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Tie transformations of Dynkin graphs and

singularities on quartic surfaces

§ o. Introduction

This article is the continuation of my previous one [9].

We continue to study possible combinations of rational double

points on quartic surfaces in the projective space of dimension

3.

Now, in [9] I proposed a certaln converting procedure on

Dynkin graphs. It was called an elementary transformation. This

notion was natural and simple. However, it had a limit in its

application and we had to c~!eck certain arithmetic condi tions

for the application.

In this article we would like to propose another procedure.

The new procedure is called a tie transformation. By one tie

transformation we can make the number of vertices in the Dynkin

graph larger by one. This is the different point from elementary

transformations. By elementary transformations we can never make

the number of vertices larger. Because of this property by tie

transformations we can treat many interesting examples of K 3

surfaces whose Picard number is the maximal 20. (Crollary 0.3,

Persson [6], Wall [16].)
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Apart of this article was announced in Urabe [8]. (In

Urabe [8], [10] we called the above new procedure a "connection".

However, this name is confusing. Therefore we would like to change

the name and to call it a tie transformation.)

We assume that every variety is algebraic and is defined

over the complex number field ~.

As in the previous article [9] we obey the following con­

ventions on Dynkin graphs.

(1) A disjoint finite union of connected Dynkin graphs of type

A, B, D or E is called a Dynkin graph.

(2) Any given Dynkin graph consisting of only a unique vertex is

beforehand determined to be of type A1 or of type B1 .

(3) Assume that the Dynkin graph has a component of type B. If

it is of type Bk with k ~ 2 , the vertex at the top of the

double edge with the arrow is called the vertex corresponding to

a short root. If it is of type B1 ' the unique vertex is the one

corresponding to a short root. The other vertices and any vertices

of any graph ot type A, D or E are called the vertices

corresponding to long roots.

(4) When we make a connected Dynkin graph G into the extended

Dynkin graph of the corresponding type by adding a new vertex 'and
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'a few edges, the new vertex is regarded as the one corresponding

to a long root, if G is not of type B1 . If G is of type

B
1

' the new vertex corresponds to a short root.

( 5 ) Assume that a Dynkin graph G contains a k
of connected

components of type Ak
, b9., cf components cf type D~ , c m

of components of type E , and d of components of typem n

B (k 2: 1 , ~ 2: 4 , m = 6 , 7 , 8 , n ~ 1 ) . Then we denoten

Definition 0.1. Assume that applying the following procedure to

a Dynkin graph G, we have obtained the Dynkin graph G. Then

we call the following procedure a tie transformation of Dynkin

graphs.

(1) Attach an integer to each vertex of G by the following rule:

Now, let a 1 ' Ct 2 ' ••• , Ctk be the fundamental sys tem of roots

associated with a connected component GO cf G. Let
k
L n.a. be the asseciated maximal reet. Then the attached integer

i=1 1 1

to the ver tex corresponding te CL.
].

is n. •
].

(2) Add one vertex and a few edges to each component of G and

make it into the extended Dynkin graph of the corresponding type.

Attach moreover the integer 1 to each new vertex.

(3) Choose in an arbitrary manner subsets A, B of the set
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of vertices of the extended graph G satisfying the following

conditions:

<a> A n B = ~ .

<b> Choose arbitralily a component G
1

of the extended

graph G and let V be the set of vertices in G
1

.

Let N be the sum of the nurnbers attached to elements

in B n V . (If B n V = ~, N = 0 .) Then, the

greatest comrnon divisor of N and the numbers

attached to elements in A n V is necessarily 1.

(4) Erase out all attached integers.

(5) Remove vertices belonging to A together. with the edges

issuing from them.

(6) Draw another new vertex called 8 . Connect 8 and each

element in B following the rule below: If v E B corresponds
8" v

to a long root, we connect 6 and v "by a single edge. 0 0 •

If v E B corresponds, to a short root, then we connect 8 and

v by a double edge with an arraw in the direction from 8 to v.
8 v
o >0 .

Remarks. (1) The new vertex 8 is regarded as the one corres-

ponding to a lang root.
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(2) Often the resulting graph G after the above procedure

(1) - (6) is not a Dynkin graph. We consider only the cases

where the resulting graph G is a Dynkin graph and then we call

the above procedure a tie transformation.

Theorem 0.2,. Assume that GI is a Dynkin graph obtained by an

elementary transformation or a tie transformation from one of

the following 9 basic Dynkin graphs. Assume moreover that

applying an elementary transformation or a tie transformation to

G' once more, we have obtained a Dynkin graph G without any

vertex corresponding to a short root. Then there exists anormal

quartic surface in the projective space of dimension 3 whose

combination of singularities just agrees with G .

The basic Dynkin graphs:

Corollary 0.3. There is anormal quartic surface with any one

of the following combinations of singularities.

A19 , D1S +A 1 , D1S ' A1S +A1 , A17 +A2 , 2D S +A2 +A1 ,

2Ea + A2 + A1 ' A15 + 2A 2 ' ... , etc.

Proof. Consider. the Dynkin graph A11 +, E 6 .' We ,-apply a tie trans­

formation to.it. At the second step we"'get·the. following graph.
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, , , , , 2 3 2 ,
a, °2 °'0 a" ß2 ß3 ß4 ßS ß6

0-0-----0 0 0 0-0-0-0

~o/ 1ß, 2

1, Ct o 60
,

Set A = {aO ' 6,} and B = {al' , ß
2

} . For the component A"

the sum N of numbers attached to B is , and the number

attached to A is ,. Their G. C. D·. is l. For E6
, N = 1

the number attached to A is ') and their G.C.D. is ,. Under~

this choice we get the graph A'7 + A, as the resul t of the

tie transformation. Applying i t once more to A'7 + A, , we

can obtain A, 9' D, 8 + A, , A'8 + A, , A, 7 + A2 etc.

If we start from other basic graphs, we can obtain various

other graphs.

Q.E.D.

We conjectured in Urabe [8] that the converse of Theorem

0.2. also holds. However, there are counter-exarnples fpr this
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conjecture. G = A10 + A7 + 2A
1

etc. There is anormal quartic

surface with the combination of singularities A10 + A7 + 2A1

But the Dynkin graph A10 + A7 + 2A1 cannot be obtained by tie

transformations repeated twice from,any one of the basic 9" graphs.

Since- A 10 + A'7 +" 2A 1 has 19 vertices, we can r.eve~, obtain i t

from any one of the basic graphs, if we use·an elementary' trans­

formation. In the last section of this article we discuss these'

counter-examples.

Any Dynkin graph obtained from one of the basic graphs by

using a tie transformation has to satisfy a certain condition in

the theory of lattices. (Section 1, Theorem 1.1.) We could not

succeed in writing down this condition explicitly in terms of

the arithmetic theory. At the present stage the best theorem

giving a necessary and sufficient condition is the following.

Theorem 0.4. Let G = I akAk + I b ~D ~ + I cmEm (a fini te sum)

be a Dynkin graph with components of type A, D or E only.

Set r = I akk + I b ~ ~ + I cmm . Then the following condi tions

(A) (B) and (C) are equivalent.

(A) There exists anormal quartic surface in the projective

space of dimension 3 whose cornbination of singularities just

agrees with G and rnoreover one of the following conditions

<1>, <2>, <3> holds for the root lattice Q = Q(G) of type

G . By d(Q) we denote the discriminant of A.

<1> r = 18 , and for every prime nurnber p, E: (Q) = 1 •
P
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<2> r = 17 , and for every prime nurnber p,

or E (Q) = (- 1 , d (Q) ) •p p

<3> r::;; 16 •

d(Q) ~ Q*2
p

(B) One of the following (B - 1) (B- 2) holds.

(B-1) G is a Dynkin graph obtained from one of the 9 basic

Dynkin graphs in Theorem 0.2

<1> by elementary transformations repeated twice

<2> by an elementary transformation following after a

tie transformation

or <3> by a tie transformation following after an elementary··

transformation

such that it has no vertex corresponding to a short root.

(B-2) G is a Dynkin graph obtained from one of the following

11 sub-basic Dynkin graphs by one elementary transformation such

that it has no vertex corresponding to a short root.

The sub-basic Dynkin graphs:
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A7 + 3A) + A2 '
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2A7 + A) + A 1 ' A7 + A6 + A) + A 2 '

6A) .

(C) G has no vertex corresponding to a short root and G is

a Dynkin graph obtained by one .elementary transformation from

one of Dynkin subgraphs of the modified Coxeter-Vinberg graph

Remarks. (1) r = the number of vertices in G = rank Q .

( 2 ) By E (Q) we denote the Hasse symbol of the inner product
p

space Q (;!} ID . For every prime number p , e (Q) has values
p

±1 . The symbol (a , b) (a , b E .~ , a"* 0 , b * 0) is the Hilbert
p

symbol. For every prime number p, (a, b) p = ±1 . OJp is the

field of p-adic numbers, i.e., the quotient field of the ring

f d ' 't 1 iT:1 ",/ n Ig' m*2 = {a2 ]a r_ In O}o p-a lC ln egers Zp =~ ~ P &I. w p t"" \I:lp' a * .

(Serre [7], Urabe [9]).

()) The sub-basic Dynkin graphs are the maximal graphs in the

set of Dynkin graphs G satisfying the following conditions:

<1> G cannot be obtained from any one of the 9 basic graph

by one tie transformation.

<~> The root lattice Q = Q(G) of type G has a fuII

embedding into the odd unimodular lattice of signature

(18, 1).
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,
(4) The modified Coxeter-Vinberg graph L18 is described as

follows. (Vinberg-Kaplinskaja (15]). It has 24 vertices. The

vertices e
1

, e 2 ' ••• , e 22 correspond to long roots. Any two

of them are either connected by a single edge or not con-

*nected. They form a tetrahedral subgraph L18 as is illus-

trated in the following Figure a. (The numbering is different

from that in Vinberg-Kaplinskaja (15].)

3

7

Figure a Figure ß Figure y

The remaining two vertices ß , y correspond to short roots.

*Figure ß and Figure Y show their connections with L18 . The

vertex ß is connected with e
17

and e
19

only by a double

edge with an arrow in the direction to ß . The vertex y is

connected with three vertices only by a broken

edge. Moreover, the vertex ß is connected with the vertex y

by a single edge accompanied with the mark 00 (or by a heavy
ß 00 Y·

edge) . 0 0
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I

We would like to explain what L18 1s in the following.

First we explain the Coxeter-Vinberg graph L
18

associated

with the integral orthogonal transformation group 018,1 (Z) of

the unimodular lattice with signature (18,1). (Vinberg-Kaplinskaja

[15], Vinberg [14], Conway-5loane [2]). The graph 118 has 37

vertices and L18 contains
I

L18 as a subgraph. Arnong them 22

vertices correspond to long roots and they form a subgraph iso-

* * Imorphic to L18 in Figure a . Therefore L18 c L18 c L18

*Here note that L18 has an action of the symmetrie group 54

of degree 4. The graph L18 has the action of 54 extending

* I

that on L18 . (However, L18 does not have an action. ) The

remaining 15 vertices of L18 correspond to short roots. Three

.of 15 short vertices are conjugate to ß with respect to 54

and they are called the vertices of the first kind. The remaining

12 of 15 short vertices are conjugate to y with respect to

54 and they are called the vertices of the second kind.

(1) Vertices of the first kind are connected among themselves by

single edges accornpanied with the mark 00

(2) Vertices of the second kind are connected among themselves

by broken edges. 0-----0 •

C3) A~~eiteX' -a ,": of the f-1:rst kind. is connected to a vertex

b of the second kind by a broken edge if in there is no

vertex connected both to a" and to b· and there are no two
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mutually connected vertices, one of which is connected to

and the other to b. Otherwise a and '~'b are connected by

a single edge accornpanied with the mark 00

Now, let us consider an unimodular lattice U of signa-

ture (18,1). U is uniquely deterrnined up, to isomorphism.

(Milnor-Husemoller [:4].) The quadratic form on U ~ Z 19 has

the following form.

222x = (x , x) = -x O + x 1- + x = (x O ' x 1 ' ••• ,

By 01·8 1 (1L) we denote the group of integral 'linear transfor-,
mations on U preserving the quadratic form. Let C denote the

negative cone in U eR.

c = {E; EU, @:R I E; 2 ~ O} •

Let 0 tUbe an element with 0 2 = 1 or 2. Then 0 de-

fines an integral orthogonal transformation So E °18 ,1 (~) by

So __(x) = x - 2 (x ,', 0) CI. / (0" 0), x EU.

The transformation S
Ci.

is called the reflection with respect

to CI. and has order 2. On U 0 m it induces the reflection

with respect to the hyperplane orthogonal to Ci.. The subgroup

r 18 of °18 ,1 (~) generat~~ by all reflections s with a E U
Ci.

and a 2 = 1,2 has a fundamental polyhedron P18 contained in

C. P18 is a connected component of C minus the union of all
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hyperplanes orthogonal to some e1ement 0. € U with a 2 == 1 or 2.

The graph is the one describing P18 The vertices

of L18 have one-to-one correspondence with the facets of P18

(18-dimensional walls of P 18 )

governed by the ffol'lowing lr.ules :

Any two vertices of L18 are

(1) If the corresponding two facets are orthogonal, then they

are not connected.

(2) If the facets have an angle TI/3, then they are connected

by a single edge.

(3) If the facets have an angle TI/4, then they are,connected

by a double edge with an arrow in the direction to the vertex

corresponding to a short root.

(4) If the facets are parallel in C, in other words, if the

intersection of the two facets has a non-ernpty intersection with

c - {O} (C denotes the closure of C) , an9 if it has no inter-

section with C, then they are connected by a single edge

accornpanied with the mark 00

(5) If the facets have no intersection in C, then they are

connected by a broken edge.

I

The rnodified graph L18

any Dynkin subgraph of L18

with respect to 54

is a subgraph of L18 such that
I

is conjugate to a subgraph of L18
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We can also show the following theorem.

Theorem 0.5. Let G be a Dynkin graph without .components of

type B. If G can be obtained by one tie transformation from

one of the 11 sub-basic Dynkin graphs .. in Theorem 0.4, then

there exists anormal quartic surface in the projective space of

dimension 3 whose combination of singularities just agrees with

G .

The plan of this article is like the following. In section

1 we develope the theory of tie transformations. We explain

that the notion of tie transformations of Dynkin graphs is as

natural and simple as that of elementary transformations. In sec­

tion 2 we study the unimodular lattice with signature (18.,1)

The reason why the sub-basic graphs are chosen is explained. In

the last section section 3 we discuss the counter-examples to

the converse of Theorem 0.2 and Theorem 0.5. We use Nikulin's

lattice theory as the main tool in this section (Nikulin [5]).'-

I would like to express thanks to the Max-Planck-Institute,

in particular to Professor F. Hirzebruch and Professor D. Zagier

for warm hospitality. I would like to thank also my wife for

making the exact list of maximal Dynkin subgraphs of L
1

8 • This

article is dedicated to my wife.
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§ 1. The notion of tie transformations.

First of all, we recall the results in Urabe [9] .

By Urabe [L9l.. Theorem 1. 15 the problem on the combina-

tions of rational double points is reduced to the problem on the

embedding of the lattice S = Z A'ffi Q(G) into.the unimodular

even lattice with signature (19,3) Here A~- is an element

with 2A = - 4 and Q (G)( is the root lattice associated with

the Dynkin graph G .

Recall rnoreover several ideas in [9] in the lattice

theory.

(1) We can pass from the unimodular even lattice A to the

quotient quasi-lattice AI ZA equipped with the canonical bi-

linear form with values in Il}, where A E A is an element with

A
2

=-4.

(2) By the above passage the isotropie element u appearing in

the condition (b) in Urabe [9 r Theorem 1.15 corresponds to

a short root ~ in A/ZA:. Because of this reason, we need to

consider also Dynkin graphs of type B .

(3) Since A/ZA contains an odd unimodular lattice with

index 2 , we can apply the theory of odd unirnodular lattices.

(4) After decomposing the indefinite even unimodular lattice A

into a direct surn A = A e H of another unimodular lattice A
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and a hyperbolic plane~ H, we can pass from A to A •

The notion of tie transformations is based on the above

fourth idea.

Recall that a submodule M of a root module L i5 said to

be full, if any element n, in the primitive hull of M in L

such that n2 = 1 or 2 belongs to M •

Theorem 1.1. Let A be an even unimodular lattiee with signa­

ture (16+N, N) , N ~ 2, and A be an even unimodular lattiee

with signature (15+N, N-1) Let ~ E Ä be an element with

Let G be a Dynkin graph with at most one eomponent

of type Band Q = Q(G) be the root lattice of type G. The

following three eonditions are equivalent.

(1) There is a full ernbedding Q c Ä/X).. satisfying the following

eondition <*> .

~*> There are a fundamental system E c Q of roots of

-Q, a,long root a E E 'in E , .', and an isotropie element

UE A/~~ sueh that ü · ß = 0 for any S-E E with ß * ä

and u· (i, = 1

( 2 ) There are an element ).. E A with 2
A = - 4 and a Dynkin

graph G with at most one eomponent of type B satisfying the

following conditions <a> and <b>.
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<a> There is a full embedding Q(G) c AI ~A .

<b> G is obtained from G by one tie transformation.

( 3 ) There are an element A E 1\ with 2
A =- 4 and a maximal

positive-definite root sublattice Q c AI ~A such that G is

obtained by one tie transformation from the Dynkin graph G of

Q •

Our Theorem 0.2 is a consequence of above Theorem 1.1.

Indeed, let GI I be one of the 9 basic Dynkin graph and GI

be a Dynkin graph obtained from G' I by one elementary trans-

formation or a tie transformation.

By Urabe [9] Corollary 3.10 there is an element

A E Q(2Ea) lB H ,with A2 =-4 such that the root system

R(Q(2Ea) e HI ZA) 1s of type GI I • In particular, there is a

fu!l embedding Q(G") c Q(2Ea) e HI ~A • If GI is obtained

by an elementary transformation, then by Urabe [9] Proposition

4.2 there is a. full embedding Q(G') c (Q(2Ea) m HI ZA) m H

= Q( 2Ea) m H m HI ZA . (Here we identify A E Q(2Ea) m H with

A e 0 E Q (2Ea) ED H m H .) . I f . GI is obtained by a tie trans­

formation, then by above Theorem .1.1 (2) - (1) there is a fu!!

embedding Q(G') c Q(2E a) eHe HI ~A .

Next assume that G is a Dynkin graph without components

of type Band that G is obtained from GI by an elementary

transformation or a tie transformation. 'Then by Urabe [9]



Proposition 4.2 or Theorem 1.1 we have a full embedding

Q(G) c Q(2Ea) eHe H ~ H/ ~A • Set S = TI- 1 (Q(G)) , where

n : Q(2Ea) @ H e H ~ H~ Q(2Ea) e H m H e H/ ~A is the

canonical surjective morphisrn. By Lemma 2.7, Corollary 2.8

and Lemma 4.1 in Urabe [9] we see that S ~ ZA @ Q(G) and

that S satisfies the condition (a) and (b) in Urabe [9]

Theorem 1.15 (2). Thus there is anormal quartic surface with

the combination of singularities G.

In the rest of this section we give the proof of Theorem

1.1. Note that the implication (3) ~ (2) is obvious, since

maximality implies fullness.

First in the following we show the implication (2) - (1) .

We assume the condition (2). We decompose G into a sum of

be a fundamental system of roots of the root lattice

connected Dynkin graphs ••• + G • Let
m

6. = 6(G.)
1. ' 1.

Q (G. )
1.

associated with the connected Dynkin graph G.• Let
1.

n.
1.

be the

maximal root associated with 6 .. It can be written in the form
1.

n. is a positive integer depending on
lCL

., . Set n. = 1 . Set 6
1

+ = 6. U {- n.} ,
1,-n. 1. 1

1.m
6+ = U 6.+

i=1 1.
and

n. = I n. CL •
1. a.E6. 1.0

1.

the:type of G

m
U 6.

i=1 1
6 =

The vertices of the extended graph G have one-to-one

correspondence with elements in +6 . Thus corresponding to the

procedure of the tie transformation, we have subsets

B c 6+ satisfying the following (1), (2) and (3).

+A c 6 ,
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(1) A n B ;;;; cf>

(2) For every i with 1 ~ i ~ m, A n ß i + * cf> •

(3). For every i wi th 1:S i :;;; m , the greatest eommon divisor

of the set of numbers

I +
aEBnß.

1

is neeessarily 1.

n.la

Let 2 2H ;;;; Zu + ~v (u ;;;; v ;;;; 0 , u · v ;;;; v · u ;;;; 1) be the

hyperbolie plane. The lattiees A m Hand A are isomorphie

and moreover we have an isomorphism ~: A e H~ A of lattiees

sueh that ~(~ e 0) ;;;; X , sineeany two elements ~ E A with

~2 ;;;;_ 4 are eonjugate with respeet to the orthogonal transfor-

mation group. (Milnor-Husemoller [4], Nikulin [5]" Theorem 1.14.4.)

Via this ~ we identify A e Hand A. Then A/ xX is

identified with (A/ ~A) eH. Here note that

ö+ c Q(G) c A/ ZA • We define a sublattiee Q of AI ~A e H

as follows.

Q;;;; " +I Za + I z ,( a - u) + z (u + v) c 11./ 4Z;\ eH.
aEß - (A U B) a.EB

Set ß;;;; [ö+- (A U B)] f.J {a-u[a"€ B} U {u+v} . We ean eheek

that ~ is a fu~damental system of roots, whose Dynkin graph is

G. Q is a root lattiee of type G. It i5 easy to see that
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the condition <*> is satisfied. Therefore we only have to

show that Q is full in AI Z~ eH.

Set R' ::;: {a E P (Q , A/ Z ~ Ei) H) Ia 2 ::;: 1 0 r 2} a nd

R ::;: {a E Qla2 = 1 or 2} = the root system generated by 6.

Here for a submodule M in a free ~ - module L of finite

rank, by P (M ,L) we denote the primitive hull of M in L .

P (M ,L) = {x E LI mx E M for ,some non-zero integer m.} .

Under the above definition obviously R c R' . We would

like to show R = R ' .

Lemma 1. 2. If R * R I , then there is an element ß E R 1 - R

with the following form.

ß = I a CL + L a (ß - u) , . (a,... , aß E '.0; )
aE6 + - (A U B) Ct ßEB ß v.

Proof. The last condition is equivalent to ß· u ::;: 0 .

Let QI be the submodule of AI ~~ e H generated by R ' .

QI is the root lattice of R I . Set P = {x E QI Ix. u = O} •

P is a primitive sublattice of QI • Let {ß 1 , ß2 '

be a fundamental system of roots of the root system of P.

9, ;;;; ran]("'P.-::;: rank', Q' - ~ =·ran.k ä -'1. .,' .On· ,the other hand'- since

6 - {u + v} ~ P , the number of elements in 1::.::;: rank Q ~ 9, + 1 .

Thus 2 + 1 = rank.QI . By this equality and by the primit~veness

of P one knows that there is a root B
O

E QI such that



{Ba, B1 ' ... , 6.Q.,} . is a fundamental system of roots of Q' •

If Bi ~ R for some i with 1 ~ i ~ .Q., , then setting

B = ß. for this i, this ß satisfies the condition in the
J.

lemma. Therefore in what follows we deduce a contradiction

assuming ß
i

E R for every i with 1 ~ i ~ ~ Since Q'

has a basis Ba, B1 ' ••• , B~ and since Q' "f Q, Ba;" R

under this assumption.

On the other hand setting

+ L a a + L a (a - u) + b (u + v) (a , b E CO)
aE~ - (A U B) Ci aEB Ci Ci

we have b = Ba · u '~f Z since 6
0

E AI ~ I-- eH. Moreover we

have

b ~ = {x· ulx E QI}::l {x.ulx E Q}::l {c(u+v) .ulc E Z} = z .

Thus b = ± 1 +for some . a O E ~ - A since

Now, since

Co ' c 1 ' ••• , c9.,

u + v E Q c: Q' , we have integers
9v

such that u + v = I c. B. . Since
i=O J. J.

1 = (u + v) · u = cOß O · u = cOb , we have Co = b = ± 1 • More-

over,

form

since - 6 E R
i

for 1 ~ i ~ 9., , we can write it in the
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L e. Ct I e. (Ct-u) (e. ,E~)
aE~+- (A U B) l.Ct + aE:B 1.0. J.Ct

By these equalities we have

±{ L a a+ I a (a-u)} =
aE:&+-(AUB) Cl aEB Ct

L ,e a + I e (Cl - u)
ClE~+-(AUB) Cl aEB Cl

where e
Ct

9,

I c.e.
J. 1.Ct

i=1
. Since is linearly independent, we

have ±a = e
CL CL

for every
+a. E 8. - A . In particular

However, the left-hand side of this equality is not an integer,

while the right-hand side i8 an integer. This is a contradiction.

Q.E.D.

Now, assume R f R' • Choose an element ß as in Lemma

1.2. Let ß be the AI ~A - component of ß.

ß = I aa.+ Iaa.=
ClE~+- (A li B) a. CtEB Ci.

I a a. •
aE6+-A Cl

This ß belongs to the primitive hull of Q(G) in AI ~A ~

Since Q(G) is full in AI ~A, ß is an element in Q(G)

Corresponding to the direct sum decomposition

Q(G) = (9

i=1
Q (G. ) , we"can write i t in the 'form'

1. ß =
m
L ß.

i= 1 1.

. Then we have

Since ß2 = 62 = 1 or 2 and since G has at most one

component of type B , ß = ß. for some unique j with
]



and 1 ~ i S m for a while . We

1 ~ j ~ m and 6i = 0

a number i with i * j

have L a a = 0
aE 6. + -...;.-A. a

1-
, J -,-" ...
Case 1 • - n:, E A .

1.
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if i * j 1 ~ i ~ m . Let us fix

for every

and
", +

Bnl::.. =Bnl::.,.
~ 1--

Then we have ~+ ... - (AUB) = A. - (AUB)
1- ~

+ + +T-hus the.... set '[1::.. -(AUB)]U [Bnl::.. ] = "6. - A =
1. 1. ~

of a basis of Q(G.) . It implies that a = 0
~

1::.. - A
1

is apart

+
Cl E I::..-A •

1.

Case 2. - n. ~ A •
1.

Set a1.· = a -no
~

for simplicity.

o =

= L
.Cl E·,I::. .-A

~

a a + a. (-n . )
Cl ~ ~

a a - a. La ~ a: EI::..
~

n. a.
1-a.

= L
a EI::..-A

~

(a -a. n. )a­a ~ ~a r·

a. EI::.. nA
1.

a. n.
1. ~a

Since 1::.", is a basis of Q (G. ) a. nia = 0 for
~ ~ ~

a E An 1::.. and aa "':" a. n. = 0 for Ci. E ß. A Besides since
~ 1- ~a. 1- .

An 1::.. *. ·41 and n. * 0 , we have a. = 0 . Thus a = 0
~ 1-a. l. a.

for ß.
+

(I::.. - A) U {- n . }every cx E: - A =1- ~ ~

Here note that by the above arguments until here,

ß = I
"+

cx E ~. - (AUB)
J

aa. +cx 2
+

cxEBnfl.-. J

a (cx - u)
cx

and
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ß := ß. :=
]

In particular is an integer,

since ß E II./Z A EB H •

Next we consider the nurnber j •

Case 1. - n. E A •
]

The set !J..+ - A := !J.. - A
] ]

is apart of a basis of Q(G.) •
]

Thus a E Za for every a E !J..+ - A
J

Case 2. - n,' ~ A .
J .

Set

ß :=

b := a -n .
]

a Ci.a

for simplicity .

+ b (-n . )
]

I ,,' _.. -. (- a -~ :... b n. ) Ct - I
Ci. Eil. - A"·Cl J Cl Cl E /1. n A

] ]

b n. CI.
Ja

Since !J..
J

is a basis of Q(G.) ,
J

one knows the following *

a
Cl

- bn .. E Z for CI. E /1. - A
Ja. J

,'*
for t.. +

bn. f ~ er. E n A := /1. n A .
Ja. ] ]
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Here consider the following equality.

I (a - bn. ) =
etEß.nB Ct Ja

J

and

+
ß., n B = D. . .n B, this equality holds.

] ]
+since D.. n B = (6.,nB) U {-n.}

] ] ]

it holds. Narnely this equality always holds.= 1

since

-n. E B ,
]

-Tl.. ~ B ,
]

since n.
J, -n .

J
Now, since the left-hand side and the first term of the right-

In case

If

hand side of this equality are integers, b L+ n ja
. ar6. nB

J

is an integer. On the other hand by condition (3) we have in-

tegers p, qa such that

n.
Ja

= 1 •

Thus b = p(b + L n.
aED. .nB J

]

By this fact and by *

a E D..+-A
]

is an integer.

for every

Consequently

ß = +1:
aEß .-(AUB)

J .

a a +a + L
a E!J. . nB

]

aa(a-u) , (a E z)
a

and we have ß ER, which contradicts the choice of ß.

Therefore R = R' and Q is full in A/ZA m H. It concludes
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the proof of the implication (2) ~ (1) •

Next we will show the implication (1) ~ (3) in Theorem 1.1.

We assurne the condition (1) . We take 6, a and u satis-

fying «;;*> and fix them. Set !:/.,- {ö, 61 , ••• , 6,11) •

Lemma 1.3. Let L be the orthogonal complernent of Z~ in A

We identify L itself with the image of the composition of the

natural morphisms

(1) L = {x E A/~X \ x 2 is an even integer.}

= {x E A/XX I x · Y E Z for every y E A/'llX.}

(2) There is a canonical isomorphism of'quasi-lattices between
*;

and the dual module L = Hom(L,Z) such that under this

*isomorphism the canonical bilinear form L x L ---> X ~s iden-

tified with the restrietion (~/'llX)'x:L ~ ~ of the bilinear

form on A/Z~ .

Proof. Easy.

( 1 ) There element X/xX - 2Lemma 1 . 4 . is an v 1 E with v 1 = 0

and v - · u = 1 .1

(2 ) element 7i./71). and -For every x E , x . v, x . u are

integers.

Proof. (1) Assume u = a u 1 with a E 7l
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Obviously a :f: 0 and = 0 since
-2= u = 0 . Thus

by Lemma 1.3 (1). We have 1 = a. • u = aa · u 1
and

a = ± 1 since a· u 1 E ZZ by Lemma 1.3 (1) again. It implies'

that ~ü is primitive in AI ~\ • By Lemma 1.3 (2) we have an

b E ~ • The element

element

write

with

with

v • u = 12 Since L is even, we can

fies the condition.

(2) It is obvious by Lemrna 1.3 (1).

Q.E.D.

- -
The sublattice H

1
= 7lu + Zv 1 of rank 2 wi th the basis

u , v 1 is a hyperbolic plane. Let M
1

complement of H
1

in AI ~X . Since

lattice and since H
1

cL, one knows

be the orthogonal

-
H

1
is a unimodular

AI 7.l\ = M1 m H
1

(orthogonal direct sum). We have decompositions in the following

form.

a = CI. + au + v 1

ß. = ß. +b.u
1. 1. 1.

a , b. E 7:;) •
1.

Set Ei = a · Bi . Note that E:. = 0 or - 1 .
1.

We have the following equalities.



2 2a -2
2 2

2 2aCl + = 0: = r-,. Cl = a. ~. Cl = -

a . ß. + b. = Er.. , a . ß. = a . ß· ( 1 ;:;a i ;:;a 9.,)
~ ~ ~ ~ ~

Next we define the Eiehler-Siegel transformation

~ : Ä/~~ ---> Ä/~X assoeiated with the isotropie element U

and the element a with a .. u = 0 by

~(x) = x+ (x·a)ü (x • ü) Cl + (a-1 ) (x,.:· ü) ü

(Ebeling [3] pp. 331). We can eheck that ~ is an iso-

rnorphism preserving the bilinear form. The inverse of ~

is given by the following.

1JJ- 1 (y) = y - (y. a)ü+ (y ü) 0.+ (a-1) (y. ü) u

It is easy to show:

~(ü) = u

-
U + v

1

ljJ(S .. )= ß. +
1 ~

-E.U
1

(1:iili;:;a9.,) •

we have the following lemma.

Lemma 1.5. There is an element

following eonditions:

v E A/~X satisfying the

-
U

- -2v=1, v =0, -a. -v = 1

ß·· v = ß· • Cl1 1
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H i5 a hyperbolic plane. Let M

be the orthogonal complement of H in Ä/Zr Ä/~'Ä == M fB H

- - ß. · Ci. then(orthogonal direct sum) . a == u+v . If = 0 I
~

ß. ß. - -1 then ß. S. wi'th. Si EE M . If . Ci. == == - u M .
~ ~ ~ ~

Let 1f

morphi5m.

A -> K/~'Ä denote the canonical 5urj~ctive

Lemma 1.6. For every element x E K/~~ such that -2x i5 an

even integer, there is a unique element x E Ä with

TI (x) = x and x· 'Ä == o. Moreover, for this element the equa-

li ty x· y =:x· ·,;lff~(y) holds for every y E K •

Proof. It is obvious by Lemma 1.4.

By Lemma 1.6 we have elements u, vEA with

TI (u) - 2 2
=: u, TI .(v) =: v, U =: v == 0 I U • V =: 1 and· ..

u· X. =: v· IX: =: O. H =: 7Lu + :?Z v is a hyperbolic plane. Let

Al be the orthogonal complement cf H in A . One knows

A == 1\1 E9 H (orthogonal direct sum) , A E 1\1 and 1\1
=: TI -1 (M)

A
1

is an even unimedular lattice with signature (15+N,N-1) .
We have an isomorphisrn p A

1
-> 1\ of lattices. Setting

A =: tP (\) , we identify 1\1 and A, 'Ä and A via lP . Then

M is identified with A/ZA M =: A/'EA

Set P =: {x € 6jx·ü =: O} . p is a reet lattice and

6. ...;. !1 - {(l} = !J. {u+v} is a fundamental system .of roots

- - -of p . P c M + Zlu . Let p : M + Zlu -> M denote the
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projection to the M-factor. The restriction p!p is an
A

isomorph~sm of lattices onto the image. Let P be the

primitive hull of the image p(P) in M. Then the quotient
A _
p/p(P) is a finite cyclic group. (Urabe [9] Proposition 2.9 (3)).

Let Q be a maximal positive-definite root sublattice of M
A

containing P. The torsion part of Q/p(P) is cyclic. Thus

p(P) is obtained from Q by an elementary transformation.

(Urabe [9] Proposition 2.9 (4)). Namely there is a fundamental

system n of roots of Q such that p(~_) is a subset of

n+ • Here 6+ is the extended fundamental system, which is the

union of 6 and (-1) times maximal roots associated with

the irreducible components of n. Set

B = {p (ß) Iß E n a·ß * O} .

If we recall the rule which we use when we make the Dynkin

graph or the extended Dynkin graph from the fundamental system

of roots, and if we ignore the condition (3) <b> in Definition

0.1, then we know that the Dynkin graph G of the fundamental

system 6 of roots of -
Q is obtained from the Dynkin graph

G of Q by one tie transformation. The subsets A,B which

we have to choose on the way of the tie transformation are the

ones corresponding to the above A,B . The new vertex 8

corresponds to a = u + v .

Thus we only have to show that the condition on G.C.D. in

Definition 0.1 (3) <b> is satisfied. This follows from the

following proposition, since Q is full.
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Pr9position 1.7. Let Q be an irreducible root lattice of

type A,B,D or E, ~ = {a1,a2, ... ,a~} be a fundamental system

of roots of Q , and n = L n a. be the maximal root associateda. l.
l.

with ~ (Every n is a positive integer. ) Set n = 1 anda. -n
~+

l. + ~+set = 6 U {-n} . Let A c ~ , B c be subsets such that

A * ep, A n B = cP and B contains at most three elements. Let

H Zu Zv (u 2 2
0, 1 ) be the hyperbolic= + = v = u·v = v·u =

plane. We define a sublattice Q of Q ED H as follows:

Q = +L Za + L Z(a-u) + Z(u+v)
aE~ -(AUB) aEB

Finally by n we denote the greatest common divisor of the

nurnbers

Ln, n
ß

(ß E A)
aEB CI.

Under these assumptions, if n * 1, then there is an

element y in the primitive hull of Q in Q m H such that

y2 = 1 or 2, y·u = 0 and y ~ Q .

This proposition is a consequence of the following property

of root systems.

Fact 1 .8. Let Q,L1,n,n and !J.+ be the same as in proposition
a

1 . 7 . Let p > 1 be a prime number and S = {a E ~+In is aa

multiple of p. } . If S * cP , then there are integers

(ex 6+) such ,that ( L +
2

2m E In a) = 1 or and such thata
aE~

CI.
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pm = n for 0 ES.o a

It is easy to see that if S * ~ , then Q is neither

of type A nor of type B 1 and p = 2,3 or 5. With the

help of the tables at the end of Bourbaki [1] we can check

Fact 1.8.

Proof of Proposition 1.7. Assume n * 1 . Let p be'a prime

{o
+

nurnber dividing n , and set S = E f:.. In a

We have <P * A c S . Thus we have integers

1 .8 .
+ ' +

Fact Set E = B n (f:.. -S), F = (f:.. -S)-E

(a E ß+) and set

y = - l( Iso + I s (CX'~u) ~
P oEF a oEE a J

is a multiple of p.}.

m (a E ß+) as in
o

• Set s = n - pma a 0

Note that E c B and F c f:..+-(AUB) since A c S . Thus

{a[a E F} U {Cl - ula E E} is apart of a basis of Q . The above

y is an element in Q 0 <n . Besides for a. E E U F , s g n + 0
0 a

(mod p) . Thus y t. Q .
On the other hand L s = L (n -pm ) ~

cxEE cx cxEE a a
(mod p) Thus e = L s /p is an integer.

aEE a

L n
cxEE a

L n
aEB a

;::; 0

y =
P
1 L+ (n -pm )0 + eu

oEf:.. -S Cl Cl

= - 1. L (n -pm )0 + eu
p aED.+ a. a.

= L+ rnNu + eu (since Ln Ci. = 0 ) •
aE/;.. ~ Cl
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One knows that y E Q e H, y~u = 0 and y2 = (Im
a

a)2 = 1 or 2.

Q.E.D.

We complete all the proof of Theorem 1.1.

§ 2. Coxeter groups on ~ hyperbolic space

In this section we would like to verify Theorem 0.4.

First of all, the following'proposition treats the

arithmetic conditions in Theorem 0.4 (A). By d(Q) we ·denote

the discriminant of a lattice Q. The symbol € (Q) is the
p

Hasse symbol and ')p is the Hilbert symbol. (Serre [7])

Proposition 2.1. Let Q be a positive-definite lattice of

rank rand A be an element with 2A = -4 . Set

S = ZA e Q (orthogonal direct sum). Assume that there is an

embedding S c Q(2E
8

) e H.e H e H = A . The following conditions

are equivalent.

(1) The orthogonal c9mplement of S in A contains an

isotropie element.

(2) One of the following <1>, <2>, <3> holds.

<1> r = 18 and for every prime number p, E: .( Q) = 1 .
P

<2> r = 17 and for every prime number p, d (Q) ~ m*2 orp

€ (Q) = (-1,d(Q» .
p p

<3> r ~ 16 .
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We omit the proof because it is the same as that of

Urabe [9] Corollary 3.3.

By Proposition 2.1 and the theory developed in Urabe [9]

one knows that the condition (A) in Theorem 0.4 is equivalent

to the following (CI) . Let A E Q(2Ea) ~ H ~ H be an element

with A2 = -4 • Such an element A 15 unique up to orthogonal

transformations.

(CI) There is a positive-definite primitive submodule TI of

Q(2Ea) e H ~ H/ZA such that G is obtained from the Dynkin

graph of the root system R(T I ) of TI by one elernentary

transformation.

Set U = {x E Q(2Ea) ~ H e H/~Ajx2 E ~} • U i5 a sublattice

of the quasi-lattice. Q(2Ea) e H m H/~A , and i5 odd, unirnodular

and with signature (18,1). Under a suitable isomorphism U ~ ~19

the quadratic form on U is given by

2
x

for

Since R(T') cU, the above. (CI) is equ~valent to the

following (C II
)

(C") There is a positive-definite primitive submodule T of

U such that G is obtained from the Dynkin graph of the

root system R(T) of T by one elernentary transformation.
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By the following proposition one knows that the eondition

(C) in Theorem 0.4 is equivalent to (C"). Therefore we have

the equivalence (A) ~ (C)

Proposition 2,.2. The following three sets cf Dynkin graphs

eoineide.

(1) The set of the Dynkin graph of the roet system R(T) where

T runs ever all/positive-definite primitive submodules of .. the

unimodular lattiee U. of signature (18,1).

(2) The set cf any Dynkin graph isomorphie to a subgraph cf

the Coxeter-Vinberg graph L18.

(3) The set of any Dynkin graph isomorphie to a subgraph of

the modified Coxeter-Vinberg graph Li8 ·

Proof. First we show that the set (1) eontains the set (2).

Assurne that the Dynkin graph G is a subgraph of L18
.

Assoeiated with vertices of G , we have a set S of facets

of the fixed fundamental polyhedron p = P
18

. 'Let t:. be the

set of roots in U perpendicular to some member of S and

directing outwards from P . Let R be the raat system generated

by ß . t:. is a fundamental system of roots of R. Let Q be

the submodule generated by R in U . Q is a root lattiee

and Q,R and t:. are of type G. Let· T ,be the primitive

hull of Q in U. Obviously R c R(T) . Let V = {x.E U ~ ~l

x·y = 0 for every y E Q.} be the orthogonal eomplement of

Q in U ~:ffi V coincides with the orthogonal complement of

T in U ~~ . V intersects with the negative cone C. Let
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Ci. E R(T) be an arbitrary element. The aS50ciated reflection

s fixes every point on C n V . By the theory·of Coxeter
a.

groups (Bourbaki [ 1 ] Chap.5 § 3) the subgroup of r
18

of all

elements fixing every point on C n V coincides. with the

group generated by s 's with
ß

ß E ß • -It implies Ci. ER.

Thus R = R(T) and R(T) is of type G.

Conversely, the set (1) is contained in the sei (2). Let

T be a positive-definite primitive submodule of U. Let·

V = {x E U o JRlx·y = 0 for every y E T.} be the orthogonal

complement of T in U 0JR . Let PO E: V n C be a general

point. Choos'ing Po generally enough, one can assurne

T = '{y E ulpo·y = O} . Thus the subgroup r (PO) of r 18

generated by all reflections whose mirrors pass through PO

coincides with the Weyl group (of the root system) of T Now,

we apply Vinberg's algortihm with respect to the point Po and

try to construct a fundamental polyhedron of r
18

. (Vinberg [12]

section 3 Proposition 4.) By his algorithm we obtain L18 by

extending the.Dynkin graph of f(PO) . Thus the Dynkin graph

of T i5 a subgraph cf L18

Here note that the reot system R(T) in (1) has at most

one component cf type B. Thus any Dynkin subgraph of L18 has

at most o~e component of type B.

The equivalence between (2) and (3) is obvious by the

definition of L18 ,and by the above property of Dynkin

subgraphs of L18 ·• Any Dynkin 5ubgraph of L18 is conjugate

to a subgraph'of L18 with respect to the action of 54 .

Q.E.D.
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(1) Any Dynkin subgraph of L
1

8 has at most

one component of type B.

'( 2) Any maximal Dynkin subg:r::aph G of L18 has ei ther. 17 or

18 vertices. If G has 17 vertices, then there is a subgraph

F of L18 containing G such that every connected component

of F is an extended Dynkin graph of some type. (The type of

G and the type of F do not necessarily coincide.)

Proof ..

(2) Let

(1) is a corollary of Proposition 2.2.

C be one of the two connected components of the
+

negative cone C containing the -f ixed fundamental p'olyhedron

P = P 18 . The quotient C+~+ can be regarded as the Loba~evskir

space containing PAR . By Vinberg [14] section 3 nurnber 2 and
+

Vinberg [15] Theorem 1 P~ is a finite polyhedron with finite
+

volume. Namely there are a· finite number of non-zero vectors

v1,v2' ... 'v~ belonging to the closure of C+ and P is the

interior of the minimal convex body containing the set
~

U lR+V. , where JR v. = {tv. It E JR, t > O} .
j=1 J + J J

Note that by definition of P, .for each v., 1 S j ~ 1 ,
]

there are linearly independent 18 roots 01'02' ... '018 E U

depending on

Let G

v. such that v.·o. = 0 ~or
J J 1

be a maximal Dynkin subgraph of

1 :;;i i :;; 18 •

L18 • The set of

vertices cf G corresponds to a set S of facets of P. Let

Q be the sublattice in U generated by all roots perpendicular

to some facet in S . Q is a positive-definite root lattice of

type G and the orthogonal complement V of Q in U 0JR

intersects with C . Thus the intersection cf V with the
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closure of P is a non-empty convex body in V. In particular

V contains v. for some j with 1 :;a j :i 2 . Take and fix
J

such a j with v. E V . Let Si be the set of facets ef P
J

passing through v. . We have S c S' . Let F be the subgraph
J

of 2: 18 whose set of vertices corresponds to SI .. By definition

F contains G. We have 2 cases.

Case 1. v. E C .
J

The orthogonal cornplement A of :Iv. in U i8 a positive-
J

definite lattice of rank 18 . F is the Dynkin graph of the root

system of A . Since A contains 18 linearly independent::roots

01' ... '018 ' the number of vertices in F i8 18. On the other

hand by maxim~lity F = G . Thu5 G has 18 vertices.

be the orthogonal cornplementALeto

Case 2. v. E ac = C - C .
J

Note that v. 2
J

of Xv. in U . A is a positive semi-definite lattice of
J

rank 18 with Zv. cA. Set I = Wv. n A . The quotient All
J J

i5 a positive definite lattice of rank 17. Let F I be the

Dynkin graph of All .. Now, the image of a. E A (1 :;a i ::;; 18)
~

is also a roet in All and they span a root sublattice of

rank 17. Thus F ' has·17 vertices. The graph F is the

corresponding extended Dynkin graph to F I
• Since G is a

maximal Dynkin 8ubgraph contained'in F, G has 17 vertice8.

Q.E.p.

By Lenuna 2.3 and by the synunetry of ·L 18 ' it is not

difficult to'make the list of all conjugacy classe8 with

respect to S4 of maximal Dynkin subgraphs of L18.
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The list contains 178 classes with 18 vertices and 27

classes with 17 vertices.

Arnong them we have 4 conjugacy classes of type, 2D
8

+ B,
and for any one.of the following 8 types we have 2 conjugacy

classes.

B1
+ E

6
+ A

7 + A
4

, B
1

+ E
6

+ A
11

B1
+ E

7
+ A

9
+ A B1

+ E
7

+ A + A
2

+ A
1 7. 1

B1
+ D

12
+ D

S
, B1

+ A
7

+ 2D
S

All + A + 2A
2

, Al? + A .
3 1

For the other 162(~ 178 - 2 x 8) classes with 18 vertices

and 23'(= 27 - 4 x 1) classes with 17 vertices, the corijugacy

cla5s is uniquely determined by the type of the Dynkin graph.

The number of items in the list i5 too large for the list

to be contained in this article.

Next we show that the condition (C) in Theorem 0.4 implies

(B) •

Assume that a Dynkin graph G is obtained from a Dynkin

graph G' by one elementary transformation and G' has an

embedding ~: G' --> L18 as a subgraph of L18. Let G*

be a maximal Dynkin graph of L18 containing the image ~(G')

By Urabe. [9] Proposition 2.9 one knows that G can be obtained

also from the Dynkin graph G* by one elementary transformation.

Thus replacing ~(G') by G* , one can assume that ~(G') is

a maximal Dynkin subgraph in L18' in other words, ~ is a

maximal embedding. In the following we assurne this assumption.
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We have a positive-definite primitive submodule T of U

whose root system R (T) is of type GI by, the proof of

Proposition 2.2 (2) ~ (1). The module T is assoeiated with

~(GI) and depends on the choice of the fundamental polyhedron

P = P
1S

c C c U @~ • For a fixed P, T is uniquely determined

depending on ~(GI) • If one ehooses another P , then the

obtained T is conjugate to the original T with respe~t to

the group f 1S
.

We have three eases.

(1) For some maximal ernbedding ~, the orthogonal complement

of T in U contains an isotropie element.

-
(2) For some maximal embedding ~, the sublattiee Q of T

generated by R(T) satisfies the condition <*> in Theorem

1.1 (1). (Note'that Q c T c U c Q(2E
S

) eHe H/~A. )

(3) For any maximal ernbedding ~ I for any fundamental system

of roots ~ c R(T) and for any isotropie element

u E Q(2E
S

) e H mH/ZA I the inequality L la·ul ~ 2 holds.
aEß

In ease (1) by the results in Urabe [9] GI is obtained

from one ,of the 9 basic Dynkin graphs by one elementary trans-

formation. Thus we have the ease (B-1) <1> ...:

In ease (2) by Theorem 1.1 we have an element

AI E Q(2Ea) f1) H with )..,2 = '-4 and a maximal positive-definite

root sublattiee Q c Q(2ES ) e H/~)..,' such that G' is obtained

by one tie transformation from the Dynkin graph G" cf Q.

Besides by Urabe [9] Corollary 3.10 G" is one of the basic 9

Dynkin graphs. Thus we have the ease (B-1) <2> .
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Now, we have to eonsider case (3). We would like to

reduce (3) to a simpler condition. Let us consider about the

ehoice of ~. Reeall the action of 8 4 on L18 • By Vinberg­

Kaplinskaja [15] Theorem 2 any automorphism of t~e graph L
1

8

is indueed by an orthogonal transformation of U . Any ortho-

gonal transformation on U ean be extended to Q(2E8 ) ~ H ~/ZA •

Thus in order to check (3) it suffices to check it only for the

representatives of 8 4-conjugacy elasses of~ the- ~rnbedding 0~

"tQ : G I -> I 18 -

-
8econdly we eonsider the ehoice of ß. Let S be the set

of faeets of P corresponding to the vertices of ~(GI) _ Let

6
0

be the set of roots perpendieular to some facet in Sand

directinq outwards fram P • The set 6
0

= 6(tO) is a fundamental

system of roots of T and is uniquely determined by ~(GI)

For any fundamental system of roots ß c R(T) , we have an element

a of the Weyl group of T with a(~) = ~o and 0 induces

an orthogonal transformation of Q(2Ea) $ H $ H/XA . Thus we

only have to check the condition on ß
O

(3) is equivalent to the following (3*)_

(3*) Let ~1'--.'~2 be the representatives of S4~conjugaey

elasses of·the maximal ernbeddings ~: GI --> L18 • Fer any

~., 1 ~ i ~ t and for any isotropie element .u in
1.

Q(2Ea) $ H $.H/ZA, lla-ul"G 2 , where the sum is taken over

all elements a in the fundamental system of roots Zo = 6(~i)

associated with ~ ..
1.

.Now, we have special isotrop~e elements, namely, the

vectors spanning 1-dimensional egdes of the fundamental
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polyhedrom P lying on the boundary of c. We eall an

element u E U an isotropie element" at infinity of P, if

2 -
u * 0, u = 0 , and ±u belongs to the elosure P

We eonsider the following eonditiondepending on an

embedding ~: GI --> "I
18

.

(31-~) For any isotropie element u at infinity of p.,

Ilo·ul ~ 2 , where the sum is taken over all elements in

6 = 6(tp) •o
One ean ealeulate any isotropie element u at infinity

of P by the following methode (Vinberg [11J § 3)

(1) Choose a subgraph F of L18 isomorphie to an extended

Dynkin graph of rank (= the number"of vertiees minus the number

of eonneeted eomponents) 17.

( 2) Let FO be a eonneeted eomponent cf F . Let So be the

set cf faeets cf I 18 eorresponding to Fa and b.+ be the

set of roots perpendieular to some faeet in SO·'V and direeting

outwards from P .
(3) Then u = mL n 0 for some integer m, where n 's are

. aE6+ a a
the coeffieients of the maximal root, which" are positive

integers uniquely determined depending on the type of Fa .

The re5ulting element In a depends on the subgraph F ,
a

but it does not depend on the ehoiee of Fa.

It i5 easy to see that any S4-eonjugaey elass of subgraphs

of L18 isomorphie to extended Dynkin graph5 of rank 17 i5

uniquely determined by it5 type and its type i5 one of the

following 9. They eoineide with our basic Dynkin graphs

(Vinberg [1 3] )
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A11
+ E

6
, 2ES

+ B
1

,
°16

+ B
1

20S
+ B

1
, A1S

+ B
2

, 2E
7

+ B
3

°12 + BS ' ES + B
9

, B17 .

Consequently, it is possible to check the condition

(31-~) for all maximalDynkin subgraph of L
1
8. Note that

if it satisfies (31_~), then it has 1S vertices by Proposition

2.3 (2). Thus it suffices to check it only for representatives

of S4-conjugacy classes of maximal Dynkin subgraphs of L18

with 1S vertices.

'Proposition 2.4. (1) A maximalDynkin subgraph of L1S satisfies

the condition (31-~) if and only if it i5 S4-conjugate to one

of the 13 graphs explained below. (We write below the vertices

to be ornitted to obtain the desired graph. Fer vertices in the

*tetrahedral subgraph L18 we write only the nurnber of the

vertex . )

B
2

+ A
11

+ A5 : 4,10,16,19,22 , all of the 1st kind except ß,

all of the 2nd kind.

B
2

+ A
9

+ A6 + A
1

: 3,10,16,19,22 , all of the 1st kind except

ß , all of the 2nd kind.

B
2

+ 2A
S

: 2,10,16,19,22 , all of the 1st kind except ß, all

of the 2nd kind.

B2 + 2A7 + 2A
1

: 3,11,16,19,22 , all of the 1st kind except ß,

all ef the 2nd kind.

A10 + A6 + A2 : 2,8,15,20 , all of the 1st and the 2nd kind.

2A g 4,14,20,22, all of the 1st and the 2nd kind.
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2A 7
+ A

3
+ A

1
: 3,8,10,15 , all of.the 1st and the 2nd kind.

A
7

+ A
6

+ A
3

+ A
2

. 3,8,12,15 all of the 1st and the 2nd. ,

kind.

A7 + 3A
3

+ A2 : 3 , 8 , 1 1 ,15 , all of the 1st and the 2nd kind.

3A6 6,10,15,18, all of the 1st and the 2nd kind.

6A3 3,7,11,15, all of the 1st and the· 2nd kind.

B
1

+ E
6

+ A
7

+ A
4

: 4,10,14,17,19 , all of the 1st kind

exeept ß, all of the 2nd kind.

B1 + E6 + A
11

: 4,10,16,17,19

ail of the 2nd kind.

all of the 1st kind exeept ß

(2) For the last 2 Dynkin graphs B
1

+ E6 + A
7

+ A
4

'

B1 + E6 + A11 in (1), there are maximal ernbeddings into L18

which are not conjugate to the ones in (1). They satisfy the

eondition <*> in Theorem 1.1 for the isotropie element at

infinity of P associated with the extended Dynkin subgraph

of type 2E
8

+ B
1

.

B1 + E6 + A
7

+ A
4

1,4,12,20,22, all of the 1st kind, all

of the 2nd kind except y.

B
1

+ E
6

+ All: 1,2,12,20,22 , all of the 1st kind, all of

the 2nd kind except y.

By the above proposition one knows that in ease (3) we

have case (B-2) in Theorem 0.2. Thus one can conclude that

(C) implies (B) in Theorem 0.2.

Remark. It is easy to check that any one of the 11 s~b-basic

Dynkin graph. satisfies not only the condition (3'-~) but also
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the strenger cendition·.(3*). Obviously the eorresponding

module T to such a graph has no isotropie element in the

9rthogon~1 eomplement. Assurne that we have a fundamental

system of.roots of T, a long root a E ~O and an

isotropie element u such that u·ß = 0 for ß E ~O with

ß * a and u·a = 1 • Then the diseriminant of the root lattiee

generated by ~o - {al is a square nurnber. Thus the choiee of

a is much restricted. For any possible ehoice of a one ean

check that there is no isotropie element satisfying the

condition by direet ealculation using some eonerete information

in Vinberg-Kaplinskaja [15].

Lastly we show that condition (8) in Theorem 0.2 implies

(A) •

In ease (B-1)<1>, applying Urabe [9] Corollary 3.10 at

the beginning and applying suceeedingly Urabe [9] Proposition

4.2 twice, one has a full embedding

Q(G) c Q(2Ea) e H ~ H ~ H/ZA , such that the orthogonaL

complernent of Q(G) has an isotropie element, where A is

an element A2
= -4 . The inverse image S of Q(G) in

Q(2Ea) ~ H ~ H e H satisfies the conditions (a), (b) in~~

Urabe [9] Theorem 1.15. Thus anormal quartic surface with

singularities G exists. Moreover, since the orthogona~

eomplement,of ·5 eontains an isotropie element by Lemma 1.5,

·one can conclude also the arithmetic condition in (A) by

Proposition 2.1.

In case (B-1)<2>, instead of applying Urabe [9]

Proposition 4.2 twice, we can apply Urabe [9] Proposition 4.2
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once and Theorem 1.1 once. Then, by the same ,argument as

above we have (A).

In case (B-1)<3> by the same argument as in ease

(B-1)<2> , one can eonclude the existence of the de5ired

quartie surfaee. As for the arithmetic condition, one ean

discuss as follows. In ease (B-1)<3> we have a decornpqsition

Q(2Ea) m R'm H m H/~A - (Q(2Ea) m H)/XA) m H1
m H

2
where

A € Q(2Ea) m H and H. == Zu. + Zv. (i == 1 ,2) is a hyperbolie
~ ~ ~

plane with
2 2

0, 1 Q Q(G) is fullu. == v. == u. ·v. == . == a
J. ~ ~ ~

sublattice of this quotient quasi-lattice. We have a fundamental

system of roots ~ = {a.,ß 1 ,···,ß17 } of Q sueh that

a. == u
2

+ v 2' ß. == ßj
+ c

j
u

1
+ 0jU 2

( 1 :;;; j :;;; 17) with
J

ß. E Q (2Ea) EIl H/Z A, c.,o. = 0 or -1 Thus we have an
J J J

isotropie element u
1

in the orthogonal complement of Q. By

Proposition 2.1 one has the arithmetic eondition.

In case (B-2) apply~ng Proposition 2.2 and Proposition

2.4 instead of Urabe [9] Corollary 3.10 one can conclude (A)

by the same argument as in the case (B-1)<1>.

We complete all the proof of Theorem 0.4.

As for Theorem 0.5, by Proposition 2.,4, Proposition 2.2

and Theorem 1.1, it i5 obvious.

§ 3. Nikulin'.slattiee theory

In this section we would like to .give examples of Dynkin

graphs G such that there is anormal quartic surfaee with

singularities. G' but G cannot be obtained fram any Dynkin
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subgraph of L18 by an elementary transformation or a tie

transformation.

Tc tell the truth, I was very disappointed tc find these

examples. However, it is very challenging to find out the

rnissing part of the theory and we should not be worried over

them.

There might be a,series of transformations of graphs,

and the elementary one and the tie one-might.be the O-th part

and the first part of it.

By Urabe .[9] Theorem 1.15 and by Theorern'1.1 it suffices

to show the following.

Propo~ition 3.1. Let G be one of the follewing Dynkin graphs

with vertex 19.

A
10

+ A
7

+ 2A
1

, '2.A + A
4

+ 1... " ., A
16 4-

2A4 + A2 + A
1

+ ES' A13
+ A4 + 2A'

1

A12
+ A4 + A

2
+ A

1
, A11

+ A + 3A
15

,A, 0 + A
4

+. A + A2
.

3

Let A = Q(2Ea) ~ H ~ H mH .and set S = ZA m Q(G) (orthogonal

direct sum) where A is an element'with A2
= -4 and Q(G) is

the reot lattice of type G. Then the'following (I) and (11)

hold.

(I) S has an ernbedding S c A of lattices satisfying the

following.conditions (a) ,and (b). Let S ·denote the primitive

hull of S in A.
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and n·~ = 0 , then n ES.
...

(b) S has ne element u with 2u ,= 0 and. u • A = - 2 •

(lI) For any embedding S c A of lättices satisfying (a)

and (b), fer any fundamental system of reets ~ of Q(G) ,

for any lang roet a E ~ and for any isotropie element u E A ,

the following conditien. (c) never holds.

(c) u·a = 1, U·A = 0 and u·ß = O.. for any element

ß E ~ with ß * a .

Remark •.. There seems to be several Dynkin~graphs with 17 vertices

satisfying (I) and (lI) other than the 7 anes in Proposition 3.1.

To show the above proposition·we use Nikulin's lattice

theory (Nikulin [5]) .. It is the advantage of his theory that

for any given Dynkin.graph G we can always determine whether

the above eondition (I) is satisfied or not after a finite

calculations. However, we cannot deduce a law dominating all

possible combinations.of singularities on quartic surfaces

from his- theory. Moreover, sometimes it is tiresome to search an

appropriate overlattice, if we use hfs theory.

Let M be a non-degenerate even lattice. We can identify

the dual module M~ = Hom(M,Z) of M with a submodule in

M 0 (I) defined by {x E M 0 ~lx.y E Z for every y E M} •

Then, M c M* and the quotient M*/M is a finite abelian group

whose order,is equal to the absolute value of the discriminant

of M. We can define a finite bilinear form
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b : M*/M'x M*/M --> ~/Z and a finite quadratic form
M ...

qM : M*/M --> ~/2Z by bM (x mod M, y mod M) a x·y mod Z

2qM(x mod M) a x mod 2Z for x,y E M* . We call bM the

discriminant bilinear form of M and qM the discriminant

quadratic form of M. They play important roles in Nikulinls

theory.

For example,'for the root lattice Q: Q(~) of type ~,

Q*/Q is a cyclic group.of order k + 1 and.the image w1 of the

first fundamental weight w1 E Q* 15 the generator. We have

qQ(a;1) ~ a 2 ·k/(k+1)mod 2Z .

If a lattice N contains a lattice M with finite. index,

N is sald to be an overlattice of M .

We use the following -two lemmas· to check the condition (lI).

Let·G be an arbitrary Dynkin graph and A: Q(2Ea) m H e H ~ H .

Lemma 3.2. (Nikulin [5] Corollary 1.6.2, Corollary 1.9.3.) Let
....
S be an overlattice of S: ZA ~ Q(G) with a primitive

embedding § cA. Let TI
....

be the orthogonal complem~nt of S

in A and T be the lattice obtained fram TI by reserving the

si9n of the bilinear form.
....

(1) T has the same discri~inant quadratic form as S.

(2 ) Let Z denote the ring of p-adic integers for a prime
p

number p. For any prime number p the isomorphism class of
....

the Zp-lattices T e Zp depends on the overlatt1ce S but does

not depend on the primitive. embedding S cA.

Lemma 3.3. Assume that we have an isotropie element u

satisfying (c) for some averlattice § of S, for same
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....
primitive ernbedding S cA, for some fundamental system of

roots c. -c Q(G) and for some long root a E 6 • Let w be
a

the fundamental weight corresponding to the pair (c.,a) •

Namely w E Q(G) ~ W, w ·0 = ,
Cl a and w·6 = 0a for ß E 6

with 6 * a. •

( ,) For every element
....

x E S, w ·xo
is an integer.

(2) The Z -quasi-lattice
p

the rational number w 2
a

element x E T* ~ ~ with
P

T* ~ Z = Hom(T,Z) @ Z represents
p p

(In other words, there is a non-zero

2 2
x = w .)a.

(3) Moreover, if w = L nBß/m (nB,m E~) and if. m is not
a ßE6

a multiple of p," then the Z -hattice T 0 ~ represents
p p

2wa

Proof. Let TI and T be the same as in Lemma 3.2. By * we

denote the dual module. Since § 6) TI
....

c A c S* EIl T ' * we have

o E §* and T E T'* with u = O+T • Since O·A = U·A = 0

o·a = u·a. =, and o·ß =u·ß = 0 for any ß E 6 with ß * a

we conclude 0 = w
Ci.

the other hand since

. We have

2o = u =

w ·x = u·x E ~a.
222o + T , T =

for

2
-wo

x E § . On

Thus T I*

= TI 0 Z . Thus
P

2and T* @ Z represents w
p a

not a multiple of p. Then,

represents 2 and T*-w ,
a

Next assurne that In is

wa E § 0 :x and T E (T ' * ~
P

2
wa

represents

~ ) n (A ~ z )
p P

T
2

= -w 2 and T e z
Ci. p

represents

Q.E.D.

In what follows we give the proof for G = A,O + A7 + 2A, .

We assume that G = A,O + A7 + 2A, and

S = Zi\ Eil Q(A,O + A7 + 2A,) . Let w"w 2 , ... ,w 7 denote the
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fundamental weights of the A7-component and Xl,X2, ... ,X l0

be the fundamental weights of the Al0 -component. Let 01'02

be the fundamental roots of the 2~1-component.

~

Lemma 3.4. (1) Let 5 be an overlattice of 5 satisfying

has a primitive

~

the condition (a) and (b) . Then, either 5 = S

111
where 51 = S U (5+(w 4 + 201 + 2a 2 + 2A))

(2) S has no primitive embedding into A. 51

embedding into A.

Proof. It is easy"to see that

5*/8 - Z/ll e ~/s e Z/2 e Z/2 e ~/4,

or
~

8 = S 1

(1) By Nikulin [5] Proposition 1.4.1, solutions of

and Xl = Xl mod 8, w, = w1 mod 5, a 1 /2 mod 5, a 2 /2 mod 5 and

A/4 mod 5 are the generators of the respective components. We

have

2 222 2
Q8(a,b,c,d,e) ~ (10a /11)+(7b /S)+(c +d /2)-(e /4) rnod 2Z

for (a,b,c,d,e) € Z/11 e Z/S e Z/2 e Z/2 e Z/4 .

q E 0
5

~

correspond to overlattices. Note that by the condition (b) S

cannot contain (a
1

+a 2+A)/2, the element corresponding to

(a,b,c,d,e) = (0,0,1,1,2) . Besides if 8 contains an element

corresponding to (a,b,c,d,e) = (0,±2,1,0,0) or (0,±2,0,1,0) ,
~ ~

then 8 contains a root system of type ES . If 8 contains

a corresponding element to (a,b,c,d,e) = (0,4,0,0,0) , then
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....
S contains a root system of type E7 . By the condition (a)

such cases are excluded. Thus we have only two cases corres-

ponding to the solutions (a,b,c,d,e) = (0,0,0,0,0) and

( 0 ,4 , 1 , 1 ,2) of q5 13 0 •

(2) 8 1*/5 1 = Z/11 e Z/8 e Z/4 and for (x,y,z) E Z/11 e X/8 e Z/4

2 2 2
qs (x,y,z) Iii (10x /11)-(5y /8) + (Z /4) mod 2Z .

1

Thus by Nikulin [5] Theorem 1.12.2 we have the conclusion.

Q.E.D .

....
By Lemma 3.4 it suffices to consider 5 = 51 and primitive

ernbeddings of 8 1 into A. Assume that we have an isotropie

element u E A and a long root Cl E A satisfying (c). We will

deduce a contradiction.

By easy calculation one knows that if a fundamental weight

satisfies w ·x E Z
Cl

for any x E 8,:', then it is one of

w2 ' w4 ' w6 ' X1,X2' ... 'X 10 . Thus by Lemma 3.3(1) wa has to

2 2coincide with one of them. Their squares are w2 = w6 = 3/2

w4 2 = 2, Xi
2 = X11 _ i

2 = i (11 - i) /11 (1 ~ i ~ 1 0) , re spectively .

Now, let R be an integral domain, K be the quotient

field of Rand 8 E K be an element. We define abilinear

form (, : R x R --> K by (x,y) = 8xy . When we regard R

itself as a quasi-lattice equipped with this bilinear form with

values in K, we denote it by R(8) .

Consider the prime number p = 2 . By Nikulin [5] Proposition

1.8.2 one knows T ~ Z2 = Z2(3 x 8) fB ~2(4) . Thus

T* 0 Z2 ~ Z2(3/8) fB Z2(1/4) . By easy calculations one knows



- 53 -

T* 0 ~ does not represent values
2 2,

2 2
2 x5/11w4 = X1 = X10 =2

2 2
2 3 3/11 , 2 2 22 7/11 On the other handX3 = Xs :::: X X4 = X7 = x .

the assumption of Lemma 3.3(3) is satisfied for p = 2 and

for X1 ,X2' ... ,X 10 . 5ince any 2-adic integer represented by

T 0"Z is a multiple of 2 2
T 0 :&2 does not represent values

2
,

2 2 2x5/11,
,2 2 2x3 3 /11,

2 2 2x3x5/11X1 = X10 = X2 = Xg :::: X5 = X6 ::::

By Lemma 3.3 either the equality wa
:::: w2 or wa = w6 has to

hold.

and

that

Next consider p = 11 . One has T 0 Z11 ;:; Z11 (-11) ED X 11 (1)

T* 0 X 11 ;:; Z11 (-1/11) m 7L 11 (1) . By calculation one knows

222
T* 0 Z does not represent w2 = w6 = 3/2, w4 :::: 2 .

Thus by Lemma 3.3 neither w = wa 2 nor ~a = w6 "holds. It is

a contradiction. We have the condition (11) .
....

We can check that 5 = 51 satisfies (a) and (b), and we

have the condition (I), too.

For the rernaining 6 graphs in Proposition 3.1 the reasoning

is similar. In what follows we sketch it.

G = 2A6 + A4 + A2 + A
1

: S has no proper overlattice, and

has a primitive ernbedding into A. Considering prime nurnbers

p = 2,7 , we can get the conclusion.

G = 2A4 + A2 + A1 + ES : S has 2 proper overlattices except

S itself. Both of them has the root system of type 2ES + A2 + A1 .

Therefore they do not satisfy '(a). On the other hand S has a

primitive ernbedding into A. By considering p = 5,3 , we get

the conclusion.

G = A13 + A4 + 2A 1 : S has 5 overlattices including S

itself. Only 3 of them including S itself satisfy (a) and (b).

However, S itself has no primitive embedding into A. The
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other 2 overlattiees are isomorphie to eaeh other and have a

primitive ernbedding into A. Applying Lemma 3.3(1) we have

only 11 possibilities as the ehoice of a E ß • Considering

p = 2,5 , we have the eonclusion.

G = A12 + A4 + A2 + A1 : 5 has no proper overlattice but

it has a primitive ernbedding into A • Considering p = 2,5 ,

we get the conclusion.

G = A11 + A5 + 3A
1

: There are only 3 overlattiees, of S

satisfying (a), (b) and having a primitive ernbedding into A.

If we exchange the order of 3 A1-components, these overlattices
A

are exchanged with each other. Thus such an overlattice S is

unique up to isomorphisms. The 6th fundamental weight w6 of

the A11 -component is the unique fundamental weight w with

w·x E Z

T* @ ~2

A

for every x ES. T @ ~2 - ~2(4) ~ Zi(4)

2does not represent w6 = 3

and

G = A10 + A4 + A3 + A
2

: S has a unique proper overlattice

but it does not satisfy (b). 5 itself satisfies (a) and (b)

and it has a primitive ernbedding into A. Considering' the

prime nurnbers p = 2,3 , we get the conclusion.

Before eoncluding this article, we would like to give a

proposition worth mentioning, one more.

proposition 3.5. There is not anormal quartic surfaee in F 3

with D19 singularity.

Proof. For the"lattice S = ZA ~ Q(D 19 ) (A 2 = -4) ,

5*/5 Z/4 Z/4 and q5(a,b)
2

19b
2

/4 (mod 2Z)- ~ a -a /4 + ,

for (a,b) E Z/4 ~ Z/4 . Thus q5 ~ 0 mod 2Z if and only if
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a ä b g a (mod 4) or a g b 8 2 (mod 4) . Let w be the

fundamental weight associated with one of the two vertiees

at the end of the two-forked part of the Dynkin graph 019 .
....

An overlattiee 5 of 5 eoineides either with S itself or

51;;;;; S U (5+(!>.. + 2w)) . By Nikulin [5] Theorem 1.12.2,5 has

no primitive embedding into A and 8 1 has a primitive embedding

into A . However, 8 1 eontains an isotropie element u with

u·>" ;;;;; -2 . Thus the eondition (b) is not satisfied. By Urabe

[9] "Theorem 1.15 anormal quartie surfaee with singularity 019

eannot exist.

Q.E.O.

Remark. Consider the situation in the above proof. By the

surjeetivity of the period mappings, there is a K3 surfaee

Z with an isomorphism a : 8
1

--> Pie(Z) preserving bilinear

forms sueh that L;;;;; a(>") is a nurnerieally effective line

bundle of degree 4. The orthogonal eomplernent of L in Pie(Z)

is generated by 19 smooth rational curves on Z with self-inter-

seetion nurnber -2, and they form the eonfiguration °19 . The

eornplete linear system" ILI associated with L has no base

point, sinee 8 1 has no isotropie element u with u·>";;;;;-1

(Urabe [9] Proposition 1.6). Let 3
tP

L
: Z -> ]I? be the rnorphisrn

assoeiated with ILI . Sinee any isotropie element·U in

Pie(Z) with U·L;;;;; -2 interseets with one of the rational

eurves in the eonfiguration D19 ' the image of tPL is an

irredueible quadratie surfaee La with a unique singular point.

Let p: Z --> X be the eontraetion morphism sending the D19 ­

configuration to a rational double point of type D19 . The



- 56 -

morphism <.PL
: Z -> La factors through p and the induced

morphism <.P . X -> La defines a branched double covering.
such that the image of the unique singular point of type D19

on X is the singular point of La .

Last of all I would like to ask the following question:

Does our theory of Dynkin graphs and quartic surfaces have a

connection with the representation theory of Lie groups? At

the present stage in the both theories we can only find the

same notions - Dynkin graphs, Weyl groups, ... , etc. - at the

key points. If we try to find a path from our theory to Lie

groups, we lose sight of the path at the point where the Hodge

theory comes in. I would like to know the connection, if it

exists.
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