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Introduction

The idea of the existence of the non-coffilnutative algebraic geometry was
mostly inspired by physics. This paper is aimed to present categorical ap­
proach to the problem allel to compare different approaches to quantization
from this point of view.

We will try to trace the route from general settings to concrete details on
the exalnple of projective spaces.

Here we consider non-commutative counterpart only of the dassical alge­
braic geometry, that is, the geometry of smooth cOlnpact algebraic varieties
over the field C.

Briefly speaking non-commutative geometry is the following. Instead of
smooth complete projective variety X one has to consider the (bounded)
derived category D~oh(X) of the category of coherent sheaves on X. Then,
one needs to describe natural categorical properties of the dass of all such
categories.

The main principle of non-coIllmutative algebraic geometry can be for­
mulated as following:

A non-commutative algebraic variety is any category D} which satisfies

a// the natural properties 0/ D~oh (X) for co'mmutative varieties X.

It is possible to put sufficiently many restrietions on categories D to obtain
the dassification probleIll of the same rigidity as in algebraic geornetry, in
the sense that only finitely dimensional families of these structures will arise.
In the meantime, there seemingly exist no natural categol'ical restrictions
to pose on a category in order to distinguish exactly the dass of derived
categories of cohel'ent sheaves on smooth projective varieties. This is the
main reason for non-coffilnutative geometry to be nlathenlatically justified.

Last relnark about the general settings. We consider here categories
without tensor structures. Objects like Yang-Baxter operators and quan­
tum groups do not appeal' in this paper. The reason is that a variety is
essentially detennined by a triangulated structure of the derived category
of coherent sheaves on it. Therefore, it is natural to divide the investiga­
tion of non-commutative geometry into two parts: homological properties of
categories and proper tensor structures on them.
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1 Non-commutative deformation procedures.

In this chapter we briefly outline main approaches to the problem of 11011­

commutative deformations of algebraic varieties.
For functions on a usual variety the commutativity condition /g = 9/ is

valid. Variety itself can be locally considered as a spectruIl1 of the algebra of
functions:

Here V Ui are algebras of functions on open subsets Ui , which cover X.
The first idea to construct non-commutative variety was to substitute V Ui

by non-commutative algebras Ai, then, to consider non-comlTIutative spectra
'Spec'A i and to try to glue them together. Numerous problems arise on this
way: it is complicated to construct the localizing classes, Noether properties
are hard to prove for concrete algebras, etc.

In the case of non-commutative projective plane p~ there essentially exists
only one 'open set' on it, which is a complernent to an elliptic curve [EP].

Next idea was to consider the abelian category ShcohX of coherent sheaves
on X instead of V x .

If X is a slTIooth projective variety then there is Serre's description of
ShcohX by the following equivalence.

Let f : X -+ pn be a smooth embedding of a projective variety X into
the projective space pn. Denote by 0(1) antitautological sheaf on pn and
by Vx(l) = /·0(1) its restrietion to X.

For a graded associative algebra Adenote by Proj A a quotient catcgory
of right finitely generated graded A-modules by the subcat~gory of finite
modules.

Theoren1(Serre).[S] Let A = L HO(X, Ox(i)) be the graded coordinate
algebra of X(which is commutative).

Then the category ShcohX is equivalent to the category ProjA.

One Inay consider a graded non-commutative algebra A with 'good' prop­
erties and regard ProjA as a category of sheaves on a non-commutative al­
gebraic variety.
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If X = pn = P(V) is a projective space, which is a projectivization
of the vector space l/, then A = S-(l/*) is a symmetric algebra of the
dual vector space. A is an algebra with quadratic commutativity relations.
This relations can be considered as n(n+I)/2-din1ensional subspace S2(V*)
in (V*) 0 (l/*). Deforming this subspace in (V*) 0 (V*) one obtains non­
commutative quadratic algebras, hence, non-commutative deformations of
projective spaces.

The not ion of 'good' algebras in this situation was introduced by Artin­
Shelter[AS] under the name of regular algebras. In the paper [ATVl of Artin­
Shelter-Van-den-Bergh regular algebras have been described in the case of 3
generators and 3 quadratic relations, which correspond to non-commutative
projective planes.

Two questions naturally arise here:
i) does any non-commutative deformation of the category of coherent

sheaves on the projective space can be obtained by this 'grading deformation'
procedure?

ii) do different algebras A give different deforn1ations of the category?
The answer on the first quest ion 1S affirmative, at least infinitisimally. Thc

point is that tangent vector to a one-paralneter family of a non-commutative
defoirmations of D~oh (P(V)) is given by aglobai Poisson bracket on it. Thc
tangent vector to a one-paralneter fan1ily of 'good' fonnal quadratic defor­
mations of the algebra S-(l/*) is given by a quadratic Poisson bracket on
V. \,ye will show that any Poisson bracket on P(V) can be lifted up to a
quadratic one on V.

The answer to thc second question is already negative in the case of non­
commutative projective planes. These planes compose a two-diInensional
connected falnily, for which the comnuItative plane is a si ngular point (due
to big autolnorphism group). For a generic point of thc falnily there are 9
different regular algebras presenting the same category.

Next step towards abstract nOl1sense is to cOl1sider the derived category
D~oh (X) of coherent sheaves on X. It is a triangulated category. Deformation
theory for triangulated categories gives the following description of infinitisi­
mal deformations of a category D. The tangent vector to aI-parameter fam­
ily of deformations belongs to Exth_D(id, id) = 0, where Ext-groups aretaken
in the category of functors from D to itself, and id is the identity functor. All
obstructions to fonnal deformations lie in the group Ext1_D(id, id). Precise
fonnalism concerning extention groups in the category or functors (as weIl,
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as other invariants of triangulated categories) will be given elsewhere.
Computations for the category D~h (X) give the following result:

Theorem. Let D = D~oh(X) be the derived eategory of coherent sheaves
over a smooth projeetive algebraic variety X. Then:

where (fi..JTx) is the j-th exterior power of the tangent bundle Tx ) on X.

In the ease of projective spaces (quadries, grassmanians and S001e other
varieties) there exist an equivalence D~oh(pn) ~ Db(mod - A) with the de­
rived eategory of right modules over a finite dimensional algebra A ([Ba],[Bon]).

This allows to construct defonnations of the eategory by taking deforo1a­
tions of the algebra. Deformations of this kind give all formal deformations
of the category (due to general deformation theory, briefly deseri bed abovc).
As a result one obtains that the tangent eone to fonnal non-commutative
deformations coincides with the set of Poisson brackets on the projective
spaee.

2 Properties of categories

The following property of D~oh(X) has been proved in [BK].

Theorem. lf X is a smooth projective variety over C, then D~oh(X) is
saturated, i.e. any exaet funetor from D~oh (X) to the eategory Db(V ect ),
the derived category of vector spaces over C, is representable.

The same pl'operty has the category ,Db(mod - A), the derived category
of right modules over an algebra A of finite projective dimension. Main
characteristics of a variety (like Kodaira dimension) are defined by means
of its canonical dass. Its incarnation for the derived category of eoherent
sheaves is the so ealled Serre funetor, introdueed in [BK].

Definition. Let D be a triangulated eategory with finite-dimensional
Hom's. A eovariant additive funetor F : V ---+ V , whieh commutes with the
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translation functor, is called a Serre funclor if it is a category equivalence
and there are given bi-functorial isomorphislns

CiE,G : Honl(E, G) ~ Hüm(G, F(E))*

für any pair E, G üf objects in D.

If X is a smooth projective algebraic variety, 12 = dirnX, 'D = D~oh(X)

and !(x the canonical dass of X, then the functor (-) 0 !(x [n] is a SeITe
functor on 'D in view of the Serre-Grothendieck duality:

Proposition.[BK] If a triangulated category is saturated, then a Serre func­
tor exists and is unique up to canonical functor isomorphism.

Serre fnnctor is a powerful tool for investigation of triangulated categories.
It is widely known that there exist abelian categories which have eqniv­

alent derived ones. Examples of such equivalence between the derived cate­
gories of coherent sheaves over some varieties and of right modules over some
flni te dinlensional associative algebras can be constructed by means of the
theory of exceptional collections (cL [Bon]). Thus, one can construct a lot of
t-structures (see [BBD]) in a triangulated category, by various identifications
of the category with derived ones. But thet-structure, which appears as a
result of identification with D~oh(X) has an advantage of being compatible
with the Serre functor in the category.

Definition. A t-structure (D~O, D?O) is called a geometrie t-struetu1~e if
there exist an integer 11, such that the functor S = F[-n] (a eomposition of
the n-fold iteration of the translation functor with the Serre functor) preserves
the t-strueture:

SD~O C D~o, SD?o C D~o

Definition. A non·colnmutative variety is a saturated triangulated cat­
egory D with a geometrie t-structure. The number 12 {roln the definition of
a geometrie t-structure is ea.lled the dimension of D.
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If D = D~h (X) for a smooth compact algebraic variety X, then S is the
functor of twisting by canonical dass !(x. Hence, it preserves the natural
t-structure in D.

lt would be nice to understand to which extend various geoIl1etric oper­
ations (like blowing up, ramifed covering, etc.), used for construction of new
varieties, can be generalized to a non-COffilnutative case.

lt is interesting question even in the case of D = D~oh (X) to describe all
geollletric t-structures on it. Twill mention here only that there exist the
unique, up to auto-equivalence of the category, geonletric t-structure on a
Fano variety, anel it is not the case generally.

3 Quadratic deformations.

In this chapter we consider formal deformations of thc polynomial algebra
A = S·(V*) over a vector space V, dirnV = n + 1 in the dass o[ graded
associative algebras:

A = Ao EB Al EB A2 EB ... ,

Ao =k,A1 =V*,

with fixed dimensions of the spaces Ai, Our purpose will be a description of
the tangent cone to such defonnations.

First, using the semi-continuity arguments for dimensions of Ai in the
case of quadratic algebras, it is easy to show that locally near S·(V*) the
algebras A should be quadratic up to thc k-th component, for arbitrary k.
Therefore, when A is a formal deformation of S·(V*), it has to be quadratic.

Let A(t) be a formal quadratic deformation of tbe algebra S·(\/*). Denote
by !(t) the space of quadratic relations for A(t), dinl!(t) = n(n

2
+1) , where

dimV = n +1.
One has the following short exact sequence:

o--+ !(t) --+ V* 0 V* --+ A2(t) --+ 0,

where the last map is defined by multiplication in A(t).
For t = 0 it takes the form:
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The tangent space to the grassmannian G( n(nil) , Y* ~Y*) at the point A2y*
is well known to be isomorphie to Hom(A 2y*, S2y*) = S2V· ~ A2 V. This
space is naturally identified with quadratic bivector fields on V.

Theorem. Let A be a graded Koszul algebra [Man]. Then for any integer
s ~ 1 and for any local deformation A(t), with A(O) = A, din1Ai(t) = Ai, for
i ~ 3, there exist a neighbourhood U of the zero, such that A(t), for t E U,
is a Koszul algebra up to s-th component, and dimAi(t) = Ai, for i ~ s.

Corrolary. Any formal graded deforInation of a graded Koszul algebra,
which preserves dimensions of the first three grading components, is Koszul
and preserves dirnensions of all the components.

Proof. lf one consider formal deformations instead of Iocal oues , one
can pass to infinity by k in shrinking an open set U in the theoren1.

Let us consider the algebraie subscheme Qof the Grassmanian G( n(~+l), V·~

Y·), which set theoretically is a locus of subspaces 1 in Y· ® V* with the
following equality satisfied:

In view of the corollary the fonl1al genn of this scheme at the point A2V*
coiucides with forI11al deformations of se V*.

Theorem. The local ring of the scheIne Q at the point A2V· has no
nilpotents. The tangent cone coincides with the set of Poisson brackets on
V.

4 Poisson brackets on projective spaces.

Let X be a complete projcctive variety over a field of characteristic zero.
Consider the sheaf of graded algebras AeTx , which is an exterior algebra

of the tangent vector bundle Tx on X. Elelnents of AeTx are called muIti­
vectors. There is a gradcd Lie algebra structure on AeTx called Schouten­
Nijenhuis bracket.
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Let A, B be a pair of Illultivectors on X of degree n and 1n respectively.

Definition. A Schouten-1Vijenh1lis bracket [A, B) of A and B is a Inulti­
vector of degree n +m - 1 defined by the formula:

i([A, B))w = (-I)nm+mi(A)di(B)w + (-I)ni(B)di(A)w - i(AB)dw,

whcre w is an (n +m - 1)-differential form, i(.) is an operator of internal
product and d is the differential in the algebra of forms.

Definition. A Poisson bracket on X is a bivector P E A2Tx , which
satisfies the equation:

[P, P) = 0,

P determines a structure of a Poisson algebra on the sheaf of functions. If
P is locally defined by the formula:

a 8
P = 'EPij-a 1\ -a'

Xi Xj

then for a pair (/,9) of local functions on X one can define a Poisson bracket
by the formula:

81 8g Bj 89
{!,g}='EPij(-a -8 --a-a ).

Xi Xj Xj Xi

Let us consider the projective space pn = P(V), where V is a complex
vector space of dimension n + 1 with coordinates ~i, i = 0, ... , n. Denote
by P : V \ °-+ P(V) the natural projection. The following is an invariant
description of the 'colnputations in homogeneous coordinates'.

Let T be the tangent vector bundle on P(V) (which we identify with the
coherent sheaf of its sections), let E = L ~i a~i be the Euler vector fielel on
V \ 0, let To be the sheaf vector fields on V \ 0, which are homogeneous of
degree zero (in other words, fields which COlTIIl1ute with the Euler field).

Let us consider the pull backs p-10, p-1T along p of the sheaves of
functions and vector fields on the projective space (the pull back is taken as
one of the sheaves of abelian groups, not coherent sheaves).

8



We have the following short exact sequence of sheaves on V \ 0

o~ p-10 ~ Ta ~ p-1T ~ 0 (1)

Here an imbedding p-l 0 ~ Ta is dcfined by the cxterior multiplication
with the Euler field E. The projection Ta ~ p-1T exists, because Ta consists
of fields, which are constant along thc fibers of p.

Pushing forward the sequence (1) along p to P(V) one obtains thc weIl
known Euler short exact sequence of coherent sheaves on P( V):

o~ 0 ~ V Q9 0(1) ~ T -+ 0 (2)

a
D= L aei 0 dei

Thus, (1) may be concidered as a homogeneous incarnation of the Euler
sequence.

Taking exterior powers of (1) one obtains the exact sequence:

o-+ p-l (Ai-1T) ~ (AiT)o ~ p-l (AiT) -+ 0,

where AiE is the i-th exterior power of a vector bundle E, and (E)o is a
sheaf of zero degree sections of a vector bundle on V \ 0 with a natural action
of the Euler field.

Let P be a Poisson bracket on an algebraic variety X, i.e. P is the global
section of thc A2TX, with [P, PJ = 0 as aglobaI section of A3Tx .

By Koszul [Kos] the Schouten-Nijenhuis bracket can be locally defined by
the formula:

[u, v] = (-1)P(D(uv) - D(u)v - (-l)puD(v)), degu = p, (3)

where D is a differential operator on A·Tx of degree -1 and order 2. This
operator D is determined by a torsion free connection \7 on Tx . After fixing
\7 the operator has a form:

in arbitrary local coordinates {xd. In fact, D is determined by means of the
action of \7 on the higher exterior power AmTx , where m = dimX.

For X = V \ 0 one has natural trivialization of the tangent bundle. For
this trivialization the operator D is defined in the honlogeneous coordinates
by the formula:
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&~i acts on Q' = L f1(~) at (1 is a ITIultiindex) by derivation of /1, and d~i

acts by convolution with 8~I (here I is a multyindex).

For a Poisson bracket P on V \ 0 one has the identity:

D(P 1\ p) - 2D(P) 1\ P = o. (4)

Now we would like to compare Poisson brackets on P(V) with quadratic
Poisson bracket on V, that is, Poisson brackets with coeffitients being a
homogeneous quadratic functions on ~i. This brackets are exactly those of
degree zero with respect to the action of the Euler field.

First, quadratic Poisson brackets on V are in one-to-one correspondence
with quadratic Poisson brackets on V \ O. The correspondence is given by
its restriction on V \ 0 in one direction and by trivial extention on V in the
opposite direction.

Let P E HO(A 2T) be aglobai vector field on P(V). It may be considered
as a section of p-l (A2T) on V \ O. There exists a lifting of P along the
lnapplng

(A 2T)0 -4 p-l(A2T).

Indeed, by pushing forward along p to P(lI) one has:

- '"' kl a a
P = L...J aij~k~l a~i 1\ a~j

P is a Poisson bracket if alld only if

Let P E HO(A 2T)0 be a lifting of P. Tn homogeneous coordinates P takes a

fonn:

where P3* : (A 3T)0 -4 A3 T is a natural projection. It follows from the
following fact, which can be easily checked locally:

Lemma. Let f : U -4 V be a smooth map of two smoüth varieties. Let
A, B be a pair of multivectors on V such that there exist liftings A, jj of then1
along f. Then Schüuten bracket commutes with f in the following sense:

[A,B]v = f*[A,B]u
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(obviously, f. exists).
The kernel of P3* 1S generated by fields of the form:

F = E /\ C,

where E is the Euler field, C belongs to HO(A 2T)o.
Short exact sequences (4) can be glued in a long exact sequence of sheaves(and,

analogously, of its global sections):

(5)

where differential DE is the multiplication by the Euler field:DE(P) = E /\ P.
Thus, the restriction on P which defines a Poisson bracket on P(V), has

the form:
(6)

Lemma. In the complex (5) one has:

DED + DDE = (71. + l)id,

where id is the identity operator.

Certainly, any quadratic Poisson bracket on V \ 0 projects into a Poisson
bracket on P(V). This fact is simply a specification of sYlnplectic reducton
for Poisson brackets in the case of the map P : V \ 0 --+ P( V).

Infinitisimal version of the first question posed in the introduction sounds
as folIows: '

Does there exist a lifting of a Poisson bracket on the projective space to
a quadratic Poisson bracket on V?

Theorem. _Let P E A2T be a Poisson bracket on P(V). There exists a
unique lifting P of it to a Poisson bracket on V with properties:

i) LEP = 0,
ii) DP = 0
(LE is a Lie derivative along E).

Proof. Consider the complex of the global sections of the sequence (5) :

(7)
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which is an exact sequence. Recall that the operator D is also a differential in
(7) (D2 = 0), which deCl'eases the grading, i.e. acts in the, opposite direction
to DE .

It easily follows {roln the lemma that any element P E HO( (A27)0) =
S2V* (SI A2 V can be uniquely decomposed into a sum: P = Q + R, where
DQ = O,DER = O. A lifting of any bivector field on a projective space is
determined up to adding by an element R, such that DER = O. Hence, for
any P E HO(~(V), A2T) there exists unique P, such that P is projecting
into P and DP = O.

Since P is a Poisson bracket one deduces from (6):

Applying the operator D to this equality and using the lemma one obtains:

DDED(P 1\ p) = (n + l)D(P 1\ p) - DED2(P 1\ p) = (n + l)D(P 1\ ,P) = o.

Therefore,
[p, p] = D(P 1\ p) - 2D(P) 1\ P = o.

QED

Quadratic Poisson bracket is an elelnent of 8 2 V* (SI A2 V. As a GL(V)­
Inodule this space can be decomposed (if n ;::: 2) into a direct sun1 of two
components - indecomposable representations of GfL(\!) with Young dia­
grams (3,1) and (2,1,1). The decomposition, whieh was mentioned in the
proof of the theorem coincides with the decomposition of a tensor into these
two invariant summands (though it also exists on a loeal level).

In the case of pl there is only one trivial Poisson bracket on it and a
3-dimensional space of the quadratic ones:

In the case of p2, any global seetion of A2T ~ 0(3) (thus, a cubic form)
determines a Poisson bracket on p2, since A3T = O.

Quadratic Poisson bracket P can be decomposed into the sunl : P =
Q + R, where DQ = O,DER = O. Put G = DR, / = DEQ. G i8 a non­
divergent linear vector field and /, i8 a eubic form. One can easily see that
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the Poisson equations (4) is equivalent in this case to tbe property that f
is vanished by the Lie action of the fielel G. There is no such a fields for a
generic cubic form on three variables. This means, that for a generic Poisson
bracket on p2 there exist the only lifting to a quadratic Poisson bracket,
namely, the one described in tbe theoren1.

Non-trivial Poisson brackets on p3 are of rank 2 in the sense that rank
of a bracket as a bilenear form on the cotangent space at a generic point is
equal to 2.

It is usuful to study Poisson brackets of rank 2 by means of algebraic
geometry. One can corresponde to a rank 2 Poisson bracket a rank 2 reflexive
sbeaf on pn. In this way one obtains an effective description of rank 2 Poisson
brackets.

Let me state at the end a conjecture about degeneracy loci of a Poisson
bracket on a Fano variety.

Conjecture. Let X be a Fano variety. Denote by Xk:

X k = {x E X,(rank 0/ the bracket at x) = k}.

Then X k ha.s a component of dimension more than k.

For the case k = n - 3, n odd, where n = dimX, this fact can be proved
with using of Bott's theorem on homological obstructions to integrability of a
subbundle in the tangent bundle. There are also some evidence of examples,
which come from physics (Sklyanin algebras).
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