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Abstract

For a 2n-dimensional spin manifold M with an ¢-orientation (w,h) (c.f: Def-
inition 1.4 below), where n # 3(mod4), we define a quadratic [unction ¢arys :
H™Y(M,Z4) - Q/Z satisfying

dan(z +y) = dan(z) + dma(y) + 5z U SePy)[M],

where ¢ is a certain secondary cohomology operation and j : Zo = Q/Z is the
inclusion homomorphism. Using Gauss sum, we define an Arf invariant o(¢ars) €
Z3 which depends only on the equivalent class(Witt class) of the quadratic function
and satisfies U((f)_M,h) = O’(gf)M,;.) and U(‘ﬁM#M',h) = U(QSM,h)U(GbM’,h)-

Assuming that the Wu classes v, o_5i(var) = 0 for all ¢ where vps is the stable
normal bundle of M. When n = 0,1(mod4), the equivalent class of ¢psn and
therefore o(¢ass) is a homotopy invariant of the spin manifold M. When n =
2(mod4), the equivalent class of @arp is invariant under homotopy equivalences
fixing the Wu orientation{c.f. 1.4 for the definition of Wu orientation).

Using this new quadratic function we obtain a complete classification of {(n — 2)-
connected 2n-dimensional almost parallelizable manifolds up to homeomorphism
and homotopy equivalence, where n > 4 and n 4 2 # 2 for some i. As a corollary
of the classification, two such homotopy equivalent manifolds are homeomorphic.

§ 1. Introduction and Summary

*Supported in partial by K.C.Wong Educational Foundation, Sonderforschungsbereich 343 and the
Max-Planck-Institut fiir Mathematik.



The purpose of this paper is two folds. The first, also the main part, is to define a
Q/Z-valued function

brmn: HH M, Zy) - Q)7

for a spin manifold M of dimension 2n, where n # 3(mod4) and n > 4, with an additional
structure, the ¢-orientation (c.f: definition 1.1 below). This function is “quadratic” with
respect to the symmetric bilinear form

H™1 (M, Z3) ® H™\(M, %) — Zs
@y — zUSqy[M].

We will show that the equivalent class of ¢prn depends only on the spin structure/Wu
orientation(c.f: definition 1.1 below or [4]) when n = 0,1(mod4)/2(mod4), provided the
Wu classes v,4.0-2¢ = 0 for all 2. Moreover, let f : M — N denote a homotopy equivalence
preserving the spin structures/Wu orientations for n = 0, 1(rnodd)/2(mod4), we prove that
dma(f*z) = dna(z) for all 2 € H*(N, Zy), provided the Wu classes v, 5 _oi = 0 for all
i. Therefore the Arf invariant o(¢as ) is a homotopy invariant of the spin/Wu oriented
manifold M when n = 0, 1(mod4)/2(mod4), if v,19_0i = 0 for all 7.

In particular, if M is a framed manifold, this gives rise a nice homotopy invari-
ant appliable to obtain the classification of the (n — 2)-connected 2n dimensional almost
parallelizable manifolds. This is the second part of the present paper, also the original
motivation of this paper. Recall that the classification of this kinds of manifolds up to
homeomorphism in the special case of the homology groups are all torsion free was accom-
plished by Ishimoto [9][10] . His method does not work in general. One corollary may be
interesting is that, by our work(c.l: Theorem 1.11 below), the homotopy and the home-
omorphism classification of the (n — 2)-connected 2n-dimensional almost parallelizable
manifolds are in fact the same.

Throughout this paper, all homology/cohomology groups will be with integral co-
efficients unless otherwise stated. Usually spaces will have base points. [X,Y] de-
notes the set of homotopy classes of maps from X to Y. S denotes suspension and
{X,Y} = Lim[S*X,S*Y]. K, denotes K(Z,,n). [ will always denote the basic class
for various Eilenberg-Maclane spaces by the context. {Yi}rez, will denote a connected
spectrum with U € H°(Y) = Z a generator satisfying :*U € H°(S5°) a generator, where
1: 5% = Y is the inclusion map of the spectrum.

Definition 1.1. (i) {Yi}iez, is called ¢-orientable if S¢*U = 0, x(Sq**t?)(U) = 0 and
0 € ¢(U), where ¢ is a secondary cohomology operator defined in §2 precisely which is
assoctated with the Adem relation:

X(5¢")Sq* + x(Sq**)Sq' + Sq'x(S¢™*) =0 n = 2(mod4)
X(Sqn)sqa + SQIX(S‘I“H) =0 n= 0(m0d4)
x(Sq¢"t)Sq* + Sq'x(S¢™*?) =0 n = 1(mod4)



and x : A2 — Aj is the anti-automorphism of the Steenrod algebra Aq(c.f: [1]).

(ii) A spherical fibration € is called ¢-orientable if its Thom spectrum T¢€ is ¢-orientable.
A manifold is called ¢-orientable if its stable normal bundle(fibration) is ¢-orientable.
(i1i) For the ¢-orientable spin spherical fibration £ \y M, a« Wu orientation of £ is a lifting
of the classifying map € : M — Bsping to BSping{va42). A Wu orientation of vy, the
stable normal bundle of M, is called @ Wu orientation of M, where BSping(va42) —
BSping is a principal fibration with v,y € H***(BSping, Z2) as the k-invariant.

There is a ¢-orientable spectrum W(n) as the follows such that for any ¢-orientable
spectrum Y, there exists a connected spectral map f : Y — W(n). We say W(n) is a
universal ¢-orientable spectrum.

W(n) is a Q-spectrum, where Wi(n) is the total space of the following Postnikov
tower:

Wk(n)

Lh,

M/k(n) ﬂ) [(k+n+2
L

K(Z,k) ST g X Kepnss

where k; € &(T; " k).

The universal property of W(n) implies that it is unique up to homotopy. It is easy
to see that a spectrum Y is ¢-orientable if and only if U € H°(Y) can be lifted to a map
w:Y — W(n).

Example (i): By the definition, the sphere spectrum S® is ¢-orientable. Thus every
stable parallelizable manifold is ¢-orientable.

Example (ii): For n = 0,1(mod4), let v \, BSping be the universal spin spherical
fibration and let U € H®(MSping,Z,) be its Thom class. Notice that, x(S¢™**)U =
x(S¢"1)Sq'U = 0 if n is odd. x(S¢*t*)U = x(Sq")S¢*U = 0 if n = 0(mod4). Thus U
can be lifted to a map f : MSping = W(n). By the Thom isomorphism, f*k; gives an
element of k; € H"**(BSping,Z,). Consider the principal fibration 7 : BSping(k,) —
BSping with k-invariant k,. It is easy to see that the fibration m*y is ¢-orientable. Note
that m*+ is the universal ¢-orientable fibration, i.e, the classifying map of any ¢-orientable
stable spherical fibration can be lifted to BSping(k,).

Example (iii): For n = 2(mod4), the similar technique above gives a principal fibration
7 BSping(ky) = BSping(vniz2), where BSping(va4q) — BSping is the fibration with
fibre K, and k-invariant v,4e. 7"y is the universal ¢-orientable spherical fibration.



We denote by M Sping(k,) the Thom spectrum of this universal ¢-orientable spher-
ical fibration. Throughout the rest we fix a connected spectral map u : MSping(k) —

Let & : K(Za,n —1) X K(Zyyn — 1) = K(Z4,n — 1) denote the multiplication of
K(Zy,n —1). Write H(x) for the Hopf construction of k.

Proposition 1.2. The homomorphism
H(r)w 75 (K(Zayn — 1) A K(Zayn — 1)) = 75, (K(Z4,n — 1))

is injective if n # 3(mod4), and zero if n = 3(mod4).

As one can read from Theorem 2.1 in §2, n3 (K(Z4,n — 1) A K(Z4,n — 1)) = Zy if
n>4, 15 (K(Zyyn—1)) = Zy if n = 2(modd). We set Ag for the generator of Im(H(x).)
whenever n # 2(mod4), and a specified generator of 73, (K(Z4,n — 1)) = Z,4 otherwise.
The following theorem is a key in this paper.

Theorem 1.3. Suppose that {Yi}rez, 15 an ¢ orientable spectrum. Then there ezists a
homomorphism

h: Hy(K(Zyyn—1);Y) - Q/Z

such that h()) = lt and % by n = 2(mod4) and 0,1(mod4) respectively, where A is the

image of Ao under the homomorphism 1, : Hypy(K(Zg,n—1); 8°) = Hon(K(Z4,n~1);Y).

Now we are ready to give the definition of ¢-orientation for a Thom spectrum. We
may make a more general definition but the following is enough for our purpose.

Definition 1.4. Let Y be an ¢-orientable Thom spectrum and let
h: Hy(K(Zyyn —1);W(n)) = Q/Z

is a homomorphism as above. For each Thom map w : Y — MSpin{k,), we say that the
pair (uow,h) is an ¢-orientation of Y.

Recall that an 2n-Poincaré triple (M, €, @) is
(1). A CW complex M with finitely generated homology.
(ii). A fibration ¢ over M with fibre homotopy equivalent to S*¥~1, k large.
(ii1). a € Tk (TE) such that an (2n + k) Spanier-Whitehead S-duality is given by

Stk 2y e By e A Mt

where A is the diagonal map.

For each 2n-Poincaré triple (M, £, ), set Ay : {My, K(Z4,n — 1)} — {S%tk TEA
K{Z4,n — 1)} for the S-duality.



Definition and Property 1.5. Suppose that (M, &, @) is a Poincaré triple of dimension
2n, where £ is ¢-ortentable and n # 3(modd). For each ¢-orvientation (uow,h) of TE and
anx € H""Y(M,Z,), we define

f(z):=(uowAid)o A,(z),
éumul(z) == h(f(x)).

The function ¢y satisfies

rp(z +y) = dan(z) + dan(y) + 3(z U Sqy)[M],

where 7 : Lo — Q/Z is the inclusion.

Remark 1.6: (i) From the defintion it is not hard to see that ¢ar4(x) depends only on
the ¢-oriented bordism class [M, z].

(i1) When n = 3(mod4), the analogue definition gives a linear function by Proposition 1.2
and the proof of 1.5.

(ii1) When the Poincaré triple and the orientation is clear from the context, we write
sometimes ¢y, instead of ¢as .

The following property follows immediately from the definition.

Proposition 1.7. Suppose thal £ is a trivial fibration and u o w factors through S° —
Wi(n). Then the above function ¢, factors through Z, C Q/Z and Zo C Q/Z by n =
2(mod4) and n = 0,1(mod4).

Recall that m,(S0(n)) = Z4; when n = 2(mod4). The following theorem gives a
geometric property of the quadratic function ¢ar .

Theorem 1.8.  Let (M,{, ) be a Poincaré Iriple, where M is an ¢-orientable 2n-
dimensional manifold, n = 2(mod4) and the number of 's in the binary ezpansion of n+3
is greater than 2. If w comes from the Thom construction of « map (¢',9) : (§, M) —
(7, BSping(ks)) and ¢prn is the quadratic function associated with (M, €, a) and the
orientation {u o T(¢'),h). Suppose that 3 : S™' — M is an embedding representing a
homology class [B(S™*')] € Hnop1 (M) such that go 8 ~ . Let x denote the Poincaré dual
of [B(S™M)]. Then
dun(z) =j(v(B)De),

where j : Zy — Q[Z the inclusion and v() @ € is the normal bundle of § in M x R.
We say that two quadratic functions ¢aq, 5, : H*™'(M1,Z4) = Q/Z and
Ay, + HP (M2, Z4) — Q/Z as above are equivalent if there exists an isomorphism 7 :

H* Y (M, Z4) = H*™'(Mq, Zy) such that ¢ar, p, (7)) = dag, p,(2) forallz € H* (M, Zy).

The following result says that the quadratic lunction depends only on the spin
structure(Wu orientation) of the stable normal bundle of the manifold and is independent
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of the normal invariant « and the ¢-orientation. Moreover, it is a homotopy invariant of
the spin (Wu oriented)manifold if n = 0, 1(mod4)(n = 2(mod4)).

Theorem 1.9. Let (M, &1, a1) and (M3, &2, ) be 2n-dimensional Poincaré iriples
where &, 1 = 1,2, are ¢-orientable. Suppose that (uow;, h) are ¢p-orientations of T¢; and
the Wu classes vypq_2i(€) = 0 for all 29 < n+2. Assume that [ : My — M, is a homotopy
equivalence preserving the spin structures (Wu orientations) if n = 0, 1(mod4) (2(mod4)).
Then

ban w(f77) = b n()
fOT all z € Ifn_l(IWQ,Z4).

In particular, if M is a 2n-dimensional stable parallelizable manifold, the constant
map ¢: M — BSping/BSping{vn42) gives rise a standard spin structure/Wu ortentation
of the stable normal bundle of M. Thereby we have an associated function ¢arp. Fix a
homomorphism

h i Hy(K(Zgyn —1),W(n)) > Q/Z

as in 1.3, by Theorem 1.9 the equivalent class of ¢4 is a well-defined homotopy invariant
of M if n 42 # 2¢ for some ¢, which provides an exact invariant for the classification of
(n — 2)-connected 2n-dimensional almost parallelizable manifolds up to homeomorphism
and homotopy equivalent.

To phrase our classification theorem we now fix some notations.

Let H be a finitely generated abelian group, and
po: Hom(H,Z2) @ Hom(H,Zy) — Z,

be a symmetric bilinear form. We say that u is of diagonal zero if p(z,z) = 0 for each
x € Hom(H,Z;). A function ¢ : Hom(H,Z4) — Q/Z is called quadratic with respect to
wif
¢z +y) = ¢(z) + d(y) + 1 (1(=,v))

where j : Zy — Q/Z is the inclusion. This gives a triple (H,p,¢). We say triples
(Hi,p1,¢1), and (He, po, @) are isometric if there exists an isomorphism 7 : Hy — H,
such that u,(z,y) = pe(7z,7y) and ¢ (z) = ¢2(rz) for all z,y. We denote by [H, x, ¢]
for the isometry class of a triple.

For a spin manifold M of dimension 2n, let jias denote the symmetric bilinear form(c.f

[16])
par 2 H' Y (M, Z5) @ H*' (M, Z,) = Z,
s ®y — (zU Sy, [M])

It is obvious that the equivalence class of pas is a homotopy invariant of M.



Consider pps as a matrix over Z,. If Hy_ i (M) = Zoi @ - -- @ Zyi, then the rank r(M)
of ppr and the homology group H,_;(M) determine the isometry class [Hy—1 (M), pas).
In general, these two datas can not determine the isometry class. A simple example
is, taking H = Zo @ Z; D Zy4, let ¢, 1 = 1,2,3, is a basis of H. Set pi(e;,e;) = 1 if
(1,7) = (1,2),(2,1), and O for other entries. Set paei, e;) = 1if (¢,7) = (2,3),(3,2), and
0 otherwise. These have the same rank 2 and the homology group. But they are not
isometric.

Proposition 1.10. (i): Let M be an almost parallelizable manifold of dimension 2n. If
n = 2(mod4), up(z,z) =0, Vo € H*"Y (M, Z,).

(11): If n is odd, then pp(z,z) =0, Vo € Im(p, : H*"' (M, Z4) — H* (M, Z,)).

(iii): If n = O(mod4), then there is a S™ ' -bundle over S so thal pgnsi y,sn-1(z,z) # 0,
where x is a generator of the (n — 1)-th dimension cohomology group.

In the case (ii) above, I do not know if pas(z,z) = 0 in general.

Let M be a 2n dimensional {framed manifold where n = 1(mod2). Set qp :
H™"(M,Z;) — Z, for the Kervaire quadratic function associated with M. By [4], qar
is independent of the framing if a(n ++ 1) > 2(In fact its equivalent class is a homotopy
invariant). Let 2° denote the maximal exponent of the 2-torsion of H,_,(M), denote by
Sq} € H*(K(Zgi;n — 1),Z,;) = Z; for the generator. Consider S¢! as a cohomology
operation we get a function

qm(Sql) : H Y (M, Zyi) = Zy.

This gives a homomorphism since Sq!zUSqly = S¢} (zUSqly) = 0forz,y € H* (M, Z,).
We denote by [Hn-1(M), uar, qar(Sql)] for the isometry class of the triple. By [6], the
Kervaire invariant of a smooth framed manifold of dimension 2n, where n # 2 — 1, is
zero. For 7 < 5, there are smooth manifold of dimension 2! — 2 of Kervaire invariant 1.
It is still open whether there is such a manifold for z > 6.

Note that the Kervaire invariant does not depend on the framings of the underlied
2n-manifold if n # 1,3,7 and the manifold is highly connected, e.g, (n — 2)-connected.
Moreover, by [4] it is not hard to show that the Kervaire form is a homotopy invariant if
n # 1,3,7 and (n — 2)-connected. one should compare this with 1.9 for a proof.

Theorem 1.11. Letn > 4, a(n +2) > 2. The homeomorphism lypes(homotopy types)
of (n — 2)-connected 2n-dimensional smooth almost parvallelizable mantfolds are in (1-1)
correspondence with the following algebraic data

(a) pn = {[H, 11, 4], b € 2Z4, 2" (2"~ —1)anjs Num(Za)|sign : p is of diagonal zero, sign <
b} if n = 2(modd),

(b) on = {[H,p,¢],b € 2Z;,2"1 (2" = VanuNum(La)|sign 1 ¢ factors through j :
Zy = Q/Z,sign < b} if n = 0(mod4);



(¢) pn = {[H, 1y b, w],b € 221,k € Zy : w € Hom(tor(H) @ Zyi,Z3), ¢ factors through
32y = QJZ and p(z,z) = 0 if © can be lifted to an Zy class, p(z,z) = dw(z) if =
is of order 2 where § € {0,1} s ambiguous. k = 0 if lhere is no a framed manifold of
dimension 2n of Kervaire invariant 1. 2= the mazimal exponent of the 2 -group in H }
if n = 1(mod4);

(d) pn = {[H,pt,w],b € 224,k € Zy : w € Hom(tor H @ Zyi, Zy), u(z,x) = Sw(z) if = is of
order 2 where § € {0,1} is ambiguous. k =0 if n = 7 or there is no a framed manifold of
dimension 2n(n # 7) of Kervaire invariant 1. 2' = the mazimal exponent of the 2-group
in H} if n = 3(mod4);

via assigning a manifold M to [Ha_ (M), uar, da1], 0u(M) and the signature SignM ;

[Hacr (M), ping, duma], ba( M) and the signature SignM ;

(Hrc1 (M), i, du1, q(Sqp0)], ba (M) and the Kervaire invariant of M;

[(Haz1 (M), tar, g(Sq3:)], bu (M) and the Kervaire invariant of M

by n = 2,0,1(modd) and n = 3(mod4) respeclively, where ay = 2 for | odd, 1 for | even.
By the n** Bernoulli number. a(n + 2) is the number of 1’s in the binary ezpansion of
n+ 2.

Now let us consider the algebra of the invariants arised in the above Theorem 1.11.
Let ¢ : V — Q/Z be a quadratic function where V is a Zs module with a Zy-inner
product. We say that the inner product is nonsingular if the determinant of a matrix
representation of the inner product is nonzero. The inner product is of diagonal zero if
z-x = 0 for all z € V. Note that the bilinear form pas above for a spin manifold gives
rise an inner product on the Zs-module ™ '(M,Z,). Proposition 1.9 says that, when
either n = 2(mod4) or H*'(M,Z,) is a free module, this inner product is of diagonal
zero. Take the Gauss sum A(¢) = Sep €2 € C and let 0(¢) = Toev %%21. The

following theorem shows that o gives rise a perfect invariant.

Theorem 1.12. Let V be a Zy-module with an inner produci( )“ * as above. For every
2ad{z)i

quadratic function ¢, define the Arf invariant o(p) = ¥ ey 713_‘2_ which salisfies

(z) o(d)eZsCC

(11) ol @ ¢2) = o(¢r)o(e2)

(122) o(—¢) = o(¢)

(iv) (¢) =0 if and only if 2¢ # 0

(v) o(¢) €2y CZ5if2¢=0

(vi) IfV is nonsingular and of diagonal zevo, ¢\ = ¢, if and only if 6(¢1) = o(P2)
(vit) o(é) =0 if V is singular and there is an © € V such that ¢(z) #0 and z- V = 0.

qqqq

Consequently, il & is a homomorphism as in Theorem 1.3, for every 2n-dimensional
¢-orientable manifold M, fix a spin structure/Wu orientation by n = 0, 1(mod4)/2(mod4).
Endow M with an ¢-orientation (10w, h), n # 3(mod4). We set (M) = o(dmp) € Zs
for the Arf invariant of the quadratic function ¢ar s defined above. If v,,5_4 = 0 for all
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2, op(M) does not depend on the ¢-orientation and so gives rise a homotopy invaraint
of the spin/Wu oriented manifold M when n = 0,1(modd)/n = 2(mod4). If M is stable
parallelizable, we always put the standard spin/Wu orientation on M as we mentioned
above.

By 1.12 it is readily to obtain

Corollary 1.13. Let £ denote the monoid of the 2n-dimensional ¢-orientable manifolds
with connected sum as the addition. Then

G'hlg—)Z3

is a nontrivial homomorphism satisfying on(—M) = o(M), where the addition on Zj is
the multiplication.

Let Azn(G) denote the set of homeomorphism(homotopy) types of (n —2)-connected
2n-dimensional stable parallelizable manifolds with nonsingular diagonal zero bilinear
forms p, the (n —1)-th homology groups G = Go@®Zyi®- - B Zyi (2 > 2)and n-th rational
Betti number zero, where (7 is a group of odd order.

Corollary 1.14. (i) If n = 2(mod4), oy : Dg,(G) = Z3 is a bijection,
(ii) If n = 0(modd), op : Don(G) = Zo = 25 C Z3 is a bijection.

(111) If n = 3(modd), #A,,(G) = 2.

(tv) If n = 1(modd), #M:.(G) = 5.

As an example of the application of Theorem 1.11 and the above algebraic facts, we
want to construct several manifolds so that they are the annihilator under the connected
sum when n = 2, 3(mod4).

(i) If n = 2{mod4), let S(¢) be the S™~!-bundle over S™*' with charateristic class
¢ € ma(SO(n)) a generator. We denote by K the resulting manifold of a framed surgery
on S(¢) to kill 4[S™71] € H,_1(S(¢)). Thus for the gencrator z € H* (K, Z,) = Z,,
ém(z) = 1 € Q/Z by Theorem 1.8.

(ii) If n = 3(mod4), let K be the resulting manifold of a framed surgery on 2A C S x
S™ where A is the diagonal embedding. Note that qx(S¢'z) = 1ilz € H* (K, Z,) = Z,
1s a generator.

Corollary 1.15. Let n = 2,3(mod4). Suppose that M and M’ are (n — 2)-connected 2n-
dimensional stable parallelizable manifolds such that [H,_ (M), um] = [Hooa (M), par]
and by(M) = b,(M'"). Then M#K is homeomorphic lo M'#K .

The organization of this paper is as the follows. [n §2, we give some preparations on
stable homotopy theory of the Eilenberg-Maclane spaces. In §3, we are addressed to show
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the results 1.2 through 1.9 in §1. §4 is devoted to the classification of (n — 2)-connected
2n-manifolds and prove the Theorem 1.10 through 1.14. The last section, §5, is going to
discuss some algebraic invariants arised from these quadratic functions defined here.

§2. Some preliminary on the stable homotopy of K(7,n — 1)

The purpose of this section is to calculate the stable homotopy groups =3, (K (m,n —
1))(see theorem 2.1), build the 2-stage Postnikov tower for 9K (Z4,n — 1) where ¢ is
large(see Prop 2.8). This leads to several secondary cohomology operations mentioned in
§1 which is crucial in this paper.

Theorem 2.1. The 2n-th stable homotopy group of K(m,n—1) forn > 4 is as the
following table:

n>4 0(mod4) 1(mod4) 2(mod4) 3(mod4)
W'z’n(K (ﬂ., n— 1)) (ZQ)Z(m+k)+3+p (Z2)m+‘2k+s+p (Z")m-f-k D (Zz)a-i-p (zz)k+s+p
where p = ("""zk"") and m = Go X Z™ X Zgiy X -+ X Lgiy X 23, here1; 22 for1 <3<k
and Go ® Z, = 0.

Remark 2.2. In the case of 7 = Z, Theorem 2.1 can be read out from [16].

Recall that for each locally finite connected CW complex X, one can form a space,
namely

FaX =85y XAX =8 x (X AX)/{(z,y,2) ~ (—z,2,y); (z,%) ~ *}

for every m € Z,. By Milgram [18] Theorem 1.11, for a (n — 1)-connected X, I';, X is
(2n — 1)-connected. Moreover, if X = K(w,n), we have a fibration

Gy — E"K(m,n) = K(m,m+n)

where G, ~ E™I',.(K(m,n)) through dimension (3n + m — 1). Thus 7}(K(7,n)) =
7 (Cn (K (m,n)) for n <7 < 3n — 1. There are maps

JXAX 2 5Mxr X AKX,
K:Smxr XAX 5 L"XAX.

where J is the inclusion map and K is defined by identifying S™ ! 7 X A X to a point
in S™ <t X A X. For reader’s convienence we recall that

Proposition 2.3(Milgram([18])(i) J* is surjective onto the invariant subalgebra under

T of H*(X A X, Z,) for p an odd prime. Moreover, kerJ* = imK™ and the following
sequence is exact:

H (S X.A X, 2,) TOLED grsmx A X, Z,) = imEt = 0.
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(it) (mod2) J* is surjective as in (i), the sequence above is again czact, but there arc
additional elements e U(0®8) for1 <1 < m where § € H* (X, Zy), and these completely
describe H* (T, X, Z,).

Proof of Theorem 2.1: Throughout this proof we assume that m is large with respect
to n. We divide the proof into the following five steps.

Step (I): =5 (K (Go,n —1)) =0.

Consider the Atiyah-Hirzebruch Spectral sequence converging to 73 (' (K(Go,n—1)) =
75 (K (Go,n—1)). By the Proposition 2.3 one knows easily that all E,-terms of the AHSS
are zero and so 7§ (K (Go,n— 1)) =0.

Step(I1): For ¢ > 2 and n even, 73, (K (Zsi,n — 1)) = (Z3)%, Z4 by n = 0(mod4) and
2(mod4) respectively.

The E,-terms of the AHSS converging to w3, (U'm( K (Zqi,n — 1)) are:

E22n—2,2 = Hop_o(Um(K(Zgi,n — 1)), Z,
E%n—l,l = Hon 1 (P (K(Zgi,n — 1)),

)=
Z,)= Z2 D Z,
Egn,o = Hon(U (K(Zgiyn = 1)),Z) = (Z

2)*

if n is even. The former two isomorphisms follow from the Proposition 2.3 directly. To
see the last one, note that

(1) HopeoDin (K (Zgiyn = 1)) 2 Zo = oo (D (K (Zgi,n — 1)) = 75, _o(K(Zgi,n — 1)).
(2) Sq¢* : H" YK (Zgiyn — 1)), 22) = H*™Un(K{Zyi,n = 1)),2Z,) is nonzero and
78 (U (K (Zgi,n — 1)) & Zyin(cf [18]). By the Whitehead exact sequence(c.f: [23]
p555) we have

Hon (L (K(Zgi,n — 1)) & Zyisa.

By the Bockstein exact sequence associated to 0 — Z, — Z4 — Z; — 0 we obtain that
the order

(P (K (s, = 1)), Ba)] = 2 H (P (K (Zesym — 1)), Za).
Combining these with the universal coefficients Theorem we conclude that
Fin (T (K (Zetym = 1)
consists only some Z,-direct summands and so we obtain that £7 ;= (Z;)?.
Note the differential dy : £Z, | = E3,_,, is dual to
Sq? s H" (T (K(Zgiyn — 1)), Zo) — H*M(Cra(K(Zgiy,n — 1)), Z3)

which is nonzero by [18] Proposition 3.7 and so £2,_, , does not survive in the E*-term.
Thus E55_,, = 0.
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Similarly, the differential d; : £ o — [3,_,, is the composition of the dual (S¢?).
of S¢% and py : Hon(Lm(K(Zgi,n — 1)), 2) = Hon(Tim(K(Zgi,n — 1)), Z3), the mod 2
reduction. Let § € H* (K (Zyi,n — 1),Z;) be the generator, Sq¢*(0 @ 8) # 0, thus the
element in EZ, ; reduced to the dual of S¢*0 ® 6 + 0 ® S¢*0 does not survive in £° and

00 o
S0 Ezn'o —_ Zz.

The differential dy : 3, | o = E7,_; | is the composition of the dual of
Sq* s H" N (T (K(Zgiyn = 1)), Zs) = H™ (T (K(Zyi,n ~ 1)), Zo)
and the mod 2 reduction
P Honp1(Tm(K(Zgi,n — 1)), Z) = Honga (Do (K (Zgi, e — 1)), Z2).

Note that Sq*(Sql0 ® 0 + 0 ® Sq!0) evaluates on Happ1 (' (K (Zgi,n — 1)), Z) is nonzero,
and therefore the dual of Sq!0 ® 0 + 6 ® Sq!0 does not survive in £%°-term. On the other
hand, the dual of ¢! U (8 ® #) survives in ££°°. This follows from the fact

n
2

P

S*e' U(0®0)) = ( )e‘*u 0®0)

and when n = 0(mod4), (;‘) =0.

When n = 2(mod4), the projection of e3U (0 @ 0) € H*™ (I, (K(Zqi,n — 1)),Z2) to
the summand Hom(Hzpq1(Tm(K(Zgi,n — 1)), Z;) in the universal coeflicients theorem
evaluates at Hang (D (K (Zgi,n — 1))) is zero.

In sum, 73 (K(Zyi,n — 1)) is of order 4 whenever ¢ > 2. By comparing the Atiyah-
Hirzebruch spectral sequences of 73, (I (K (Zgi,n — 1))) and 73 ([, (K(Zgi,n — 1))) one
knows further that the forgetful homomorphism

pi : Mo (T (K(Zyn — 1)) = 73, (L (K (Zgi,n — 1))

is an isomorphism. Recall that[17] 73 (Cm(K(Z;n — 1)) = Z4 or (Z,)? by n = 2(mod4)
or 0(mod4). This concludes the Step (II).

Step (III): For ¢ > 2 and n odd, 73, (K(Zyi,n — 1)) = (Z,)?, Z, by n = 1(mod4) and
3(mod4) respectively.

We give only the proof in the case of n = 1(mod4). The rest case is easier and
similar.
First of all, by [18] p77-80, Hon_o(Tm (K (Zgi,n—1)) = Zyi and Hoypoy (T (K (Zgiyn—-1)) =
Zy if n odd. By Proposition 2.3

I'Izn([‘m([{(ZT?n - l)): Z2) = (Z2)3

12



with generators e? U (0®10), S¢!0® Sq!0 and Sq*0® 0+ 0 ® Sq¢*0. The relations Sq'(e' U
(0®0)) = 2U(0®0), where dimf = n—1 even, Sq'(S¢}0®5¢/0) = ' USRS 0 #0
and the Bockstein exact sequence shows that H**(I',,(K(Zg,n — 1)), 2Z4) is of order 8,
same as the order of H*(I",,(K(Zgi,n — 1)), Z,) and we conclude that

Hon(Con (K (Zgi,n — 1)), 2) = (%,)*.

Note that the term EZ,_,, = Han_o(Um(K(Zai,n = 1)), Z2) = Zy does not survive
in the E3-term since the differential d, : Egn’l — 1322,1_2,2 is dual to

Sqt: H™ (T (K (Zgi,n — 1)), Z2) = H™ (U (K (Zgi,n — 1)), Z2)

which is nonzero. Similarly, B3, & Z, since the differential d, : B}, , — E2,_,, = Z,
is nonzero. E3;_; | = Zy or 0 by 1 > 2 or ¢ = 1 respectively. By comparing the Atiyah-

Hirzebruch spectral sequences it follows that, the forgetful homomorphism
piLy =y (K(Z,n—1)) = n5 (K(Zgiyn —1))

is an injection with image consisting of the E55_, -term in the AHSS if ¢ > 2, and zero if
i=1.
B2 m (K (Zoyn — 1)) = w5 (K(Zyi,n — 1))

is an injection with image consists of the ES] -term. Thus 73 (K (Zai,n — 1)) = Zy © Z;.

Step (IV): 735, (K(Z2,n — 1)) =2 Z, for n > 4.
This can be read out from the table in Milgram [18]page 77.

Step (V): w3, (K(Zyi,n — 1) A K(Zyi,n — 1)) = Zy if 1,7 > 1 or oo, where Z, :=Z.
K(Zgi,n —1) A K(35,n — 1) is (2n — 3)-connected. For n > 4, the 2n-th homotopy group

of K(Zyi,n—1) A K(Zy,n — 1) is already in the stable range. By AIISS it is easy to be
verified.

Combining the steps (I) to (V) the proof of Theorem 2.1 follows.

Remark 2.4. By the AHSS as in the proof of Theorem 2.1 it is readily to see that: if
a € Ton(K(Zgi,n — 1) A K(Zgsi,n — 1)) is a generator, then o*(I @ Sq¢*l) # 0 where [ is
the basic class.

Now we want to build the Postnikov towers for X9 (Zy,n — 1) = K(Z4,q+n —1)
which will be used in §3 to show the Theorem 1.3 and 1.9, where n # 3(mod4). The case
of n = 3(mod4) is not interested for our purpose. Similar cases were considered in [17].

Proposition 2.5. Tor ¢ large, the 2-stage Postnikov tower of X9/ (Z4,n — 1) is as the
follows:

13



(1): n = 2(mod4)

s 1:2
R g+2n — EZ
| e
d e L w2
K g+2n—2 x K 9+2n — El —_—
$Th

n+2

K g+2n+1

Za. - n - -
qu\’(Z,;, n— ].) Ll K (Z4, q +n— l) 54 ﬂ I\q-}-Zn—l X [\q+2n+1

where 1}(wy) = S¢*Sq ljyan-2 + Sq'lpt2n.

(2): n = 0(mod4)

12

f\,q+2n — EQ X [\"q+2n
11

- i i

I\q+2n_2 -—l—} El X I\q-}-?n
L

B, XEQ(SQan_luln_l)

YIK(Zgyn—1 K{Zy,g+n—1) x K 42,
g+

where 7}(w2) = S¢*Sq'ly12n-2.

(3): n = 1(modd)

I(q+2n i’ E2
| b

0c L E, =2,
I

SIK(Z4ym — 1) Hling K(Zy,g+n—1)

BxSqntl x Sqntl Sqé

where C' = K(Z4,q+ 2n — 1) X Kgpan X Kgponsr, 17(w2) = S¢*li42q-1 and B(mod2) =

Sq gpn-1-

Proof: We give only a complete proof in the case of n = 2(modd). Other cases are
similar. There is a fibration L0, LN YK (Zyyn—1) Pyt K(Zy4,n+ q—1){c.f: page 10
for the notation and reference), Iy is (2n — 3)-connected. Let 0 ® 0 € H**~*([';,Z;) be a
generator(c.f: Prop 2.3) which is spherical. The transgression of 0 ® 0 is Sq¢"*l,4,-1 by the
Serre exact sequence. Recall that Hon(Ty) = Zy & Z2. The Whitehead exact sequence(c.f:
[23] p555) applies to show that, there is exactly a spherical element in Hpn(I,). Tt is not
hard to check that, there is a dual of this elemnt in H**(T, Z;), namely z, so that its

(&) -
— K g+2n+1

(S5¢",0)
— Kq+2n—1

I(q+2n+1

C

transgresston is Sq"12l,,,_1. Therefore we may build the first stage tower as

s - 11
[\q+2n—2 X I\q+2n — El
1

Eq'n_l n+2

EQI\I(Z;;, n — 1) — K(Z4,q +n - l) Sq"ﬂ v[\}q.;.zn_l X [\/q+2n-|~1

14



Note that, HI*?*(E,)/imll} = Z; with a representative wy, tjw; = S¢¥ pan-2. w; gives
rise a secondary cohomology operation ¢g associated with the Adem relation S¢%S¢™ = 0
with Z,-coefficients. We want to prove that, there is a lifting f; of £9/,_ so that f7(w,) =
9(Sq*ln-1Uln_1). To see this, consider the fibre inclusion map h : 890, = S1K(Zy,n—1),
by Peterson-Stein [20] we obtain that

S@*Sqr(XUncr) = ¢o(R*EU,_y) € HIP(ZIT,, Z,)/Sq* (imh™).

Obviously £7(8 ® 0) € Sqp{Z%,-1) and so S¢*(L9(0 ® 0)) € ¢o(h*E%,._1). Notice now
the indeterminacy is zero. By the naturality of the cohomology operation ¢y we have
that A*¢o(E9n_1) is nonzero and therefore £(Sq?l,—1 Uln_1) € ¢o(E%,-1) since it is the
only nontrivial element in the cokernel of (£9,_,)*. Thus there is a lifting f; so that

fi(w)) = B9(Sq¥._y Ul,—y) as we claimed.

Notice that H¥2 4 (E Z,)/imIlt = Z, @ Z, with representatives Sq'w; and wy,
where jwy = 5¢25q¢ laptq-2 + Sq¢'lanyq. w2 gives rise a secondary cohomolgy operation,
namely . By using the Perterson-Stein formula as above we have 0 € ¥(X%,_;) and
so we may choose the lifting f, so that w, lies in the kernel of f;. The second stage of
the Postnikov tower may be built by killing w,. This completes the proof for the case of
n = 2(mod4).

Notice in the case of n = 0(mod4), there is no a similar secondary cohomology operation
to capture the element £9(Sq*l,_; Ul,_;) and so it must be added at the first stage. The
rest and the case of n = 1(mod4) are similar. &

The 27 k-invariant wy in the Postnikov tower above gives a unique secondary coho-
mology operator ¢ (with Zs-coefficients) associated with the Adem relation -

SPESESq" +5¢'Sg? =0 n = 2(modd)
Sq¢®Sq'Sq® =0 n = 0(mod4)
Sq*Sqrt! =0 n = 1{mod4)

If n is even, E; is the universal example of the operator ¢. If n = 1(mod4), we write E] for
the universal example of ¢ which is the 1-stage Postnikov tower over K(Z4, g+n—1) with
k-invariant S¢™* ', n_1. Also we let E} for the fibre space over Ej with an k-invariant
given by the operator %.

By Peterson-Stein[19], there are operators ¢ which are S-dual to (which is unique
determined by %) so it is a secondary operator associated with the Adem relations:

X(Sq)Sq + x(Sq"?)Sq¢' + S¢'x(Sq*?) =0 n =2 mod 4
X(SqM)S¢® 4 Sa'x(Sq*t?) =0 n =0mod4
X(Sq*")Sq* + Sq'x(Sq**?) = 0 n =1 mod 4

as we stated in §1.
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Let ¢ : IK(Zy,n — 1) = £ denote a factor in the Moore-Postnikov factorization
of B¢K(Z4,n —1) = K(Z4,q+ n — 1) above. Notice that q; induces an isomorphism at
the (g + 2n)-th homotopy groups if n # 0,3(mod4), and an epimorphism if n = 0(mod4).

Consider the following immediate commutative diagram:

~ . Sqntlsqel
PIK(Zsyyn—1) — K(Zyg+n—-1) —" Kiponn
4 £9(Sq}) 4 Sa} I
- - Sqn-l-l -
qu\ﬂ —_— hq—{-n — jiq+2n+1

Let Fo — K,4a be the principal fibration with k-invariant S¢*t!. Recall that [4] £y is the
first stage Postnikov-Moore factorization of ¥9K, — Kyi,. When n = 1(mod4), by the
above Proposition Sq; : K(Zg,n+¢g—1) = K,4, can be covered by a map f: £; — E
which induces an epimorphism at the (2n + ¢)-th homotopy groups. By the commutative
diagram above, Z9(Sq})s : Tonpq(ZIK(Zg,n — 1)) = m2,4,(E9K,) is an epimorphism.
The follows gives geometric proof of this fact more generally.

Proposition 2.6. Let n be odd and Sq} € H"(K(Zyi,n —1),Z,) denote the generator.
Then
(Sq])e: 75 (K (Zgiyn — 1)) = 5 (K (Zg,n)) = Zy

is an eptmorphism.
Proof: We give a proof by using differentail topological method here.

Identifying the reduced framed bordism group QI (K(Zy,n—1)) with 73 (K (Zg,n—
1)), and Q47 (K(Z,,n)) with 73, (K(Z2,n)). Under the Thom Pontryagin construction it
is directly to see that the homomorphism

(Sq"). : M3 (K (Zgyn — 1)) = 75, (K (Zg,n))
can be identified with the homomorphism
QUr(K(Zayn — 1)) = QL (K (Zq,n)) 2 Z,

[M,z] — [M, Sq'z]

By Brown [4], il M is the boundary of a framed manilold V and ¢ : M — V is the
inclusion, the Kervaire quadratic form q: H*(M,Z3) — Z, is zero on Imi*. Thus

a(Sq") : YUK (Za,n — 1)) = Za,

[M,z] = ¢(Sq'z)

is well defined and a homomorphism since Sq'zUSq'y = S¢'(zUSq'y) = viU(zUSqly) =
0 by the Wu class v; = 0. Therefore the composition ¢(.5¢") is a homomorphism. To show
the Proposition, it suffices to prove that ¢(S¢') defined above is an isomorphism.
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Assuming that [M, ] is a framed bordism class, where M denote a framed manifold
of dimension 2n and z € H*™'(M, Z,). By using framed surgery we can assume that M
is (n — 2)-connected, and H,_((M) is a cyclic group of order 2 and z € H* (M, Z,) is
a generator. Note that f(z) € H"(M,Z) is the generator of the torsion subgroup, here
8 is the Bockstein homomorphism. By [4], the Poincaré dual of §(z) is represented by
an embedded n-sphere with trivial normal bundle if and only if ¢(S¢'z) = 0 as Sq¢'z =
B(z)(mod2). In case it can be represented, we may do framed surgery on M by using this
embedded sphere to obtain a (n—2)-connected manifold, namely N, so that H,_(N) & Z.
By Theorem 2.1, 73 (K(Z,n — 1)) = 0 and Z; by n = 3(mod4) and 1(mod4). Thus the
homomorphism ¢(Sq') is injective if n = 3(mod4). For n = 1(mod4), as we have seen in
the proof of Theorem 2.1, the forgetful homomorphism #§ (K (Z,n—1)) = m3 (K (Z;,n—
1)) is zero. Therefore [M, ] is bordant zero if ¢(S¢'z) = 0 and the above homomorphism
q(Sq') is injective too. Note that the group 73, (K(Zy,n — 1)) 2 Z, and so q(Sq') is an
isomorphism. Note that Sq! = S¢} o1, where i : K(Z2,n — 1) = K(Zyi,n — 1) represents
the nonzero homology class. Thus ¢(Sq}) : Q%;(K(Zz.',n — 1)) = Z5 is an epimorphism.
This completes the proof.

From the proof of the above Proposition we have an immediate corollary
Corollary 2.7. Let M be a framed manifold of dimension 2n. If qpr : H*(M,Z2) — Z,
is the Kervaire quadratic form. For z € H™ (M, Z,i),

(i): n = 3(mod4), [M, z] is reduced bordant to zero if and only if q(Sq!)x = 0.
(ii): n = 1(mod4), [M,z] is reduced bordant lo [M',2'] where ' € H*'(M',Z) if and
only if qu(Sq;)(z) = 0.

Now we are going to explain that, for a reduced framed bordism class [M,z] €
QT (K(Zgyyn — 1)) = Zy ® Zy, where M is a framed manifold of dimension 2n(n =
0,1(mod4)) and = € H™ (M, Z,), there is a Zy-component may be detected by a well-
known invariant and the rest is detected by the quadratic function defined in §1. Let
PT: an(h’(Z,;, n—1)) = 73 (K(Z4,n — 1)) denote the Thom-Pontryagin isomorphism.
If n = 0(mod4), by the Postnikov tower in 2.5, PT([M,z]) has a component detected by
x U S¢*z[M] and the other corresponds to the nontrivial k-invariant. If n = 1(mod4), by
2.7, PT([M, z]) has a component detected by ¢(Sgjz) where ¢ is the Kervaire quadratic
form. The rest is detected by the nontrivial & invariant corresponding to the secondary
cohomology operation . '

Recall that Ag € Im{H(k).) C 73, (K(Zy,n — 1)) is a generator of order 2 if n =
0,1(mod4). We shall prove that Aj(a(S¢* U 1)) =0 if n = 0(modd), and (Sg3).(Ag) =0
if n = 1(mod4). Therefore Ay and the component detected by the cup product z U Sq¢z
or q(Sq3) form a basis for the group 73, (K(Z4,n — 1)) if n = 0(mod4) or 1(mod4).

Proposition 2.8. Letn = 0,1(modd) and Ay be the generator of Im(H(k).), where H(x)
is the Hopf construction of the multiplication k : K(Zy,n—1)x K(Zs,n=1) = K(Z4,n—
1). Then Aj(a(Sq*Ul)) =0 if n = 0(modd) and (Sq3).(Ao) = 0 if n = 1(mod4), where

17



is the basic class of K(Zs,n — 1), o is the suspension and Sq} € H™(K(Zy,n — 1),7Z2) is
the generator.

Proof: Note that H(x)*(c(Sq*l Ul)) = o(S¢* ® [ + 1 ® Sq¥). By the Remark 2.4,
A(o(SqAUl)) = a*(a(S¢ U D)) + a*(a(lU Sq¢l)) = 0. To show (5¢3).(Xo) =0 for n =
1(mod4), note that Aq lies in the image of the forgetful homomorphism p, : 73, (K (Z,n —
1)) = 73, (K(Z4,n — 1)) by the commutative diagram

S K(Zn-DAKZn-1) 25 SK(Zin—1)AKZyn—-1)
L H(x) } H(x)
S K(Z,n—1) ke S K (Zgyn — 1)

Combining corollary 2.7 we conclude the proof.

§3. Proofs
Proof of Proposition 1.2: Recall that, for any space X, the sequence of maps
STAQX AQX 5 ST AQX -5 X

is a fibration, where h is the Hopf construction of the multiplication QX A X — QX,
and « is the adjoint of the identity on QX. Thus

S'AK(Zy,n — 1) A K(Zayn—1) = §' A K(Zayn — 1) -2 K(Z4,n)
is a fibration and so
bt Tongpt(SYA K(Zgyn — DA K(Zgy,n — 1)) = mon1(S' A K(Zgyn = 1))
is an isomorphism. By theorem 2.1, mon41(S' A K(Za,n — 1) A K(Zyyn — 1)) = Z,.

Consider the suspension map S' A K(Zy,n — 1) — S' A K(Z4,n — 1) for { large.
Applying the generalized EHP sequence(c.f: [18]) in our range

o Mgt (SYA K (Zg,n = 1)) 25 (ST A K (Zig, 1 — 1)) 25 71 (Tim1 (S* A K (Zg,n = 1))
By R (SY A K(Zayn — 1) =25 72, (S A K(Za,n = 1)),

Notice that Hop(Di-1(S'AK (Zg,n—1)) = Zy and Hopy1 (T (S'AK (Z4,n—1)) = Z,
when n is even. Thereby monq1(T1-1(S* A K(Z4,n — 1)) = Z; and consequently F is
injective by the exact sequence above as 73, (S' A K(Z4,n — 1)) is of order 4 when 7 is
even.

When n = 1(modd), by Theorem 2.1 75, (K (Z4,n— 1)) 2 (Z2)%. On the other hand,
it is readily to show that mo,q1 (=) (S' A K(Z4,n — 1)) is cyclic. Thus the conclusion
follows by applying the exact sequence again.
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When n = 3(mod4), /7 is zero by comparing that mopp1 (L1 (S'ARK (Z4,n—1)) = Z4,
Tan(S' A K(Zyy,n — 1)) & Zy and 75 _ (K(Zy,n — 1) = Z, in the exact sequence. This
completes the proof. &

Remark. By a similar argument one can show that, the Hopf construction A(x) : S A
K(Zq,n — 1) AN K(Zg,n—1) = S' A K(Z2,n — 1) induces always a zero homomorphism
on the 2n-th stable homotopy groups. Thus the analogous definition of the quadratic
function ¢y in §1 gives a linear function if K{Z4,n —1) is replaced by K(Z,,n —1).

Proof of Theorem 1.3. We give a proof in the case of n = 2(mod4). Others are similar
by using except one need to use Proposition 2.8. First note that the theorem is equivalent
to say that

b g = Hon(K(Zgyn — 1), 8°%) = Hon(K(Z4,n —1),Y)

is a monomorphism. Also it suffices to show this for the universal spectrum W (n) since
the map i : §° — W(n) factors through i : $° — Y. Notice that Wi(n)/S* is (k + 2)-
connected. Thus in the following proof, we may assume that Y, /S* is (k + 2)-connected
for k large. Assuming k large, without lossing generality we can assume that Y is a
finite complex. Write Y;* for the m S-dual of Yy and g : Y7 — S™F for the S-dual
of the inclusion 7 : S* — Y. Note that g*(cgm—t) # 0, where ¢gm_x is the cohomology
fundamental class of the sphere. By the S-duality we get a commutative diagram

(S Sk A K(Zyn—1)) 25 {STHE VA K(Zs,n — 1))

1 L=
(S M K(Zyn— 1)) Ls {8 AYS S™ A K(Zy,n — 1)}
l = \L G2.
(S B ] 2, [SP A YE, Bngma],

where Em+n_l is the 2-stage Postnikov tower in Proposition 2.5 and ¢3 : S™ A K(Zy4,n —
1) — E'n+m_1 is a factor of the Moore-Postnikov decomposition of £™[,_;. From the
diagram above it suffices to show that the homomorphism ¢g* at the bottom line is injective.
Let 19 : I — E,H_m_. be the fibre of the 2-stage Postnikov tower. Note that F' can be
viewed as a fibration over Ky, n_o with fibre K'(Z,, 2n+m) and k-invariant 7.(Sq*Sq!)({);

where
_]',. . Hm+2ﬂ+1(—, Z-z) — Hrm+2n+1(_, Z4)

is the homomorphism induced by the incluston Z,; C Z, and ! is the basic class of Kp,42n—2.

Consider the following commutative diagrams

kR ol B [ AN
_ V=g | Lo
[SP?EAYE K (Za,n+m—2)] =5 [SPHAYSF] 25 [S™FAYY, Enpme]
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and

&

S Kz s m) S (s
g +J
e 201 -
[S2 A Yy, Kangmea) "3 [S24 A Y K(Zg, 20 +m)] 25 [ AYE,F] =0

where 1) : K(Z4,n + m — 2) — F is the homotopy fibre of ip. The bottom line in
the above two diagrams are exact. To see the exactness in the second diagram, we
need to note that, H2"+m=2(S2tk A Y Z,) = HM2(YL) = 0 since Yi/S* is (k + 2)-
connected. To show 7,(Sq¢%Sq') is zer in the second diagram above, note that Sq¢*Uy = 0,
the duality implies that ¥(S¢®)H™*-3(Yy) = S¢*Sq' H™*-3(Y}) = 0. Thus the second
diagram implies that J is a monomorphism. The proof can be deduced if we can show
Ker(ig)e N Im(J) = Im(i1)s N Im(J) = 0 in the first diagram above.

Let g = m —n — k — 1, the tower

Kyt = QWHF S B
Ip l
1\,q+n—| X ]\Iq+n+l - Eq 5 »I{q+n+2
. Sq"XS n+2 .
K (Z4, (,') 4 K g4n X -Kq+n+2

gives a diagram(not exact)

[Yk*! Eq—l] — [Y;:! Eq—l] - [Yk*a I{(Z4-q - l)] — [Y;:: I\,(th q— 1)]
1, L Sq* x Sqnt?
[yk*’92n+k]?] — [Yl:a Jr‘,t;r-+-n—1 x Jr“,q'+n—1-l]

Ifz € H='(Y}, Z4) such that 1., (z) € Im(J), Sq*(z) € HMI7V (Y, Zy) = (H*(Yh, Zo))*
0. On the other hand, by duality x(Sq***)U, = 0 implies that S¢"*?H"(Y;",Z;) = 0.
Thus Sq¢™*t?*(z) = 0 and

Im(i). N Im(J) C (i1)({z € HH (Y™, Z4)|Sq"(x) = Sq"*(z) = 0}).

Since Yy is ¢-orientable, i.e, 0 € $(Uy). By [19] that 0 € 1(z). Thus = can be lifted to
E,_: and so (1;).(z) = 0. This completes the proof. &

Proof of Proposition 1.4: By the definition, for £ large, f(x + y) is the following
composition of maps

SUAGIHE M o1 e g, AT AT () A(K (Zayn—1) X K (Zg,n—1)) =
= Wn) ASYA (K(Zayn—1) x K(Zayn —1)) 225 W(n), A ST A K(Zg,n — 1),
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where k() = I ® 1 + 1 ® [ for the basic class [ € "' (K(Z4,n — 1),Z4). Identifying
W(n)e ASTA(K(Zyyn — 1) x K(Z4,n — 1)) with

(W(n)e AS*AK(Zyyn— 1)}V {H(n)k A S A (K (Zgyn — 1)}V
VEW(n)e A ST A (K(Zgyn — 1) A K (Zy,n — 1))}
It is readily to see that f(= + y) = f(z) + f(y) + ¢, here g is the composition
Skl WARE g1 A e o pg, NUORAS 1 A T () A My A My “3BY W), A ST A

K(Zayn— D) AK(Zayn — 1) 22 W) A SYA K (Zgyn - 1),
where H(x) the Hopf constuction of «.

As W(n)g/S* is (k + 2)-connected, it is easy to check
(Z/\ld).. . Wgn+k+1(Sk+1/\f\/(Zq,n—l)) — 71‘2,1+k+|(SlAW(vz)kAI((Z4,n—l)/\K(Z4,n—l))

is surjective. On the other hand, by Remark 2.4, the generator § € =} (K (Z4,n — 1)) A
K(Z4,mn —1)) = Z, satisfies 8*({ ® S¢*) # 0. Thus, for the inclusion map 2, the composi-
tion (1 A1d) 0 B € Tongrsr (ST AW () A K(Zy,n —1) A K(Z4,n — 1)) induces a nontrivial
homomorphism on the (2n +k)-th homology and thus is not null homotopy. Thus (i Aid).
is an isomorphism. Moreover, the generator go € 7, (W (n)kAK(Zy,n—1))AK(Z4,n—1))
satisfies that g§(Us A Sq*lu—1 Aln—y) # 0. Thus the composition (idAz Ay)(uowAA)(Ac)
is null homotopy if and only if {x U S¢*y,[M],) = 0. By Proposition 1.2, the proofl now
follows by the commutative diagram

S*ASK(Zayn — 1) A K(Zgyn—1) 2% W), ASK(Zyyn—1)AK(Zg,n — 1)
Lid A H(x) Lid A H(k)
SEAS K(Zgyn — 1) g W(n), AT K(Zs,n —1).

&

The proof of 1.7 is obvious since the stable homotopy group 7o, (K (Z4,n—1)) = Z4 if
n = 2(mod4) and the order of elements in 75, (K(Z4,n —1) is at most 2 if n = 0, 1(mnod4).

To show 1.8, let us first begin with a lemma.

Lemma 3.1. [fn = 2(mod4) and an + 3) > 3, then the homomorphism
fh T (S = w (K (Zgyn — 1))
is zero, where 1 is a generator of (n — 1)-th homotopy group.

Proof: By the Postnikov factorization of S? A K'(Z4,n — 1) for g large it is immediately
to see that: »
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(1) @ € 75,4 (SINK(Z4,n—1)) ¥ Zy is a generator if and only if the functional cohomology
operator Sq**%(SIAl,-1) # 0. Thus the composition S+ — S9t1=1 s QIAK(Z4,n—1)
is of order at most 2 if n 4+ 2 # 2,4 or 8 by {1]. Therelore, under our assumption, cvery
element in the image of 7, 1s of order at most 2.

(i) An B € 73,,,(STAK(Zy,n —1)) is of order 2 if and only if ¢5T*(S9AlL,_1) # 0, where
qﬁ"'*'?‘ is the secondary functional cohomology operator.

If B = 1i.(2) for some z € mau4,(571*"1). By the naturality of the functional secondary
cohomology operator ¢g it follows that ¢7%(s,44-1) # 0, where (sp4q-1) is then + g —1
dimensional cohomology generator of the sphere S™**9~1. By [1] the proof of 4.3.2, we
have a decomposition

" (Snpq—1) = O @i jbij(Snsq-1) mod zero indeterminacy,
1,5
where ¢; ; is defined by Adams in [1] for each i < j and j # i + 1, degi; = 2° + 27 — 1,
a;; € A, the Steenrod algebra. Whenever a{n 4 3) > 3, «; ; are not the unit in A, and
so ¢"*? is zero when applied to the 2-cells complexes S9! U e2"+t7+!. Thus g is zero.
This completes the proof. &

Proof of Theorem 1.8. Since go 8~ * and T(g') o T(B) : T(8%¢) — T'(§) —
M Sping(k;) factors as j o V, where 7 : S° = M Sping(ky) is the spectral inclusion map
and V : T(B8*¢) — S° Note that T(87) is the S-dual of T(~(8)). We have the following

immediate commutative diagram:

(1~

(TO), KZn =D} & ASHTE) 0 K Zaon = 1)
LT T(B).

{My, K(Zs,n —1)} { Stk T§ AK(Zg,n~1)}

13

where T : M, — T(v(f)) is the Thom construction. 7'(8*¢) ~ S¥ v §¥++! gince B¢ is
stable trivial. We denote by U the Thom class of v(8). Then T*U = z and dU = oq + az,
where a; € {S?t* S5 A K(Zy,n — 1)} and oy € {STHF SAH A K(Zyyn— 1)} 2 Zy is
a generator. By the definition

dmn(z) = h(wo T(g) o T(B)u(cn)) + h(u o T(g). 0 T(B)u(02)).

The second term is zero when a(n + 3) > 3 since u o T'(¢’) 0 T(¢')(02) factors through
Stk _y Gnik=l Gk A K(Z4,n — 1) which is null in homotopy by lemma 3.1.

Notice that «; depends only on the bundle 3. Thus we may choose some special
manifolds X of dimension 2n with a normal bundle 0 € 7,,(S0(n)) = Z4 of an embedded
(n+1) sphere in X in X x R and to verify the Theorem. Consider first X = §*~! x §n+!
and 8 = pt x §™'. By the definition, ¢x n(z) = 0 since (X,x) is framed bordant
zero, where z is the generator of H*!(X). Consider X = S™! x4 S™7!, the sphere
bundle over S™*! with charateristic class § € m,(SO(n)) & Z4 and z € H*Y(X,Z,4) is a
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generator. These bundles are diffeomorphic to each other if and only if their charateristic
classes coincide up to sign(c.[: theorem 1.11 or [10]}). Moreover, by 1.11 we have that,
these bundles are diffeomorphic to each other if and only if the corresponding quadratic
functions ¢, : Z4 = Q/Z are isometric to each other. Therefore there is a bijection
between the charateristic classes in m,(SO(n)) up to sign and the isometric classes of the
quadratic functions. Note that these bundles have always a section(c.f: [11]) and let £
be a section. The normal bundle of 8 in X x R is . We claim that 0 is of order 2 if

¢xp(z) = 3

If ¢xu(z) = 3, 0 # 0. Otherwise X is diffeomorphic to the trivial bundle by
1.11. This is impossible. We now prove further that 0 is of order 2. As ¢x 1(2z) = 0,
(X, 2z) is therefore zero framed bordant. Let (V,y) be a framed manifold with boundary
(X,z)(ylx = z). By use framed surgery we can modily V' so that V is (n — 2) connected,
H._1(V) =2 Z and H,(V) = 0. By duality one can check H.41(V) = Z,. 1t is elementary
to show that the exponent of m,41(V) is 2. Thus the charateristic class of the normal
bundle of each embedded (n+1)-sphere in V is of order at most 2. Notice that the normal
bundle of § in V is the same as that in X x R. This proves that 20 = 0 and so j(8) = 3.
Consequently, if ¢x x(z) = %, 0 is of order 4. Otherwise, it contradicts with 1.11. This
completes the proof. &

Let {Yk}xez, be an ¢-orientable Thom spectrum. For k large, let Wy, @ = 1,2, are
maps Yy = Wi(n) which lift the Thom class Uy, where W (n) is the universal Q-spectrum
defined in §1. Note that [T;¥; and II;W; are differed by a map to the fibre Kgy1 X Kgpnti
of the fibration of IT; : Wi(n) — K(Z,k). Let di(W,,W,) denote this difference. Of
course W, and W, are homotopy if di(W;, W) = 0 and a secondary obstruction vanishes.
The following theorem says that this secondary obstruction does not affect our quadratic
function ¢.

Theorem 3.3. Let (M,€,a) be a Poincaré triple where & is an ¢-orientable k plane
bundle. Let (Wi, h)(i = 1,2) be ¢-orientations of T and let ¢; be the quadratic functions
associated with (Wi, h). Suppose that di(W,, W) = 0. Then ¢,(z) = ¢2(z) for all @ €
H™ (M, Zy,). _ _

Proof: Let p : Kpprpr X Wi(n) = Wi(n) denote the fibre multiplication. By the
assumption d, (W, W3) = 0, W, is the composition

Te 25 7e x TE V2 Win) x Knprpr = Wi(n),

where vl € H*™Y(T¢,Z,) is the second difference of W;, i = 1,2, i.e, an obstruction
between W, and W,. We have a commutative diagram:

Stk (PEA MOV (TEAM) -2 Wiln) A K(Zgyn = 1)
I N I

—

gtk Aay (T€ x TE) A M, 2y We(n) A K(Z4,n = 1)

23



where o' is a lifting of Ac, b = u(W) x vU) Az, a = (W Az) Ve, and ¢ = i(vlUi) Az,
i1 Kpype1 = Wi(n) the inclusion of the fibre. Write o’ = o) + a2, here o) and a4 are the
factors of the wedge. Note that ¢(x) = h(bo Ac) = h{a) + h{aaz) = ¢1(z) + h(aas).
We are going to show h(acg) = 0.

As acy factors through the mapiAid : Koy i AK(Zg,n—1) — Wk(n)/\f((z4, n—1).
To show aca; is null homotopy, it suffices to prove that

(Z A Zd). : Trgn+k(f\"n+k+1 A [\,(Zq,n — ].)) — 1r2,,+k(ﬂ”k(n) A I\,(Z.;, n - 1))
is zero. Note the homomorphism
(Sql A ?,d),, . 7r2n+k(I\,n+I: A I\,(Zg, n— 1)) — 7T2n+k([\/n+k+l A I\/(Zd,ﬂ. - 1)) = Z2

is an isomorphism as it induces an ismomorphism on the (2n + k)-th homology groups.

1 - —
The composition K1 LN Kptrer — Wi(n) is null homotopy. Thus (¢ Aid). = 0. This
completes the proof.de

Proof of Theorem 1.9. Consider the Poincaré triple (M, f*€;, as), where az =
T(f):‘ag, f: € — & is a bundle map over f which is a bundle homotopy equivalence.
T(f) is the Thom construction of f. Let ¢3 denote the quadratic functions assoiciated with
the Poincaré triple (M, f*€2, @3) and the orientation uowg o 7'(f’), where f’ is a bundle
map over f. By the defintion it is clear that ¢3(f*z) = ¢(z) for all 2 € H* (M2, Z4).

Note that f*£; and £, are stably equivalent as spherical (ibration since f is a ho-
motopy equivalence. Without lossing of generality we can assume that f*¢; and &, are
the same. Thus we have two orientations for &, (uow, /) and (uow; 0 T(f'), h), where
w; = T(f!) are the Thom maps of (f{, f;) : (&, M;) — (7*v, BSping(ks)), fi are the clas-
sifying maps of &, i = 1,2. Note that f preserves the spin structures/Wu orientations.
Thus po f, 0 f =~ po fi, where p: BSping{ks) = BSping/BSping(vays) is the principal
fibration defined in Example (ii} and (iii) of §1.

It is not hard to show that there exists a fibre automorphism ¢ € Awut(&;) over
the identity such that T(p'o fio f') ~ T(p' o f{) o T'(¢y'). Notice that ¢’ gives a unique
element in [M1, G|, namely go. By the formula in Brown [4], the (n 4+ 1)-dimensional
component of the difference dy{uow; 0T (g'),uow) is 3 vup9_2i Ugsuqi_; = 0 under our
assumption, where u,i_; is the transgression of wy € H*(BGy, Z,). The 1-dimensional
component of the difference is exactly determined by the spin structures and so it is zero
for the fixed spin structure. Thus the first difference of u o w, 0 T(f’) and u o w, is zero.
By Theorem 3.3, ¢, is the same as the quadratic function associated with (Xy, £, o) and
the orientation u 0wy o T'{ f').

Recall that ¢; is a quadratic function associated with the Poincaré triple (M, &, as)
and uows 0 T'(f'). By the proof of 1.18 in [4], there is an ¢, € [X, Gy], &k large, such that
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it gives an automorphism g € Aut(€;) so that T(¢).(ca3) = c. For the same reasoning
as above it follows that ¢, is the same as a function associated with the Poincaré triple
(M1, &1, a3) and the orientation (uo T'(g) o wy 0 T'(f), h). Notice now again that the first
difference of uoT(g) owqyo T'(f') and wow, o T(f') is zero. Thus theorem 3.3 implies that
¢1 and ¢ are the same and so ¢;(f*z) = ¢(z) lor all z. This completes the proof. &

§4. Classification of almost parallelizable 2n-manifolds

Recall that a manifold X is called almost parallelizable if the restriction of the
tangent bundle 7X on X — pt is trivial. The immediate examples of such manifolds
are the S™!-bundles over S™*! with charateristic classes in ker{m,(SO(n)) = ©,(SO)}.
Recall that the homotopy groups of m,(SO(n)) are as the following table (c.f: [11]):

T.(S0(n)), n > 3,# 6
n>3#6 8s 8s+4+1 {842 |8:4+3| 8+4 (8545|846 (8547
ﬂ'n(SO(n)) ZoDZo D2y | ZoD 2y Z,4 Z 2o Zy Zq Z4 Z

and me(SO(6)) = 0.

Follows the notations in [10], let A, and Bg denote the S™ !-bundle over S"*!
with charateristic number a, 8 € m,(SO(n)) respectively so that m(a) = 0,7(8) =1 for
T me(SO(n)) = T (S™1) & Zy. (n > 4). Obviously Sq* : H"1(A,) — H™(A,) is
zero, and Sq* : H*~!'(Bg) — H™"'(Bp) is an isomorphism.

Proof of 1.10., For x € H™ (M, Z,), consider the bordism class [M, z] € QI (K,_,) =
Z;. First note that z U Sq°z[M] is a bordism invariant. To show this, it suffices to prove
z U Sq*z = 0 if (M,z) is framed bordant zero. Let (V,y) is a framed manifold with
boundary (M, z), we may assume that V is simply connected by using framed surgery.
Thus y U Sq*y € H™(V,Z,) = H,(V, M, Z;) = 0 and thereby z U Sq*z = 0. Moreover, it
is directly to see that

Qr(K,_y) = Z,

M, z] = z U Sqz[M]

is 2 homomorphism.

By the proof of Theorem 2.1, the reduction homomorphism
T (K(Z,n — 1)) = n3,(Kuoy)

is surjective if n is even. Under the Thom-Pontryagin map, this corresponds to the

reduction _ 5
(K (Z,n—1)) = QfL(Kaly).

By Theorem 1.8 it follows that the generator of {47 ( K,_,) can be represented by (S™*! x4
Sn=1 2), where §"t! x, S™! is a sphere bundle and z € H*~!(S™! xy S*7! Z;). By
the tables (TI)(II) of {11], it is immediate to see z U Sq%z = 0 il n = 2(mod4), and the
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bundle Bg for § € kerS. : m,(S50(n)) — m,(SO) is an example so that z U Sq*z = 0 if
n = 0(mod4), here z is the generator. This proves (i) and (iii).

When n is odd, by 2.7

0(Sq') s QL (Kuot) = Zo
[M,z] = qu(Sq'z)

is an isomorphism. Thus there is an § € Z; so that dqu(Sq'z) = z U Sq*z[M] for all
[M, z]. In particular, if z can be lifted to the Zs-coefficients, Sq'z = 0 and so zUSq¢%z = 0.
This completes the proof of (ii) and so 1.10. &

To set up the classification of (n —2)-connected 2n-dimensional almost parallelizable
manifolds, we are going to decompose the manifolds as the connected sum of two simpler
pieces.

Lemma 4.1. Let M be a (n — 2)-connected 2n dimensional manifold. If n > 4, then M
is homeomorphic to K#N, where K is (n — 1)-connected and N satisfies 8,(N,Q) = 0.
Proof: Since the Hurewicz homomorphism m,(M) — H,(M) is surjective, we may rep-
resent each n-dimensional homology class by an embedded n-sphere by using Whitney
trick. Let I = (a;;)gxp (8 = Bn(M)) denote the intersection matrix of M with respect to
a basis ay,---,ag of H,(M) represented by 8 embedded spheres satisfying

(1): o Naj Nag = ¢(empty) if 2, 7 and k are pairwise different.

(ii): o; and «;(i # ) intersects in @, ; points transversally.

[ is unimodular.

Let Ko denote the closed regular neighborhood of @y U---Ueg in M. Ky is a smooth
manifold with boundary. H;(0Ko) = Hi(Kp) =0for 2 <i <n—1, m(0Ko) = m () is
a free group with finite letters. Let C be the closure of M — Kg. Notice that 7 (90Ko) —
m(C) is a zero homomorphism. Representing a generator set of m(/Kp) by embedded
5! x D™ %5 and extend to D* x D** %5 in C. Here we have to change the framing of
the embedded S! x D?"~%’s if it is not compatible with the induced framings. Add these
2-handles to Ky , we get a smooth manifold K with boundary a homotopy sphere and
so homeomorphic to $2*~!, K} € M. Let K = KjU D** and N = (M — intK}) U D*".
It is now easy to see that M ~ K#N, K is (n — 1)-connected and H,(K§) — H.(M) is
a rational isomorphism with cokernel the torsion subgroup. This completes the proof. &

Notice the classification of (n — 1)-connected 2n-manifolds have been done by Wall
[22] completely. To consider the classification of (1 —2)-connected 2rn-manifolds, by lemma
4.1, it suffices to handle the case of N with 6,(N,Q) = 0. Thus signN = 0 and N is
therefore stably parallelizable if M is almost parallelizable. As we mentioned in §1, for
the standard spin structure or Wu orientation on N, the equivalence class of the quadratic
function ¢, is a homotopy invariant.
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Proof of Theorem 1.11. By 1.7 and 1.10 we see that ¢ and the bilinear form p has
the property described in the Theorem. Now we prove every data in the Theorem can be
realized by an almost parallelizable manifold.

By Theorem 2.1 the algebraic data in the theorem where b = 0 and so sign = 0if n is
even, determines a reduced framed bordism class in Q47 (K (H,n —1)). Let [Mo, f] denote
such a bordism class. Without lossing of generality we can assume that f. : H,_1(Mp) —
H is an epimorphism. Otherwise we may sum some S*~! x §™*! to My and modify f.
to fulfill this property. Using framed surgery to kill the kernel of f. we get a framed
manifold, namely M with H,_i(M) = H. The connected sum of M with some £|Eg| and
S™ x 8™ will realize the data, where |E3| is a {(n — 1)-connected 2n-dimensional almost
parallelizable manifold with intersection form Fs.

Now we are going to prove that these algebraic data determine the homemorphism
types of the manifolds. As we mentioned in §1, these invariants set are homotopy in-
variants of the manifolds. Thus the homotopy and homeomorphism classification of such
manifolds are the same.

Suppose that X;, 7 = 1,2, are two smooth manifolds with the same data(for TOP
manifold, the similar argument works identically). Without lossing of generality we as-
sume that b,(X;, Q) = 0 since lemma 4.1 and the classification theorem of Wall applies
here. Thus X; are stable parallelizable. Put framings on X;. By the assumption there
are maps f; : X; = K(H,n —1), 1 = 1,2, so that (X, fi) and (X3, f2) are reduced
framed bordant, where f; induces an isomorphism at the (n — 1)-th homology groups. If
n # 1,3,7, X; are both framed bordant to a framed homotopy sphere, if n is even or n
odd and the Kervaire invariants of X; vanish. In this case, we can assume X, and X,#X
are framed bordant, here ¥ is a homotopy sphere. If n = 7(we have assumed that n > 4),
we can change the framing on X if necessary, so that X, and X, are framed bordant.
Therefore (X, f1) and (Xo#ZX, f2) are framed bordant. By Freedman (8] or Kreck [14] it
follows that X; and X, are diffeomorphic since b,(X;, Q) = 0. If X; both have Kervaire
invariants 1. Up to connected sum with a framed homotopy sphere, X, and X, are framed
cobordant. The same argument above applies to show that X, and X, are homeomorphic
to each other. This completes the proof. &

Proof of 1.14. By Theorem 1.11 and 1.12 (vi), 0 : Ay, (G) — Z3 is a injective if n
is even. By Theorem 5.5, every value in Z3(Z2) can be realized as the Arf invariant of a
Q/Z-valued quadratic function (factoring through 7 : Z, — Q/Z). Combining this with
Theorem 1.11 (i) and (ii) follows.

To prove (iii), note that ¢(S¢!) : G — Z; is a lincar function. Let e, --,en be
a symplectic basis of G/Gq. If q(Sq})(e;) = 1 and ¢(S¢})(e;) = 1 for some i. Let
T € Aut(G/Go) be the automorphism such that 7'(ey) = ey, T(e;) = e;i+e; and T(e;) = e;
if 7 # 1,i. T preserves the inner product g and ¢(S¢})(T'(e1)) = 1, ¢(S¢}))(T(e;)) = 0.
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Thus we can assume ¢(S¢; }{(e1) =1 and q(5¢!)(e;) = 0 il [ > 2. Therefore there is only
a nonzero function up to equivalence. By Theorem 1.11 the proof of (iii) follows. Similar
argument applies to show (iv). This completes the proof. &

Proof of 1.15. By Theorem 1.11 it suffices to verify that M#K and M'#K have the
same algebraic data. It is clear to see that, as an inner product module, H,_(M#K)
and H,_(M'#K) are isometric. When n = 2(mod4), by 85 it is easy to check that the
quadratic functions for M# K and M'# K are equivalent.

When n = 3(mod4), notice qr(5¢"')(z) = 1 since gsnxsn(D(A)) = 1, where A is the
diagonal of §™ x S™, D is the Poincaré duality isomorphism and ¢ is the Kervaire form.
It is easy to see that qapan(Sq!) and gapar(Sq!) are both equivalent to w = 06 (1) :
Hom(tor(H)®Zyi, Z,)®Zy — Zy, where H = H,_ (M) = H,_,(M'). Applying Theorem
1.11 the proof follows. &

§5. Appendix: Numeral invariants of Q/Z-valued quadratic functions

Throughout this section we let V' denote a Z, module with a Z;-valued inner product
. Assuming z -y = 0 if either z or y is of order 2. We say a function¢:V — Z, isa
quadratic if

({98

¢z +y) = ¢(z) + ¢(y) +(z - y); Yo,y e V
where j : Zy — Q/%Z is the inclusion.

Definition 5.1. [fV is finitely generated, and ¢ : V — Z4 is a quadratic function. We
denote by A(¢) the Gauss sum:

NEEDY el ¢ C where it = 1

TeEV

It is obvious that A(¢) is well defined and is an invariant of the Witt class{isometry class)
of ¢. If (V,é1) and (V,¢;) are two quadratic functions, we denote by (V,¢; @ ¢2) and
(V, —¢;) the direct sum of (V, ¢;) and the multiplication by —1, 7 = 1,2.

Proposition 5.2. (i) A(¢) is a real number.
(i) A1 @ ¢2) = M1)A(¢2).

(i) N~6) = X(@).
(tv) If ¢:V — Q/Z is linear, then A(¢) = |V| 0or 0 by ¢ =0 or nol.
Proof: (ii), (iii) and (iv) are obvious. As —¢ is equivalent to ¢, thus (2) is a consequence

of (ii).

We say an inner module V is hyperbolic if & -z = 0 for all z € V(In §1 we said that
it is of diagonal zero). V is nonsingular il for each « € V| there exists an y € V such
that z -y # 0. Let H be a free Z,-module of dimension 2 with nonsingular hyperbolic
inner product. We denote by e, ez a basis of H with inner producis e; - e; = e5-e; =1,
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e -e; =0,1=1,2. There are the following three quadratic functions on H:

¢o : ¢0(3|) =0, d—’o(ez) =0
é1: di(er) = ia i{e2) = 1'
b2 : aler) = e $2(e2) = Z;

The Gauss sum A(¢) is:

M) =0; M) = —8; A(¢o) =8---(5.3)

Proposition 5.3. There are only the above three Q/Z-valued quadratic forms on H up
to isomorphism.

Proof: (1) Let ¢ : H — Q/Z be a function with ¢(e;) = ==, we claim that ¢ is equivalent
to ¢. If ¢(e;) = 5 and ¢(e2) =0, we set T': H — H for the following isometry

T(e1) = e
T(Cz) = 361 + €3

Thus ¢(3e1+e2) = § and so goT = ¢;. Other cases in the claim can be checked similarly.
(2) Let ¢ : H = Q/Z be a form such that 2¢(e;) = 0 for 7 = 1,2, then ¢ is either isomor-

phic to ¢g or ¢s.
This completes the proof. &

Lemma 5.4.

$2 B 2 = o B o;

61 D P = d Do X ) D ¢
Proof: Let ey, ez; €], e, denote a basis of H @ H; and set T: H& H — H @ H for the
following isometry

T(ey)=e +¢€ +ey; Tle)=er+e)+¢
T(e)) =€ +e+ey T(eh)=¢ef+e+e

Note that
(do D do)(er + €] + €3)
(o @ do)(e) + €1+ e) =

Hence (i’g & ng = qf)o éb ¢0 .
Similarly, the isometries

B =Bl | =

i (do D do)(ez+ €] +ey) =
i (do @ ¢o)(e2 + €] + e))

2 f—ba—

ey > e +el; e2—extel

Hi I 7 !

el—)el 62—}62“}'61"}'62
and

€1 — €3, €2 — €2
ey = el +2e; e, = e+ 2e
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will set up the other two isomorphisms in the lemma.
This completes the proof. &

Obviously every quadratic functions on H @ ---@ H is isomorphic to the direct sum
of quadratic functions on H. To use Lemma 5.4 iteratively we obtain

Theorem 5.5. Suppose thal V = nH, then there are czactly three isomorphism classes
of the quadratic functions on V

¢1 @ (n — 1)go, b2 @ (n — 1)¢bo, nebo.

Their Gauss sums are

M1 @ (n = 1)do) = 0,A(d2 @ (n — 1)) = —8", A(ngho) = 8.

Notice that, any Z4-module V with a hyperbolic Z,-valued inner product can be
written as the direct sum of a nonsingular module and V4, where V4 is a submodule with
trivial inner product. It is obvious that a nonsingular inner module over Z4 must be free
and so isomorphic to nH for some integer n.

Definition 5.6. Let V = nH @ V4 be an orthogonal decomposition of V, the inner
product on V; vanishes. For each quadratic function ¢ on V, we denote by

A(¢)

0-(925) = 8" . iVUI

6 {O,i].} = Zg

the Arf invariant of ¢.
We say that ¢ is of type I(/[]) if 2¢ # 0(2¢ = 0).
If ¢ is of type I, denote by €(¢) € Zj:

e(¢)=1ifthereisanz € V s.t. f(z) =1+ andz-V =0
€(¢) = 0 otherwise

Obviously a form on V4 is a homomorphism. Up to isomorphism there are only the
following types(Vp # 0):

0:Vo— Q/Z the zero homomorphism,
h:Vo—=Q/Z 2h#0,
W Vo—Q/Z h#0and 2h =90

It is easy to check:
(1): 0= DA
(2): POR=h®h=dDh
(3 @O gD # S DN
4 dBO£ P DA
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(4) holds as both sides have different € invariants. The second inequality of (3) holds since
they have different types. Consequently we have a complete list of all possible quadratic
functions on V, where V. =nH & Z7"' & Z7'*, m, > 1.

1 ®(n—1)po® (h) = 2@ (n—1)do @ (h) = neo ® (h),
¢ ® (n — 1)do @ (R') = neo @ (h'),

?1(]50 @ (0)1

¢2 @ (n — 1)¢o & (0),

1@ (n—1)do @ (0) = ) B (n — 1)go @ ('),

Therefore we obtain that

Proposition 5.7. Let V be a hyperbolic Z,-module. Then Q/Z-valued quadratic forms
on V are isometric if and only if they have the same lype, Arf invariant o and the ¢
invariant.

Let us consider the classification of the quadratic functions on V which factors
through the inclusion Z, — Q/Z. Note that such quadratic functions are the composition
of quadratic functions over Z,-vector space V & Z, and the reduction homomorphism
p:V = V®Z, By the classical result of Arf-invariant it follows that:

Proposition 5.8. Let V be a nonsingular diagonal zero inner module over Zy. Then
there are ezactly two Zq-valued quadratic functions detected by the classical Arf invariant
of the factors on'V @ Z,.

Suppose that j(z-y) = 0 if z or y is of order 2. Note that the bilinear form p defined
in §1 satisfies this property. Therefore the nonsingular part of V is isomorphic to ZJ* for
some m.

Proposition 5.9. Let V =nH @& Vi be an inner module over Zy4, where V5 # 0. Then
there are exactly three Zq-valued quadratic funclions on V as the follows:

d0®0,4 D0, DPE=E S Do,

where ¢o, o1 have Arf invariants 0,1 respectively. ¢ is a nonzero linear function on V.
Consequently the proof of Theorem 1.12 follows readily.
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