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A new invariant for spin manifold and its
application to the classification of

(n 2)-connected 2n-dimensional almost
parallelizable manifolds

Fuquan FANG *

Abstract

Por a 2n-dimensional spin manifold M with an cj>-orientation (w, h) (c.f: Def­
inition 1.4 below), where n f:. 3(mod4), wc definc a quadratic function cPM,h :
H n - 1 (lI/I, Z,t) -T Q/Z satisfying

where <p is a certain secondary cohomology operation and j : Z2 -T Q/Z is the

inclusion homomorphism. Using Gauss sum, we definc an Arf invariant a(ePM,h) E
Z3 which dcpends only on the equivalent class(Witt claEs) of thc quadratic function

anel satisfies a(cP-M,h) = a(<PM,h) alld a(ePM#Al l ,h) = a(<PM,h)a(<PM',h)'
Assuming that the Wu classes vn+2-2i (VM) = 0 fol' all i where VAl is thc stable

normal bundle of M. When n = O,l(mod4), the cquivalent class of <PM,h anel
therefore a(ePM,h) is a homotopy invariant of thc spin manifold M. When n =
2(mod4), thc equivalent class of <PM,h is invariant under homotopy equivalences
fixing the Wu orientation(c.f. 1.4 for the definition of ''''u orientation).

Using this new quadl'atic function we obtain a complcte classification of (n - 2)­
connected 2n-elimellsiollal almost parallclizable manifolds up to homeomorphism
and homotopy equivalcllce, where n ~ 4 alld n + 2 =1= 2i for some i. As a corollary
of the classification, two such homotopy equivalent manifolds al'c homeomorphic.

§ 1. Introduction and Summary

"Supported in partial by K.C.Wong Educational FOllndation, Sonderforschungsbereich 343 and the
Max-Planck-Institut für Mathematik.
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The purpose of this paper is two folds. The first, also the Inain part, is to define a
Q/Z-valued funetion

ePM,h: Hn-1(lvf, Z4) -t Q/Z

for a spin Inanifold NI of dilnension 2n, where 11. i 3(111.od4) and n 2:: 4, with an additional
strueture, the <p-orientation (e.f: definition 1.1 below). This funetion is "quadratie" with
respcet to thc symmetrie bi linear form

Hn-l (M, Z2) ® Hn-l (lv!, Z2) -t Z2
x ® y -t x U Sq2 y [!l1].

vVe will show that the equivalent dass of ePM,h depends only on the spin strueture/vVu
orientation(e.f: definition 1.1 helow or [4]) when n = 0, 1(1nod4)/2(111.od4), provided the
vVu dasses Vn+2-2i = 0 for all i. Moreover, let f : NI -t lV dcnote a homotopy equivalenee
preserving the spin struetures/Wu orientations for n = 0, 1(rnod4) /2(mod4), we prove that
ePM,h(J*X) = <PN,h(X) for a11 x E ffn-l(N, Z4), pl'ovided the vVu c1asses Vn+2-2i = 0 for all
i. Therefore the Arf invariant a(<PM,h) is a hOJl10topy iIlvariant of the spin/Wu ariented
Il1anifold M when n = 0, 1(1nod4)/2(1nod4), if Vn+2-2i = 0 for all i.

In partieular, if At{ is a framed manifolcl J this gives rise a niee homotopy invari­
ant appliable to obtain the classifieation of the (n - 2)-connected 2n dimensional almost
parallelizable manifolds. This is the second pa.rt of the present paper, also the original
1110tivation of this paper. Recall that the classification of this kinds of manifolds up to
homeomorphism in the special ease of the hOlnology groups are all torsion free was aceOln­
plished by Ishimoto [9)[10] . His method does not work in general. One corollary may be
intcresting is that, by our work(c.f: Theorcln 1.11 below), the hOl110tOpy and the home­
omorphism dassification of the (n - 2)-eonneeted 2n-dilnensional almost parallelizable
Inanifolds are in fact the same.

Throughout this paper, a11 homology/coholnology groups will be with integral co­
efficients unless otherwise stated. Usually spaees will have base points. [X, Y] de­
notes the set of homotopy dasses of maps fronl X to Y. S dcnotes suspension anel
{X, Y} = lirn[SkX, Sky]. [{n denotes [«(Z2, 11,). I will always c1enote the basic class
for various Eilenberg-Maclane spaces by thc context. {Yk}kEZ+ will denote a connected
spectrum with U E }[D(y) ~ Z a generator satisfying i*U E [JD(SO) a generator, where
i : So -t Y is the indusion map of the spectrUI11.

Definition 1.1. (i) {Yk}kEZt is called <p-01'ientable iJ Sq2U = Oj X(Sqn+2)(U) = 0 and
o E cf;(U), where eP is a secondary cohomology opera/.or defined in §2 precisely which is
associaied wilh the Adern relation:

x(Sqn)Sq3 +X(Sqn+2)Sql + Sq 1X(Sqn+2) = 0 n = 2(mod4)
X(Sqn)Sq3 + Sql X(Sqn+2) = 0 n = O(rnod4)
X(Sqn+l )Sq2 + Sql X(Sqn+2) = 0 n = 1(1nod4)
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and x : Az --+ Az is the ant.i-automorphism oJ I.he Sleenrod algebra A2(c.f: [lJ).
(ii) A spherical fibration ~ is called rjJ-orientable il its Thon~ spectrum T~ is 4>-orientable.
A lnanifold is called 4>-orientable i/ its stable norn~al hundle{fibl'alion} is rjJ-ol-ientable.
{iii} For the 4>-orienlable spin spherical fibration ~ ~ 1\1, a Wu orientation 0/ ~ is a lifting
0/ fhe classi/ying map ~ : A1 --+ Bspinc io BS'pinc(vn+z). A Hlu orieniation 0/ VM, the
stable normal bundle 0/ M, is called a Wu orientalion 0/ MJ where BSpinc(vn+2) --+
BSpinc is a principal fibl'ation with Vn+2 E }[n+z(BSpinc, Zz) as the k-invariant.

There is a 4>-orientable speetrum Ir\!(n) as the follows such that for any 4>-orientable
speetrum Y, there exists a eonneeted speetral lllap J : Y --+ W (11,). We say W (11,) is a
universal 4>-orientable speetrum.

W(n) is a O-speetrum, where vVk(n) is the total spaee of the following Postnikov
tower:

l'Vk ( 11,)
-!- n2

lr\!k(n)
-!- fit

}«(Z, k)

The universal property of IV(n) inlplies that it is unique up to hODlotopy. lt is easy
to see that a speetnull Y is 4>-orientable if and only if U E [JO(y) ean be lifted to a map
w : Y --+ W(n).

Example (i): By thc definition, the sphere spcetnlill S° is 4>-orientable. Thus every
stable parallelizable Inanifold is 4>-orientable.

Example (ii): For n = 0,1(lnod4), let , ~ BSpinc be the universal spin spherieal
fibration and let U E HO(1\1Spinc, Z2) be its ThoIll dass. Notiee that, X(Sqn+2)U =
X(Sqn+l )Sq1U = 0 if n is oeld. X(Sqn+2)U = X(Sqn)S'qZU = 0 if n = O(mod4). Thus U
ean be lifted to a map f : l);[Spinc --+ ~V(n). By thc Thon1 isomorphism, J*k2 gives an
element of k2 E ]fn+2(BSpinc, Z2)' Considcl' the principal fibration 7f : BSpinc(k2) --+
BSpinc with k-invariant k2. It is easy to see that thc fibration 'Trio, is 4>-orientable. Note
that 'Trio, is the universal4>-orientable fibration, i.e, thc dassifying 111ap of any 4>-orientable
stable spherieal fibration ean be lifted to BSpinc(kz).

Example (iii): For n = 2(n1.od4), the similar teehnique above gives a principal fibration
'Tr : BSpinc(k2) --+ BSpinc(vn+2), where BSpinG(vn+2) --+ BSpinc is the fibration with
fibre Kn+1 and k-invariant V n+2. 7f*, is the universal 4>-orientable spherieal fibration.
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We denote by M Spina(k2) the Thom spectrUl11 of this universal q)-orientable spher­
ical fibration. Throughout the rest we fix a connected spectral map u : M Spina (k2 ) -+
W(n).

Let K. : [«(Z4,n - 1) X [«(Z4' 11, - 1) --+ [«(Z4111. - 1) denote the multiplication of
[«(Z4, n - 1). Write H(K.) for the Hopf construction of K,.

Proposition 1.2. The homomorphism

is injeciive i/ n =I 3(mod4), and zero i/n = 3(rn.od4).

As one can read from Theoren1 2.1 in §2, 7r~n([«(Z'l,n -1)!\ !«(Z4,n -1)) ~ Z2 if
11, 2: 4, 7r~n(I«(Z4, 12 -1)) ~ Z4 if 11, = 2(mod4). vVe set Ao for thc generator of Inl.(H(K.).)
whenever 11. f:. 2(1nod4) , anel a specified generator of 7r2n (J{ (Z4' 11, - 1)) ~ Z4 otherwise.
The following theoreln is a key in this paper.

Theoren1 1.3. Suppose thai {Yk}kEZ+ is an ep orierdable specl1'u17L Then there exists a
hamama1'phism

h : Jf2n (K(Z4l 11, - 1); Y) -t Q/Z

such that h(A) = ~ und t by n = 2(171.od4) and 0, 1(1nod4) respedively, 'Where ..\ is the
i1nage 0/..\0 under the hon~omo1'phism i. : JI2n (1«(Z4, 11, -1); SO) -t 1l2n(I«(Z4' n -1); V).

Now wc are ready to give the definition of 1>-orientation for a Thon1 spectrum. We
Inay make a more general definition but the following is enough for our purpose.

Definition 1.4. Let Y be an cjJ-orientable Thom speetT'll:m and lei

is a hom01norphis1n as above. FOT each Thom 'map 10 : Y -t MSpin(k2 ), we say that the
pair (u 0 10, h) is an ep-odentation 0/ Y.

Recall that an 2n-Poincare tripIe (M, ~, a) is
(i). A CW complex M with finitely generated hOlnology.
(ii). A fibration ~ over 111 with fibre homotopy equivalcnt to Sk-l, klarge.
(iii). a E 7r2n+k(T~) such that an (2n + k) Spanicr-Whitehead S-duality is given by

s2n+k~ T~ Ä T~ !\ iV/+

where 6. is the diagonal map.

For each 2n-Poincare tripie (A1,~, 0:), set Ao : {J\t/+, [«(Z4' n - I)} -7 {S2n+k, T~ !\
I«(Z41 n - I)} for the S-duality.
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Definition and Property 1.5. Suppose that (kr,~, 0:) is a Poincare tripie of dimension
2n, where ~ is ep-orientable and n #- 3(mod4). Fo'l' each q;-orientation (u 0 10, h) 01 T~ and
an x E lIn-l(M, Z4), we define

f(x) := (u 0 10 /\ irl) 0 Aa(x),
epM,h(X) := h(f(x)).

The function 4>M,h satisfies

<PAf,h(X + y) = ePM,h(X) + cPM,h(Y) + j(x U Sq2Y)[1'1] ,

where j : Z2 ---t Q/Z is the inclusion.

Renlark 1.6: (i) Fron1 thc defintion it is not hard to sec that ePM,h(X) depends only on
the c;b-oriented bordism dass [M, x].
(ii) \Nhen n = 3(mod4), the analogue definition gives a linear funetion by Proposition 1.2
a.nd the proof of 1.5.
(iii) When the Poincare tripie and the o1'ientation is deal' fron1 the context, we write
sometimes eph il1stead of q;M,h'

The following property follows immediatcly f1'0111 thc definition.

Proposition 1.7. Suppose that eis a trivial fib1'ation and U 0 10 factors through So ---t
IV(n). Then the above funetion ePh lactars th'1'ough Z4 C Q/Z and Zz C Q/Z hy n =
2(mod4) and n = 0, 1(1nod4).

Recall that 7rn(SO(n)) ~ Z4 when n = 2(1nod4). The following theorem gives a
geometrie property of the quadratie funetion 4>M,h'

Theorem 1.8. Let (A1, e, 0:) be a Poincare triptc) whc1'e l\tf is an 4>-orientable 2n­
dimensional manifold, n = 2(mod4) and the nu"mber 01 I' s in the binary expansion 01 n+ 3
is g1'eater than 2. If 10 comes f1'om the Thora construction 01 a 'tnap (g', g) : (e, M) ---t
('1r*" B Spinc(kz)) and cP"'.f,h is lhe quadratic function associaicd with (M, e, a) and the
orientation (u 0 T(g'), h). Suppose that ß : sn+l -t 1\1 is an e"rnbedding represeniing a
homology class [ß(sn+l)] E Hn+1(M) such thatgoß::= *. Let x denote the Poincare dual
of[ß(sn+l)J. Then

<PM,h(X) = j(v(ß) ffi c),

where j : Z'I ---t Q/Z the inclusion and v(ß) ffi c is ihe nonnal bundle of ß in M x R.

We say that two quadratie funetions <PMt,h i : IIn-1 (Mt, Z4) ---t Q/Z and
<PM2 ,h2 : Hn-l (Mz, Z4) -f Q/Z as above are equivalent if the1'e exists an isomorphism T :

Ifn- 1 (Mt, Z4) ---t Hn-l (Mz, Z4) such that cPM2,h2(TX) = cP~Mi ,h i (x) for all x E Hn-l (Mt, Z4)'

The following result says that the quaclratic function depends only on the spin
structure(vVu orientation) of the stable normal bUlldle of thc manifold and is independent
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of the normal invariant a and the q)-orientation. l\1oreover, it is a hOlnotopy invariant of
the spin (Wu oriented)manifold if n = O,l(rnod4)(n = 2(n1.od4)).

Theoren1 1.9. Let (NI., 6, ad and (Alz, ~2l O:'z) be 2n-dirnensional Poincal'e tdples
where ~i J i = 1, 2J a7'e 4>- ol'ieni.able. Suppos e that. (u 0 'Wi, h) are 4>- o7'1:entations ofT~i and
the Wu classes Vn+z-zj (~) = 0 Jor all 2j

:::; n +2. ASSll'HlC /JUlt J : A11 -t Mz is a homotopy
equ ivalence preservin9 the spi71 st7'uclures (~Vu orientations) if n = 0, 1(mod4 ) (2(m od4 )) .
Then

In particular, if At[ is a 2n-dimensional stahle para.llelizable manifold, the constant
map c : M -t BSpina/BSpina(Vn+2) gives rise a standard spin structure/Wu orientation
of the stahle normal bundle of A1. Thereby wc havc an associated fUIlctioIl cPM,h. Fix a
homomorphism

h : !fZn (!«(Z4' n - 1), 1-\1(n)) -t Q/Z

as in 1.3, by Theorenl 1.9 the equivalent dass of cjJM,h is a wcll-defined homotopy invariant
of M if n + 2 #- 2i for SOlne i, whieh provides an exact invariant for the dassification of
(n - 2)-eonnected 2n-din1ensional ahnost parallelizahle manifolds up to homeomorphism
and homotopy equivalent.

To phrase our c1assifieation theorem we now fix son1e notations.

Let Ei be a finitely generated abelian group, anel

be asymmetrie bilinear form. We say that P is of diagonal zero if It(X, x) = 0 for each
x E !fom(IJ, Zz). A function 4> : Ho7n(H, Z4) --+ Q/Z is ealled quadratic with respect to
P if

cjJ(x + y) = 4>(x) + 4>(y) + j({t(x, y))

where j : Zz --+ Q/Z is the indusion. This gives a tri pie (JI, J-l, 4». We say tri pies
(H1 , PI, 4>.), and (Hz, Pz, 4>2) are l:so1netric if there exists an isol11orphism r : B. --+ !fz
such that PI (x, y) = Itz(rx, ry) and 4>1 (x) = cPz( rx) for alt x, y. 'Are denote by [H, P, 4»
for the iSOInetry dass of a tripie.

For a spin manifold M of dilnension 2n, let PM denote the synllnetric bi linear form (c.f
[16))

PM : Hn-l (Al, Zz) 0 Iln-. (f.4, Zz) -t Zz
x ® y --+ (x U Sq2 y , [MD

It is obvious that the equivalence dass of {tM is a horllotopy invariant of M.
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Consider f-lM as a lnatrix over Z2. If 1In - 1 (1\1) ~ Z2i EB· .. EB Z2;, then the rank r( M)
of /-LM and the homology group 1fn - 1(M) detel'lnine the isolnetry dass [Hn - l (M), /-LMJ.
In general, these two datas ean not determine the isolnetry dass. A simple example
is, taking 1J = Z2 EB Z2 EB Z'i) let ei, i = 1,2,:3, is a basis of II. Set /-Ll(ei,ej) = 1 if
(i, J) = (1,2), (2, 1), and 0 for other cntrics. Set Il2( ei, ej) = 1 if Ci, j) = (2,3), (3,2), and
ootherwise. These have the same rank 2 anel the hOinology group. But they are not
isometrie.

Proposition 1.10. (i): Let A1 be an almost paralleNzablc '!r/'anijold of di1nension 2n. Ij
n = 2(1nod4)) /-LM(X, x) = 0,. Vx E Hn-l (/\1, Z2)'
(ii): l/n is odd) then !lM(X,X) = 0) Vx E Irn(P2: Hn-I(AtJ,Z,d --+ Iin- I(M,Z2))'
(iii): 1jn = O(mod4)) therl there is a Sn-l-bundle over sn+l so thal /lsn+l X8sn-1 (x, x) =f:. 0)
where x is a gene1'ator 0/ the (n - 1)-th dimension coho'mology group.

In the case (ii) above, I elo not know if j.Lll1(X, x) = 0 in general.

Let lvI be a 2n dilnensional framed n1anifold wherc n = 1(1nod2). Set qM :
Hn( M, Z2) --+ Z2 for thc Kervaire quadratic funetion associated with A1. By [4), Q/l.1

is independent of the fraIning if o:(n + 1) .2:: 2(111 fact its equivalent dass is a homotopy
invariant). Let 2i denote the maxin1al exponent of the 2-torsion of Hn - 1(M.), denote by
Sql E Hn(I{(Z2 i ; n - 1), Z2) ~ Z2 for the generator. COl1sider Sql as a cohomology
operation we get a funetion

This gives a homoInorphisn1 since Sq!xUSqlV = Sql(xUSq!y) = 0 for x, y E Hn-l(M, Z2)'
We denote by [Hn - 1(A1),/-LA1,qM(Sq!)] for thc isomctry dass of the tripie. By [6], the
Kervaire invariant of a slnooth framcd manifolel of elin1ension 2n, where n f:. 2i - 1, is
zero. For i :::; 5, thel'e are SlllOOth manifolel of dilnensiol1 2i+ I - 2 of Kervaire invariant 1.
It is still open whcther there is such a manifold for i 2:: 6.

Note that thc Kervaire invariant docs not elepend on tbe fra111ings of the underlied
2n-manifold if n =f:. 1,3, 7 anel the manifold is highly connected, c.g, (n - 2)-connected.
Moreover, by [4] it is not hard to show that the Kervaire fonn is a. homotopy invariant if
n :;. 1,3, 7 anel (n - 2)-connected. one should cOlnpare this with 1.9 for a proof.

Theorem 1.11. Let n .2:: 4, a(n + 2) ~ 2. The h017wo'm01'jJhis1rL lypes{homotopy types)
0/ (n - 2)-connecled 2n-di'mensional smooth almost paralleHzable 1nanifolds are in (1-1)
correspondence wilh the /ollowing algebraic data

(a) pn = {[lI, fl, 4>], bE 2Z+, 2n+1(2n
-

1-l)an /2 N'IlTn(~ )Isign : ft l:S 01 diagonal zero, sign ::;
b} if n = 2(7nod4)/
(b) ~n = {[II,f-l,<p],b E 2Z+,2n+I (2n

-
1 -1)an/2NuTn(~)lsign : cP jactors th1'ough J :

Z2 --+ Q/Z, sign :::; b} if n = O(7nod4)/
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(c) b'Jn = {[IJ,{l,ep,w],b E 2Z+,k E Z2 : w E H01n(tor(/J) (0 Z2i,Z2),ep factors thro1lgh
j : Zz -+ Q/Z and {l(x, x) = 0 if x can be li/ted to an Z4 class, p(x, x) = O"w(x) if x
is 01 order 2 1Vhe1'e 0" E {O, I} is antbiguous. k == °if t.hcre is no a framed munifold 01
dimension 2n 01 ](e1'vaire inva1'iant 1. 2i = fhe '1naxiTnai exponent oJ the 2-group in H }
if n = 1(1nod4),'
(d) pn = {[H', fL, w], bE 2Z+, k E Zz : w E Horn(torlf (6) Z2i, Z2), p(x, x) = ow(x) if x is 0/
order 2 where 0" E {O, I} is a'mbiguous. k =°i/n = 7 0'1' there is no a framed manifold 01
dimension 2n (n i= 7) 0/ !(ervaire invariant 1. 2i = the ·maximal exponent of the 2-group
in H} if n = 3(mod4)/
via assigning a manifold 1\1 to [11n-l (M), {lM, epM], bn(iW) and the sl:gnature SignM /
[Hn- 1 (M), {lM, epM], bn(A1) and the signature Signtvl/
[Hn-l(M),{lM,epM,q(Sq~i)],bn(M)and the B:ervai1'e inuit'rinnt of M,'
[lfn-l(A1),{lM,q(Sq~i)],bn(1\tf) and the ](ervm:re invariant. of 1\1
by n = 2,0, 1(1nod4) and n = 3(1nod4) respec/.ively, whc'I'c al = 2 fOT I odd, 1 fOT leueH.
Bn the n th Bernoulli num.ber. 0:'(n + 2) is t.he llumber oJ 1 's in the binary expansion 0/
11,+2.

Now let us consider the algebra of the invariants ariscd in thc above Theorem 1.11.
Let ep : V --t Q/Z be a quadratic functioll where 1I is a Z'I 1110dule with a Zz-inner
product, vVe say that the inner product is nonsingular if the determinant of a matrix
representation of the inner product is nonzero, Thc inner product is of diagonal zero if
x . x = 0 for all x E V. Note that the bi linear fOfln PM above for a. spin manifold givcs
rise an inner product on the Z4-Inodule 11n-1 (1\1, Z.. ). Proposition 1.9 says that, when
either n = 2(mod4) or Ir n

-
1 (/\1, Z4) is a free 1110dule, this inner product is of diagonal

zero. Take thc Gauss sunl >"( ep) = L X EVe
21f1J

(x)i E C allel let 0'( ep) = LxEV ~;i~';r. The

following theorem shows that 0' gives rise a pcrfect invariant.

Theoren1 1.12. Let \I be a Z4~mod7.Lle with an inner producl ((." as above. F01~ every
quadratic lunetion ep, define the Arf invariant 0'(ep) = LxEV ~it;Jj which salisfies

(i) O'(ep) E Z3 C C
(ii) 0'( epl ffi <P2) = 0'(</;t} 0' (</;2)
(iii) 0'( -ep) = O'(ep)
(iv) 0'( rP) = 0 if and onty if 24> f= 0
(v) O'(ep) E Z2 C Z; if2</; = °
(vi) 11 V is nonsingula'1' and of diagonal zeTO, epl ~ rP2 if and only iJ 0'( ept} = 0'( epz)
(vii) O'(ep) = °if V is singular and there is an x E \I such thal ep(x) =I 0 and x . V = O.

Consequently, if h is a homomorphism as in TheorC111 1.3, for evcry 2n-dimensional
4>-orientable manifold 1\1, fix a. spin structure/vVu orientation by 11 = 0, 1(mod4) /2( rnod4).
Endow M with an 4>-orientation (uow,h), 11, i= 3(n1.od4). We set O'h(M) = O'(rPM,h) E Z3
for the Arf invariant of the quadratic function epM,h defincd above. If Vn+2-2i = 0 for all
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i, (7h(M) does not depend on the <p-orientation and so gives rise a hOITIotopy invaraint
of the spin/Wu oriented manifold M when n = O,I(rnod4)/n = 2(1710d4). If M is stahle
parallelizahle, we always put the standard spin/Wu orientatioll on NI as we Inentioned
ahove.

By 1.12 it is readily to ohtain

Corollary 1.13. Let edenote the monoid of the 2n-dim,cnsional q;-orientablc muniJolds
with connected SU17l as I.he addition. Then

is a nonirivial h017l0rn01'phis1n saiisJying (7h( - JH) = 0-( k!)} whcre the addition on Z3 'lS

the multiplication.

Let ~zn(G) denote the set ofhomeomol'phisln(hoI110topy) types of (n-2)-connected
2n-dimensional stable parallelizable manifolds with nonsingular diagonal zero hilinear
forms J.1, the (n - 1)-th homology groups G = Go EB ZZi EB· .. EB ZZi (i ~ 2)and n-th rational
Betti nlunber zero, whel'e Go is a group of odd order.

Corollary 1.14. (i) IJ n = 2(1nod4), ah : ß Zn (G) --+ Z3 is a bijeclion.
(ii) JI n = O(mod4), (7h : ~Zn(G) --+ Zz ~ Z; C Z3 is a bijeetion.
(iii) IJn = 3(mod4)J #ßZn(G) = 2.
(iv) IJ n = 1(71lod4)) #ßZn (G) = 5.

As an example of the application of Theoreln 1.11 and the ahove algebraic facts, we
want to construct several manifolds so that they are the annihilator under the connected
surn when n = 2, 3(mod4).

(i) If n = 2(ntod4), let S(() he the Sn-I-bundle over sn+l with charateristic dass
( E 7rn (SO(n)) a generator. "\Te denote by I( thc resulting nlanifold of a framed surgery
on S(() to ki1l4[sn-l] E Hn-1(S(()). Thus for thc gencrator.'E E Hn-l(K,Z4) ~ Z4,
cPA1(X) ;= t E Q/Z by Theoreln 1.8.

(ii) Ifn = 3(71lod4), let [( be the resulting rnanifold of a fralned surgery on 2.6. C sn X

sn where ~ is the diagonal enlbedding. Note that qK(S'qI X) = 1 if x E !fn - 1(J(, Zz) ~ Zz
is a generator.

Corollary 1.15. Let n = 2, 3(mod4). S7.lppose t.hat 114 and M' are (n - 2)-connecied 2n­
dimensional stable pa1'allelizable manifolds such that. [fln _ 1(111), flM] ~ [Hn- 1(M'), J.1M']
and bn(M) = bn ( M'). Then M#I( is homeo'Tno'rphic lo A1'#K.

Thc organization of this paper is as thc folIows. In §2, we give sorne preparations on
stable hornotopy theory of thc Eilcnberg-Maclanc spaccs. In §3, we are addressed to show
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the results 1.2 through 1.9 in §1. §4 is devoted to thc classification of (n - 2)-connected
2n-manifolds and prove the Theorem 1.10 through 1.14. The last section, §5, is going to
discuss some algebraic invariants arised from these quadratic funetions defined here.

§2. Some preliminary on the stahle homotopy of f((7r, n - 1)

The purpose of this seetion is to ealculate the stahle homotopy groups 1r2n (I«7i", n­
1))(see theorelTI 2.1), build the 2-stage Postnikov tower for EQ[«(Z4,H - 1) where q is
large(see Prop 2.8). This leads to several secondary cohon10logy operations lnentioned in
§1 which is crucial in this paper.

Theoren1 2.1. The 2n-lh stable homotopy gl'OUP of j«(7i", n - 1) f01' n > 4 is as the
following table:

where p = (m+;+s
and Go 0 Z2 = o.

Remark 2.2. In the case of 7i" = Z, ThcoreTTI 2.1 can be rcad out froll1 [16].

Recall that for each locally finite connectcd CV\' conlplex X, one can form aspace,
namely

r mX = sm-l C(T X 1\ X = sm-l X (X 1\ X)/{(x, y, z) rv (-:c, z, y)j (x, *) rv *}

for every m E Z+. By rvIilgram [18] Theorenl 1.11, for a (n - l)-eonnected X, r mX is
(2n - l)-conneeted. Moreovcl', if X = ]«(1r, n), we have a fibration

Gm --+ Em ]«(7i" , n) --+ j«(7i" , n~ + 11.)

where Gm ~ ~mrm(!«(7i",n)) through dimension (3n + rn - 1). Thus 7i"i(!«(1r,n)) '::::t

?Ti( rm(J( (7i" , n)) for n < i < 3n - 1. There are Inaps

J : X 1\ X --+ sm CXT X 1\ X,
!( : sm CXT X 1\ X --+ 1:n1~){ 1\ X.

where J is the inclusion 11lap anel ]( is defined by identifying sm-l C(T X 1\ X to a point
in sm C(T X 1\ X. For reader's convienence wc recall that

Proposition 2.3(Milgranl[18]) (i) J* is surjeclive onto the inv(l'riant subalgebra under
T* of H*(X 1\ X, Zp) for p an odd prime. Jltl 0 'I'eo ver, ke1·J* = i11~!{* and the following
sequence is exact:
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(ii) (mod2) J* is s711jeet.ive as in (i), the sequence above is ngain exact) but there are
additional elements e i U (00 B) for 1 ::; i ::; 1n where B E II*(X, Zz)) and these com,pletely
describe H*(rmX, Zz).

Proof oi Theoren1 2.1: Throughout this proof we assllll1e that 1n is large with respcct
to n. We divide the proof into the following five steps.
Step (I): 7r~n(I«Goln - 1)) = O.
Consider the Atiyah-Hirzcbruch Spectral sequence converging to 7r~n(rm(I«Go, n -1)) ~
7t"2n( 1« Go, n -1)). By thc Proposition 2.3 one knows easily that a11 Ez-terms of the AHSS
are zero and so 7t"Zn(I«(Go,n - 1)) = O.

Step(II): For i 2: 2 anel 11, even, 7t"zn(I«Zzi,n - 1)) ~ (Z2)Z, Z4 by n = O(mod4) and
2(mod4) respectively.

The ETterms of the AHSS converging to 7t"~n(l"'m(]{(ZZi,n - 1)) are:

E?n-z,z = Ifzn-z(l"'m (K(ZZi, n - 1)): Z2) ~ Zz
Ein-lI = HZn-l(rm(I«(Zzi, 17, - 1)), Zz) ~ Zz EB Zz
Bin,o ~ H2n(rm(I«(Zzi,n -l)),Z) ~ (Zz)Z

if 11, is even. The former two isotnorphisms follow [1'0111 the Proposition 2.3 directly. To
see the last one, note that

(1) Hzn-z(rm(I{(Zzi, n - 1))) ~ Zz ~ 7t"Zn-z(rm(I{(Zzi ,n - 1))) ~ 7t"Zn_Z(K(Zzi, n - 1)).
(2) SqZ : HZn-Z(rm(I«(Zzi,n -1)),Zz) -+ J[2n(rm([«(Zzi,n -l)),Zz) is nonzcro and
7[2n-I (l"'m ([((ZZi ,n - 1») ~ Zzit I (c.f [18]). By thc \rVh itehead exact seguence(c. f: [23]
p555) we have

Jlzn- 1(rm(]«(Zzi,n -1»)) ~ Zzitl.

By the Bockstein exact sequence associated to 0 -+ Zz -+ Z4 -+ Z2 -+ 0 we obtain that
the order

COlnbining these with thc universal coefficients Theorem we conc1udc that

consists only some ZTdirect slunmands and so we obtain that Ein,o ~ (Zz)z.

Note the differential dz : E~n 1 -+ Ein-Z Z is dual to, ,

which is nonzero by [18] Proposition 3.7 and so E?n-2,Z eloes not survivc in the EOO-term.

Thus E~-z,z = O.
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Sin1ilarly, the differential dz : E~n,o --+ Ein-Z,l is the composition of the dual (SqZ).
of SqZ and PZ : IIzn(rm(/«(ZZi, n - 1)), Z) --+ IJzn(rm(I{(Zzi, n - 1)), Zz), the mod 2
reduction. Let 0 E fln-l(l«(Zzi,n -l),Zz) be the generator, SqZ(O (9 ()) =I 0, thus thc
element in Ein 0 reducecl to the dual of SqZO (9 B+0 0 S'qZ() does not survive in Eoo and

I

so E~,o :: Zz.

The differential dz : Ein+l,O --+ Ein-l,l is thc composition of the dual of

and tbe mod 2 reduction

Note that SqZ( S qlO 0 0+0 ® S ql 0) evaluates on f1Zn+1 (I'rn (1«( ZZi, n - 1)), Z) is nonzero,
and therefore the dual of Sqf8 e> 0+8 0 SqfO does not survive in EOO-term. On the other
hand, the dual of e1 U (e (9 0) survives in Eoo. This follows fro1l1 the fact

and when n = 0(mod4), (~) = O.
When n = 2(1nod4), thc projection of e3 U (0 (9 0) E /1Zn+l(C rn (J«ZZi,n - l)),Zz) to
the summand Hom(Hzn+1 (rm(I«(Zzi,n -l))),Zz) in thc universal coefficients theorem
evaluates at JJzn+drm(]«(Zz;, n - 1))) is zero.

In sum, 7r~n(I«(Zzi,11 - 1)) is of order 4 whenever i ~ 2. By cOlnparing the Atiyah­
Hirzebruch spectral sequences of 7r~n(rm(K(Zzi, n - 1))) and 7r~n(rm(l{(ZZi, n - 1))) one
knows further that the forgetful homomorphis1l1

is an iSOInorphism. Recall that[17] 7r~n(rm(l«(Z,n-1))) ~ Z4 01' (Zz)Z by n = 2(rnod4)
or O(mod4). This concludes thc Step (11).

Step (111): For i ~ 2 anel n odd, 7r2n (I{(Zzi,n - 1)) ~ (Zz)Z, Zz by n = 1(mod4) and
3(mod4) respectively.

We give only the proof in the case of n = l(rnod4). The rest case is easier and
similar.
First ofall, by [18] p77-80, Hzn-z(rm(I«(Zz.,n-l)) ~ Zz. alld Ilzn-l(rm(K(Zz;,n-l)) ~
Zz if n odd. By Proposition 2.3
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with generators e2 U(Oe>O), Sq!Oe>SqIO anel Sq20(ipO+00Sq20. The relations Sql(e 1 U
(008)) = e2 U (800), where dinl0 = n -1 even, Sql(Sqf00SqIO) = e l USql80SqfO i= 0
and the Bockstein exact sequence shows that FJ2n(fm(I«(Z2i, Tl - 1)), Z4) is of order 8,
same as the order of H2n(fm(I«(Z2i, Tl - 1)), Z2) anel wc conclude thaL

Note that the tenn Ein-22 = IJ2n-2(rm(!«(Z2i,n, - 1)),Z2) ~ Z2 does not survive
in the E3-tenn since the differe~tiald2 : E~n, 1 -+ Ein-2,2 is dual to

which is nonzero. Similarly, E~,o ~ Z2 since thc differential d2 : Ein,o -+ Ein-2,1 ~ Z2
is nonzero. E~-l,l 9:' Z2 01' 0 by i 2: 2 or i = 1. rcspectivcly. By cornparing the Atiyah­
Hirzebruch spectral sequences it follows that, the forgetful homolnorphism

is an injection with ilnage consisting of the E~_l,l-term in the AHSS if i 2: 2, and zero if
i = 1.

i 2 : iT~n(I«(Z2,n -1)) -+ Jr;n(f«(Z2i,n -1))

is an injection with irnagc consists of the Eh,o- tern1. Thus iT2n(!((Z2i ,n - 1)) 9:' Z2 EP Z2.

Step (IV): Jr~n(I«(Z2,n-1)) ~ Z2 for n 2: 4.
This can be read out from thc table in Milgran1 [18Jpagc 77.

Step (V): 7T~n(!«(Z2i,n-1) 1\ !«(Zzj,n -1)) ~ Z2 ifi,j 2: 1 01' 00, where Zoo:= Z.

f( (Z2i, n - 1) 1\ !{(2 i , n - 1) is (2n - 3)-connected. For 11. 2: 4, the 211.-th homotopy graup
of !«Z2i, n - 1) 1\ !«(Z2 j , 1'1, - 1) is already in the stahle range. ßy AHSS it is easy to be
verified.

COlnbining thc steps (I) ta (V) the proof of ThcorC111 2.1 folIows.

Renlark 2.4. By the AI-ISS as in the praof of T'heorerll 2.1 it is readily to see that: if
0: E Jr2n([«(Z2i,n -1) 1\ !«(Z2 j ,n -1)) is a generator, then 0:*([ e> Sq2[) =J 0 where 1 is
the basic dass.

Now we want to build the Pastnikov towers for ~qJ«(Z4, 11. - 1) -+ K(Z4' q + n -1)
which will be used in §3 to show the Theorell1 1.3 and 1.9, wherc 11. i= 3(mod4). The case
of 11, = 3(n~od4) is not intcrested for our purpose. Silnilar cases were considered in [17].

Proposition 2.5. For q large, the 2-stage Postnikov tower of ~q ]«(Z4, n - 1) is as the
folIows:
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(1): n = 2(mod4)

E2

t O2

EI
t TI 1

K (Z4, q + 11. - 1)

(2): n = 0(rnod4)

E2 x [(q+2n

t n2

EI X !(q+2n

.l- fit

(3): n = 1(1TIod4)

E2

~ ll2
EI

t TI 1

J( (Z4, q + 12 - 1) c
where C = [«(Z4,Q + 2n - 1) X Kq+2n X [(q+2n+h i~(W2) = 5'q2Iq+2n_1 and ß(n/'od2)
5'qn lq+n-l'

Proof: vVe give only a complete proof in thc case of 11, = 2(1TIod4). Other cases are
h y.q/

similar. Thereis afibration Eq['q ---+ Eq!«(Z-t,n-1) ....~1 J«(Z4,n+q-l)(c.f: page 10
for the notation and reference), r q is (2n - 3)-connected. Let 0 (9 0 E H2n-2(rq , Z2) be a
generator(c.f: Prop 2.3) which is spherical. The transgression of 000 is 5'qn1n+q_1 by the
Serre exact sequence. Reca11 that H2n(rq) ~ Z2 EB Z2. The Whitehead exact sequence(c.f:
[23] p555) applies to show that, there is exactly a. sphcl'ical elcll1ent in H 2n (rq). Tt is not
hard to check that, there is a dual of this elerrlnt in Jj2n(rq , Z2), namely z, so that its
transgression is 5'qn+2In+q_ l • Therefore we lnay build thc first stage towcr as
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Note that, Hq+2n(E, )/irnrr~ ~ Z2 with a representative Wj, i~wl = Sq2Iq+2n_2. Wl gives
rise a secondary cohomology operation cPo associateel with the Adenl relation Sq2sqn = 0
with Z4-eoefficients. We want to prove that, there is a lifting 11 of ~qln-l so that f;(wd =
~q (Sq2ln _ 1Uln-t). To see this, eonsider the fibre inc1usion 111ap h : ~q r q ---1- ~q !«(Z'I 1n-l),
by Peterson-Stein [20] we obtain that

Sq2S qh (1.'}ln_.) = 4>o(h*~qln-d E Hq+2n(~qrq, Z2)/Sq2(irnh*).

Obviously ~q(8 0 0) E Sqh(~qln-.) and so Sq2(~q(0 0 0)) E 4>o(h*f}ln-d. Notiee now
the indeterminacy is zero. By the naturality of the COhOl11010gy operation 4>0 we have
that h*</>oCLJq1n-d is nonzero anel therefore ~q(Sq2Ln_l U ln-d E </>O(~qln-d since it is thc
only nontrivial elenlcnt in the cokernel of (~qln-d·. Thus thcre is a lifting 11 so that
I;(wd = r. Q(Sq2Ln_1 U ln-d as we claimed.

Notiee that Hq+2n+l (Eh Z2)/imnr ~ Z2 EB Z2 with representatives Sq lWl and W2,
where ii'W2 = Sq2Sqll2n+q_2 + Sqll2n+q. W2 gives rise a. sccondal'Y cohomolgy operation,
nal11ely 7/;. By using thc Perterson-Stein f0f111Ula as above we have 0 E 1/J(EQ1n-d anel
so we may choose the lifting 11 so that W2 lies in the kernel of f;. The second stage of
the Postnikov tower 111ay be built by killing W2. This cOlnpletcs thc proof for the case of
n = 2(mod4).
Notice in the ease of n = O(mod4), there is no a sill1ilar sccondary cohomology operation
to eapture the elenlent ~q(Sq2ln_lU ln-d and so it 111llSt be added at the first stage. The
rest and the case of 11, = 1(1120d4) are similar...

The 2nd k-invariant W2 in the Postnikov tower above gives a unique secondary coho­
mology operator 7/; (with Z4-eoefficients) associated with the Adern relation

Sr/Sq1sqn + Sq lSqn+2 = 0 n = 2(rnod4)
Sq2S qlsqn = 0 n = O(rnod4)
Sq2sqn+l = 0 n = 1(mod4)

If n is even, EI is the universal example of the operator 'IjJ. If n = 1(rnod4), we write E~ for
the universal example of 7/; which is the I-stage Postnikov tower over [«(Z41 q+n-l) with
k-invariant Sqn+llq+n_1 . Also we let E~ for thc fibre spaee over E~ with an k-invariant
given by the operator 1/J.

By Peterson-Stein[19], there are operators 4> which are S-dual to 1/J(whieh is unique
determined by 7/J) so it is a secondary operator associated with the Adem relations:

x(Sqn)Sq3 + X(Sqn+2)Sql + Sq IX(Sqn+2) = 0 11. = 2 lTIod 4
X(Sqn)Sq3 + Sql X(Sqn+2) = 0 n = 0 mod 4
X(Sqn+I)Sq2 + Sql X(Sqn+2) = 0 n = 1 mod 4

as we stated in §1.
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Let q2 : ~q [«(Z." n - 1) -+ E2 denote a factor ill the ~1oorc-Postnikov factorization
of EQ J( (Z4, n - 1) -+ J( (Z'l, q +n - 1) above. Notice t hat {J2 ind tlces an isoruorph ism at
the (q +2n)-th homotopy groups if n =I- 0, 3(rnod4), allel an epirTIorphism if n = 0(mod4).

Consider the following irTItnediate comITIutative diagratn:

Eq [«(Z4, n - 1) [((Z4, q+n - 1)
Sq"+l Sq~

J(q+2n+I-----7 -----7 I

t Eq(Sqjl) +Sq~ 11

~qJ(n I(q+n
Sq"+l

](q+2n+I-----7 --=--t

Let Eo -+ l(q+n be the principal fibration with k-invariant S'qn+l. Recall that [4] Eo is the
first stage Postnikov-Moore factorization of ~ql(n -+ J(q+n. vVhcn n = 1(mod4), by the
above Proposition Sq~ : J«(Z4, 11 +q - 1) -t [(n+q can be covered by a map f : EI -tEo
which induces an epiluorphism at thc (2n +q)-th hOlnotopy groups. By the commlltative
diagram above, Eq(Sq~)* : 7r2n+q(~qJ«(Z4,n - 1)) -+ rr2n+q(~qJ(n) is an epimorphism.
The follows gives geoluetric proof of this fact rnore generally.

Proposition 2.6. Let n be odd and S ql E IIn( /«( Z2i, n - 1), Z2) denote the generator.
Then

is an cpirnorphisrn.
Proof: vVe give a proof by using differentail topological rncthod hefe.

Identifying the reduced fraIned bordism grou p n{~ (f( (Z2, n -1)) wi th 7r2n (J( (Z2, n­
1)), alld n{~(I«(Z2,n)) with 7r~n(J«(Z2,n)). Undcr thc TholU Pontryagin construction it
is directly to see that the homomorphism

can be identified with the homomorphism

n~:(I«Z2'n - 1)) -+ n{~(J«(Z2' n)) ~ Z2

[M, x] -t [Ai, SqI X ]

By Brown [4], jf M is the boundary of a franlcd 111anifolcl V anel i : M -+ V is the
indusion, the I<ervaire quadratic form q : Hn(lH, Z2) -t Z2 is zero on Irni*. Thus

1 - Jrq(Sq ) : !l2n(I«Z2, n - 1)) -+ Z2,

[Al, x] -+ q(SqI X )

is weIl defined anel a hOrTI0l110rphism since Sql x USql y = Sql(XUSqly) = VI U(XUSqly) =
oby the Wu dass VI = O. Thercfore the CODlposition q( 5'(/) is a hOluomorphism. To show
the Proposition, it suffices to prove that q(Sql) defincd above is an isornorphism.
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Assun1ing that [1\1, x] is a framed bordiso1 dass, where lVJ denote a framed manifold
of dimension 2n and x E Jln-l (M, Z2)' By using fralned surgery wc can assume that M
is (n - 2)-connectecl, and IIn- 1(M) is a cydic group of oreler 2 and x E ffn-l(M, Z2) is
a generator. Note that ß(x) E Ifn(NJ, Z) is thc generator of the torsion subgroup, here
ß is the Bockstein homolnorphism. By [4], thc Poincare dual of ß(x) is representeel by
an embedded n-sphere with trivial normal bundle if and only if q(Sq1x) = 0 as Sql x =
ß(x )(mod2). In case it c(\,n be represented, we n1ay da fran1ed surgery on M by using this
embedded sphere to obtain a (n-2)-connected 111anifold, nalnely N, so that Hn-1(N) ~ Z.
By TheorerTI 2.1, 7r~n(J{(Z,n -1)) = 0 alld Z2 by n = 3(nlod4) anel 1(1110d4). Thus the
homomorphism q(Sql) is injective if n = 3(11~od4). For n = 1(mod4), as we have seen in
the proof of Theorem 2.1, the forgetful homonl0rphisI11 7r~n (J{ (Z, n - 1)) --+ 7r~n (J< (Z2' n­
1)) is zero. Therefore [Jl1, x] is bordant zero if q(Sql X ) = 0 alld thc a,bove homomorphism
q(Sql) is injective too. Note that the group 7r~n([«(Z2,n - 1)) ~ Z2 anel so q(Sql) is an
isomorphism. Note that Sql = S ql 0 i, where i : I( (Z2' n - 1) --+ J( (Z2i, n - 1) represents
the nonzero homology dass. Thus q(Sql): n{~(I«(Z2i,n -1)) --+ Z2 is an epimorphism.
This completes the proof.

Fronl the proof of the above Proposition \ve havc an il111nediatc corollary
Corollary 2.7. Let 1\1 be a fra1ned 'manifold oJ dinwnsion 2n. IJ fJM : Hn( NI, Z2) --+ Z2
is the !(ervaire quadratic form. For x E Hn-l (l"{, Z2 i ) J

(i): n = 3(1nod4), [NI, x] I:S reduced bordant to zero iJ and only if q(Sql)x = O.
(ii): n = 1(1nod4)J [M, x] is l'cduced bordan,t 1-0 [M', ;1;'] whel'e x' E Hn-l (M', Z) if and
only if qM(Sql)(X) = O.

Now we are going to explain that, for a. reduccd fratneel bOl'disrn dass [M, x] E
n{~(J«Z4' n - 1)) ~ Z2 EB Z2, where lVI is 0, franlcd 111anifold of dimension 2n(n =
0, 1(1nod4)) and x E Hn-l (M, Z4), thcre is a ZTcorn poncnt Inay bc dctccted by a well­
known invariant and thc rest is detccted by the qua.dratic function defined in §l. Let
PT : D2n (!{ (Z4l n - 1)) -+ 1r~n ( !((Z4, n - 1)) denote the ThoITI-Pontryagin isomorphism.
If n = 0(lnod4), by the Postnikov tower in 2.5, PT([/ttl, xl) has a component dctccted by
x U Sq2 x [A1] and the other corresponds to the nontrivial k-invariant. If n = 1(mod4), by
2.7, PT([M, xl) has a C01l1pOnent detected by q(Sq~x) whcre q is the Kervaire quadratic
form. The rest is detected by the nontrivial kinvariant corresponding to the secondary
cohomology operation 'ljJ. .

Recall that Ao E I1n(H(K.).) C 7r~n(I«Z", n - 1)) is a generator of order 2 if n =
0,1(mod4). We sho.11 pl'ove that A~(a(Sq21U I)) = 0 if n = 0(1nod4), and (Sq~).(Ao) = 0
if n = 1(1nod4). Therefore Ao and the component detccted by the cup product x U Sq2 x
or q(Sq~) form 0, basis for the group 7r~n(I«Z'l'n - 1)) if n = 0(1nod4) 01' 1(1nod4).

Proposition 2.8. Let n = 0, 1(mod4) and Ao bc the genC'1'at01' 0/ hn(H(K.).), 1Vhere H(K.)
is t.he HopJ construction oJ the m.ultiplication K. : ]«(Z'l' n -1) XI«(Z", n -1) -+ [«(Z4, n­
1). Then A~(a(Sq2I U I)) = 0 iJn = 0(1nod4) al1d (SqJ).(Ao) = 0 i/n = 1(rnod4), where I
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is the basic dass 0/ J«(Z4, n - 1), u is the suspension and Sq~ E f[n(J«(Z4' n - 1), Z2) is
thc genc1'ator.

Proof: Note that 1!(K,)*(a(Sq2[ U I)) = f7(Sq210 l + I 0 Sq2l). By the Remark 2.4,
Xü(f7(Sq2l U I)) = a*(a(Sq2[ U l)) +a*(u(l U Sq2[)) = O. Ta show (Sq~)*(.-\o) = 0 for n =
l(nlod4), note that .-\0 lies in the image of the fargctful hOlnomorphism P* : 1r2n (I«Z, n­
1)) -+ 7r2n ([«(Z4' 11. - 1)) by thc cOffirnutativc eliagranl

L I«(Z, 11, - 1) 1\ !«(Z, n - 1.)
-!- }[( 1i)

L J«(Z, n - 1)

Combining co1'ollary 2,7 we conclude the proof.

§3. Proofs

Proof of Proposition 1.2: Recall that, für any space X, the scquence of maps

is a fib1'ation, where h is the Hopf const1'uction of thc llluitiplication nx 1\ nx -+ nx,
anel a is the adjoint of the identity on nx, Thus

is a fib1'ation anel so

is an isomorphisln. By theo1'etn 2.1, 1r2n+l(SI 1\ J((Z'l, 11. - 1) 1\ J«(Z4, 11, - 1)) ~ Z2.

Consider the suspension map 51 1\ J((Z.I, 11, - 1) -+ Si 1\ J((Z4, n - 1) for [ large.
Applying the generalizcd EH P sequcnce(c.f: [18]) in our range

... ~ 1I"2n+dSI /\ K(Z41 n - 1))~ 1I"2n+l (SI !\ K(Z4l n - 1))~ 1I"2n+l (fl - 1 (31 !\ K(Z41 Tl - 1))

~ 1I"2n(31 !\ I«Z41 Tl - 1)~ 1I";n(51 !\ K(Z41 Tl - l)L

Noticethat H2n (l"i-l(SII\!«(Z4,n-1)) ~ Z4 anel H2n+l(fl_I(SII\J«Z4,n-l)) ~ Z2
when n is even. Thereby 1r2n+l(ri_1(Sl A J«(Z."n - 1)) ~ Z2 and consequently E is
injective by the exact scquencc abovc as 7r~n+l (51 A !'((Z.l, n - l)) is of order 4 when n is
even.

vVhcn n = l(mod4), by Theorem 2.1 7r~n([«(Z'I, n-1)) ~ (Z2)2. On the other hand,
it is 1'eadily to show that 1r2n+l (rl - I (SI A I«(Z4' n - 1)) is cyclic. Thus thc conclusion
follows by applying thc exact sequence again.
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When 12 = 3(rnod4), Eis zero by cornparing that 7r2n+l (f1_dS I /\!{(Z4, n-l)) ~ Z,t,
7r2n(SI/\ [«(Z4,n -1)) ~ Z4 and 7r~n_l(I«(Z4,n-1) ~ Z2 in the exact sequence. This
completes the proof. ..

Remark. By a similar argunlent one can show that, the Hopf construction h( K,) : 51 /\
[«(Z2, n - 1) /\ K(Z2' n - 1) --)- Sl /\ I«Z2, 12 - 1) inclt1ccs always a zero homomorphism
on thc 2n-th stahle homotopy groups. Thus t.he analogous definition of the quadratic
function 4>h in §1 gives a linear function if ]«Z",n -1) is replaccd by [«(Z2,n -1).

Proof of Theorem 1.3. We give a proof in the case of 11, = 2(rnod4). Others are similar
hy using except one need to use Proposition 2.8. First note that the theorem is equivalent
to say that

i* : Z4 ~ [f2n (J«(Z4' n - 1), SO) --)- !f2n (]«(Z4' n - 1), Y)

is a lTIonomorphism. Also it suffices to show this for the universal spectrum W(n) since
the map i : So --)- 11/(n) factors through i : So --)- Y. Notice that l~/k(n)/Sk is (k + 2)­
connectcd. Thus in the following proof, we may aSSlllne t.hat Yk/Sk i8 (k + 2)-connected
for klarge. Assuming klarge, without lossing generality we can assurne that Yk is a
finite corTIpIex. \,yrite Yk* for thc m S-dual or Yk anel 9 : Yt --)- sm-k for the S-dual
of the inclusion i : Sk --)- Yk . Note that g* ((sm-I;) =f 0, where (sm-I; is the cohomology
fundamental dass of the sphere. By the S-duality we get a. comnlutativc diagram

{S2n+k, Sk /\ I«Z4, n - I)}
+~

{S2n+m 1 sm /\ ]«(Z4' n - I)}
+~

[S2n+m, En+m-d

{S2n+k, Yk A I«(Z4, n - I)}
t~

{ S2n+k /\ }/- sm /\ I{(Z n - I)}k , 4,

+q2*
[S'2n+k A }/* E- ]k, I n+m - 1 ,

where Em +n - 1 is the 2-stage Postnikov tower in Proposition 2.5 and q2 : sm /\ I«Z4, n ­
1) -+ En+m - t is a factor of the Moorc-Postnikov clecompositioll of 2: m ln _ 1 • From the
diagram above it suffices to show that the homOlllorphislng* at thc bottom line is injective.
Let i o : F --)- En+m - 1 be the fibre of the 2-stage Postnikov tower. Note that F can be
viewed as a fibration over ](2n+m-2 with fibre J\"(Z4l 2n+7n) and k-invariant j*(Sq2S q l )(l);
where

j* : H m+2n+1
( -, Z2) ---+ flm+2n+I

(-, Z4)

i8 the hon10morphism induced by the inclusion Z2 C Z'l anel I is the basic class of K m +2n- 2 •

Consider the following COlTIITIutative diagrams

[S'2n+m, F]
t .J := g*

~ [S2n+k /\ Yk* , F]
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anel

[S2n+m, J«(Z'l, 211, + 1n)]
-!- g*

{S2 +k v r/' ] j.(Sq2}ql) [S2n+k 1\ v* Tf(Z .) + )]n A I k*' 1\ 2n+m-3 I k , 1\ 4, ... 17. rn

[S2n+m, F]
-!-J

[S2n+k 1\ Yt, F] --+ 0

where i 1 ; J«(Z4,n + m - 2) --+ F is the hOlllOtOpy fibre of io. The bottom line in
thc above two diagrams are exaet. To see the exaetncss in the seeond diagram, we
need to note that, Jf2n+m-2(S2n+k 1\ Yt, Z2) S::' 1!k+2(yk) = 0 sinee Yk/ Sk is (k + 2)-
conneeted. To show j*(Sq2Sql) is zer in the sccond diagralll abovc, note that Sq3Uk = 0,
the duality inlplies that X(Sq3)JJm-k-3(yk*) = Sq25 ql Hm-k-3(Yk*) = O. Thus the second
diagram implies that J is a. monomorphism. Thc proof ean bc deduecd if we ean show
J( er(io)* n Jm(J) = lm(id* n J1n(J) = 0 in thc first eliagl'am above.

Let q = 111 - 11, - k - l, the tower

--+ n2n+k F
-!-p

/(q+n-l X J(q+n+l

gives a diagraln(not exact)

{Yt, Bq-tl --+ [Yt, Eq-d ---+ [Yk*, J«(Z4,q -1)]
-!- i I.

[Yt, n2n+k F]

--=-+ [Yt, J«(Z4, q - 1)]
-!- Sqn X Sqn+2

~ [Yt, !(q+n-l X !(q+n+l]

Ifx E Hq-l(yk·, Z4) such that i1.(x) E Jm(J), S'rt(x) E IJn+ Q-l(Yt, Z2) S::' (H k+2(Yk, Z2))* =
O. On the othcr hand, by duality X(Sqn+2)Uk = 0 inlplies that Srt+2JJq-l(Yk·,Z2) = O.
Thus Sqn+2(x) = 0 anel

Sinee Yk is </>-orientablc, i.c, 0 E 4>( Uk ). By [19] that 0 E 1jJ(x). Thus x ean be lifted to
Eq- 1 and so (iI).(x) = o. 'rhis c0l11pletes the P1'oof. ..

Proof of Proposition 1.4: By the definition, for k lal'ge, f(x + y) is the following
eomposition of maps

SII\S2n+k i~Q SII\T~I\M+ id/\uow/\{xXY) SlI\11l(nhl\(f«(Z'I,n-l)xJ({Z4,n-l)) =

= l'V(n)k 1\ 51 1\ (J«(Z4, 11, - 1) X [«(Z,j, 11, - 1))~ lV(n)k A 51 1\ J«(Z'h n - 1),
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where ~(l) = l01 + 10l for the basic dass 1 E ff n
-

l (f«(Z4,n -1),Z4)' Identifying
W(n)k 1\ 51 /\ (J«(Z4, 11, - 1) X I«Z4,n - 1)) with

{W(n)k 1\ 51 1\ J«(Z4' n - I)} V {H!(nh /\ SI /\ (J«(Z,j, n - l)}V

V{ll'(nh 1\ 51 /\ (J«(Z4, 11, - 1) /\ /«(Z4, n - I))}.

It is readily to see that J(x + y) = f(x) + f(y) +9, hcre 9 is the cOlnposition

s2n+k+1 i~Q 51 1\ TE, 1\ 111+ idl\~l\t. 51 /\ l'V(nh /\ 111+ /\ 111+ id~Y vV(n)k 1\ 51 /\

[((Z41 n - 1) /\ J\"(Z41 n - 1) idI\H~K) W(nh 1\ 51 /\ K(Z41 11. - 1),
where H(~) the Hopf constuction of K.

As Hl(nh/Sk is (k + 2)-connected, it is e('lsy to check

(il\id)* : 1T2n+k+l (Sk+l /\J«(Z,t, 11,-1)) ---* 1T2n+k+1 (51/\ H/(n)k/\J«(Z4 1 n-1)I\J«(Z4, n-1))

is surjective" On the othcr hand, by Rcmark 2.4, thc generator ß E 1T~n(J«Z4' 11, - 1)) /\
I«Z.t, n - 1)) ~ Z2 satisfies ß*(10 Sq2l) =I- O. Thus, for the inclusion Inap i, the cOlnposi­
tion (i 1\ id) 0 ß E 1T2n+k+1 (51 /\ 111(n)k 1\ J«Z4, n - 1) /\ 1«(Z4, n - 1)) induces a nontrivial
homomorphism on the (211, +k )-th homology and thus is not null hOlnotopy. Thus (i /\ id)$
is an isomorphism. 11oreover, the generator 90 E 1T~n(1'V(nhI\J«(Z4' n-1))/\I«Z4' 11,-1))
satisfies that 9ü(Uk /\ Sq2 l n _ l /\ ln- d =I- O. Thus thc conlposition (id /\ x 1\ y)( U 0 w 1\.6.) (6.a)
is null h0I110topy if and only if (x U Sq2 y, [Mh) = O. By Proposition 1.2, the proo[ now
follows by the conlmutative diagram

Sk 1\ L: J«(Z4, 11, - 1) /\ f«(Z4' n - 1) il\i1

+id /\ H(~)
Sk 1\ L:I«(Z4,n -1) il\i1

IV(n)k /\ L I«(Z4' n - 1) 1\ K(Z4, 11, - 1)
+id 1\ ff(~)

lt\! (11, ) k /\ L: J< (Z<1, 11, - 1).

The proof of 1.7 is obvious since the stable homotopy group 1T2n(J«Z4, n-1)) ~ Z4 if
n = 2(mod4) allel the order of elelnents in 1T~n (/( (Z4, 11 -1) is at Inost 2 if 11, = 0, 1(mod4).

To show 1.8, let us first begin with a lelnnla.

Len11na 3.1. If n = 2(rnod4) and a(n +3) ~ ;)) thcn the h01n01nO"1'phism

is zcro, where i is a gene'rator of (n - 1) -th hO'T7uJtopv g1'OUp.

Proof: By the Postnikov factorization of sq /\ /«(Z4, 11. - 1) for q large it is immediately
to see thaL:
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(i) a E 7f2n+q(sql\[«(Z,,,n-l)) ~ Z4 is agenerator ifand only ifthefunctional cohomology
operator Sq~+2(SqI\ln-d i 0. Thus the conlposition S2n+q -7 sq+n-I -+ sq 1\ /{(Z4, n-l)
is of order at lnost 2 if n + 2 i 2,4 01' 8 by [1]. Thcrefore, undel' our assumption, cvery
element in the image of i* is of order at most 2.
(ii) An ß E 7f 2n+'1 (sq 1\ J«(Z'll n -1)) is of order 2 if an eI only if (f/J+2(Sq 1\ ln-I) #- 0, where
qlß+2 is the secondary functional cohomology operator.
If ß = i*(z) for some z E 7f2n+q(sq+n-l). By the natul'ality of the functional secondary
cohomology operator 4>ß it follows that 4>~+2(sn+q-d #- 0, where (sn+'1-d is the n + q - 1
dimensional cohomology generator of the sphel'e sn+q-l. By [1] the proof of 4.3.2, we
have a decomposition

4>n+2(sn+'1_d = L ai,j4>i,j(Sn+q-d IliOei zero indeterminacy,
i,j

where 4>i,j is defined by AdalTIS in [1] for each i :::; j anel j #- i +1, eleg<pi,j = 2i + 2j - 1,
ai,j E A2, the Steenrod algebra. Whenever a(n + 3) 2:: 3, (Li,j are not the unit in A2 and
so </;n+2 is zero when applied to the 2-cells complexes S'1+n-l U e2n+q+1

• Thus ß is zero.
This completes the proof. •

Proof of Theorenl 1.8. Since goß ~ * anel T(g') 0 T(ß) : T(ß*~) -+ T(~) -+
M Spinc(k2) factors as j 0 \I, where j : So -+ kJSpinc(k2) is the spectral indusion map
and \I : T(ß*~) -+ So. Note that T(ß*~) is the S'-elual of T(I/(ß)). VVe have the following
immediate commutative diagram:

{T(v(ß)), [{(Z'l, n - 1)}
t T*

{M+, [«(Z4, n - I)}

where T : JVJ+ -t T(v(ß)) is the Thom construction. T(ß*~) ~ S'k V sk+n+l since ß*~ is
stable trivial. We elenote by U the Thom dass of v(ß). Then T·U = x and dU = 0:1 + 0:2,

where 0:1 E {S2n+k, Sk 1\ J( (Z4' n - I)} and 0:2 E {S'2n+k, Sk+n+l 1\ !((Z4, n - I)} t'V Z4 is
a generator. By the definition

<PM,h(X) = h(u 0 T(g'). 0 T(ß).(ad) + h(u 0 T(g'). 0 T(ß)*(0:2))'

The second term is zero whcn o:(n + 3) 2:: 3 since u 0 T(g') 0 T(g').(0'2) factors through
S2n+k -t sn+k-l -+ Sk 1\ J«(Z4' n - 1) which is null in hmllotopy by lemma 3.1.

Notice that 0'1 depends only on the bundle Vß. Thus we may choose some special
manifolds X of dimension 2n with anormal bundle 0 E 7fn (SO(n)) ~ Z4 of an embcdded
(n + 1) sphere in X in X x Rand to verify the Theorenl. Consider first X = sn-l X sn+l
and ß = pt x sn+l. By thc definition, ePX,h(X) = °since (X,.?;) is framed bordant
zero, where x is the generator of IJn-l(X). Consider X = sn+1 Xe sn-I, the sphere
bundle over 8n+1 with charateristic dass f) E 7fn(SO(n)) ~ Z4 anel x E Hn-I(X, Z4) is a
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generator. These bundles are eliffeomorphic to each othe!" if and only if their eharateristie
classes coineide up to sign(c.f: theorem 1.11 01' [10]). l\101'eover, by 1.11 we have that,
these bundles are eliffeolll0rphic to each othcr if and only if thc corresponding quadratic
functions ePh : Z4 -+ Q/Z are isometrie to each other. Therefore there is a bijeetion
between the eharateristic c1asses in 7rn (SO(n)) L1p to sign anel the isometrie c1asses of the
quadratie functions. Note that these bundles have always a seetion(c.f: [11]) and let ß
be a section. The normal bundle of ß in X x Fl is O. 'vVe claim that 0 is of order 2 if
4>X,h(X) = ~.

If ePX.h(X) = ~, e =J. O. Otherwise X is diffeOlllorphie to the trivial bundle by
1.11. This is impossible. 'vVe now prove further that 0 is of order 2. As ePx,h(2x) = 0,
(X,2x) is therefore zero framed bordant. Let (V, y) be a. frailled manifold with boundary
(X,x)(Ylx = x). By use fran1ed surgery we can 1110dify \I so that V is (n - 2) connected,
[fn - 1 (V) ~ Z anel !ln (V) = O. By duality one can check Hn +1(\I) ~ Z2. 1t is elementary
to show that the exponent of 7rn+dV) is 2. Thus thc charateristic dass of the normal
bundle of each embedded (n +1)-sphere in V is o[ order at most 2. Notice that the normal
bundle of ß in \I is the same as that in X x R. 1'his proves that 20 = 0 and so j (B) = ~.

Consequently, if 4>X,h(X) = i, 0 is o[ order 4. Othcrwisc, it contradiets with 1.11. 1'his
completes the proof. .,.

Let {Yk}kEZt be an 4>-orientable ThOln spectrum. For klarge, let lVi, i = 1,2, are

maps Yk -+ Wk(n) which lift thc 1'holl1 dass Uk, where l11(n) is thc universal f!-spectnnl1
defined in §1. Note that ff2Hl1 and II21112 are differed by a Inap to the fibre J(k+l X !(k+n+l

of the fibration of IT 1 : Hlk (n) -+ J«(Z,k). Let d1(Hi l , l'V2 ) elenotc tbis difference. Of
course lVI and W2 are hOll1otOpy if d1(Hl1 , H12 ) = 0 and a. secondary obstruction vanisbes.
The following theorem says that this secondary obstruct.ion eIoes not affect our quadratic
funetion ep.

Theorelll 3.3. Let (M,~, a) be a Poincan?' t:rip/e where ~ is an ep-orientable k plane
bundle. Let (l'Vi , h) (i = 1,2) be eP-orientations 0/ T~ and let ePi be the quadratic j7.1nctions
associaled wilk (Wi, h). S'llppose that d1(vV1, IV2 ) = o. Then <Pl(X) = <P2(X) for all x E
Hn-l(M, Z4)'
Proof: Let tt : J(n+k+l X Wk(n) -+ Wk(n) denote thc fibl'c ffiultiplication. By the
assumption d1(HIl , vV2 ) = 0, lV2 i8 tbe cOll1position

where VUk E Hk+n+l(T~, Z2) is the second diffcrence of lVi, i = 1,2, i.e, an obstruction
between lVI and 1112 • We have a commutative diagranl:
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where 0" is a lifting of ö'0', b = It(lVI X vUk) A X, a = (H1t A x) V c, and c = i(VUk) A x,
i : !(n+k+l -r vVk(n) thc incIusion of the fibre. \Nrite 0:' = 0'1 +0'2, here 0'1 and 0:2 are the

factors of the wedge. Note that 4>2(X) = h(b 0 ö'a) = h(aat} + h(a0:2) = 4>l(X) + h(a0'2)'
We are going to show h(a(2) = O.

As a0'2 factors through the map iAid : [(n+k+l A!«(Z4, n-I) -r H1k(n )AI«(Z4' n-1).
To show aa2 is null homotopy, it suffices to provc that

IS zero. Note the honl0morphisiTI

is an isomorphism a.s it incltlces an ismomorphisln on the (2n + k )-th homology groups.

The composition !(n+k Sq\ !(n+k+l --.i....r Wk(n) i8 null hOlllotOpy. Thus (i A id). = O. This
completes the proof..

Proof of Theoren1 1.9. Consider the Poillcarc tripie (M 1 ,f*e2,0:3), where 0:3 =
T(J):;1 C'i2, 1: f* e2 -r e2 is a bundle rnap over f which is a bundle homotopy equivalence.
T(j) is the Thom construction of j. Let 4>3 denote the quadratic functions assoiciated with
thc Poincare tripie (MI, f* e2, C'i3) and thc orientation u 0 102 0 T(f'), where I' is a bundle
map over I. By thc defintion it is clear that cP3(I*x) = cP2(X) for all xE Hn-I(M2 ,Z4)'

Note that f* e2 and 6 are stably equivalent as spherical fi bration since I is a ho­
motopyequivalence. \Nithout lossing of generality we can assillne that l·e2 and 6 are
the same. Thus we have two oricntations for e1, (u 0 10 [, h) anel (u 0 102 0 T(f'), h), whcre

Wi = T(ln are the Thom lnaps of (fi,li): (ei,iHi) -+ (rr*" B5'pinG(k~)), fi are the clas­
sifying maps of ~i, i = 1,2. Note that 1 preservcs the spin structures/Wu orientations.

Thus po 12 0 I ~ po 11, where p : BSpina(k2) -+ BSpinc/B5'pina(Vn+2) is thc principal
fibration defined in Exalnple (ii) and (iii) of §l.

It is not harel to show that there exists a. fibre automorphisnl g' E Aut(6) over
the identity such that T(p' 0 I~ 0 1') ~ T(p' 0 In 0 T(g'). Notice that g' gives a unique
elenlelü in [MI, Gk ], nalnely 90. By the formula in Brown [4], the (n + l)-dimensional

cOlnponent of the elifference d 1 (u 0 Wl 0 T(g'), u 0 Wl) is L vn+2-2i U g~U2i_l = 0 undel' our
assulnption, where U2i-1 is the transgression of W2i E IJ2i (BCh, Z2)' The I-dimensional
component of the difference is exactly determined by thc spin structures and so it is zero
for the fixed spin structurc. Thus the first differcnce of U 0 W2 0 T(f') and U 0 WI is zero.
By Theoretn 3.3, 4>1 is the same as the quadratic fUllction associatecl with (Xl, 6, ad and
the orientation u 0 W2 0 T(J').

Recall that 4>3 is a quadratic function associated with the Poincarc tripie (Mt, 6,0'3)
and U 0 W2 0 T(/'). By thc proof of 1.18 in [4], thcre is a.n 91 E [X, Gk ], klarge, such that
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it gives an automorphislll 9 E A1tt(~d so that T(g)*( 0'3) = 0:1' For the same reasoning
as above it follows that rPl is the same aB a funcLion associated with the Poincare tripie
(MI, ~I, 0:3) anel the orientation (u 0 T(g) 0 W2 0 ']"(J'), h). Notice now again that thc first
elifference of U 0 T(g) 01020 T(f') anel U 0102 0 T(f') is zero. Thus theorem 3.3 implies that
<Pt anel <P3 are the same and so <PI (J* x) = <P2( x) ror all x. This cOJnpletcs the proof...

§4. Classification of almost parallelizable 2n-manifolds

anel 7r6(SO(6)) = O.

Follows the notations in [10], let Aa and Bß denote thc Sn-I-bundle over sn+l
with charateristic numbcr a,ß E 7rn (SO(n)) respectivcly so that 7r(a) = O,7r(ß) = 1 for
7r : 7rn (SO(n)) -t 7rn(sn-l) ~ Z2. (n ;::: 4). Obviously S'q2 : fln-l(A cr ) -t Hn+l(A a ) is
zero, anel Sq2: Hn-I(Bß) -t J{n+I(Bß) is an isol11orphislll.

Proof of 1.10" For x E IJn-l(M, Z2), considel' the bOI'c1isln dass [111, x] E n{~(I(n-d 9='

Z2. First note that x U Sq2x [Nf] is a bordism invariant. 1'0 show this, it suffices to prove
x U Sq2 x = 0 if (AI, x) is framed borelant zero. Let (\I, y) is a framed manifold with
boundary (M, x), we may assunle that V is Sil11ply connccted by using framcd surgery.
Thus y U Sq2 y E JJ2n (V, Z2) ~ H1(V, lvI, Z2) = 0 anel thcl'eby x U Sq2x = O. Moreover, it
is directly to see that

is a hOmOITIOrphislll.

By the proof of Theorem 2.1, the rechlction hOlllonl0rphisl11

is surjective if n IS even. Under the Thom-Pontryagin Inap, this corresponds to the
reduction

n{~( [«(Z, n - 1)) -t n{~( }(n-l).

By Theorem 1.8 it fo11ows that the generator of n{~(J(n-l) can be represented by (sn+1 Xe
sn-I, z), where sn+l Xe sn-l is a spherc bundle anel z E Jfn-I (sn+l Xe sn-I, Z2)' By
the tables (I)(II) of [ll],it is iInmediate to see z U Sq2 z = 0 if n = 2(mod4), and the
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bundle Bß for ß E ke1'S/r< : ?Tn(SO(n)) --+ ?Tn(80) is an cxalnplc so that zU Sq2z = 0 if
n = 0(mod4), here z is the generator. This provcs (i) alld (iii).

When n is odd, by 2.7

q(Sql) : n~~(J(n-d --+ Zz
{M,x] --+ qM(Sq1X)

is an isomorphisln. Thus there is an J E Zz so that JqM(Sql X ) = x U Sq2x [M] for all
[M, x]. In particular, if x can bc lifted to the Z'l-coefficicnts, Sql x = 0 anel so xUSqZx = O.
This cOInpletes the proof of (ii) and so 1.10. "

To set up the dassification of (n - 2)-connccted 2n-eli1l1ensional almost parallelizable
manifolds, we are going to decOInpose thc manifolds as the connected sum of two simpler
pleces.

Len1n1a 4.1. Let lvI be a (n - 2)-connected 2n dimensional Dlanifold. If n ~ 4, then Iv!
is homeomorphic to J(#f\l, where I{ is (n - 1)-connected and N satisfies ßn{N, Q) = O.
Proof: Since the Hurewicz homomorphism ?Tn(i\tf) --+ lIn(M) is surjective, we may rep­
resent each n-dimensional hOITIology dass by a.n eOlbedded n-sphere by using Whitney
trick. Let 1 = (ai,j )ßxß (ß = ßn (M)) denote thc intersection lnatrix of M with respect to
a basis 0'1, ... ,O'ß of JIn CA!) represented by ß elnbedded spheres satisfying
(i): O'i n O'j n (Xk = cP(clnpty) if i,j and kare pairwise different.
(ii): (Xi and O'j(i =I- j) intersects in ai,j points transversal1y.
I is unimodular.

Let K o denote the closed regular ncighborhood of 0'1 U, .. Uaß in M. K o is a smooth
manifold with bounclary. Hi(ßJ(o) = Hi(l(o) = 0 for 2 :s; i :::; n - 1, ?Tl(ßJ(O) --+ 1Tt(1(0) is
a free group with finite lettcrs, Let C be the c10sure of 1\1 - J(o. Notice that ?Tl (81(0) --+
?Tl (C) is a zero honlolllorphislTI. Representing a. generator set of ?Tl {](o) by eInbedded
SI X D2n-2 's and extend to D2 X D2n- 2 ,S in C. Here we have to change the framing of
the enlbedded SI X D2n-2,S if it is not compatible with the induced framings. Add these
2-handlcs to 1(0 , we gct a sInooth manifold J(~ with bOllndary (l, hOlnotopy sphere and
so homeomorphic to S2n-l. I(~ C NI. Let J( = I(~ U f)2n and lV = (lvI - intJ(~) U D 2n.

It is now easy to see that Al ;::::: [{#lV, J{ is (11. - l)-CoIlllccteel anel Hn(J(~) --+ Jin(M) is
a rational iSOlTIOrphisI11 with cokcrnel the torsion subgroup. This completes the proof. '"

Notice the classification of (n - 1)-connecteel 2n-lnanifolels have been done by Wall
[22] cOlnpletely. To consider thc dassification of (n-2)-connectcd 2n-Inanifolds, by lemnla
4.1, it suffices to handle the case of N with bn(iV, Q) = O. Thus signN = 0 and f.l is
therefore stably parallelizable if M is ahnost parallelizable. As we Inentioned in §1, for
the standard spin structllre 01' Wu orientation Oll N, thc equivalence dass of the quadratic
function cPh is a homotopy invariant.
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Proof of Theoren1 1.11. By 1.7 and 1.10 we see that 4> and the bilinear form J-L has
the property describeel in the Theorem. Now we prove cvery da1;a, in thc Theorem can be
realized by an ahnost parallelizable Inanifold.

By Theorem 2.1 the algebraic data in the theorenl where b = 0 and so sign = 0 if n is
even, determines a reduced framed bordism class in n{~([«(H, n -1)). Let [Mo, f) denote
such a bordisnl dass. Without lossing of generality we can asslIllle that f. : Hn - 1 (Mo) -t
H is an epimorphism. Otherwise we may sum some sn-l X sn+l to Mo anel modify 1*
to fulfill this property. Using framed surgery 1;0 kill the kernel of f* we get a framed
manifold, namely 111 with Hn - l (J11) ~ H. The connectcel sum of Ai with some ±IEsl and
sn x sn will realize the data., where IEsl is a (71. - l)-connected 2n-dimensional almost
parallelizable manifold with intersection form Es.

Now we are going to prove that these algebraic elata detennine the homemorphism
types of the TIlanifolds. As we mentioned in §1, these invariants set are homotopy in­
variants of the manifolds. Thus thc homotopy allel hOllleomorphism c1assification of such
manifolds are the same.

Suppose that Xi, i = 1,2, are two SIllooth Inanifolds with the same data(for TOP
nlanifold, the siInilar argulnent wo1'ks identically). \rVi thout lossing of generality we as­
sume that bn(Xi , Q) = 0 since lemIna 4.1 anel the classification theorem of Wall applies
he1'e. Thus Xi are stable parallelizable. Put fnunings on Xi. By the assulnption the1'e
are maps fi : Xi -t J«(H, n - 1), i = 1,2, so that (XI, fd anel (X2,/2) are reduced
framed bordant, where Ii inchlces an isomorphisIll at the (n - l)-th homology groups. If
n #- 1, 3, 7, Xi are both framed bordant to a franled hornotopy sphere, if n is even Of n
odd and the Kervaire invariants of Xi vanish. In this case, we can assume Xl and X 2#"L.
are framed bordant, here r. is a homotopy sphere. If n = 7(we have assumed that n 2: 4),
we can change the frallling on Xl if necessary, so that Xl and X 2 are f1'amed bardant.
Therefore (Xl, fd and (X2 #"L., /2) are f1'amed bordant. ßy Freedman [8] 01' Kreck [14) it
follows that Xl and X 2 are eliffeomorphic since bn(Xi , Q) = O. Ir Xi both have Kervaire
invariants 1. Up to connected sum with a fralned hornotopy sphcre, XI and X 2 are f1'amed
cobordant. The salne argunlent above applies to show that Xl and X 2 are horneomorphic
to each other. This conlpletes the proof...

Proof of 1.14. By Theorem 1.11 and 1.12 (vi), u : ~2n(Gf) -t Z3 is a injective if n
is even. By Theorem 5.5, every value in Z3(Z2) can be rcalized as the Arf invariant of a
Q/Z-valued quadratic function (factoring through j : Z2 -t Q/Z). Combining this with
Theorem 1.11 (i) and (ii) follows.

Ta prove (iii), note that q(Sql) : G --+ Z2 is a linear function. Let Cl,"', em be
a symplectic basis of G/Go- lf q(Sql)( ed = 1 and q(Sql)( cd = 1 for some i. Let
TE Aut(G/Go) be the automorphisln such that T(ed = Cl, T(Ci) = ci+el and T(ej) = ej

if j #- 1,i. T preserves the inner product I-l anel q(S'ql)(T(ed) = 1, q(Sqf)(T(ei)) = O.
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Thus we can assuIne q(Sqf)(ed = 1 and q(Sql)( eL) = 0 if I 2:: 2. Therefore there is only
a nonzero function up to equivalence. By Theorenl 1.11 the proof of (iii) follows. Similar
argunlent applies to show (iv). This complctes thc proof. ..

Proof of 1.15. By Theorem 1.11 it sufficcs to verify that M#!..... and M'#1{ have the
same algebraic data. It is dear to see that, as an inner product module, Hn - l (M#1<)
and Hn - 1 (M'#I{) are isoInetric. When 11, = 2(n1.od4), by §5 it is easy to check that the
quadratic functions for M #J( anel M'#1{ are equivalent.
When 11, = 3(mod4), notice qK(Bq')(x) = 1 since qsn xSn (D( t3.)) = 1, where .6. is the
diagonal of sn X sn, D is the Poincare duality isonl0rphisIl1 and q is the Kervaire form.
It is easy to see that qM#K(Sq!) and qJo.1'#K(Sql) are both equivalent to w = 0 ffi (1) :
Hon1.(tor(H)®ZZi, Zz)EBZz -t Zz, where 11 = Hn- l (1'1) ~ l!n-I (Iv!'). Applying Theorem
1.11 the proof follows. ,.

§5. Appendix: Numeral invariants of Q/Z-valued quadratic functions

Throughout this section we let V denote a Z" Inodule with a Zz-valued inner product
"." Assuming x . y = 0 if either x or y is of order 2. \Ve say a function 1> : V -t Z4 is a
quaelratic if

1>(x +y) = 1>(x) +1>(y) + j(x' V); Vx,y E V

where j : Zz -t Q/Z is the indusion.

Definition 5.1. If \I is finitely generatedJ and 1> : \I -t Z" is a quadratic funetion. lVe
denote by A(1» the Gauss SUTn:

A(1» = L eZ1r tj>(x)i E C whc're i" = 1
xEV

It is obvious that A( 1» is weIl defined and is an invariant of the \Vitt dass(isometry dass)
of 1>. If (V, 1>.) anel (V, <Pz) are two quaelratic runctions, we clcnote by (V, 1>1 EB 1>2) anel
(V, -1>i) the direct sum of (\I, <Pi) and the I1Hlltiplication by -1, i = 1,2.

Proposition 5.2. (i) A(1» is a rcal numbcr.
(ii) A(<PI EB 1>z) = A(4)t}A(1>z).
(iii) A(-1» = ~(<p).

(iv) 1/ 1> : V -t Q/Z is lincar: theu A(1» = IVI 0"1' 0 by 4> = 0 or not.
Proof: (ii), (iii) and (iv) are obvious. As -1> is equivalent to 1>, thus (i) is a consequence
of (iii).

'rVe say an inner module V is hype1'bo/ic if x . x = 0 for all x E V(In §1 we said that
it is of diagonal zero). V is nonsingular if for each x E V, thcrc exists an y E V such
that x . y #- O. Let 1f be a free Z'l-moelule of dilnension 2 with nonsingular hyperbolic
inner product. We denote by eI, ez a basis of [I with inner proelucts el . e2 = ez . el = 1,
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ei . ei = 0, i = 1,2. There are the following three quadratic functions on I{:

cPo: cPo( ed = 0, cPo( e2) = 0
cPl: cPI(ed =~, <PI(e2) = ~
<P2: cP2 (e.) = 4"' <P2 (e2) = ~

The Ganss surn J\(<p) is:

A(<pI) = °;A(cP2) = - 8 ; J\ (<Po) = 8 ... (5.3)

Proposition 5.3. There are only the above three Q/Z-valued quadratic forms on H up
to isomo1'phism.
Proof: (1) Let <p: I[ --+ Q/Z be a function with <p( c.) = ±~, wc claim that 4> is equivalent
to 4>1. If 4>(ed = ~ and cP( e2) = 0, we set T : H --+ II for the following isornetry

T(e.)=el;
T(e2) = 3el + e2

Thus <p(3el +e2) = ~ anel so 4>0 T = <PI' Other cases in thc claim can be checked silnilarly.
(2) Let <p : 11 --+ Q/Z be a form such that 24>( ei) = 0 for i = 1,2, then 4> is either isomor­
phie to 4>0 or 4>2.
This eonlpletes the proof. ,.

Lemnla 5.4.
4>2 ffi <P2 ~ <Po ffi 4>0;
4>1 ffi <PI ~ <PI ffi 4>0 ~ 4>1 ffi 4>2.

Proof: Let el, e2; e; ,e~ denote a basis ofH ffi H; anel set T : IJ ffi f{ --+ H ffi H for thc
following isometry

T (e.) = el + e; + e~; T (e2) = e2 + e'l + e;
T(e't) = e; + el + e2; T(e;) = e; + el + e2

Note that
(<Po ffi <Po)(el + e; + e~) = ~j (4)0 ffi <Po) (e2 + e; + e~) = ~

(<Po ffi 4>0) (e; + el +e2) = ~; (4)0 ffi <Po) (e2 +e; +e;) = ~

Hence <P2 EB <P2 ~ 4>0 EB 4>0 .
Sirnilarly, the isometries

e2 --+ e2 + e;
e; --+ e; + Cl + e2

and
el --+ el;

e; --+ e; +2el;
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will set up the other two isonl0rphisms in thc lemlna.
This completes the proof. ,.

Obviously every quadratic functions on 11 EB· .. EB 11 is iSOlnorphic to the direct sum
of quadratic functions on 11. To use Lemma 5.4 iteratively we obtain

Theorem 5.5. Suppose thai. V ~ nH, then there a'te c;r,acily three isomorphism classes
of the quadratic functions on V

1>1 EB (n - 1)1>0,1>2 EI7 (11. - 1)1>0, n1>o.

Their Gauss sums are

Notice that, any Z4-nl0dule V with a hyperbolic Z2-valued inner produet ean be
written as the direct SUlll of a nonsingular module anel Va, where Va is a submodule with
trivial inner product. lt is obvious that a nonsingular inner lllodule over Z4 must be [fee
anel so isomorphie to nH for some integer n.

Definition 5.6. Let V ~ nH EB Va be an orthogonal decolnposition of V, the inner
product on VO vanishes. For each quadratic function cP on \/, we denote by

)(f/J)
a(f/J) = Sn . IVol E {O, ±l} = Z3

the Arf invariant of 4>.
vVe say that <P is of type I( I I) if 24> -# 0(24) = 0).
If 4> is of type 1, denote by €( 4» E Z2:

€(4)) = 1 ifthcre is an x E V s.t. 4>(x) = ~ anel x· V = 0
€( 4» = 0 otherwise

Obviously a fonn on Va is a homomorphisnl. Up to iSOlTIOrphislTI there are only the
following types(Vo -# 0):

o: Va --+ Q/Z the zero hOffimTIOrphisln,
h : Va --+ Q/Z 2h -# 0,
h' : Va --+ Q/Z h -# 0 anel 2h = 0

It is easy to check:
(1): epl EB 0 ~ epl ffi h'

(2): 4>1ffi h ~ 4>2 ffi h ~ 4>0 ffi h
(3): 1>2 ffi h' ~ 4>0 ffi h' -# ePt ffi h'
(4): ePl EB 0 -# cPl EI7 h
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(4) holds as both sides have different € invariants. The second incquality of (3) holds since
they have different types. Consequcntly wc have a complcte list of all possible quadratic
functions on 'I, where V = nH EB Z~l EB Z~:J, 1n1 :2:: 1.

ep I EB (n - 1)epo EB (h) ~ rP2 ffi (n - 1)epo EB (h) ~ ncPo EB (h),
ep2 EB (n - 1)epo ffi (h') ~ nepo EB (h'),
nepo EB (0),
ep2 EB (n - 1)epo EB (0),
cP I EB (n - 1) cPo EB (0) ~ rP 1 EB (n - .1.) rPo EB (h') ,

Therefore we obtain that

Proposition 5.7. Let \I be a hyperbolie Z4 -module. Then Q/Z -valued quadratie forms
on \I are isometrie if and only ij they have the sam-c type) A1j invariant a and the €

invariant.

Let us consider thc classification of the quadratic functions on \I which factors
through the inclusion Z2 --+ Q/Z. Note that such quadratic functions are the composition
of quadratic functions over Z2-vector space \I ® Z2 anel the rcduction homomorphism
p : \I --+ \I ® Z2. By the classical result of Arf-invariant it follows that:

Proposition 5.8. Lel \I be a nonsingula1' diagonal zero inner 1nodule over Z4' Then
there are exactly two Z2 -val7.1ed quadratic functions deteded by lhe classical A11 invariant
of the lactors on \I ® Z2.

Suppose that j(x· y) = 0 if x 01' y is of order 2. Note that the bilinear form f-l defined
in §1 satisfies this property. Therefore thc nonsingular part of V is iS0I110rphic to Z~ for
SOIl1e m.

Proposition 5.9. Let V = nH EB Vo be an inncr 'modulc ouer Z4J where \10 =j:. O. Then
there are cxactly ihr'ce Z2 -valued quadratic funchons on V as lhe 10//o1Os:

where 4>0, cPl have A1'1 invarian ts 0, 1 respectively. </> is a nonzero lin eal' functio n 071 \10 ,

Consequently the proof of Theorem 1.12 follows rcadily.
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