kind except

B , all of the 2nd kind.

B2 + 2A8 : 2,10,16,19,22 , all of the i1st kind except B , all

of the 2nd kind.

B2 + 2A7 + 2A1 : 3,11,16,19,22 , all of the 1st kind except 3 ,

all of the 2nd kind.

Aig * Bg * A 2,8,15,20 , all of the 1st and the 2nd kind.

10 2

2A9 : 4,14,20,22 , all of the 1st and the 2nd kind.
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2A7 + A3 + A1 : 3,8,10,15 , all of the 1st and the 2nd kind.

A7 + A6 + A3 + A2 : 3,8,12,15 , all of the 1st and the 2nd
kind.

A7 + 3A3 + A2 : 3,8,11,15 , all of the 1st and the 2nd kind.

3A6 6,10,15,18 , all of the 1st and the 2nd kind;

6A, : 3,7,11,15 , all of the 1st and the 2nd kind.

81 + E6 + A7 + A4 : 4,10,14,17,19 , all of the 1st kind

except B , all of the 2nd kind.
B1 + E6 + A11 : 4,10,16,17,19 , all of the 1st kind except B8 ,

all of the 2nd kind.

(2) For the last 2 Dynkin graphs B, + E,. + A_ + A, ,

1 6 7 4
B1 + E6 + A11 in (1), there are maximal embeddings into 218
which are not conjugate to the ones in (1). They satisfy the

condition <*> in Theorem 1.1 for the isotropic element at

infinity of P associated with the extended Dynkin subgraph
2E_ + B

of type 8 1

B1 + E6 + A7 + A4 ; 1,4,12,20,22 , all of the 1st kind, all
of the 2nd kind except vy .
B1 + E6 + A11 :01,2,12,20,22 , all of the 1st kind, all of

the 2nd kind except vy .

By the above proposition one knows that in case (3) we
have case (B-2) in Theorem 0.2. Thus one can conclude that

(C) implies {(B) in Theorem 0.2,

Remark. It is easy to check that any one of the 11 sub-basic

Dynkin graph satisfies not only the condition (3'-¢) but also
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the stronger condition (3*). Obviously the corresponding
module T to such a graph has no isotropic element in the
orthogonal complement. Assume that we have a fuhdamental

system of roots A, of T , a long root a € 4, and an

0
isotropic element u such that u-8 = 0 for B € A, with

0
B+ a and u-a = 1 . Then the discriminant of the root lattice
generated by ZO - {a} is a square number. Thus the choice of
o¢ 1is much restricted. For any possible choice of o one can
check that there is no isotropic elemeht satisfying the

condition by direct calculation using some concrete information

in Vinberg-Kaplinskaja [15].

Lastly we show that condition (B) in Theorem 0.2 implies
(A) .

In case (B-1)<1> , applying Urabe [9] Corollary 3.10 at
the beginning and applying succeedingly Urabe [9] Proposition
4.2 twice, one has a full embedding
Q(G) < Q(2E8) ® H® H® H/ZX , such that the orthogonal
complement of Q(G) has an isotropic element, where X is
an element Az = =4 ., The inverse image S of Q(G) 1in
Q(2Eg) ® H ® H ® H satisfies the conditions (a), (b) in-
Urabe [9] Theorem 1.15. Thus a normal quartic surface with
singularitie§ G exists. Moreover} since the orthogonail
complement of S contains an isotropic element by Lemma 1.5,
.one can conclude also the arithmetic condition in (&) bf
Proposition 2.1.

In case (B-1)<2> , instead of applying Urabe [9]

Proposition 4.2 twice, we can apply Urabe [9] Proposition 4.2
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once and Theorem 1.1 once. Then, by the same argument as
above we have (A).

In case (B-1)<3> by the same argument as in case
{(B-1)<2> , one can conclude the existence of the desired
quartic surface. As for the arithmetié conaition, one can

discuss as follows. In case (B-1)<3> we have a decomposition

Q(2E8) ® H® H & H/E) = (Q(2E8) & H)/Z)) @ H1 ® H2 where

A € Q(2E) ® H and H, = Zu, + Ev, (i = 1,2) is a hyperbolic
. 2 2 _ . _ _ .

plane with U, = vy = o, u vy S 1T . Q =0Q(G) 4is a full

sublattice of this quotient quasi-lattice. We have a fundamental

system of roots 4 = {a,81,...,817} of Q such that
a = U, * V., Bj = Bj + Eju1 + Gjuz (1 £ jJ s 17) with
Ej € Q(2Eg) ® H/ZX, ej,aj = 0 or -1 . Thus we have an

isotropic element u in the orthogonal complement of Q . By

1
Proposition 2.1 one has the arithmetic condition.

In case (B-2) applying Proposition 2.2 and Proposition
2.4 instead of Urabe [9] Corollary 3.10 one can conclude (A)
by the same argument as in the case (B-1)<1> .

ﬁe complete all the proof of Theorem 0.4.

As for Theorem 0.5, by Proposition 2.4, Proposition 2.2

and Théorem 1.1, it is obvious.

§ 3. Nikulin's lattice theory

In this section we would like to give examples of Dynkin
graphs G such that there is a normal quartic surface with

singularities G but G cannot be obtained from any Dynkin
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subgraph of 218 by an elementary transf§rmation or a tie
transformation.

To tell the truth, I was very disappointed tb find these
examples. However, it is very challenging to find out the
missing part of the theory and we should not be worriéd over
them.

There might be a series of transformations of graphs,
and the elemgntary one and the tie one-might .be the 0-th part
and the first part of it.

By Urabe .[9] Theorem 1.15 and by Theorem'1.1.it suffices

to show the following.

Proposition 3.1. Let G be one of the following Dynkin graphs

with vertex 19.

Ay + Byt 2B, 2, + B, + A A
2By v By v By v Bge Agg v Ay v 2R,
Ajp * Ay v Ry v Rl Ay v A+ 3R
Byp * Ry T A3 A,

Let A = Q(2E8) ® H® H® H and set S =Z) & Q(G) (orthogonal

direct sum) where X 1is an element with Az = -4 and Q(G) 1is

the root lattice bf type G . Then the following (I) and (II)
hold.
(I) S has an embedding 8§ < A of lattices satisfying the

following .conditions {(a) .and (b). Let S -denote the primitive

hull of S in A .
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(a) If n € §, nz =2 and n*xA =0, then n € S .

(b) S has no element u with u2»= 0 and u+x = =2 .

(II) PFor any embedding S « A of lattices satisfying (a)
and (b), for any fundamental system of roots A of Q(G) ,
for any long rooct o € A and for any isotropic element u € A ,

the following condition. (¢) never holds.

{c) uraa =1, u-A = 0 and u-f = 0. for any element

BeEA with B8 % a .

Remark.. There seems to be several Dynkin: graphs with 17 vertices

satisfying (I) and (II) other than the 7 ones in Proposition 3.1.

To show the above proposition we use Nikulin's lattice
theory (Nikulin {5])}. It is the advantage of his theory that
for any given Dynkin graph G we can always determine whether
the above condition (I) is satisfied or not after a finite
calculations. However, we cannot deduce a law dominating all
possible combinations.of singularities on quartic surfaces
from his theory. Moreover, sometimes it is tiresome to search an
appropriate overlattice, if we use his theory.

Lét M be a non-degenerate even lattice. We can identify
the dual module M* = Hom(M,Z) of M with a submodule in
M®Q@ defined by {x € M ® Q|x-y € Z for every y € M}

Then, M < M¥* and the gquotient M*/M 1is a finite abelian group
whose order.is equal to the absolute value of the discriminant

of M . We can define a finite bilinear form
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bM : M*/M' x M*/M —> @/Z and a finite quadratic form

: M*/M —> @/2%2 by b, (X mod M, y mod M) = x-y mod Z

I M
qy(x mod M) = x? mod 28 for X,y € M* . We call by, the

discriminant bilinear form of M and dy the discriminant

quadratic form of M . They play important roles in Nikulin's

theory.

For example, for the root lattice Q ='Q(Ak) of type Ak’
Q*/Q is a cyclic group of order k +1 and the imagé w, of the
first fundamental weight w1EZ Q* is the generator. We have
qQ(aGA) = az'k/(k+1)mod 2% .

If a lattice N contains a lattice M with finite index,

N 1is said to be an overlattice of M

We use the following -two lemmas to check the condition (II).

Let -G be an arbitrary Dynkin graph and A = Q(ZEB) ® H® H&® H .

Lemma 3.2. (Nikulin [5] Corollary 1.6.2, Corollary 1.9.3.) Let
S be an overlattice of § = iA ® Q(G) with a primitive
embedding § = A . Let T' be the orthogonal complement of §

in .A and T be the laéﬁice obtained from T' by reserving the
sign of the bilinear form.

(1) T has the same discriminant quadratic form as 5 .

(2) Let zp denote the ring of p-adic integers for a prime
number p . For any prime number p the isombrphism class of

the xp-lattices T @ zp depends on the overlattice § but does
not depend on the primitive embedding § < A .

Lemma 3.3. Assume that we have an isotropic element u

satisfying (c) for some overlattice § of S , for some
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primitive embedding S < A, for some fundamentallsystem of
roots A .« Q(G) and for some long root o € A . Let Wy, be
the fundamental weight corresponding to the pair (A,q) .
Namely W, € Q(G) © q, w, e = 1 and wa-B =0 for B € A
with B8 # o .

(1) For every element x € §, w _*X 1s an integer.

o
(2) The zp-quasi—lattice T* ® zp = Hom(T,Z) @& zp represents

the rational number waz . {(In other words, there is a non-zero
element x € T* @ Zp with x2 = waz .)
(3) Moreover, if w_= ) n,B/m (n,,m € Z) and if m is not
a multiple of p , then the Zp—hattice T ® Zp represents
2
W .
o

Proof. Let T' and T be the same as in Lemma 3.2. By * we

denote the dual module. Since S ® T' < A < §* @ T'* we have

o € 8* and T € T'* with u g+T . Since oA = u*A = 0 ,

o*¢ = u*a =1 and o+‘B = u-*B 0 for any B € A with B8 =* ¢

we conclude ¢ = Wy We have wa-x = u-x €% for x €85 . On

the other hand since 0 = u2 = 02 + TZ, 12 = -waz . Thus T'*

represents —waz , and T* and T* ® Zp represents maz .

Next assume that m is not a multiple of p . Then,

~

w, €S © % and T € (T'* 8 Z n (A @ Z =T' ®EX_ . Th
o p ( p) { p) b us
T" ® Zp represents T2 = —waz and T ® Zp represents maz .

Q.E.D.

In what follows we give the proof for G = A + A, + 2A

10 1

We assume that G = + A, + 2A and

A0 7 1
S = %) 8 Q(A,, + A, + 23,) . Let wT,wz,...,¢7 denote the

L
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fundamental weights of the A7-component and Xq1Xpreec1Xqg
be the fundamental weights of the A10—component. Let 0qr0,

be the fundamental roots of the 2A,-component.

1

Lemma 3.4. (1) Let S be an overlattice of S satisfying

the condition (a) and (b) . Then, either S§=8 or § =5

1 L '
1 2*1 7 2%
(2} S has no primitive embedding into A . S, has a primitive

1 7

where S +

=S U (S+(w, + + %x)y :

embedding into A .
Proof. It is easy to see that
S*/Ss = Z/11 6 /8 & /2 © /2 © %/4

and §1 = xq mod s, 51 =,

A/4 mod S are the generators of the respective components. We

mod S, a1/2 mod S, a2/2 mod S and

have
qg(a,b,c,d,e) = (10a%/11)+(70%/8) + (c*+a®/2) - (e?/4) mod 28

for (a,b,c,d,e) € 2/11 6 Z/8 @ 2/2 ® Z/2 & 2/4 .
(1) By Nikulin [5] Proposition 1.4.1, solutions of dg *® 0
correspond to overlattices. Note that by the condition (b) S

cannot contain (a1+u2+k)/2 , the element corresponding to

(a,b,c,d,e) = (0,0,1,1,2) . Besides if § contains an element
corresponding to {(a,b,c,d,e) = (0,%2,1,0,0) or (0,¢2,0,1,0) ,
then § contains a root system of type E8 . If S contains

a corresponding element to (a,b,c,d,e) = (0,4,0,0,0) , then
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g contains a root system of type E7 . By the condition (a)
such cases are excluded. Thus we have only two cases corres-
ponding to the solutions (a,b,c,d,e) = {(¢,0,0,0,0) and
(0,4,1,1,2) of qg = 0

(2) 81*/81 = Z/11 & Z2/8  £/4 and for (x,y,z) € Z/11 & 2/8 & Z/4
2 2 2
qs1(x,y,z) = (10x%/11) - (5y /8) + (2°/4) mod 2% .

Thus by Nikulin [5] Theorem 1.12.2 we have the conclusion.

Q.E.D.

By Lemma 3.4 it suffices to consider S = S1 and primitive

embeddings of S.I into A . Assume that we have an isotropic

element u € A and a long root a € A satisfying (c). We will
deduce a contradiction.
By easy calculation one knows that if a fundamental weight

W, satisfies W, X € Z for any x € S18, then it is one of

Wor War Wg # XqrXgreserXqg - Thus by Lemma 3.3(1) W, has to

coincide with one of them. Their squares are w22 = w62
-2 2 2

Wy = 2, Xy = Xq1-i = i(11-1i)/11 (1 = 1 § 10) , respectively.

= 3/2 ,

Now, let R be an integral domain, K be the guotient
field of R and 9 € K be an element. We define a bilinear
form ( , ) : Rx R —> K ‘by (x,y) = 6xy . When we regard R
itself as a quasi-lattice equipped with this bilinear form with
values in K , we denote it by R(8) .

Consider the prime number p = 2 . By Nikulin [5] Proposition

1.8.2 one knows T @ Z., = ZZ(BXB) ® %.(4) . Thus

2 2
T* @ z, = Z2(3/8) ® 22(1/4) . By easy calculations one knows
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T* @ %2 does not represent values w42 = 2, x12 = X102 = 2x5/11 ,

2 2 3 2 2

X3 = Xg = 27 x 3/11, Xq4 = x§ = 2° x 7/11 . On the other hand

the assumption of Lemma 3.3(3) is satisfied for p = 2 and

for XqrXgrees1Xqg - Since any 2-adic integer répresented by

T 9'22 is a multiple of 22, T®EZ, does not represent values

2 2 2 2 3 2 2
X9 = Xqg = 2x5/11, Xo = Xg = 2x37 /11, Xg© = Xg = ZX3XS/11

By Lemma 3.3 either the equality w_ = w or w, =

a 2 o w6 has to

hold.

Next consider p = 11 . One has T ® Z,, = Z,,(-11) & %, (1)

and T* ® Z,q % z11(-1/11) ® 211(1) . By calculation one knows

that T* @ £ does not represent w22 = m62 = 3/2, w42 = 2

Thus by Lemma 3.3 neither w, = W, TNOr holds. It is

wa w6

a contradiction. We have the conditidn (I1).

We can check that § = S, satisfies (a) and (b), and we
have the condition (I), too.

For the remaining 6 graphs in Proposition 3.1 the reasoning
is similar. In what follows we sketch it.

G = 2A, + A4 + A2 + A1 : S5 has no proper overlattice, and

6

has a primitive embedding into A . Considering prime numbers
p = 2,7 , we can get the conclusion.

G =2A, + A, + A

4 2

S 1itself. Both of them has the root system of type 2E8 + A2 + A1 .

Therefore they do not satisfy +{(a). On the other hand S has a

1t E8 : 8§ has 2 proper overlattices except

primitive embedding into A . By considering p = 5,3 , we get
the conclusion.

G t Ayt 2A1 : S has 5 overlattices including S

= A3
itself. Only 3 of them including $ itself satisfy (a) and (b).

However, S itself has no primitive embedding into A . The
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other 2 overlattices are isomorphic to each other and have a
primitive embedding into A . Applying Lemma 3.3(1) we have
only 11 possibilities as the choice of a € A . Considering
p = 2,5 , we have the conclusion.

G = A + A

4 + A2 + A1 : S has no proper overlattice but

12
it has a primitive embedding into A . Considering p>= 2,5 ,
we get the conclusion.

G = A11 + A5 + 3A1 : There are only 3 overlattices of S
satisfying (a), (b) and having a primitive embedding into A .
If we exchange the order of 3 A1—components, these overlattices
are exchanged with each other. Thus such an overlattice S is

unigque up to isomorphisms. The 6th fundamental'weight of

Y6
the A11—component is the unique fundamental weight ww with

1

w*x € & for every Xx € S .T® Zz Z2(4) ® 2.(4) and

2
™ ® Z2 does not represent w62 = 3

G + A + A

= Bo Ty
but it does not satisfy (b). S itself satisfies (a) and (b)

3 * A2 : S has a unique proper overlattice

and it has a primitive embedding into A . Considering the
prime numbers p = 2,3 , we get the conclusion.
,

Before concluding this article, we would like to give a

proposition worth mentioning, one more.

Proposition 3.5. There is not a normal quartic surface in IP3

with D19 singularity.

Proof. For the lattice S = ZA @ Q(D19) (Az

=-4) ’
S*/Ss = ZX/4 & Z/4 and qs(a,b) & -a2/4 + 19b2/4 (mod 2%) ,

for (a,b) € /4 ® Z2/4 . Thus dg = 0 mod 22 if and only if
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a=sDb=20 (md 4) or a=Db s 2 (mod 4) . Let w be the
fundamental weight associated with one of the two vertices

at the end of the two-forked part of the Dynkin graph D19 .

An overlattice § of S coincides either with S itself or

S, =8V (S+(%R + 2w)) . By Nikulin [5] Theorem 1.12.2, S has

no primitive embedding into A and S1 has a primitive embedding

into A . However, S1 contains an isotropic element u with
u+A = -2 . Thus the condition (b) is not satisfied. By Urabe

[9] Theorem 1.15 a normal quartic surface with singularity D19

cannot exist.

Remark. Consider the situation in the above proof. By the
surjectivity of the period mappings, there is a K3 surface

Z with an isomorphism o : S1 —> Pic(2Z) preserving bilinear

forms such that L = a(A) 1is a numerically effective line
bundle of degree 4. The orthogonal complement of L in Pic(2)
is generated by 19 smooth rational curves on 2Z with self-inter-

section number -2 , and they form the configuration The

D.I-9 .
complete linear system |L| associated with 1 has no base

point, since S1 has no isotropic element u with u+'k = -1

(Urabe [9] Proposition 1.6). Let ®p ¢ y/ —-~>IP3 be the morphism

associated with |L| . Since any isotropic element U in
Pic(Z) with U-L = -2 intersects with one of the rational

curves in the configuration the image of ©p is an

Dig v
irreducible quadratic surface 20 with a unique singular point.

Let p : 2 —> X Dbe the contraction morphism sending the D19-

configuration to a rational double point of type D19 . The



- g -

morphism mL : 2 —> 20 factors through p and the induced
morphism ¢ : X —> ZO defines a branched double covering
such that the image of the unique singular point of type D

19
on X is the singular point of 20

Last of all I would like to ask the following question:
Does our theory of Dynkin graphs and quartic surfaces have a
connection with the representation theory of Lie groups? At
the present stage in the both theories we can only find the
same notions - Dynkin graphs, Weyl groups, ..., etc. - at the
key points. If we try to find a path from our theory to Lie
groups, we lose sight of the path at the point where the Hodge
theory comes in. I would like to know the connection, if it

exists,
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