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Introduction

The idea of the existence of the non-commutative algebraic geometry was
mostly inspired by physics. This paper is aimed to present categorical ap-
proach to the problem and to compare different approaches to quantization
from this point of view.

We will try to trace the route from general settings to concrete details on
the example of projective spaces.

Here we consider non-commutative counterpart only of the classical alge-
braic geometry, that is, the geometry of smooth compact algebraic varieties
over the field C.

Briefly speaking non-commutative geometry is the following. Instead of
smooth complete projective variety X one has to consider the (bounded)
derived category D%, (X) of the category of coherent sheaves on X. Then,
one needs to describe natural categorical properties of the class of all such
categories.

The main principle of non-commutative algebraic geometry can be for-
mulated as following:

A non-commutative algebraic variety is any category D, which satisfies
all the natural properties of Db, (X) for commutative varieties X.

[t is possible to put sufficiently many restrictions on categories D to obtain
the classification problem of the same rigidity as in algebraic geometry, in
the sense that only finitely dimensional families of these structures will arise.
In the meantime, there seemingly exist no natural categorical restrictions
to pose on a category in order to distinguish exactly the class of derived
categories of coherent sheaves on smooth projective varieties. This is the
main reason for non-commutative geometry to be mathematically justified.

Last remark about the general settings. We consider here categories
without tensor structures. Objects like Yang-Baxter operators and quan-
tum groups do not appear in this paper. The reason is that a variety is
essentially determined by a triangulated structure of the derived category
of coherent sheaves on it. Therefore, it is natural to divide the investiga-
tion of non-commutative geometry into two parts: homological properties of
categories and proper tensor structures on them.



1 Non-commutative deformation procedures.

In this chapter we briefly outline main approaches to the problem of non-
commutative deformations of algebraic varieties.

For functions on a usual variety the commutativity condition fg = ¢f is
valid. Variety itself can be locally considered as a spectrum of the algebra of
functions:

X = UU;, where U; = SpecOy,.

Here Oy, are algebras of functions on open subsets U;, which cover X.

The first idea to construct non-commutative variety was to substitute Oy,
by non-commutative algebras A;, then, to consider non-commutative spectra
‘Spec’A; and to try to glue them together. Numerous problems arise on this
way: it is complicated to construct the localizing classes, Noether properties
are hard to prove for concrete algebras, etc.

In the case of non-commutative projective plane Pg there essentially exists
only one ‘open set’ on it, which is a complement to an elliptic curve [BP].

Next idea was to consider the abelian category Sh.,p X of coherent sheaves
on X instead of Oy.

If X is a smooth projective variety then there is Serre’s description of
Shen X by the following equivalence.

Let f: X — P™ be a smooth embedding of a projective variety X into
the projective space P". Denote by O(1) antitautological sheaf on P™ and
by Ox(1) = f*O(1) its restriction to X.

For a graded associative algebra A denote by ProjA a quotient category
of right finitely generated graded A-modules by the subcategory of finite
modules.

Theorem(Serre).[S] Let A = 3~ H%(X,Ox (7)) be the graded coordinate
algebra of X(which is commutative).
Then the category Sh.,xX is equivalent to the category ProjA.

One may consider a graded non-commutative algebra A with ‘good’ prop-
erties and regard ProjA as a category of sheaves on a non-commutative al-
gebraic variety.



If X = P* = P(V) is a projective space, which is a projectivization
of the vector space V, then A = S*(V*) is a symmetric algebra of the
dual vector space. A is an algebra with quadratic commutativity relations.
This relations can be considered as n{n+1)/2-dimensional subspace S?(V*)
in (V*) ® (V*). Deforming this subspace in (V*) @ (V*) one obtains non-
commutative quadratic algebras, hence, non-commutative deformations of
projective spaces.

The notion of ‘good’ algebras in this situation was introduced by Artin-
Shelter{AS] under the name of regular algebras. In the paper [ATV] of Artin-
Shelter-Van-den-Bergh regular algebras have been described in the case of 3
generators and 3 quadratic relations, which correspond to non-commutative
projective planes.

Two questions naturally arise here:

i) does any non-commutative deformation of the category of coherent
sheaves on the projective space can be obtained by this ‘grading deformation’
procedure?

i1) do different algebras A give different deformations of the category?

The answer on the first question is affirmative, at least infinitisimally. The
point is that tangent vector to a one-parameter family of a non-commutative
defoirmations of D%, (P(V)) is given by a global Poisson bracket on it. The
tangent vector to a one-parameter family of ‘good’ formal quadratic defor-
mations of the algebra S*(V*) is given by a quadratic Poisson bracket on
V. We will show that any Poisson bracket on P(V) can be lifted up to a
quadratic one on V.

The answer to the second question is already negative in the case of non-
commutative projective planes. These planes compose a two-dimensional
connected family, for which the commutative plane is a singular point (due
to big automorphism group). For a generic point of the family there are 9
different regular algebras presenting the same category.

Next step towards abstract nonsense is to consider the derived category
Db, (X) of coherent sheaves on X. It is a triangulated category. Deformation
theory for triangulated categories gives the following description of infinitisi-
mal deformations of a category D. The tangent vector to a 1-parameter fam-
ily of deformations belongs to Ext%_ ;(id,id) = 0, where Ext-groups aretaken
in the category of functors from D to itself, and id is the identity functor. All
obstructions to formal deformations lie in the group Ext}_ p(id,id). Precise
formalism concerning extention groups in the category of functors (as well,
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as other invariants of triangulated categories) will be given elsewhere.
Computations for the category D%, (X) give the following result:

Theorem. Let D = D, (X) be the derived category of coherent sheaves
over a smooth projective algebraic variety X. Then:

Ext}_p(id,id) = @ipjoe H (A Tx),
where (AjTX) is the j-th exterior power of the tangent bundle T'x) on X.

In the case of projective spaces (quadrics, grassmanians and some other
varieties) there exist an equivalence D?, (P") ~ D*(mod — A) with the de-
rived category of right modules over a finite dimensional algebra A ([Ba],[Bon]).

This allows to construct deformations of the category by taking deforma-
tions of the algebra. Deformations of this kind give all formal deformations
of the category (due to general deformation theory, briefly described above).
As a result one obtains that the tangent cone to formal non-commutative
deformations coincides with the set of Poisson brackets on the projective

space.

2 Properties of categories

The following property of D° ,(X) has been proved in [BK].

Theorem. If X is a smooth projective variety over C, then D%, (X) is
saturated, i.e. any exact functor from D, (X) to the category D°(Vect),
the derived category of vector spaces over C, is representable.

The same property has the category D®(mod — A), the derived category
of right modules over an algebra A of finite projective dimension. Main
characteristics of a variety (like Kodaira dimension) are defined by means
of its canonical class. Its incarnation for the derived category of coherent
sheaves is the so called Serre functor, introduced in {BK].

Definition. Let D be a triangulated category with finite-dimensional
Hom’s. A covariant additive functor F': D — D, which commutes with the



translation functor, is called a Serre functor if it is a category equivalence
and there are given bi-functorial isomorphisms

ag : Hom(E, G) ~ Hom{G, F(E))*
for any pair E, G of objects in D.

If X is a smooth projective algebraic variety, n = dimX, D = Db, (X)

and Kx the canonical class of X, then the functor (—) @ Kx[r] is a Serre
functor on D in view of the Serre-Grothendieck duality:

Ext'(F,G) = Ext" (G, F ® Kx)*.

Proposition.[BK] If a triangulated category is saturated, then a Serre func-
tor exists and is unique up to canonical functor isomorphism.

Serre functor is a powerful tool for investigation of triangulated categories.

It is widely known that there exist abelian categories which have equiv-
alent derived ones. Examples of such equivalence between the derived cate-
gories of coherent sheaves over some varieties and of right modules over some
finite dimensional associative algebras can be constructed by means of the
theory of exceptional collections (cf. [Bon]). Thus, one can construct a lot of
t-structures (see [BBD]) in a triangulated category, by various identifications
of the category with derived ones. But the ¢-structure, which appears as a
result of identification with D% ,(X) has an advantage of being compatible

coh
with the Serre functor in the category.

Definition. A ¢-structure (DS, D2°) is called a geometric t-structure if
there exist an integer n, such that the functor S = F[—n] (a composition of
the n-fold iteration of the translation functor with the Serre functor) preserves
the t-structure:

SD° c D=°,5D2° c D2°

Definition. A non-commutative variety is a saturated triangulated cat-
egory D with a geometric t-structure. The number n from the definition of
a geometric ¢-structure is called the dimension of D.



If D= D, (X) for a smooth compact algebraic variety X, then S is the
functor of twisting by canonical class K{x. Hence, it preserves the natural
t-structure in D.

It would be nice to understand to which extend various geometric oper-
ations (like blowing up, ramifed covering, etc.), used for construction of new
varieties, can be generalized to a non-commutative case.

It is interesting question even in the case of D = D%, (X) to describe all
geometric {-structures on it. T will mention here only that there exist the
unique, up to auto-equivalence of the category, geometric t-structure on a
Fano variety, and it is not the case generally.

3 Quadratic deformations.

In this chapter we consider formal deformations of the polynomial algebra
A = S§*(V*) over a vector space V, dimV = n + 1 in the class of graded
associative algebras:

A=A dAIDASD ...,

Ao =k, A = V",

with fized dimensions of the spaces A;. Our purpose will be a description of
the tangent cone to such deformations.

First, using the semi-continuity arguments for dimensions of A; in the
case of quadratic algebras, it is easy to show that locally near S*(V*) the
algebras A should be quadratic up to the k-th component, for arbitrary k.
Therefore, when A is a formal deformation of S*(V*), it has to be quadratic.

Let A(t) be a formal quadratic deformation of the algebra S*(V*). Denote
by I(t) the space of quadratic relations for A(t), dim/(t) = 1("—;11, where
dimV =n+1.

One has the following short exact sequence:

0= I() = V'QV* - Ay(t) - 0,

where the last map is defined by multiplication in A(%).
For t = 0 it takes the form:

0 AV S V@V = 82V =0,



The tangent space to the grassmannian G(ﬂﬁ;—ll, V*®V*) at the point A2V*
is well known to be isomorphic to Hom(A2V*, §2V*) = S?V* @ A?V. This
space is naturally identified with quadratic bivector fields on V.

Theorem. Let A be a graded Koszul algebra [Man]. Then for any integer
s > 1 and for any local deformation A(t), with A(0) = A, dimA;(t) = A;, for
i < 3, there exist a neighbourhood U of the zero, such that A(t), for t € U,
is a Koszul algebra up to s-th component, and dimA;(t) = A;, for 1 < s.

Corrolary. Any formal graded deformation of a graded Koszul algebra,
which preserves dimensions of the first three grading components, is Koszul
and preserves dimensions of all the components.

Proof. If one consider formal deformations instead of local ones , one
can pass to infinity by k in shrinking an open set U in the theorem.

Let us consider the algebraic subscheme @ of the Grassmanian G’(l("z—“)-, V*®
V*), which set theoretically is a locus of subspaces I in V* @ V* with the
following equality satisfied:

dimV*@ VvV V" )
> dimS3V*.
Tevy+(v-en ="

In view of the corollary the formal germ of this scheme at the point A2V*
coincides with formal deformations of S*V™*.

Theorem. The local ring of the scheme @ at the point A*V* has no
nilpotents. The tangent cone coincides with the set of Poisson brackets on

V.

4 Poisson brackets on projective spaces.

Let X be a complete projective variety over a field of characteristic zero.

Consider the sheaf of graded algebras A*T’x, which is an exterior algebra
of the tangent vector bundle T'x on X. Elements of A*Ty are called multi-
vectors. There is a graded Lie algebra structure on A*Tx called Schouten-
Nijenhuis bracket. )



Let A, B be a pair of multivectors on X of degree n and m respectively.

Definition. A Schouten-Nijenhuis bracket [A, B] of A and B is a multi-
vector of degree n + m — 1 defined by the formula:

i([4, B))w = (=1)" i A)di(B)w + (—1)*(B)di(A)w — i(AB)dw,

where w is an (n +m — 1)-differential form, 7(e) is an operator of internal
product and d is the differential in the algebra of forms.

Definition. A Poisson bracket on X is a bivector P € A?Ty, which
satisfies the equation:

[P,P]:U,

P determines a structure of a Poisson algebra on the sheaf of functions. If
P is locally defined by the formula:

0 a
P= Zpija_xl_ A EF

then for a pair (f, g) of local functions on X one can define a Poisson bracket

by the formula: 5
=Y ps f g Of Og
{f,g} B ptj(ax,' am_,' B:z:j 6:1:,)

Let us consider the projective space P* = P(V), where V is a complex
vector space of dimension n + 1 with coordinates §;, z = 0,...,n. Denote
by p: V\0 — P(V) the natural projection. The following is an invariant
description of the ‘computations in homogeneous coordinates’.

Let T be the tangent vector bundle on P(V') (which we identify with the
coherent sheaf of its sections), let £ = Efi-a% be the Euler vector field on
V'\ 0, let 7y be the sheaf vector fields on V' \ 0, which are homogeneous of
degree zero (in other words, fields which commute with the Euler field).

Let us consider the pull backs p~'O, p~™'T along p of the sheaves of
functions and vector fields on the projective space (the pull back is taken as
one of the sheaves of abelian groups, not coherent sheaves).



We have the following short exact sequence of sheaves on V' \ 0
0-p'0O—-To—-p'T—0 (1)

Here an imbedding p~'O — 7; is defined by the exterior multiplication
with the Euler field E. The projection Ty — p~!T exists, because Ty consists
of fields, which are constant along the fibers of p.

Pushing forward the sequence (1) along p to P(V') one obtains the well
known Euler short exact sequence of coherent sheaves on P(V):

0-0->VRO1U) =T —0 (2)

Thus, (1) may be concidered as a homogeneous incarnation of the Euler
sequence.
Taking exterior powers of (1) one obtains the exact sequence:

0— p T (AT'T) — (A'T)o — p~H(A'T) - 0,

where A'E is the i-th exterior power of a vector bundle E, and (E)o is a
sheaf of zero degree sections of a vector bundle on V'\ 0 with a natural action
of the Euler field.

Let P be a Poisson bracket on an algebraic variety X, 1.e. P is the global
section of the A*Tx, with [P, P] = 0 as a global section of A®Ty.

By Koszul [Kos| the Schouten-Nijenhuis bracket can be locally defined by
the formula:

[u,v] = (=1)?(D(uv) — D(u)v — (=1)PuD(v)), degu = p, (3)

where D is a differential operator on A*Tx of degree —1 and order 2. This
operator D is determined by a torsion free connection V on 1'x. After fixing
V the operator has a form:

in arbitrary local coordinates {z;}. In fact, D is determined by means of the
action of V on the higher exterior power A™T'x, where m = dimX.

For X = V \ 0 one has natural trivialization of the tangent bundle. For
this trivialization the operator D is defined in the homogeneous coordinates

by the formula: 5
D= d¢;
2 a9 ®L
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8%_ acts on @ = Ef](f)a—% (I is a multiindex) by derivation of fy, and d¢;
acts by convolution with a%I(here I is a multyindex).
For a Poisson bracket £ on V '\ 0 one has the identity:

D(PAP)—2D(PYANP =0. (4)

Now we would like to compare Poisson brackets on P(V) with quadratic
Poisson bracket on V, that is, Poisson brackets with coeffitients being a
homogeneous quadratic functions on £;. This brackets are exactly those of
degree zero with respect to the action of the Euler field.

First, quadratic Poisson brackets on V' are in one-to-one correspondence
with quadratic Poisson brackets on V \ 0. The correspondence is given by
its restriction on V' \ 0 in one direction and by trivial extention on V in the
opposite direction.

Let P € H°(AT) be a global vector field on P(V). It may be considered
as a section of p7}(A*T') on V \ 0. There exists a lifting of P along the

mapping
(A%T)o — p~'(A%T).
Indeed, by pushing forward along p to P(V) one has:
HY(V\0,p~'(T)) = H'(P(V),T) = 0.

Let P € HO(A®T), be a lifting of P. In homogeneous coordinates P takes a

form:
N s, 3]
Eau‘shgiafi a{}
P is a Poisson bracket if and only if
PS*[Paf)] = 03

where pa. : (A3T)y — A®T is a natural projection. It follows from the
following fact, which can be easily checked locally:

Lemma. Let f: U — V be a smooth map of two smooth varieties. Let
A, B be a pair of multivectors on V such that there exist liftings A, B of them
along f. Then Schouten bracket commutes with f in the following sense:

[A, Blv = f.[A, Bly
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(obviously, f. exists).
The kernel of ps. is generated by fields of the form:

F=EAG,

where E is the Euler field, G belongs to H°(A*T),.
Short exact sequences (4) can be glued in a long exact sequence of sheaves(and,
analogously, of its global sections):

0— Oy — To— ATy = ATy — ... (5)

where differential Dg is the multiplication by the Euler field:Dg(P) = EAP.
Thus, the restriction on P which defines a Poisson bracket on P(V), has

the form:
Dg(D(P AP)—2P AD(P)) =0 (6)

Lemma. In the complex (5) one has:
DD+ DDg = (TI. + l)id,

where id is the identity operator.

Certainly, any quadratic Poisson bracket on V' \ 0 projects into a Poisson
bracket on P(V). This fact is simply a specification of symplectic reducton
for Poisson brackets in the case of the map p: V\ 0 — P(V).

Infinitisimal version of the first question posed in the introduction sounds
as follows: .

Does there exist a lifting of a Poisson bracket on the projective space to
a quadratic Poisson bracket on V?

Theorem. Let P € A?T be a Poisson bracket on P(V). There exists a
unique lifting P of it to a Poisson bracket on V with properties:

i) LgP =0,

i)y DP =0

(Lg is a Lie derivative along F).

Proof. Consider the complex of the global sections of the sequence (5) :

0o ko VOV - STV @AW - .. (7)
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which is an exact sequence. Recall that the operator D is also a differential in
(7) (D* = 0), which decreases the grading, i.e. acts in the opposite direction
to Dg.

It easily follows from the lemma that any element P € H°((A*T)o) =
S?V* ® A?V can be uniquely decomposed into a sum: P = Q 4+ R, where
D@ = 0,DpR = 0. A lifting of any bivector field on a projective space is
determined up to adding by an element R, such that DgR = 0. Hence, for
any P € H°(P(V), A*T) there exists unique P, such that P is projecting
into P and DP = 0.

Since P is a Poisson bracket one deduces from (6):

DeD(P A P)=0.

Applying the operator D to this equality and using the lemma one obtains:

DDED(PAP)=(n+1)D(PAP)—DgD*(PAP)=(n+1)D(PAP)=0.

Therefore,

[P,P]= D(PAP)—-2D(PYAP =0.
QED

Quadratic Poisson bracket is an element of S?V* @ A?V. As a GL(V)-
module this space can be decomposed (if n > 2) into a direct sum of two
components - indecomposable representations of GL(V) with Young dia-
grams (3,1) and (2,1,1). The decomposition, which was mentioned in the
proof of the theorem coincides with the decomposition of a tensor into these
two invariant summands (though it also exists on a local level).

In the case of P! there is only one trivial Poisson bracket on it and a
3-dimensional space of the quadratic ones:

5 . w0 0
P = (at” 4 bén + cy )85 A an
In the case of P2, any global section of A?T ~ (O(3) (thus, a cubic form)
determines a Poisson bracket on P2, since AT = 0.
Quadratic Poisson bracket P can be decomposed into the sum : P =
@ + R, where DQ = 0,DgR =0. Put G = DR, f = DgQ. G is a non-
divergent linear vector field and f, is a cubic form. One can easily see that
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the Poisson equations (4) is equivalent in this case to tlie property that f
is vanished by the Lie action of the field G. There is no such a fields for a
generic cubic form on three variables. This means, that for a generic Poisson
bracket on P? there exist the only lifting to a quadratic Poisson bracket,
namely, the one described in the theorem.

Non-trivial Poisson brackets on P? are of rank 2 in the sense that rank
of a bracket as a bilenear form on the cotangent space at a generic point is
equal to 2.

It is usuful to study Poisson brackets of rank 2 by means of algebraic
geometry. One can corresponde to a rank 2 Poisson bracket a rank 2 reflexive
sheaf on P™. In this way one obtains an effective description of rank 2 Poisson
brackets.

Let me state at the end a conjecture about degeneracy loci of a Poisson
bracket on a Fano variety.

Conjecture. Let X be a Fano variety. Denote by Xj:
Xy = {z € X,(rank of the bracket at z) = k}.
Then X has a component of dimension more than k.

For the case k = n — 3, n odd, where n = dimX, this fact can be proved
with using of Bott’s theorem on homological obstructions to integrability of a
subbundle in the tangent bundle. There are also some evidence of examples,
which come from physics (Sklyanin algebras).
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