Shintani Functions and its application to Automorphic L-Functions on Classical Groups

I. The Case of Orthogonal Groups

By Atsushi Murase and Takashi Sugano

Atsushi Murase	Takashi Sugano
MaxPlanck Institut für Mathematik	Department of Mathematics
Gottfried-Claren-Straße 26	Faculty of Education, Mie University
5300 Bonn 3	Kamihama-cho 1515
Federal Republic of Germany	Tsu 514 Japan
and	
Department of Mathematics	
Faculty of Science	
Kyoto Sangyo University	
Motoyama, Kamigamo	
Kyoto 603 Japan	

[12] J.M. Lee, T.H. Parker, The Yamabe problem, Bull. A.M.S. 17 (1987) 37-91.
[13] J. Lelong-Ferrand, Transformations conformes et quasiconformes des variétés riemanniennes, C.R. Acad. Sci. Paris, 269 (1969) Série A, 583-586.
[14] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, 14 (1962) 333-340.
[15] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom., 6 (1971) 247-258.
[16] R. Penrose, Nonlinear gravitons and curved twistor theory, General Relativity and Gravitation, 7 (1976) 31-52.
[17] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom., 20 (1984) 479-495.
[18] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa, 22 (1968) 265-274.
[19] V.S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice Hall, 1974.
[20] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960) 21-37.

Shintani Function and its Application to Automorphic L-functions on Classical Groups

I. The case of Orthogonal Groups

Atsushi Murase and Takashi Sugano

§0. Introduction

Let H be a connected reductive group with a faithful action on a vector space W .
We suppose that H preserves a non-degenerate symmetric (or skew-symmetric or hermitian) form T of W. Let G be the stabilizer subgroup of an element w_{0} of W in H. For a pair of automorphic forms F and f on H and G respectively, we define a function $\omega_{\mathrm{F}, \mathrm{f}}$ on $\mathrm{H}(\mathbf{A})$ in the following manner:

$$
\begin{equation*}
\omega_{\mathrm{F}, \mathrm{f}}(\mathrm{~h})=\int_{\mathrm{G}(\mathbf{Q}) \mathbf{G G (A)}} \mathrm{F}(\mathrm{gh}) \mathrm{f}(\mathrm{~g}) \mathrm{dg} \quad . \quad(\mathrm{h} \in \mathrm{H}(\mathbf{A})) \tag{0.1}
\end{equation*}
$$

The object of this paper is to study this function, which we call the global Shintani function associated with F and f . Such a function was first introduced by Shintani ([Shi]; cf. [MS1]) for the case where H is the symplectic group of $\mathrm{W}=\mathrm{Q}^{2(\mathrm{n}+1)}$ equipped with the usual alternating form T and $w_{0}=(1,0, \cdots, 0) \in W$. Note that w_{o} is an isotropic vector with respect to T and that G is the Jacobi group of degree n (a semi direct product of the Heisenberg group and Sp_{n}) in this case. Shintani made several interesting conjectures and gave an application of his function to the theory of
automorphic L-functions of Siegel and Jacobi cusp forms.
In a series of the paper, we will study the Shintani function for the case where H is a classical group and w_{0} is an anisotropic vector (hence G is a classical group of the same type as H). We investigate the orthogonal group case in this first part of the paper.

To explain our results, let $\mathrm{H}=\mathrm{O}(\mathrm{m}+1)$ be the orthogonal group of a quadratic space (W, T) of dimension $\mathrm{m}+1$ and G be the stabilizer subgroup of H of a suitable anisotropic vector of W. Then G is an orthogonal group $O(m)$ of degree m. For a pair of cusp forms F and f on $\mathrm{H}(\mathbf{A})$ and $G(\mathbf{A})$, we define $\omega_{\mathrm{F}, \mathrm{f}}$ by (0.1). Let $H=$ $H\left(H\left(\mathbf{Q}_{\mathrm{p}}\right), \mathrm{H}\left(\mathbf{Z}_{\mathrm{p}}\right)\right)\left(\right.$ resp. $\left.H^{\prime}=H\left(\mathrm{G}\left(\mathbf{Q}_{\mathrm{p}}\right), \mathrm{G}\left(\mathbf{Z}_{\mathrm{p}}\right)\right)\right)$ be the Hecke algebra of $\mathrm{H}($ resp. G$)$ at a finite prime p. Let $\omega_{F, f}^{(p)}$ denote the restriction of $\omega_{F, f}$ to $H\left(Q_{p}\right)$. If both F and f are Hecke eigenforms and if p is a good prime, then $\omega=\omega_{\mathrm{F}, \mathrm{f}}^{(\mathrm{p})}$ has the following property:

$$
\begin{align*}
& \left(\varphi_{p} * \omega * \Phi_{p}\right)\left(h_{p}\right):=\int_{G_{p}} d x_{p} \int_{H_{p}} d y_{p} \varphi_{p}\left(x_{p}\right) \omega\left(x_{p} h_{p} y_{p}^{-1}\right) \Phi_{p}\left(y_{p}\right) \tag{0.2}\\
& \\
& \quad=\lambda_{p}\left(\varphi_{p}\right) \Lambda_{p}\left(\Phi_{p}\right) \omega\left(h_{p}\right) \quad\left(h_{p} \in H\left(Q_{p}\right), \Phi_{p} \in H, \varphi_{p} \in H^{\prime}\right) .
\end{align*}
$$

Here $\Lambda_{\mathrm{p}} \in \operatorname{Hom}_{\mathbf{C}}(H, \mathbf{C})$ (resp. $\lambda_{\mathrm{p}} \in \operatorname{Hom}_{\mathbf{C}}\left(H^{\prime}, \mathbf{C}\right)$) is determined by the local component Π_{p} (resp. π_{p}) of the automorphic representation Π (resp. π) assocated to F (resp. f). The space of \mathbf{C}-valued functions on $\mathrm{G}\left(\mathbf{Z}_{\mathrm{p}}\right) \mathrm{H}\left(\mathbf{Q}_{\mathrm{p}}\right) / \mathrm{H}\left(\mathbf{Z}_{\mathrm{p}}\right)$ satisfying (0.2) is denoted by $\Omega\left(\Lambda_{\mathrm{p}}, \lambda_{\mathrm{p}}\right)$ and called the space of local Shintani functions attached to Λ_{p} and λ_{p}. Then we may conjecture the following uniqueness of local Shintani functions:
(0.3) $\operatorname{dim}_{C} \Omega\left(\Lambda_{p}, \lambda_{p}\right) \leq 1$ for every Λ_{p} and λ_{p} ?

A similar fact was conjectured by Shintani ([Shi]) in the case of the symplectic group. Furthermore he conjectured that the equality

$$
\int_{Q_{p}^{\times}} \omega\left(\left(\begin{array}{ccc}
t & & \tag{0.4}\\
& 1_{n} & \\
& & \\
& & t^{-1} \\
& & \\
& & \\
& &
\end{array}\right)\right)|t|^{s-n-1} d^{\times} t=\omega(1) \times \frac{L_{p}\left(\Lambda_{p} ; s\right)}{L_{p}\left(\lambda_{p} ; s+1 / 2\right)}
$$

holds for $\omega \in \Omega\left(\Lambda_{p}, \lambda_{p}\right)$, where $L_{p}\left(\Lambda_{p}, s\right)$ and $L_{p}\left(\lambda_{p}, s\right)$ are the local standard zeta functions attached to Λ_{p} and λ_{p}. These two conjectures was proved in [MS1].

In this paper, we establish a similar formula to (0.4) for the case of orthogonal groups (Theorem 1.6), though the uniqueness problem (0.3) is still open in this case. Furthermore we introduce and study a certain Rankin-Selberg convolution attached to F and f . To be more precise, we let $\mathrm{G}_{1}=\mathrm{O}(\mathrm{m}+2)$ be a bigger orthogonal group containing H as the stabilizer subgroup of an anisotropic vector, and P_{1} a maximal parabolic subgroup of G_{1} whose Levi component is isomorphic to $G L(1) \times G$. Then we can construct an Eisenstein series $E\left(g_{1}, f ; s\right)$ on G_{1} attached to a cusp form f after Langlands ([L2]). The convolution of Rankin-Selberg type we study is given by

$$
\begin{equation*}
Z_{F, f}(s)=\int_{H(Q) \cup H(A)} F(h) E(h, f ; s) d h . \tag{0.5}
\end{equation*}
$$

Unwinding the Eisenstein series in (0.5), we obtain the "basic identity" between $\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{s})$ and a certain integral of the Shintani function $\omega_{\mathrm{F}, \mathrm{f}}$ (Theorem 1.5). Then the local result mentioned above implies that $Z_{F, f}(s)$ is equal to $\frac{L(F ; s)}{L(f ; s+1 / 2)}$ up to an elementary factor, where $\mathrm{L}(\mathrm{F} ; \mathrm{s}$) (resp. $\mathrm{L}(\mathrm{f} ; \mathrm{s})$) is the standard zeta function of F (resp. f) (Corollary 1.7). Therefore, at least when H is definite, we can describe the functional equation of $L(F ; s)$
in terms of that of $\mathrm{L}(\mathrm{f} ; \mathrm{s}$) (Theorem 1.8). The proof will be carried out along a similar line as in [MS1]. However, in order to include not only unimodular quadratic forms but also maximal ones in our argument, we need various subtle facts of the arithmetic of quadratic forms.

It should be mentioned a similarity between our convolution and that of Gelbart and Piatetski-Shapiro for $\mathrm{O}(2 \mathrm{n}) \times \mathrm{GL}(\mathrm{n})$ ([GPSR]; see also the work of PiatetskiShapiro, Rallis and Schiffmann for $\mathrm{G}_{2} \times \mathrm{GL}(2)$ [PSRS]). The difference is that our method yields a quotient of two standard zeta functions of $\mathrm{O}(\mathrm{m}+1)$ and $\mathrm{O}(\mathrm{m})$, though their construction gives the L-function $\mathrm{L}(\Phi \times \varphi, \mathrm{std} \otimes \mathrm{std} ; \mathrm{s})$, where $\Phi \times \varphi$ is a cusp form on $\mathrm{O}(2 \mathrm{n}) \times \mathrm{GL}(\mathrm{n})$ (or on $\mathrm{G}_{2} \times \mathrm{GL}(2)$) and $s t d \otimes$ std is the tensor product of the standard representations of the L-groups. We should also note that our convolution may be considered as an example of "generalized Fourier coefficients of Eisenstein series", which are studied in generality by Furusawa and Shalika ([FS]).

We now explain a brief account of the exposition. In §1, after preparing several notation, we state our main results (§1.9). We show that these results are direct consequences of two key lemmas (Lemma A and B). In addition, we discuss several conjectures on analytic properties of the standard zeta functions of definite orthogonal groups. The next two sections are of preliminary nature. In §2, we construct embeddings of ε-hermitian spaces crucial in our argument and study its properties needed to establish the basic identity. In §3, we summarize several facts of the arithmetic of maximal lattices of ε-hermitian spaces to study the behavior of maximal open compact subgroups under the embeddings. In these two sections, we include the cases of unitary
groups of ε-hermitian forms for future application. The last two sections are devoted to proofs of the key lemmas. The proof of Lemma A is straightforward and given in §4. The most difficult part is the proof of Lemma B, which can be seen as an analogue of Böcherer's result on Hecke series of Siegel modular forms (see [B]). In fact, we prove Lemma B in $\S 5$ by induction on the degree of orthogonal groups. We note that the proof of Lemma B uses Lemma A in an essential way.

As will be noted in §1, we may apply a similar method for classical groups of another type (the unitary groups, the quaternion unitary groups). We hope to investigate these cases in a forthcoming paper.

This work was done during the first author's stay at MPI (Max-Planck-Institut für Mathematik) and the second author's stay at JAMI (Japan-U.S. Mathematics Institute). The authors are grateful for financial support of MPI and JAMI.

§1. Main results

1.1 Embeddings of orthogonal groups Let T be a positive definite even

 integral symmetric matrix of rank $\mathrm{m}+1$. Then the upper left $\mathrm{m} \times \mathrm{m}$ block S of T is also positive definite and even integral. We say that a non-degenerate even integral symmetric matrix S of rank m is maximal if \mathbf{Z}^{m} is a maximal \mathbf{Z}-lattice with respect to S. In what follows, we suppose that both S and T are maximal. Then it is easy to see that $S_{1}=\left[\begin{array}{l}1 \\ S\end{array}\right]$ is also maximal. Put$$
\begin{gathered}
L=Z^{m}, M=\binom{L}{Z}=Z^{m+1}, L_{1}=\left[\begin{array}{l}
Z \\
L \\
Z
\end{array}\right]=Z^{m+2}, \\
V=L \otimes_{Z} Q=Q^{m}, W=M \otimes_{Z} Q=\binom{V}{Q}=Q^{m+1}, V_{1}=L_{1} \otimes_{Z} Q=\left[\begin{array}{l}
Q \\
V \\
Q
\end{array}\right]=Q^{m+2} .
\end{gathered}
$$

The dual lattices of L, M and L_{1} are denoted by $L^{*}=S^{-1} L, M^{*}=T^{-1} M$ and $L_{1}^{*}=S_{1}^{-1} L_{1}$. Let $G=O(V, S), H=O(W, T)$ and $G_{1}=O\left(V_{1}, S_{1}\right)$ be the orthogonal groups: $\mathrm{G}(\mathbf{Q})=\left\{\left.\mathrm{g} \in \mathrm{GL}_{\mathrm{m}}(\mathbf{Q})\right|^{\mathrm{t}} \mathrm{gSg}=\mathrm{S}\right\}, \cdots$ etc.

We write

$$
T=\left(\begin{array}{cr}
S & -S \alpha \\
-{ }^{t} \alpha S & -2 a
\end{array}\right) \quad\left(\alpha \in L^{*}, a \in Z\right)
$$

and put $\eta=\left[\begin{array}{l}a \\ \alpha \\ 1\end{array}\right] \in L_{1}^{*}$. Then

$$
\begin{equation*}
\Delta=S_{1}[\eta]=S[\alpha]+2 a<0 \tag{1.1}
\end{equation*}
$$

We define an embedding $\mathrm{j}: \mathrm{W} \rightarrow \mathrm{V}_{1}$ by

$$
j\left(\binom{y}{z}=\left[\begin{array}{c}
-a z-S(\alpha, y) \tag{1.2}\\
y \\
z
\end{array}\right] \quad(y \in V, z \in Q)\right.
$$

Then $\mathrm{V}_{1}=\mathbf{Q} \cdot \eta \oplus \mathrm{j}(\mathrm{W})$ (direct orthogonal sum). Define an embedding $\mathrm{t}: \mathrm{H} \rightarrow \mathrm{G}_{1}$ by

$$
\begin{equation*}
\mathfrak{l}(h)(t \cdot \eta+j(w))=t \cdot \eta+j(h w) \quad(h \in H, t \in \mathbf{Q}, w \in W) \tag{1.3}
\end{equation*}
$$

It is easy to see that $l(H)$ is the stabilizer subgroup of η in $G_{1}: l(H)=\left\{g_{1} \in G_{1} \mid g_{1} \eta\right.$ $=\eta\}$. Let P_{1} be a maximal parabolic subgroup of G_{1} given by

$$
P_{1}(Q)=\left\{\left[\begin{array}{lll}
t & * & * \\
0 & g & * \\
0 & 0 & t^{-1}
\end{array}\right] I t \in Q^{x}, g \in G(Q)\right\}
$$

Lemma 1.1 (cf. Lemma 2.2, Proposition 2.4)
(i) $\quad G_{1}=P_{1} \cdot l(H)$.
(ii) $\quad P_{1} \cap 1(H)=\left\{\left.\left[\begin{array}{ccc}1-\alpha\left(g^{-1}-1\right) S & S\left(\left(g^{-1}-1\right) \alpha, \alpha\right) \\ 0 & g & (1-g) \alpha \\ 0 & 0 & 1\end{array}\right] \right\rvert\, g \in G\right\} \cong G$.

Let \imath^{\prime} be the embedding of G into H so that

$$
\mathrm{l}\left(\mathrm{l}^{\prime}(\mathrm{g})\right)=\left[\begin{array}{ccc}
1 & -\alpha^{\mathrm{t}}\left(\mathrm{~g}^{-1}-1\right) \mathrm{S} & \mathrm{~S}\left(\left(\mathrm{~g}^{-1}-1\right) \alpha, \alpha\right) \tag{1.4}\\
0 & \mathrm{~g} & (1-\mathrm{g}) \alpha \\
0 & 0 & 1
\end{array}\right]
$$

for $g \in G$. Then $\mathfrak{l}^{\prime}(G)$ is the stabilizer subgroup of $\binom{\alpha}{1} \in W$ in H. In fact, we have

$$
\mathrm{l}^{\prime}(\mathrm{g})=\left(\begin{array}{cc}
\mathrm{g}(1-\mathrm{g}) \alpha \tag{1.5}\\
0 & 1
\end{array}\right) \quad(\mathrm{g} \in \mathrm{G}) .
$$

1.2 Maximal compact subgroups For a Z-lattice X and a prime number p, we write $X_{p}=X \otimes_{Z} Z_{p}$. By maximality of $L_{p}, L_{p}^{\prime}=\left\{x \in L_{p}^{*} 1 \frac{1}{2} S[x] \in p^{-1} Z_{p}\right\}$ is a $Z_{p}{ }^{-}$ lattice containing L_{p} and L_{p}^{\prime} / L_{p} forms a finite dimensional vector space over $\mathbf{Z}_{p} / p \mathbf{Z}_{p}$ $=\mathbb{F}_{p}$. We set $\partial_{p}(S)=\operatorname{dim}_{F_{p}} L_{p}^{\prime} / L_{p}$. It is known that $0 \leq \partial_{p}(S) \leq 2$. The quantity $\partial_{\mathrm{p}}(\mathrm{T})$ for T is similarly defined.

Let $K_{p}=G\left(Z_{p}\right), U_{p}=H\left(Z_{p}\right)$ and $K_{1, p}=G_{1}\left(Z_{p}\right)$ be maximal open compact subgroups of $G_{p}=G\left(Q_{p}\right), H_{p}=H\left(Q_{p}\right)$ and $G_{1, p}=G_{1}\left(Q_{p}\right)$ respectively.

Lemma 1.2 (cf. Lemma 3.6) If $\partial_{\mathrm{p}}(\mathrm{T})=\partial_{\mathrm{p}}(\mathrm{S})$, we have

$$
\begin{aligned}
& \mathbf{l}\left(\mathrm{U}_{\mathrm{p}}\right)=\mathrm{l}\left(\mathrm{H}_{\mathrm{p}}\right) \cap \mathrm{K}_{1, \mathrm{p}}, \\
& \mathrm{l}^{\prime}\left(\mathrm{K}_{\mathrm{p}}\right)=\mathrm{t}^{\prime}\left(\mathrm{G}_{\mathrm{p}}\right) \cap \mathrm{U}_{\mathrm{p}} .
\end{aligned}
$$

1.3 Hecke algebras In this subsection, we let $S \in M_{m}\left(Z_{p}\right)$ be a non-degenerate maximal even integral symmetric matrix (in this case, "maximal" means that $\mathbf{Z}_{\mathrm{p}}^{\mathrm{m}}$ is a maximal \mathbf{Z}_{p}-lattice with respect to S$)$. Put $\mathrm{G}=\mathrm{O}(\mathbf{S})$ and $\mathrm{K}=\mathrm{G}\left(\mathbf{Z}_{\mathrm{p}}\right)$. Let $H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ be the C -algebra of compactly supported bi- K_{p}-invariant functions on G_{p}. Denote by $v_{p}=v_{p}(S)$ the Witt index of S at p. The Satake isomorphism Ψ_{p} gives an isomorphism of the Hecke algebra $H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ onto $\mathrm{C}\left[\mathrm{T}_{1}^{ \pm 1}, \cdots, \mathrm{~T}_{v_{\mathrm{p}}}^{ \pm 1}\right]_{\mathrm{w}_{\mathrm{p}}}$, where $C\left[T_{1}^{ \pm 1}, \cdots, T_{v_{p}}^{ \pm 1}\right]_{v_{p}}$ denotes the algebra of polynomials in $T_{1}^{ \pm 1}, \cdots, T_{v_{p}}^{ \pm 1}$ invariant under the subgroup $\mathrm{W}_{v_{p}}$ of the automorphism group of $\mathrm{C}\left[\mathrm{T}_{1}^{ \pm}, \cdots, \mathrm{T}_{\mathrm{v}_{\mathrm{p}}}^{ \pm 1}\right]$ generated by the permutations of $T_{1}, \cdots, T_{v_{p}}$ and the involutions $T_{i} \rightarrow T_{i}^{-1}\left(1 \leq i \leq v_{p}\right)$ ((see [Sa]). Thus the \mathbf{C}-algebra homomorphisms of $H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ to \mathbf{C} are parametrized by
$\left(\mathbf{C}^{\times}\right)^{v_{p}} / \mathrm{W}_{v_{p}}$ (Satake parameters). For $\lambda=\left(\lambda_{1}, \cdots, \lambda_{v_{p}}\right) \in\left(\mathbf{C}^{\times}\right)^{v} \mathrm{p} / \mathrm{W}_{v_{\mathrm{p}}}$, we denote by λ^{\wedge} the corresponding homomorphism of $H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ to C :

$$
\begin{equation*}
\lambda^{\wedge}(\varphi)=\Psi_{\mathrm{p}}(\varphi)\left(\lambda_{1}, \cdots, \lambda_{\nu_{\mathrm{p}}}\right) \quad\left(\varphi \in H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{~K}_{\mathrm{p}}\right)\right) \tag{1.6}
\end{equation*}
$$

For $\lambda=\left(\lambda_{1}, \cdots, \lambda_{v_{p}}\right) \in\left(C^{\times}\right)^{v_{p}} / W_{v_{p}}$, we define the L-factor $L_{p}(\lambda ; s)$ as follows (cf.
[Su], [MS2]):

$$
\begin{equation*}
L_{p}(\lambda ; s)=L_{p}^{0}(\lambda ; s) \cdot A_{S, p}(s) \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{p}^{0}(\lambda ; s)=\prod_{i=1}^{v_{p}(s)}\left\{\left(1-\lambda_{i} p^{-s}\right)\left(1-\lambda_{i}^{-1} p^{-s}\right)\right\}^{-1} \tag{1.8}
\end{equation*}
$$

and
(1.9) $A_{S, p}(s)=\left\{\begin{array}{lr}1 & \text { if }\left(n_{o, p}(S), \partial_{p}(S)\right)=(0,0) \text { or }(1,0) \\ (1-1) \\ \left(1-p^{-2 s}\right)^{-1} & (2,0) \\ \left(1-p^{-s}\right)^{-1}\left(1+p^{1-s}\right) & (2,1) \\ \left(1-p^{-1 / 2-s}\right)^{-1} & (2,2) \\ \left(1-p^{-1 / 2-s}\right)^{-1}\left(1+p^{1 / 2-s}\right) & (3,1) \\ \left(1-p^{-s}\right)^{-1}\left(1-p^{-1-s}\right)^{-1} & (3,2) \\ & (4,2) .\end{array}\right.$
with $n_{o, p}(S)=m-2 v_{p}(S)$. It is well-known that $0 \leq n_{o, p}(S) \leq 4$.
1.4 Automorphic forms on definite orthogonal groups Going back to the notation of §1.1-2, we put $K_{f}=\prod_{p<\infty} K_{p}$. Let $S\left(K_{f}\right)$ be the space of automorphic forms on $G(A)$ given as follows:

$$
\begin{aligned}
& S\left(K_{f}\right)=\left\{f: G(A) \rightarrow C \mid F\left(\gamma \cdot g \cdot g_{\infty} k_{f}\right)=f(g) \text { for } \gamma \in G(Q), g \in G(A),\right. \\
& \left.g_{\infty} \in G(R) \text { and } k_{f} \in K_{f}\right\},
\end{aligned}
$$

where \mathbf{A} stands for the adele ring of \mathbf{Q}. Note that $G(Q) / G(A) / G(\mathbf{R}) K_{f}$ is in fact a finte set since S is positive definite. We similarly define the space $S\left(U_{f}\right)$ of automorphic forms on $H(A)$ left invariant under $H(Q)$ and right invariant under $H(R) U_{f}$ with $U_{f}=$ $\prod_{p<\infty} U_{p}$.

The Hecke algebra $H\left(\mathrm{G}_{\mathrm{f}}, \mathrm{K}_{\mathrm{f}}\right)=\underset{\mathrm{p}<\infty}{\otimes^{\prime}} H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ (restricted tensor product) acts on $S\left(\mathrm{~K}_{\mathrm{f}}\right)$ in a natural manner. Let $\mathrm{f} \in \mathrm{S}\left(\mathrm{K}_{\mathrm{f}}\right)$ be a Hecke eigenform on $\mathrm{G}(\mathrm{A})$. This means that \mathbf{f} is a common eigenform under the action of $H\left(\mathrm{G}_{\mathrm{f}}, \mathrm{K}_{\mathrm{f}}\right)$. Then, for each p , the Satake parameter $\lambda_{f, p} \in\left(C^{\times}\right)^{\nu}{ }_{p / W} \mathcal{v}_{p}$ is attached to f by $\mathrm{f} * \varphi_{\mathrm{p}}=\lambda_{\mathrm{f}, \mathrm{p}}^{\wedge}\left(\varphi_{\mathrm{p}}\right) \cdot \mathrm{f}$ for φ_{p} $\in H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$. We set

$$
\begin{equation*}
L(f ; s)=\prod_{p<\infty} L_{p}(f ; s), L_{p}(f ; s)=L_{p}\left(\lambda_{f, p} ; s\right) \tag{1.10}
\end{equation*}
$$

We call $\mathrm{L}(\mathrm{f} ; \mathrm{s})$ the standard zeta function attached to f . The L -function $\mathrm{L}(\mathrm{F} ; \mathrm{s})$ for a Hecke eigenform $\mathrm{F} \in \mathrm{S}\left(\mathrm{U}_{\mathrm{f}}\right)$ is defined in a similar manner. For the standard zeta functions of classical groups, refer to [GPSR] and [PSR].

1.5 The gamma factor of $\mathbf{L}(\mathbf{f} ; \mathbf{s})$ We set

$(1.11) \mathrm{A}_{\mathrm{S}, \infty}(\mathrm{s})=$

$$
\begin{cases}(2 \pi)^{-\rho s}(\operatorname{det} S)^{s / 2} \prod_{j=1}^{\rho / 2} \Gamma(s-\rho-1+2 j) \Gamma(s-2+2 \mathrm{j}) & \text { if } \mathrm{m} \equiv 0(\bmod 4) \\ (2 \pi)^{-\rho s}(\operatorname{det} S)^{s / 2} \prod_{j=1}^{(\rho+1) / 2} \Gamma(s-\rho-1+2 j) \prod_{j=1}^{(\rho-1) / 2} \Gamma(s-1+2 j) & \text { if } m \equiv 2(\bmod 4) \\ (2 \pi)^{-\rho s}\left(2^{-1} \operatorname{det} S\right)^{s / 2} \prod_{j=1}^{\rho} \Gamma\left(s-\rho-\frac{3}{2}+2 j\right) & \text { if } m \text { is odd }\end{cases}
$$

where $\rho=\left[\frac{\mathrm{m}}{2}\right]$.
For a Hecke eigenform $f \in S\left(K_{f}\right)$, define

$$
\begin{equation*}
\xi(f ; s)=A_{S, \infty}(s) L(f ; s) \tag{1.12}
\end{equation*}
$$

It is known that $\xi(\mathrm{F} ; \mathrm{s})$ is continued to a meromorphic function of s on \mathbf{C} (cf. Lemma
1.3). We put

$$
\begin{equation*}
c(f ; s)=\frac{\xi(f ; s)}{\xi(f ; 1-s)} \tag{1.13}
\end{equation*}
$$

1.6 Conjectures on analytic properties of $\xi(\mathbf{f} ; \mathbf{s})$ In this subsection, we state several conjectures on $\xi(f ; s)$ for a Hecke eigenform $f \in S\left(K_{f}\right)$ under the assumption that S is a maximal positive definite even integral symmetric matrix of rank m.

Conjecture 1 The functional equation

$$
\xi(f ; s)=\varepsilon_{m} \xi(f ; 1-s)
$$

holds. Here we put

$$
\varepsilon_{m}=\left\{\begin{array}{cc}
-1 & \text { if } m \equiv \pm 3(\bmod 8) \\
1 & \text { otherwise }
\end{array}\right.
$$

Cojecture 2 The poles of $\xi(\mathrm{f} ; \mathrm{s})$ are contained in the set $\left\{\left.\mathrm{s}=\frac{\mathrm{m}}{2}-\mathrm{k} \right\rvert\, 0 \leq \mathrm{k} \leq \mathrm{m}-1\right\}$. Furthermore $\xi(\mathrm{f} ; \mathrm{s})$ has at most simple poles at $\mathrm{s}=\frac{\mathrm{m}}{2}$ and $\frac{2-\mathrm{m}}{2}$.

Conjecture $3 \quad \xi(\mathrm{f} ; \mathrm{s})$ has a simple pole at $\mathrm{s}=\frac{\mathrm{m}}{2}$ if and only if f is a constant function.

Remark. These conjectures are known to be true if $\mathrm{m} \leq 3$ or if f is constant (see [MS2]).
1.7 Eisenstein series In this subsection, we recall the definition of Eisenstein series on G_{1} associated with $f \in S\left(K_{f}\right)$. We first define the action of $G_{1}(\mathbf{R})$ on $D=\mathbf{R}^{m} \times \mathbf{R}_{+}^{\times}\left(\mathbf{R}_{+}^{\times}\right.$is the set of positive real numbers). For $X=(x, r) \in D$, put X^{\sim} $=\left[\begin{array}{c}-r-\frac{1}{2} S[x] \\ x \\ 1\end{array}\right] \in R^{m+2}$. Then, for $(g, X) \in G(R) \times D, g<X>\in D$ is defined to be $g \cdot X^{\sim}=(g<X>)^{\sim} \cdot j(g, X)$ with $j(g, X) \in \mathbf{R}^{X}$. We let $K_{1, \infty}=\left\{g \in G_{1}(R) \mid g<X_{0}>\right.$ $=X_{0}$ \} be a maximal compact subgroup of $G_{1}(R)$ with $X_{o}=\left(\alpha,-\frac{1}{2} \Delta\right) \in D$. We see that $(H(R)) \subset K_{1, \infty}$, since $X_{0}^{\sim}=\eta$.

For $g_{1} \in G_{1}(A)$, we fix an Iwasawa decomposition

$$
\mathrm{g}_{1}=\left[\begin{array}{ccc}
\alpha\left(\mathrm{g}_{1}\right) & * & * \\
0 & \beta\left(\mathrm{~g}_{1}\right) & * \\
0 & 0 & \alpha\left(\mathrm{~g}_{1}\right)^{-1}
\end{array}\right] \mathrm{k}_{1}\left(\mathrm{~g}_{1}\right)
$$

where $\alpha\left(g_{1}\right) \in A^{\times}, \beta\left(g_{1}\right) \in G(A)$ and $k_{1}\left(g_{1}\right) \in K_{1, \infty} \prod_{p<\infty} K_{1, p}$. For $f \in S\left(K_{f}\right)$ and $s \in \mathbf{C}$, Let $f\left(g_{1} ; s\right)$ be a function on $G_{1}(A)$ given by

$$
\begin{equation*}
f\left(g_{1} ; s\right)=f\left(\beta\left(g_{1}\right)\right) \cdot\left|\alpha\left(g_{1}\right)\right|_{A}^{s} \quad\left(g_{1} \in G_{1}(A)\right) \tag{1.14}
\end{equation*}
$$

Here $\mid I_{\mathbf{A}}$ denotes the idele norm of \mathbf{A}^{x}.

The Eisenstein series associated with f is defined by

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{~g}_{1}, \mathrm{f} ; \mathrm{s}\right)=\sum_{\gamma_{1} \in \mathrm{P}_{1}(\mathrm{Q}) \backslash G_{1}(\mathrm{Q})} \mathrm{f}\left(\gamma_{1} \mathrm{~g}_{1} ; \mathrm{s}+\frac{\mathrm{m}}{2}\right) \quad\left(\mathrm{g}_{1} \in \mathrm{G}_{1}(A)\right) . \tag{1.15}
\end{equation*}
$$

Put

$$
\begin{equation*}
u_{m}(s)=\prod_{j=1}^{\sigma_{m}}\left(s+\frac{m}{2}+1-2 j\right) \tag{1.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{m}=\left[\frac{m+1}{4}\right] \tag{1.17}
\end{equation*}
$$

For a Hecke eigenform $f \in S\left(\mathrm{~K}_{\mathrm{f}}\right)$, we define the normalized Eisenstein series associated with f as follows:
(1.18) $E^{*}(g, f ; s)=\left|-\frac{\Delta}{2}\right|^{s / 2} u_{m}(s) \xi(f ; s+1) E(g, f ; s) \times\left\{\begin{array}{cc}1 & \text { if } m \text { is even } \\ \xi(2 s+1) & \text { if } m \text { is odd }\end{array}\right.$ where $\xi(\mathrm{s})=\pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s})$.

Lemma 1.3 ([L1]; see also [Su]) Let $\mathrm{f} \in \mathrm{S}\left(\mathrm{K}_{\mathrm{f}}\right)$ be a Hecke eigenform. Then

$$
E^{*}(g, f ; s)=(-1)^{\sigma} \mathrm{m} c(f ; s) E^{*}(g, f ;-s)
$$

1.8 Rankin-Selberg convolution and Shintani functions In this paper, we study the following Rankin-Selberg convolution $Z_{F, f}(s)$ associated with $F \in S\left(U_{f}\right)$ and $\mathrm{f} \in \mathrm{S}\left(\mathrm{K}_{\mathrm{f}}\right):$

$$
\begin{equation*}
Z_{F, f}(s)=\int_{H(Q) \cup H(\mathbf{A})} F(h) E^{*}\left(h(h), f ; s-\frac{1}{2}\right) d h . \tag{1.19}
\end{equation*}
$$

From now on, we often see H (resp. G) as a subgroup of G_{1} (resp. H) via the embedding \mathbf{l} (resp. \imath^{\prime}). By Lemma 1.3, we obtain

Proposition 1.4 The integral $\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{s})$ can be continued to a meromorphic function of s on C and has a functional equation:

$$
\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{~s})=(-1)^{\sigma_{\mathrm{m}} \mathrm{c}(\mathrm{f} ; \mathrm{s}) \mathrm{Z}_{\mathrm{F}, \mathrm{f}}(1-\mathrm{s})}
$$

By unwinding the Eisenstein series in (1.19) and using Lemma 1.1, we get

$$
\begin{aligned}
& Z_{F, f}(s)=d(f ; s) \iint_{G(A)(H(A)} \int_{G(Q) \backslash G(A)} F(g h) f(\beta(g h)) \left\lvert\, \alpha(g h)_{A}^{s+\frac{m-1}{2}} d g d h\right. \\
& =d(f ; s) \iint_{G(A) \cup H(A)} \int_{G(Q) \backslash G(A)} F(g h) f(g \cdot \beta(h))|\alpha(h)|_{A}^{s+\frac{m-1}{2}} d g d h .
\end{aligned}
$$

Here

$$
\mathrm{d}(\mathrm{f} ; \mathrm{s})=\mathrm{I}-\left.\frac{\Delta}{2}\right|^{\mathrm{s} / 2-1 / 4} \mathrm{u}_{\mathrm{m}}\left(\mathrm{~s}-\frac{1}{2}\right) \xi\left(\mathrm{f} ; \mathrm{s}+\frac{1}{2}\right) \times\left\{\begin{array}{cl}
1 & \text { if } \mathrm{m} \text { is even } \tag{1.20}\\
\xi(2 \mathrm{~s}) & \text { if } \mathrm{m} \text { is odd }
\end{array}\right.
$$

Define

$$
\begin{equation*}
\omega_{F, f}(h)=\int_{G(Q) \backslash G(A)} F(g h) f(g) d g \quad(h \in H(A)) \tag{1.21}
\end{equation*}
$$

We call $\omega_{\mathrm{F}, \mathrm{f}}$ the Shintani function associated with F and f . This function plays a central role. in our paper. Note that $\omega_{\mathrm{F}_{\mathrm{r}} \mathrm{f}}(1)=\left\langle\mathrm{Fl}_{\mathrm{G}(\mathrm{A})}, \overline{\mathrm{f}}\right\rangle$ where $\left.<,\right\rangle$ is the usual Petersson inner product in $S\left(\mathrm{~K}_{\mathrm{f}}\right)$. By changing the variable g into $\mathrm{g} \beta(\mathrm{h})^{-1}$, we obtain

Theorem 1.5 (The basic identity)

$$
\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{~s})=\mathrm{d}(\mathrm{f} ; \mathrm{s}) \int_{\mathrm{G}(\mathbf{A}) \cup H(\mathbf{A})} \omega_{\mathrm{F}, \mathrm{f}}\left(\beta(\mathrm{~h})^{-1} \mathrm{~h}\right) \left\lvert\, \alpha(\mathrm{h}) \mathrm{f}_{\mathrm{A}}^{\mathrm{s}+\frac{\mathrm{m}-1}{2}} \mathrm{dh} .\right.
$$

Remark. In view of Proposition 2.4 and Lemma 2.2 in the next section, it is easy to see that a similar formula holds for cusp forms F and f on the unitary groups of (not necessarily definite) ε-hermitian forms.
1.9 Main results In what follows, we assume that $F \in S\left(U_{f}\right)$ and $f \in S\left(K_{f}\right)$ are. Hecke eigenforms. Let $\Lambda_{p} \in\left(C^{\times}\right)^{v_{p}(T)} / W_{v_{p}(T)}$ and $\lambda_{p} \in\left(C^{\times}\right)^{v_{p}}(\mathbf{S}) / W_{v_{p}(S)}$ be the Satake parameters corresponding to F and f. For $h^{\prime} \in H(A)$ with the p-component $=$ 1, the function $h_{p} \rightarrow \omega_{F, f}\left(h^{\prime} h_{p}\right)$ on H_{p} belongs to the C-vector space

$$
\begin{aligned}
& \Omega\left(\Lambda_{\mathrm{p}}, \lambda_{\mathrm{p}}\right)=\left\{\omega: \mathrm{H}_{\mathrm{p}} \rightarrow \mathrm{C} \mid(\mathrm{i}) \omega(\mathrm{khu})=\omega(\mathrm{h}) \quad\left(\mathrm{k} \in \mathrm{~K}_{\mathrm{p}}, \mathrm{~h} \in \mathrm{H}_{\mathrm{p}}, \mathrm{u}_{\mathrm{p}} \in \mathrm{U}_{\mathrm{p}}\right)\right. \\
& \text { (ii) } \left.\varphi * \omega * \Phi=\lambda_{\mathrm{p}}^{\wedge}(\varphi) \Lambda_{\mathrm{p}}^{\wedge}(\Phi) \cdot \omega\left(\varphi \in H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{~K}_{\mathrm{p}}\right), \Phi \in H\left(\mathrm{H}_{\mathrm{p}}, \mathrm{U}_{\mathrm{p}}\right)\right)\right\}
\end{aligned}
$$

where

$$
\left(\varphi^{*} \omega * \Phi\right)(\mathrm{h})=\int_{\mathrm{G}_{\mathrm{p}}} \mathrm{dx} \int_{\mathrm{H}_{\mathrm{p}}} d y \varphi(\mathrm{x}) \omega\left(\mathrm{xhy}^{-1}\right) \Phi(\mathrm{y})
$$

We call $\Omega\left(\Lambda_{p}, \lambda_{p}\right)$ the space of local Shintani functions associated with Λ_{p} and λ_{p}. Such functions were first introduced by Shintani in his unpublished work ([Shi]; see [MS1] for detail) in another situation ($\mathrm{G} \rightarrow$ the Jacobi group of degree $\mathrm{n}, \mathrm{H} \rightarrow \mathrm{Sp}_{\mathrm{n}+1}$). One of our main results is as follows:

Theorem 1.6 Assume that $\partial_{p}(T)=\partial_{p}(S)$. For $\omega \in \Omega\left(\Lambda_{p}, \lambda_{p}\right)$, define

$$
Z_{\omega}(s)=\int_{G_{p} H_{p}} \omega\left(\beta(h)^{-1} h\right)|\alpha(h)|_{p}^{s+\frac{m-1}{2}} d h
$$

Then

$$
\mathrm{Z}_{\omega}(\mathrm{s})=\frac{\mathrm{L}_{\mathrm{p}}\left(\Lambda_{\mathrm{p}} ; \mathrm{s}\right)}{\mathrm{L}_{\mathrm{p}}\left(\lambda_{\mathrm{p}} ; \mathrm{s}+\frac{1}{2}\right)} \omega(1) \times\left\{\begin{array}{cc}
1 & \text { if } \mathrm{m} \text { is even } \\
\zeta_{\mathrm{p}}(2 \mathrm{~s})^{-1} & \text { if } \mathrm{m} \text { is odd }
\end{array}\right.
$$

where $\zeta_{\mathrm{p}}(\mathrm{s})=\left(1-\mathrm{p}^{-\mathrm{s}}\right)^{-1}$.

From the above local result, we obtain the following global one:

Corollary 1.7 Assume that $\partial_{\mathrm{p}}(\mathrm{T})=\partial_{\mathrm{p}}(\mathrm{S})$ for every prime p . Let $\mathrm{F} \in \mathrm{S}\left(\mathrm{U}_{\mathrm{f}}\right)$ and f $\in \mathrm{S}\left(\mathrm{K}_{\mathrm{f}}\right)$ be Hecke eigenforms. Then

$$
\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{~s})=\mathrm{c} \omega_{\mathrm{F}, \mathrm{f}}(1) \cdot \xi(\mathrm{F} ; \mathrm{s}) \mathrm{u}_{\mathrm{m}}\left(\mathrm{~s}-\frac{1}{2}\right) \mathrm{u}_{\mathrm{m}}\left(\frac{1}{2}-\mathrm{s}\right) \times \begin{cases}\frac{1}{2}-\mathrm{s} & \text { if } \mathrm{m} \equiv 2(\bmod 4) \\ 1 & \text { otherwise }\end{cases}
$$

with a non-zero constant c independent of F and f .

Combining Corollary 1.7 with Proposition 1.4, we get a relation between $\mathrm{c}(\mathrm{F} ; \mathrm{s})$ and $c(f ; s)$ (for the definition of $c(f ; s)$, see (1.13)).

Theorem 1.8 Let the assumption be the same as in Corollary 1.7. Assume that $\omega_{\mathrm{F}, \mathrm{f}}(1) \neq 0$. Then

$$
\mathrm{c}(\mathrm{~F} ; \mathrm{s})=\chi_{\mathrm{MH}, \infty}(\mathrm{~T}) \cdot \mathrm{c}\left(\mathrm{f} ; \mathrm{s}-\frac{1}{2}\right)
$$

where $\chi_{\mathrm{MH}, \infty}(\mathrm{T})$ is the Minkowski-Hasse character of T at the archimedian prime :

$$
\chi_{\mathrm{MH}, \infty}(\mathrm{~T})= \begin{cases}1 & \text { if } \mathrm{m}+1 \equiv 0,1,2,7(8) \\ -1 & \text { if } \mathrm{m}+1 \equiv 3,4,5,6(8) .\end{cases}
$$

Corollary 1.9 Let the assumption be the same as in Theorem 1.8. Then
(i) If Conjecture 1 holds for f , then so does for F .
(ii) If Conjectures 1 and 2 hold for f , then so do for F .
(iii) If Conjectures 1, 2 and 3 hold for f , then so do for F .

Proof. The first part follows immediately from Theorem 1.8. As is well-known, all the poles of $\mathrm{E}^{*}(\mathrm{~g}, \mathrm{f} ; \mathrm{s})$ are contained in those of its constant term

$$
\left.E_{o}^{*}(g, f ; s)=\int_{Q^{m} A^{m}} E^{*}\left[\begin{array}{ccc}
1 & -{ }^{t} X S & -2^{-1} S[X] \\
1_{m} & X \\
& & 1
\end{array}\right] g, f ; s\right) d X
$$

By straightforward calculation, we have

$$
\mathrm{E}_{\mathrm{o}}^{*}\left(\left[\begin{array}{lll}
\alpha & & \tag{1.22}\\
& \beta & \\
& & \alpha
\end{array}\right], \mathrm{f} ; \mathrm{s}\right)
$$

$$
\begin{aligned}
& =\xi(f ; s+1) u_{m}(s)|\alpha|_{A}^{s+m / 2}|-\Delta 2|^{s / 2} f(\beta) \times\left\{\begin{array}{ll}
1 & \text { if } m \text { is even } \\
\xi(2 s+1) & \text { if } m \text { is odd }
\end{array}\right\} \\
& +(-1)^{\sigma_{m}} \xi(f ; s) u_{m}(-s)|\alpha|_{A}^{s+m / 2}|-\Delta / 2|^{-s / 2} f(\beta) \times\left\{\begin{array}{ll}
1 & \text { if } m \text { is even } \\
\xi(2 s) & \text { if } m \text { is odd }
\end{array}\right\} .
\end{aligned}
$$

We assume that f satisfies Conjectures 1 and 2. Then the above formula implies that the poles of $E^{*}(g, f ; s)$ are contained in the set $\left\{-\frac{m}{2}+k ; 0 \leq k \leq m\right\}$ and the pole at $s=-$ $\frac{\mathrm{m}}{2}$ is at most simple. Finally we assume that f satisfies Conjectures 1,2 and 3 . By
(1.22) the residue of $E^{*}(g, f ; s)$ at $s=\frac{m}{2}$ is equal to $c_{1} f(1)$ with a non-zero constant c_{1} if f is constant, and equal to 0 otherwise. Taking residues at $s=\frac{m+1}{2}$ of the both sides of the formula for $\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{s})$ in Corollary 1.7, we obtain

$$
\mathrm{c}_{2} \underset{\mathrm{~s}=(\mathrm{m}+1) / 2}{\operatorname{Res}} \xi(\mathrm{~F} ; \mathrm{s})\left\langle\mathrm{F} \mathrm{l}_{\mathrm{G}}, \mathrm{f}\right\rangle_{\mathrm{G}}= \begin{cases}\langle\mathrm{F}, 1\rangle_{\mathrm{H}} & \text { if } \mathrm{f} \text { is constant } \\ 0 & \text { otherwise }\end{cases}
$$

where c_{2} is a non-zero constant and $<,>_{G}$ (resp. $\left.<,\right\rangle_{H}$) stands for the Petersson inner product in $S\left(\mathrm{~K}_{\mathrm{f}}\right)$ (resp. $\mathrm{S}\left(\mathrm{U}_{\mathrm{f}}\right)$). Therfore Conjecture 3 holds for F under the assumption $\omega_{\mathrm{F}, \mathrm{f}}(1) \neq 0 . \quad$ q.e.d.

Let S be a non-degenerate even integral symmetric matrix of rank m. We say that S has the property (I) if S is maximal and if S satisfies one of the following conditions:
(i) $\mathrm{m} \leq 3$.
(ii) There exist $\gamma \in \mathrm{GL}_{\mathrm{m}}(\mathbf{Z})$ and an even integral symmetric matrix S^{\prime} of rank $\mathrm{m}-1$ with the property (I) such that ${ }^{t} \gamma S \gamma=\left(\begin{array}{cc}S^{\prime} & -S^{\prime} \beta \\ t^{\prime} \beta S^{\prime}-2 b\end{array}\right)$ and $\partial_{p}(S)=\partial_{p}\left(S^{\prime}\right)$ for every p. Furthermore suppose that S is positive definite and let f be an automorphic form on $O(S)$ in the sense of $\S 1.4$.

Corollary 1.10 Let $\mathrm{S} \in \mathrm{M}_{\mathrm{m}}(\mathrm{Z})$ be a positive definite even integral symmetric matrix with the property (I). Let f be a Hecke eigenform on $\mathrm{O}(\mathrm{S})$. If $\mathrm{f}(1) \neq 0$, then Conjectures 1, 2 and 3 hold for f .
1.10 First main lemma We need two lemmas (Lemma A and Lemma B) to prove Theorem 1.6. We let the notation be the same as in §1.1-2. Recall that $g_{1} \in G_{1, p}$ is decompose into

$$
\left[\begin{array}{ccc}
\alpha\left(\mathrm{g}_{1}\right) & * & * \\
0 & \beta\left(\mathrm{~g}_{1}\right) & * \\
0 & 0 & \alpha\left(\mathrm{~g}_{1}\right)^{-1}
\end{array}\right] \mathrm{k}_{1}\left(\mathrm{~g}_{1}\right)
$$

with $\alpha\left(g_{1}\right) \in \mathbf{Q}_{\mathrm{p}}^{\times}, \beta\left(\mathrm{g}_{1}\right) \in \mathrm{G}_{\mathrm{p}}, \mathrm{k}_{1}\left(\mathrm{~g}_{1}\right) \in \mathrm{K}_{1, \mathrm{p}}$.
For $x \in M_{n}\left(Q_{p}\right)$, we put $\mu_{n, p}(x)=\sum_{e_{i}<0}\left|e_{i}\right|$ where $\left\{p^{e_{1}}, \cdots, p^{e_{r}}, 0, \cdots, 0\right\}$ is a set of elementary divisors of x. For $s \in C$, let $N_{G_{p} ; s}$ be the function on G_{p} defined by

$$
\begin{equation*}
N_{G_{p}, s}(g)=p^{\mu_{m, p}(g) s} \quad\left(g \in G_{p}\right) \tag{1.23}
\end{equation*}
$$

Obviously $\mathrm{N}_{\mathrm{G}_{\mathrm{p}},}$ is K_{p}-biinvariant. We define $\mathrm{N}_{\mathrm{H}_{\mathrm{p}}, \text { s }}$ in a similar manner.

Lemma A Assume that $\partial_{\mathrm{p}}(\mathrm{T})=\partial_{\mathrm{p}}(\mathrm{S})$. Then we have

$$
N_{H_{p}, s^{\prime}}\left(l^{\prime}\left(g \beta(h)^{-1}\right) \cdot h\right)=|\alpha(h)|_{p}^{s} N_{G_{p}, s}(g) \quad\left(g \in G_{p}, h \in H_{p}\right)
$$

1.11 Second main lemma Let $S \in M_{m}\left(Z_{p}\right)$ be a non-degenerate maximal even integral symmetric matrix. Put $\mathrm{G}=\mathrm{O}(\mathrm{S})$ and $\mathrm{K}=\mathrm{G}\left(\mathbf{Z}_{\mathrm{p}}\right)$. Then $\operatorname{Hom}_{\mathrm{C}}(H(\mathrm{G}, \mathrm{K}), \mathrm{C})$ is identified with $\left(\mathbf{C}^{x}\right)^{v} / W_{v}$, where v is the Witt index of S. For $\lambda \in\left(\mathbf{C}^{x}\right)^{v} / W_{v}$, let $\Omega(\lambda)$ be the space of right K-invariant functions w on G satisfying $w * \varphi=\lambda^{\wedge}(\varphi) w$ for $\varphi \in H(\mathrm{G}, \mathrm{K})$, where $\lambda^{\wedge} \in \operatorname{Hom}_{\mathrm{C}}(H(\mathrm{G}, \mathrm{K}), \mathrm{C})$ is defined by (1.6). Let $\mathrm{N}_{\mathrm{G}, \mathrm{s}}$ be the function defined by (1.23).

Lemma B For $w \in \Omega(\lambda)$, we have

$$
\begin{aligned}
& \int_{G} w(g) N_{G, s+m / 2-1}(g) d g \\
& =L_{p}^{0}(\lambda ; s) \cdot \prod_{j=0}^{v-1}\left(1-p^{-\left(s+j+n_{d} / 2\right)}\right)\left(1+p^{-\left(s+j-\partial+n_{d} / 2\right)}\right) \times w(1)
\end{aligned}
$$

with $\partial=\partial_{\mathrm{p}}(\mathrm{S})$ and $\mathrm{n}_{\mathrm{o}}=\mathrm{m}-2 \mathrm{v}$.

Remark. This result is an analogue of Böcherer's result ([B]) for orthogonal groups.
1.12 Proof of Theoem 1.6 We end this section by giving proof of Theorem 1.6 assuming Lemma A and Lemma B. For $\omega \in \Omega\left(\Lambda_{p}, \lambda_{p}\right)$, consider the integral

$$
I_{\omega}(s)=\int_{\mathrm{H}_{\mathrm{p}}} \omega(\mathrm{~h}) \mathrm{N}_{\mathrm{H}_{\mathrm{p}} \mathrm{~s}+(\mathrm{m}-1) / 2}(\mathrm{~h}) \mathrm{dh} .
$$

By Lemma A, we have

$$
\begin{aligned}
I_{\omega}(s) & =\int_{G_{p} H_{p}} d h \int_{G_{p}} d g \omega(g h) N_{H_{p}, s+(m-1) / 2}(g h) \\
& =\int_{G_{p} H_{p}} d h \int_{G_{p}} d g \omega\left(g \beta(h)^{-1} h\right)|\alpha(h)|_{p}^{s+(m-1) / 2} N_{G_{p}, s+(m-1) / 2}(g) .
\end{aligned}
$$

Applying Lemma B to the integral over G_{p}, we obtain

$$
\begin{aligned}
& \int_{G_{p}} \omega\left(g \beta(\mathrm{~h})^{-1} \mathrm{~h}\right) N_{\mathrm{G}_{\mathrm{p}}, \mathrm{~s}+(\mathrm{m}-1) / 2}(\mathrm{~g}) \mathrm{dg} \\
& =L_{\mathrm{p}}^{\mathrm{o}}\left(\lambda_{\mathrm{p}} ; \mathrm{s}+\frac{1}{2}\right) \cdot \prod_{\mathrm{j}=0}^{v_{\mathrm{p}}(\mathrm{~S})-1}\left(1-\mathrm{p}^{-\left(\mathrm{s}+{\frac{n_{0}}{}(\mathrm{~S})+1}_{2}^{2}+\mathrm{j}\right)}\right)\left(1+\mathrm{p}^{-\left(\mathrm{s}-\partial+\frac{\mathrm{n}_{0}(\mathrm{~S})+1}{2}+\mathrm{j}\right)}\right) \\
& \times \omega\left(\beta(\mathrm{h})^{-1} \mathrm{~h}\right)
\end{aligned}
$$

where $n_{o}(S)=m-2 v_{p}(S)$ and $\partial=\partial_{p}(S)=\partial_{p}(T)$. Thus we have

$$
\begin{aligned}
I_{\omega}(s)= & Z_{\omega}(s) \cdot L_{p}^{0}\left(\lambda_{p} ; s+\frac{1}{2}\right) \\
& \times \prod_{j=0}^{v_{p}(S)-1}\left(1-p^{-\left(s+\frac{n_{0}(S)+1}{2}+j\right)}\right)\left(1+p^{-\left(s-\partial+\frac{n_{0}(S)+1}{2}+j\right)}\right) .
\end{aligned}
$$

On the other hand, applying Lemma B to the integral over H_{p} in the definition of $I_{\omega}(s)$, we get

$$
I_{\omega}(s)=L_{p}^{o}\left(\Lambda_{p} ; s\right) \cdot \prod_{j=0}^{v_{p}(T)-1}\left(1-p^{-\left(s+\frac{n_{0}(T)}{2}+j\right)}\right)\left(1+p^{-\left(s-\partial+\frac{n_{0}(T)}{2}+j\right)}\right) \cdot \omega(1) .
$$

It remains to show that

$$
\begin{align*}
& \frac{\prod_{j=0}^{v_{p}(T)-1}\left(1-p^{-\left(s+\frac{n_{0}(T)}{2}+j\right)}\right)\left(1+p^{-\left(s-\partial+\frac{n_{0}(T)}{2}+j\right)}\right)}{\prod_{j=0}^{v_{p}(S)-1}\left(1-p^{-\left(s+\frac{n_{0}(S)+1}{2}+j\right)}\right)\left(1+p^{-\left(s-\partial+\frac{n_{0}(S)+1}{2}+j\right)}\right)} \tag{1.24}\\
& =\frac{A_{T, p}(s)}{A_{S, p}\left(s+\frac{1}{2}\right)} \times \begin{cases}1 & \text { if m is even } \\
\zeta_{p}(2 s)^{-1} & \text { if } m \text { is odd. }\end{cases}
\end{align*}
$$

To prove this, observe that $n_{0}(T)=n_{0}(S)-1 \Rightarrow v_{p}(T)=v_{p}(S)+1$ and that $n_{0}(T)=$ $n_{0}(S)+1 \Rightarrow v_{p}(T)=v_{p}(S)$. This implies that the left-hand side of (1.24) is equal to

$$
\begin{cases}\left(1-\mathrm{p}^{-\left(\mathrm{s}+\frac{\mathrm{n}_{0}(\mathrm{~S})-1}{2}\right)}\right)\left(1+\mathrm{p}^{-\left(\mathrm{s}-\partial+\frac{\mathrm{n}_{0}(\mathrm{~S})-1}{2}\right)}\right) & \text { if } n_{0}(\mathrm{~T})=\mathrm{n}_{0}(\mathrm{~S})-1 \\ 1 & \text { if } n_{0}(\mathrm{~T})=\mathrm{n}_{0}(\mathrm{~S})+1\end{cases}
$$

Then (1.24) is a straightforward consequence of the defintions of $\mathrm{A}_{\mathrm{T}, \mathrm{p}}(\mathrm{s})$ and $\mathrm{A}_{\mathrm{S}, \mathrm{p}}(\mathrm{s})$ in $\S 1.3$ in view of the following possible combination of $\left(n_{0}(S), n_{0}(T) ; \partial\right)$:

$$
\begin{aligned}
\left(n_{0}(S), n_{0}(T) ; \partial\right)= & (1,0 ; 0),(2,1 ; 0),(2,1 ; 1),(3,2 ; 1),(3,2 ; 2),(4,3 ; 2) \\
& (0,1 ; 0),(1,2 ; 0),(1,2 ; 1),(2,3 ; 1),(2,3 ; 2),(3,4 ; 2)
\end{aligned}
$$

q.e.d.

§2 Classical groups and embeddings

2.1 Classical groups Let k be a field whose characteristic is different from 2.

 Let K be a k -semisimple algebra that is one of the following three types:$$
K= \begin{cases}k \text { itself } & \text { (I) } \\ \text { a quadratic extention of } k & \text { (II) } \\ \text { a quaternion algebra over } k & \text { (III) }\end{cases}
$$

Let $\mathrm{x} \rightarrow \overline{\mathrm{x}}$ be the involution of K given as follows:

$$
\begin{cases}\text { the identity } & \text { in case (I) } \\ \text { the unique nontrivial automorphism of } K \text { of } k & \text { in case (II) } \\ \text { the main involution of } K \text { over } k & \text { in case (III). }\end{cases}
$$

For $X \in M_{m, n}(K)$, put $X^{*}={ }^{t} \bar{X}$. For $\varepsilon= \pm 1$, we say that $S \in M_{m}(K)$ is an ε hermitian matrix if $S^{*}=\varepsilon S$.

Let S be a non-degenerate ε-hermitian matrix of rank m. We define the unitary group $U(S)$ by $U(S)_{k}=\left\{g \in G L_{m}(K) \mid g^{*} S g=S\right\}$. Let K^{m} denote the space of $m-$ column vectors in K. For $x, y \in K^{m}$, we write $S(x, y)=x * S y, S[x]=x * S x$. An ε hermitian matrix S is said to be k-anisotropic if $S[x] \neq 0$ for every $x \in K^{m}-\{0\}$ and k-isotropic otherwise. For $\xi \in \mathrm{K}$, we put

$$
\tau(\xi)=\xi+\varepsilon \bar{\xi}, \mathrm{N}(\xi)=\xi \bar{\xi}, \operatorname{Tr}(\xi)=\xi+\bar{\xi} .
$$

Set $d=\operatorname{dim}_{k} K$ and $\kappa=\operatorname{dim}_{k} K e r \tau$. There exist the following five cases:

$$
\left\{\begin{array}{lllll}
(\mathrm{O}) \text {-case } & \text { (I) } & \varepsilon=1 & \cdots & (\mathrm{~d}=1, \mathrm{\kappa}=0) \\
(\mathrm{Sp}) \text {-case } & \text { (I) } & \varepsilon=-1 & \cdots & (\mathrm{~d}=1, \mathrm{k}=1) \\
(\mathrm{U}) \text {-case } & \text { (II) } & \varepsilon= \pm 1 & \cdots & (\mathrm{~d}=2, \mathrm{k}=1) \\
\left(\mathrm{U}^{+}\right) \text {-case } & \text { (III) } & \varepsilon=1 & \cdots & (\mathrm{~d}=4, \mathrm{k}=3) \\
(\mathrm{U}) \text {-case } & \text { (III) } & \varepsilon=-1 & \cdots & (\mathrm{~d}=4, \mathrm{\kappa}=1)
\end{array}\right.
$$

In what follows, the (Sp)-case is excluded for simplicity, though the algebraic group Sp_{n} appears as in $\left(\mathrm{U}^{+}\right)$-case for $\mathrm{K}=\mathrm{M}_{2}(\mathrm{~K})$.

Lemma 2.1 If S is k-anisotropic and not of type $\left(U^{-}\right)$, then K is a division algebra.
Proof. Write $\mathrm{S}=\left(\mathrm{s}_{\mathrm{ij}}\right)$. Since $\overline{\mathrm{s}_{11}}=\mathrm{\varepsilon s}_{11}, \mathrm{~s}_{11}$ is in the center of K (note that the (U)-case is excluded here). If K is not division, there exists $x \in K-\{0\}$ such that $x \bar{x}=0$. Then we have $S\left[\binom{x}{0}\right]=\bar{x} s_{11} x=s_{11} \bar{x} x=0$, which contradicts to the assumption that S is k-anisotropic. q.e.d.

2.2 Embeddings of ε-hermitian spaces and unitary groups In what

 follows, we fix a non-degenerate ε-hermitian matrix S of rank m. Then S defines an ε-hermitian form on the right K -module $\mathrm{V}=\mathrm{K}^{\mathrm{m}}$. Put$$
S_{1}=\left[\begin{array}{cr}
& \varepsilon \\
S & \\
1 &
\end{array}\right] \in \mathrm{GL}_{\mathrm{m}+2}(\mathrm{~K})
$$

and $V_{1}=\left(\begin{array}{l}K \\ V \\ K\end{array}\right)$. Choose and fix an element $\eta=\left[\begin{array}{c}a \\ \alpha \\ 1\end{array}\right]$ of $V_{1}(a \in K, \alpha \in V)$ so that

$$
\begin{equation*}
\Delta:=S_{1}[\eta]=\tau(a)+S[\alpha] \tag{2.1}
\end{equation*}
$$

is invertible in K. Then $V_{1}=\eta \cdot K \oplus \eta^{\perp}$ (orhtogonal sum with respect to S_{1}) where $\eta^{\perp}=\left\{X \in V_{1} \backslash S_{1}(\eta, X)=0\right\}$. Define a right K-linear isomorphism j of $W=\binom{V}{K}=$ $K^{\mathrm{m}+1}$ onto $\eta^{\perp} \subset \mathrm{V}_{1}$ by

$$
j\binom{y}{z}=\left[\begin{array}{c}
-\varepsilon \overline{\mathrm{a}} z-S(\alpha, y) \tag{2.2}\\
y \\
z
\end{array}\right] \quad(y \in V, z \in K) .
$$

Let T be an ε-hermitian matrix of rank $m+1$ given by

$$
T\left[\binom{y}{z}\right]=S_{1}\left[j\binom{y}{z}\right] \quad(y \in V, z \in K)
$$

Then we have

$$
\mathrm{T}=\left(\begin{array}{cc}
\mathrm{S} & -\mathrm{S} \alpha \\
-\alpha * \mathrm{~S} & -\tau(\mathrm{a})
\end{array}\right) .
$$

By the assumption $\Delta \in K^{\times}, T$ is non-degenerate. We write G, H and G_{1} for the unitary groups $\mathrm{U}(\mathrm{S}), \mathrm{U}(\mathrm{T})$ and $\mathrm{U}\left(\mathrm{S}_{1}\right)$ respectively.

Define an embedding $\mathrm{l}: \mathrm{H} \rightarrow \mathrm{G}_{1}$ by

$$
\begin{equation*}
l(h)(\eta t+j(w))=\eta t+j(h w) \quad(h \in H, t \in K, w \in W) \tag{2.3}
\end{equation*}
$$

It is easy to see that $\mathfrak{l}(H)=\left\{g_{1} \in G_{1} \mid g_{1} \cdot \eta=\eta\right\}$. Let

$$
P_{1}=\left\{\left[\begin{array}{lll}
\mathrm{t} & * & * \\
0 & \mathrm{~g} & * \\
0 & 0 & \bar{t}^{-1}
\end{array}\right] I \mathrm{t} \in \mathrm{~K}^{\times}, \mathrm{g} \in \mathrm{G}\right\}
$$

be a maximal parabolic subgroup of G_{1}. Then its unipotent radical is

$$
N_{1}=\left\{\left.n_{1}(y, z)=\left[\begin{array}{ccc}
1 & -y^{*} S & z \\
0 & 1_{m} & y \\
0 & 0 & 1
\end{array}\right] \right\rvert\, y \in V, z \in K, \tau(z)+S[y]=0\right\}
$$

Lemma 2.2 We have

$$
P_{1} \cap 1(H)=\left\{p_{1}(g)=\left[\begin{array}{ccc}
1 & -\alpha^{*}\left(g^{-1}-1\right)^{*} S & S\left(\left(g^{-1}-1\right) \alpha, \alpha\right) \\
0 & g & (1-g) \alpha \\
0 & 0 & 1
\end{array}\right] \lg \in \mathrm{G}\right\}
$$

(hence $\left.\mathrm{P}_{1} \cap \mathrm{l}(\mathrm{H}) \cong \mathrm{G}\right)$.

Proof. By (2.4), $p_{1}=\left[\begin{array}{llll}\mathrm{t} & & \\ & \mathrm{g} & \\ & & \\ & \mathfrak{t}^{-1}\end{array}\right] \cdot n_{1}(y, z) \in \mathrm{l}(\mathrm{H})$ implies $p_{1} \eta=\eta$. It follows that

$$
\mathrm{t}(\mathrm{a}-\mathrm{S}(\mathrm{y}, \alpha)+\mathrm{z})=\mathrm{a}, \mathrm{~g}(\alpha+\mathrm{y})=\alpha, \overline{\mathrm{t}}^{-1}=1
$$

Solving these equations, we get

$$
\mathrm{t}=1, \mathrm{y}=\left(\mathrm{g}^{-1}-1\right) \alpha, \mathrm{z}=\mathrm{S}\left(\left(\mathrm{~g}^{-1}-1\right) \alpha, \alpha\right)
$$

Since $\tau(z)+S[y]=0$, we are done. q.e.d.

We define an embedding $\mathfrak{1}^{\prime}: \mathrm{G} \rightarrow \mathrm{H}$ by

$$
\mathrm{l}^{\prime}(\mathrm{g})=\left(\begin{array}{l}
\mathrm{g}(1-\mathrm{g}) \alpha \tag{2.4}\\
0
\end{array} 1 . \quad(\mathrm{g} \in \mathrm{G})\right.
$$

Then $t\left(\imath^{\prime}(g)\right)=p_{1}(g)$ and $\mathfrak{l}^{\prime}(G)=\left\{h \in H \left\lvert\, h \cdot\binom{\alpha}{1}=\binom{\alpha}{1}\right.\right\}$.
2.3 The orbit space $P_{1} \backslash G_{1} / \mathrm{l}(\mathbf{H})$ We now study the structure of the orbit space $\mathrm{P}_{1} \backslash \mathrm{G}_{1} / \mathrm{h}(\mathrm{H})$.

Lemma 2.3 Assume that K is division. Then T is k -isotropic if and only if there exists $\mathrm{x}_{\mathrm{o}} \in \mathrm{V}$ satisfying $\mathrm{S}\left[\mathrm{x}_{0}\right]=\Delta$.

Proof. The "if" part is easy since $\mathrm{T}\left[\binom{\alpha}{1}+\binom{\mathrm{x}_{\mathrm{o}}}{0}\right]=-\Delta+\Delta=0$. Assume that T is k -isotropic. Then there exists a non-zero element y of W such that $\mathrm{T}[\mathrm{y}]=0$. We write $y=\binom{\alpha}{1} \lambda+\binom{x}{0}$ with $\lambda \in K$ and $x \in V$. Observe $S[x]=\bar{\lambda} \Delta \lambda$. If $\lambda \neq 0$, then $S\left[x \lambda^{-1}\right]=\Delta$. If $\lambda=0$ and $x \neq 0$, we have $S[x]=0$. This implies that S is $k-$ isotropic and hence $\mathrm{S}[\mathrm{V}]=\tau(\mathrm{K})$. We are done. q.e.d.

Proposition 2.4 Assume that K is division.
(i) If T is k -anisotropic, then $\mathrm{G}_{1}=\mathrm{P}_{1} \cdot \mathrm{l}(\mathrm{H})$.
(ii) If T is k -isotropic, then $\mathrm{G}_{1}=\mathrm{P}_{1} \cdot \mathrm{l}(\mathrm{H}) \cup \mathrm{P}_{1} \cdot \mathrm{Y}_{0} \cdot \mathrm{l}(\mathrm{H})$ where

$$
Y_{o}=\left[\begin{array}{rr}
1 \\
1_{m} & \\
& \\
n_{1}\left(x_{0}-\alpha, S\left(x_{0}-\alpha, \alpha\right)-a\right)
\end{array}\right.
$$

and x_{o} is any element of V satisfying $\mathrm{S}\left[\mathrm{x}_{\mathrm{o}}\right]=\Delta$.
Proof. Let $g_{1} \in G_{1}$ and put $g_{1} \cdot \eta=\left[\begin{array}{c}a^{\prime} \\ \alpha^{\prime} \\ b^{\prime}\end{array}\right]$ ($a^{\prime}, b^{\prime} \in K, \alpha^{\prime} \in V$). We first show that $g_{1} \in P_{1} \cdot l(H)$ if $b^{\prime} \neq 0$. To prove this, we put $z=-a+\overline{b^{\prime}} a^{\prime}+S\left(\alpha^{\prime}-\alpha, \alpha\right)$. It is clear that $\tau(z)+S\left[\alpha^{\prime}-\alpha\right]=0$ and $p_{1} \eta=g_{1} \eta$ with $p_{1}=\left[\begin{array}{lll}\overline{b^{\prime}}-1 & & \\ & & 1_{m} \\ & & \\ & & b^{\prime}\end{array}\right] \cdot n_{1}\left(\alpha^{\prime}-\alpha, z\right) \in$
P_{1}. Thus our assertion follows. Assume that T is k-anisotropic. If $b^{\prime}=0$, we have $\tau(\mathrm{a})+\mathrm{S}[\alpha]=\mathrm{S}_{1}[\eta]=\mathrm{S}_{1}\left[\mathrm{~g}_{1} \eta\right]=\mathrm{S}\left[\alpha^{\prime}\right]$ and hence $\mathrm{T}\left(\binom{\alpha+\alpha^{\prime}}{1}\right]=\mathrm{S}\left[\alpha^{\prime}\right]-\mathrm{S}[\alpha]-\tau(\mathrm{a})=$ 0 , which contradicts to the assumption. Thus (i) is proved. We next assume that T is k-isotropic. We claim that $g_{1} \in P_{1} \mathrm{r}_{0} \mathrm{l}(\mathrm{H})$ if $\mathrm{b}^{\prime}=0$. Choose a pair $(\mathrm{y}, \mathrm{z}) \in \mathrm{V} \times \mathrm{K}$ so that $1-S\left(y, x_{0}\right)=a^{\prime}, \tau(z)+S[y]=0$. Since $S\left[\alpha^{\prime}\right]=\Delta$, there exists an element g of G such that $\mathrm{gx}_{\mathrm{o}}=\alpha^{\prime}$ by Witt's theorem. Thus we have $\mathrm{p}_{1} \mathrm{r}_{\mathrm{o}} \eta=\left[\begin{array}{c}\mathrm{a}^{\prime} \\ \alpha^{\prime} \\ 0\end{array}\right]$ with $\mathrm{p}_{1}=$ $\left[\begin{array}{lll}1 & & \\ & g & \\ & & 1\end{array}\right] \cdot n_{1}(y, z)$, which proves the proposition. q.e.d.

2.4 The unipotent radicals of parabolic subgroups The content of this

 subsection will not be used in the paper, but we include it here for future application (seethe remark of Theorem 1.5). Throughout this subsection, we suppose that K is division and that T is k-isotropic. Let $\mathrm{x}_{\mathrm{o}} \in \mathrm{V}$ be as in Proposition 2.4 and put $\mathrm{e}=\binom{-\mathrm{x}_{\mathrm{o}}+\alpha}{1}$ $\in \mathrm{W}, \mathrm{e}^{\prime}=\binom{\mathrm{x}_{0}+\alpha}{1} \in \mathrm{~W}$. Then $\mathrm{T}[\mathrm{e}]=\mathrm{T}\left[\mathrm{e}^{\prime}\right]=0$ and $\mathrm{T}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)=-2 \Delta \neq 0$. We see that $P^{\prime}=\left\{h \in H \mid h \cdot e=e \cdot t\left(t \in K^{\times}\right)\right\}$is a maximal parabolic subgroup of H.

Lemma 2.5 $\quad \mathrm{Y}_{\mathrm{o}}{ }^{-1} \mathrm{P}_{1} \mathrm{Y}_{\mathrm{o}} \cap \mathrm{l}(\mathrm{H})=\mathbf{t}\left(\mathrm{P}^{\prime}\right)$.
Proof. Let $h \in H$. Then $\mathrm{l}(\mathrm{h}) \in \mathrm{Y}_{\mathrm{o}}^{-1} \mathrm{P}_{1} \mathrm{Y}_{\mathrm{o}}$ if and only if $\mathrm{v}(\mathrm{h}) \mathrm{Y}_{\mathrm{o}}^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=$ $Y_{o}^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) t$ for some $t \in K^{\times}$. Since $Y_{o}^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=j(e)$, we have $t(h) Y_{0}^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=$
$j(h \cdot e)$. The lemma follows from this. q.e.d.

Let W^{\prime} be the orthogonal compliment of $e \cdot K+e^{\prime} \cdot \mathrm{K}$ in W with respect to T. The unipotent radical N^{\prime} of P^{\prime} is given by $\left\{n^{\prime} \in H \mid\right.$ (i) $n^{\prime} \cdot e=e$, (ii) for $w^{\prime} \in W^{\prime}$, $n^{\prime} \cdot w^{\prime}=e \lambda+w^{\prime}$ for some $\left.\lambda \in K\right\}$.

Lemma 2.6 $\quad Y_{0} \mathfrak{l}\left(N^{\prime}\right) Y_{0}^{-1} \subset N_{1}$.
Proof. We first note that, if $g_{1} \in G_{1}$ satisfies $g_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $g_{1}\left(\begin{array}{l}0 \\ \mathrm{x} \\ 0\end{array}\right)=\left(\begin{array}{l}* \\ \mathrm{x} \\ *\end{array}\right)$, then we have $g_{1} \in N_{1}$. Let $g_{1}=Y_{o}\left(n^{\prime}\right) Y_{o}^{-1}\left(n^{\prime} \in N^{\prime}\right)$. Since $\Upsilon_{0}^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=j(e)$, we have $g_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\Upsilon_{o} l\left(n^{\prime}\right) j(e)=\Upsilon_{o} j(e)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. A direct calculation shows that

$$
\Upsilon_{o}^{-1}\left(\begin{array}{l}
0 \\
x \\
0
\end{array}\right)=\left(\begin{array}{c}
S\left(x_{0}-\alpha, x\right) \\
x \\
0
\end{array}\right)=\eta \mu+j\left(\binom{y}{z} \quad(x \in V)\right.
$$

with $\mu=\Delta^{-1} S\left(x_{0}, x\right), y=x-\alpha \Delta^{-1} S\left(x_{0}, x\right), z=-\Delta^{-1} S\left(x_{0}, x\right)$ and hence

$$
\mathrm{i}^{\prime}\left(n^{\prime}\right) r_{o}^{-1}\left(\begin{array}{l}
0 \\
x \\
0
\end{array}\right)=\eta \mu+j\left(n^{\prime}\binom{y}{z}\right.
$$

We denote the above vector by $\left(\begin{array}{c}a^{\prime} \\ b^{\prime} \\ c^{\prime}\end{array}\right)$. Then we have $g_{1}\left(\begin{array}{l}0 \\ x \\ 0\end{array}\right)=\left(\begin{array}{c}c^{\prime} \\ b^{\prime}+\left(x_{0}-\alpha\right) c^{\prime} \\ *\end{array}\right)$. It remains to verify

$$
\begin{equation*}
\mathrm{b}^{\prime}+\left(\mathrm{x}_{\mathrm{o}}-\alpha\right) \mathrm{c}^{\prime}=\mathrm{x} \tag{2.5}
\end{equation*}
$$

To prove this, let $\binom{y}{z}=\mathrm{e} \lambda+\mathrm{e}^{\prime} \lambda^{\prime}+\mathrm{w}^{\prime}\left(\lambda, \lambda^{\prime} \in \mathrm{K}, \mathrm{w}^{\prime} \in \mathrm{W}^{\prime}\right)$. It is easy to see that $T\left(e,\binom{y}{z}=0\right.$ and $T\left(e^{\prime},\binom{y}{z}=2 S\left(x_{0}, x\right)\right.$ and hence we have $\lambda=-\Delta^{-1} S\left(x_{0}, x\right)$, $\lambda^{\prime}=0, w^{\prime}=\binom{x-x_{0} \Delta^{-1} S\left(x_{0}, x\right)}{0}$. It follows that

$$
n^{\prime}\binom{y}{z}=n^{\prime} e \lambda+n^{\prime} w^{\prime}=e\left(\lambda+\lambda^{\prime \prime}\right)+w^{\prime}=\binom{\left(-x_{0}+\alpha\right)\left(\lambda+\lambda^{\prime \prime}\right)+x-x_{0} \Delta^{-1} S\left(x_{0}, x\right)}{\lambda+\lambda^{\prime \prime}}
$$

where $\lambda^{\prime \prime} \in \mathrm{K}$ is determined by $\mathrm{n}^{\prime} \mathrm{w}^{\prime}=\mathrm{e} \lambda^{\prime \prime}+\mathrm{w}^{\prime}$. It follows that $\mathrm{b}^{\prime}=\mathrm{x}+\left(-\mathrm{x}_{\mathrm{o}}+\alpha\right) \lambda^{\prime \prime}$ and $c^{\prime}=\lambda^{\prime \prime}$, which implies (2.5). q.e.d.

§3. Maximal integral lattices of ε-hermitian spaces

In this section, we let k be a finite extention of Q_{p}, o its maximal order, p a fixed prime element of $o, \mathrm{~K}$ a semisimple algebra over k as in $\S 2$ and O a maximal order of K . We choose and fix a prime element π of O if K is a division algebra. We keep the notation of $\S 2$.
3.1 Integral lattices Let $S \in M_{m}(K)$ be a non-degenerate ε-hemitian matrix. An O-latice L of $\mathrm{V}=\mathrm{K}^{\mathrm{m}}$ is said to be O-integral with respect to S if $\mathrm{S}(\mathrm{x}, \mathrm{y}) \in O$ and $\mathrm{S}[\mathrm{x}] \in \tau(O)$ for every $\mathrm{x}, \mathrm{y} \in \mathrm{L}$. We say that $\mathrm{S}=\left(\mathrm{s}_{\mathrm{ij}}\right)$ is integral if O^{m} is O-integral with respect to S . This is equivalent to the assertion $\mathrm{s}_{\mathrm{ij}} \in O$ and $\mathrm{s}_{\mathrm{ii}} \in \tau(O)(1 \leq \mathrm{i}, \mathrm{j} \leq$ m)".

Let $G=U(S)=\left\{g \in G L_{m}(K) \mid g^{*} S g=S\right\}$ be the unitary group of an integral ε hermitian matrix S. We put

$$
\begin{equation*}
\mathrm{G}_{o}=\mathrm{G} \cap \mathrm{GL}_{\mathrm{m}}(O), \mathrm{G}_{o}^{*}=\left\{\mathrm{g} \in \mathrm{G}_{o} \mid(\mathrm{g}-1) \mathrm{L}^{*} \subset \mathrm{~L}\right\} \tag{3.1}
\end{equation*}
$$

where $\mathrm{L}^{*}=\mathrm{S}^{-1} \mathrm{~L}$ is the dual lattice of $\mathrm{L}=O^{\mathrm{m}}$ with respect to S . The following is easily verified.

Lemma 3.1

(i) $u \in G_{o} \Rightarrow u L=L, u L^{*}=L^{*}$.
(ii) $\mathrm{G}_{\mathrm{o}}^{*}$ is a normal subgroup of G_{o}.

An O-integral lattice L is maximal with respect to S if and only if the following assertion holds: $Y \in L^{*}, S[Y] \in \tau(O) \Rightarrow Y \in L$. We say that S is maximal if S is integral and if O^{m} is maximal with respect to S .

Lemma 3.2 Suppose that S is maximal.
(i) If K is division, then S is $\mathrm{GL}_{\mathrm{m}}(O)$-equivalent to $\left[\begin{array}{lll} & \varepsilon J_{v} \\ & S_{0} & \\ J_{v} & \end{array}\right]$ where $J_{v}=\left(\begin{array}{ll}0 & \\ & \\ & \\ & \\ & \\ 1 & \\ 1 & \\ & \\ & \end{array}\right)$
$\in \mathrm{GL}_{\mathrm{v}}$ and $\mathrm{S}_{\mathrm{o}} \in \mathrm{M}_{\mathrm{n}_{\mathrm{o}}}(O)$ is a k-anisotropic ε-hermitian matrix. Furthermore $O^{\mathrm{n}_{\mathrm{o}}}=$ $\left\{x \in K^{n_{0}} \mid S_{0}[x] \in \tau(O)\right\}$.
(ii) If K splits over k and S is of type (U) or $\left(\mathrm{U}^{+}\right)$, then $S \in \mathrm{GL}_{\mathrm{m}}(O)$.

Proof. The statement (i) is well-known (for example, see [Sa]). We give a proof of (ii) in the case of (U). The statement is similarly proved in the case of $\left(\mathrm{U}^{+}\right)$. Suppose that $\mathrm{L}=O^{\mathrm{m}}=o^{\mathrm{m}} \oplus o^{\mathrm{m}}$ is maximal with respect to $\mathrm{S}=\left(\mathrm{S}^{\prime}, \varepsilon^{\mathrm{t}} \mathrm{S}^{\prime}\right)\left(\mathrm{S}^{\prime} \in \mathrm{GL}_{\mathrm{m}}(\mathrm{k})\right)$. If $\mathrm{S}^{\prime} \notin$ $\mathrm{GL}_{\mathrm{m}}(o)$, there exists $\mathrm{X}^{\prime} \in \mathrm{k}^{\mathrm{m}}-o^{\mathrm{m}}$ such that $\mathrm{S}^{\prime} \mathrm{X}^{\prime} \in o^{\mathrm{m}}$. Put $\mathrm{X}=\left(\mathrm{X}^{\prime}, 0\right) \in \mathrm{K}^{\mathrm{m}}-$ O^{m}. Then $\mathrm{SX}=\left(\mathrm{S}^{\prime} \mathrm{X}^{\prime}, 0\right) \in \mathrm{L}$ and $\mathrm{S}[\mathrm{X}]=\left(0, \mathrm{X}^{\prime}\right)\left(\mathrm{S}^{\prime} \mathrm{X}^{\prime}, 0\right)=0 \in \tau(O)$, which contradicts to maximality of L. q.e.d.
3.2 Embedding of lattices In this subsection, we let S be a non-degenerate maximal ε-hermitian matrix of degree m . Then the lattice $\mathrm{L}_{1}=\left[\begin{array}{c}O \\ \mathrm{~L} \\ O\end{array}\right]=O^{\mathrm{m}+2}$ of $\mathrm{V}_{1}=$ $\left[\begin{array}{l}\mathrm{K} \\ \mathrm{V} \\ \mathrm{K}\end{array}\right]=\mathrm{K}^{\mathrm{m}+2}$ is maximal with respect to $S_{1}=\left[\begin{array}{ll} & \varepsilon \\ & \mathrm{S}\end{array}\right]$. Let $(\mathrm{a}, \alpha) \in O \times \mathrm{L}^{*}$.

Then $T=\left(\begin{array}{cc}S & -S \alpha \\ -\alpha^{*} S & -\tau(a)\end{array}\right)$ is integral and defines an ε-hermitian structure on $W=\binom{V}{K}$
$=\mathrm{K}^{\mathrm{m}+1}$. Let $\mathrm{j}: \mathrm{W} \rightarrow \mathrm{V}_{1}$ be an embedding of ε-hermitian spaces given by

$$
j\binom{y}{z}=\left[\begin{array}{c}
-\varepsilon \bar{a} z-S(\alpha, y) \\
y \\
z
\end{array}\right](y \in V, z \in K)
$$

Then $\mathrm{j}(\mathrm{M})$ is contained in L_{1} where $\mathrm{M}=\binom{\mathrm{L}}{O}$ is an O-integral lattice of W with respect to T. Let $\mathfrak{l}: \mathrm{H}=\mathrm{U}(\mathrm{T}) \rightarrow \mathrm{G}_{1}=\mathrm{U}\left(\mathrm{S}_{1}\right)$ be as in $\S 2: 1(\mathrm{~h})(\eta \cdot \mathrm{t}+\mathrm{j}(\mathrm{X}))=\eta \cdot \mathrm{t}+$ $j(h X) \quad(h \in H, t \in K, X \in W)$. Note that $\eta=\left[\begin{array}{c}a \\ \alpha \\ 1\end{array}\right] \in L_{1}^{*}$.

Lemma $3.3 \quad \mathrm{l}(\mathrm{H}) \cap \mathrm{G}_{1, o}^{*}=\mathrm{l}\left(\mathrm{H}_{o}^{*}\right)$.

Remark. The inclusion $\mathfrak{l}(\mathrm{H}) \cap \mathrm{G}_{1, o} \supset \mathbf{l}\left(\mathrm{H}_{0}\right)$ does not always hold (see Proposition 3.7).

Proof. Let $\mathrm{X}=\eta \cdot \mathrm{t}+\mathrm{j}\left(\binom{\mathrm{y}}{\mathrm{z}} \in \mathrm{V}_{1}(\mathrm{t} \in \mathrm{K}, \mathrm{y} \in \mathrm{V}, \mathrm{z} \in \mathrm{K})\right.$. We first show that $\binom{\mathrm{y}}{\mathrm{z}} \in$ $M^{*}=T^{-1} M$ if $X \in L_{1}^{*}=T_{1}^{-1} L_{1}$. Since $X=\left[\begin{array}{c}a t-\varepsilon \bar{a} z-S(\alpha, y) \\ \alpha t+y \\ t+z\end{array}\right], X \in L_{1}^{*}$
implies $\alpha \mathrm{t}+\mathrm{y} \in \mathrm{L}^{*}$ and at $-\varepsilon \overline{\mathrm{a}} \mathrm{z}-\mathrm{S}(\alpha, \mathrm{y}), \mathrm{t}+\mathrm{z} \in O$. Then we have

$$
\begin{aligned}
S\binom{y}{z} & =\binom{S(y-\alpha z)}{-S(\alpha, y)-\tau(a) z} \\
& =\binom{S(\alpha t+y)-S \alpha(t+z)}{(a t-\varepsilon a z-S(\alpha, y))-a(t+z)} \in M,
\end{aligned}
$$

which proves our claim. Let $h \in H_{o}^{*}$. For $X=\eta \cdot t+j\binom{y}{z} \in L_{1}^{*}$, we have

$$
\mathrm{l}(\mathrm{~h}) \mathrm{X}=\eta \mathrm{t}+\mathrm{j}\left(\binom{\mathrm{y}}{\mathrm{z}}+\mathrm{j}\left((\mathrm{~h}-1)\binom{\mathrm{y}}{\mathrm{z}} \equiv \mathrm{X}\left(\bmod \mathrm{~L}_{1}\right)\right.\right.
$$

since $(h-1)\binom{y}{z} \in M$ by the above remark. This implies $t(h) \in G_{1,0}^{*}$. Next suppose that $h \in H$ satisfies $l(h) \in G_{1, o}^{*}$. For $\binom{y}{z} \in M^{*}$, put

$$
X_{o}=\eta \cdot(-z)+j\left(\binom{y}{z}=\left(\begin{array}{c}
-S(\alpha, y)-\tau(a) z \\
y-\alpha z \\
0
\end{array}\right) \in L_{1}^{*}\right.
$$

Since $j\left((h-1)\binom{y}{z}\right)=(l(h)-1) X \in L_{1}$, we see $(h-1)\binom{y}{z} \in M$ and hence $h \in H_{o}^{*}$. q.e.d.

Lemma 3.4 Suppose that K is division and let π be a prime element of O. If $\zeta \in$ $\mathrm{L}_{1, \text { prim }}^{*}=\mathrm{L}_{1}^{*}-\mathrm{L}_{1}^{*} \cdot \pi$, then there exists an element u of $\mathrm{G}_{1, o}^{*}$ such that $\mathrm{u} \zeta=\left[\begin{array}{c}* \\ * \\ 1\end{array}\right]$. Proof. Let $\zeta=\left[\begin{array}{l}\mathrm{a} \\ \alpha \\ \mathrm{b}\end{array}\right]\left(\mathrm{a}, \mathrm{b} \in O, \alpha \in \mathrm{~L}^{*}\right)$. If $\mathrm{b} \in O^{\times}$, put $\mathrm{u}=\left[\begin{array}{ll}\overline{\mathrm{b}} & \\ & 1 \\ & \\ & \mathrm{~b}^{-1}\end{array}\right] \in$ $\mathrm{G}_{1, O}^{*}$. If $\mathrm{b} \in \pi O$ and $\mathrm{a} \in O^{\times}$, put $\mathrm{u}=\left[\begin{array}{lll}\overline{\mathrm{a}} & & \\ & 1 & \\ & & \mathrm{a}^{-1}\end{array}\right]\left[\begin{array}{lll} & & \varepsilon \\ & & \\ 1 & & \end{array}\right]$. Finally suppose that $\mathrm{a}, \mathrm{b} \in \pi O$. Since $\alpha \in \mathrm{L}_{\text {prim }}^{*}$, we can find a pair $(\mathrm{y}, \mathrm{z}) \in \Lambda \times O$ so that $\mathrm{S}(\alpha, \mathrm{y}) \in$ O^{\times}and $\tau(z)+\mathrm{S}[\mathrm{y}]=0$. Since

$$
\left[\begin{array}{ccc}
1 & & \\
\mathrm{y} & 1_{\mathrm{m}} & \\
\mathrm{z}-\varepsilon \mathrm{y}^{*} \mathrm{~S} & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{a} \\
\alpha \\
\mathrm{~b}
\end{array}\right]=\left[\begin{array}{c}
* \\
* \\
y \mathrm{ya}-\mathrm{ES}(\mathrm{y}, \alpha)+\mathrm{b}
\end{array}\right]
$$

the proof is reduced to the case where $\mathrm{b} \in O^{\times}$. q.e.d.
3.3 We say that a pair $(\mathrm{a}, \alpha) \in O \times \mathrm{L}^{*}$ is reduced if $\mathrm{T}\left(\begin{array}{cc}1_{\mathrm{m}} & \mathrm{X} \\ 0 & \mathrm{t}^{-1}\end{array}\right)$] is not integral for every $t \in O \cap K^{\times}-O^{\times}$and every $X \in K^{m}$ with $T=\left(\begin{array}{cc}S & -S \alpha \\ -\alpha^{*} S & -\tau(a)\end{array}\right)$.

Lemma 3.5 Suppose that S is maximal and exclude the case where S is of $\left(U^{-}\right)$type and K splits over k. A pair $(\mathrm{a}, \alpha) \in O \times \mathrm{L}^{*}$ is reduced if and only if $\mathrm{M}=O^{\mathrm{m}+1}$ is maximal with respect to $\mathrm{T}=\left(\begin{array}{cc}\mathrm{S} & -\mathrm{S} \alpha \\ -\alpha^{*} \mathrm{~S} & -\tau(\mathrm{a})\end{array}\right)$.

To prove this, we need the following result.

Lemma 3.6 Let the assumption be the same as in Lemma 3.5. If $\mathrm{S}[\alpha]-\mathrm{S}[\beta \mathrm{t}] \in \tau(O)$ for $\alpha, \beta \in \mathrm{L}^{*}$ and $\mathrm{t} \in O-O^{\times}$, we have $\alpha-\beta \mathrm{t} \in \mathrm{L}$.

Proof. If K splits, then we have $\mathrm{L}^{*}=\mathrm{L}$ so that the assertion is trivial. Thus we assume that K is division. Let l be the least non-negative integer satisfying ($\alpha-$ $\beta \mathrm{t}) \cdot \pi^{l} \in \mathrm{~L}$. Suppose that $l \geq 1$. Then

$$
\begin{aligned}
& S\left[(\alpha-\beta \mathrm{t}) \pi^{l-1}\right]=\bar{\pi}^{l-1} \cdot(\mathrm{~S}[\alpha]-\tau(\mathrm{S}(\alpha, \beta \mathrm{t}))+\mathrm{S}[\beta \mathrm{t}]) \cdot \pi^{l-1} \\
& =\bar{\pi}^{l-1} \cdot(\mathrm{~S}[\alpha]-\mathrm{S}[\beta \mathrm{t}]) \cdot \pi^{l-1}-\tau\left(\bar{\pi}^{-1} \cdot \mathrm{~S}\left((\alpha-\beta \mathrm{t}) \pi^{l}, \beta \mathrm{t} \pi^{l-2}\right) \cdot \pi\right)
\end{aligned}
$$

Observe that $S\left((\alpha-\beta \mathrm{t}) \pi^{l}, \beta t \pi^{l-2}\right) \in O$ since $(\alpha-\beta \mathrm{t}) \pi^{l} \in \mathrm{~L}$ and $\beta t \pi^{l-2} \in \mathrm{~L}^{*}$ (note that $t \in \pi O$ and $l-2 \geq-1$). Since $\bar{\pi}^{-1} \cdot O \cdot \pi=O$, we have $\mathrm{S}\left[(\alpha-\beta \mathrm{t}) \pi^{l-1}\right] \in \tau(O)$. On the other hand, we have $(\alpha-\beta t) \pi^{l-1} \in L^{*}$. Since S is maximal, we have $(\alpha-\beta \mathrm{t}) \pi^{l-1} \in \mathrm{~L}$, which is a contradiction. Thus $l=0$ and we are done. q.e.d.

Proof of Lemma 3.5. First suppose that $(\mathrm{a}, \alpha) \in O \times \mathrm{L}^{*}$ is not reduced. Then there exists a pair $(\mathrm{t}, \mathrm{X}) \in\left(O \cap \mathrm{~K}^{\times}-O^{\times}\right) \times \mathrm{K}^{\mathrm{m}}$ such that $\mathrm{T}\left[\left(\begin{array}{c}1 \\ \mathrm{X} \\ 0 \mathrm{t}^{-1}\end{array}\right)\right]=\left(\begin{array}{cc}\mathrm{S} & \mathrm{S}\left(\mathrm{X}-\alpha \mathrm{t}^{-1}\right) \\ \left(\mathrm{X}-\alpha \mathrm{t}^{-1}\right)^{*} \mathrm{~S} & \mathrm{z}_{\mathrm{o}}\end{array}\right)$ is integral, where $z_{0}=S[X]-\tau\left(S(X, \alpha) t^{-1}\right)-\bar{t}^{-1} \tau(a) t^{-1}$. Put $Y=\binom{X}{t^{-1}}$. We show that $\mathrm{TY} \in \mathrm{M}$ and $\mathrm{T}[\mathrm{Y}] \in \tau(O)$, which implies that M is not maximal. The second assertion is clear from $z_{0}=T[Y]$. To prove the first one, observe
$T Y=\binom{S\left(X-\alpha t^{-1}\right)}{-S(\alpha, X)-\tau(a) t^{-1}}$. By assumption, we see that $S\left(X-\alpha t^{-1}\right)$ is integral and it remains to show that $\mathrm{b}=-\mathrm{S}(\alpha, \mathrm{X})-\tau(\mathrm{a}) \mathrm{t}^{-1} \in O$. Observe $\mathrm{Xt}=\left(\mathrm{X}-\alpha \mathrm{t}^{-1}\right) \cdot \mathrm{t}-(-\alpha)$ and $\mathrm{X}-\alpha \mathrm{t}^{-1},-\alpha \in \mathrm{L}^{*}$. We see that $\mathrm{S}[\mathrm{Xt}-\alpha]-\mathrm{S}[-\alpha]=\mathrm{S}[\mathrm{Xt}]-\tau(\mathrm{S}(\mathrm{Xt}, \alpha))=\overline{\mathrm{t}} \mathrm{z}_{\mathrm{o}} \mathrm{t}+$ $\tau(\mathrm{a}) \in \tau(O)$. Applying Lemma 3.6, we see that $\mathrm{Xt} \in \mathrm{L}$ and hence $\mathrm{b} \in O$. Next suppose that M is not maximal. Then we can find an element $Y=\binom{X}{z}$ of $W-M$ $(\mathrm{X} \in \mathrm{V}, \mathrm{z} \in \mathrm{K})$ so that $\mathrm{TY} \in \mathrm{M}$ and $\mathrm{T}[\mathrm{Y}] \in \tau(O)$. If $\mathrm{z} \in O$, then $\mathrm{SX} \in \mathrm{L}$ and $\mathrm{S}[\mathrm{X}] \in \tau(O)$, which implies $\mathrm{X} \in \mathrm{L}$ by maximality of S . This contradicts to the choice of Y and hence we have $\mathrm{z} \notin O$. If K is division, $\mathrm{z} \notin O$ implies $\mathrm{z}^{-1} \in O \cap \mathrm{~K}^{\times}-O^{\times}$ and hence that (a, α) is not reduced. Assume that K splits over k . We show that there exists $z^{\prime} \in K^{\times}$satisfying

$$
\begin{equation*}
z^{\prime} \equiv \mathrm{z}(\bmod O) \text { and } z^{-1} \in O \tag{3.2}
\end{equation*}
$$

By a similar argument as above, the existence of such a z^{\prime} implies that (a, α) is not reduced. First consider the case (II) so that $\mathrm{K}=\mathrm{k} \oplus \mathrm{k}$ and $\mathrm{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$. We may assume that $\mathrm{z}_{1} \notin O$ and $\mathrm{z}_{2} \in 0$. In this case, put $\mathrm{z}^{\prime}=\left(\mathrm{z}_{1}, 1\right)$. Next consider the case
(III). In this case, $K=M_{2}(k)$. Then we may assume that $z=u_{1}\left(\begin{array}{cc}\mathrm{p}^{\mu} & 0 \\ 0 & \mathrm{p}^{v}\end{array}\right) \mathrm{u}_{2}$ with u_{1}, $\mathrm{u}_{2} \in O^{\times}=\mathrm{GL}_{2}(o), \mu<0$ and $v \geq 0$. We put $\mathrm{z}^{\prime}=\mathrm{u}_{1}\left(\begin{array}{cc}\mathrm{p}^{\mu} & 0 \\ 0 & 1\end{array}\right) \mathrm{u}_{2}$. In both cases, z^{\prime} satisfies the condition (3.2). q.e.d.
3.4 For a maximal S , we now define an invariant $\partial(\mathrm{S})$ of the $\mathrm{GL}_{\mathrm{m}}(O)$-equivalence class of S . First suppose that K is division. Then $\mathrm{L}^{\prime}=\left\{\mathrm{X} \in \mathrm{L}^{*} \mid \mathrm{S}[\mathrm{X}] \in \tau\left(\pi^{-1} O\right)\right\}$ is an O-integral lattice containing L and $\mathrm{L}^{\prime} / \mathrm{L}$ forms a finite dimensional vector space over a finite field $O / \pi O$. Then $\partial(\mathrm{S})$ is defined to be

$$
\begin{equation*}
\partial(\mathrm{S})=\operatorname{dim}_{O \hbar O^{2}} \mathrm{~L}^{\prime} / \mathrm{L} \tag{3.3}
\end{equation*}
$$

We set $\partial(S)=0$ when K splits over k. It is known that $0 \leq \partial(S) \leq 2$. Let (a, α) be a reduced pair. Since $T=\left(\begin{array}{cc}S & -S \alpha \\ -\alpha^{*} S & -\tau(a)\end{array}\right)$ is maximal by Lemma 3.5, we can also define $\partial(\mathrm{T})$.

For the remainder of this section, we assume the following:
(3.4) $\varepsilon=1$; moreover we exclude the case where $p / 2$ and K is a ramified extention of \mathbf{k}.

In particular, the orthogonal group case is included.

Proposition 3.7 Let (a, α) be a reduced pair and assume (3.4). If $\partial(\mathrm{T}) \leq \partial(\mathrm{S})$, then we have $1\left(\mathrm{H}_{0}\right)=\mathrm{l}(\mathrm{H}) \cap \mathrm{G}_{1,0}$.

Proof. To prove the proposition, we may assume that S is k -anisotropic in view of Lemma 3.2. Note that, if K splits over \mathbf{k}, then S and T are unimodular and hence the lemma is trivial (see Lemma 3.2). Suppose that K is division. A classification of k anisotropic ε-hrmitian matrices (up to $\mathrm{GL}_{\mathrm{m}}(O)$-equivalence) is available under the assumption (3.4) (see [HS]). Then we can check our assertion case by case. The verification is straightforward and we only list up the $\mathrm{GL}_{\mathrm{m}}(O)$-equivalence classes of ε hermitian matrices in the case where S is of type (U) or $\left(\mathrm{U}^{+}\right)$and K is division. The classification in the case of (O) may be found in [E].
(1) (U), K / k : an unramified quadratic extention
(1.a) $n_{0}=0, \partial=0$
(1.b) $\mathrm{n}_{\mathrm{o}}=1, \partial=0, \mathrm{~S}=(\mathrm{r}), \mathrm{r} \in o^{x}$
(1.c) $\mathrm{n}_{\mathrm{o}}=1, \partial=1, \mathrm{~S}=(\mathrm{pr}), \mathrm{r} \in o^{x}$
(1.d) $n_{o}=2, \partial=1, S=\left(\begin{array}{cc}s & 0 \\ 0 & \text { pr }\end{array}\right), \mathrm{r}, \mathrm{s} \in o^{x}$
(2) (U), K / k : a tamely ramified quadratic extention
(2.a) $n_{o}=0, \partial=0$
(2.b) $\mathrm{n}_{\mathrm{o}}=1, \partial=0, \mathrm{~S}=(\mathrm{r}), \mathrm{r} \in o^{x}$
(2.c) $\mathrm{n}_{\mathrm{o}}=2, \partial=0, \mathrm{~S}=\left(\begin{array}{cc}\mathrm{s} & 0 \\ 0 & \mathrm{r}\end{array}\right), \mathrm{s}, \mathrm{r} \in o^{\times},-\mathrm{sr} \notin \mathrm{N}_{\mathrm{K} / \mathrm{k}}(\mathrm{K})$.
(3) $\left(\mathrm{U}^{+}\right), \mathrm{K}$: a division quaternion over k
(3.a) $n_{o}=0, \partial=0$
(3.b) $\mathrm{n}_{\mathrm{o}}=1, \partial=0, \mathrm{~S}=(\mathrm{r}), \mathrm{r} \in o^{x}$.
q.e.d.

The following lemma is proved in a similar way as in the proof of the above proposition.

Lemma 3.8 Assume (3.4). If $\alpha, \beta \in \mathrm{L}^{*}$ satisfy $\mathrm{S}[\alpha] \equiv \mathrm{S}[\beta](\bmod \tau(O))$, then there exists an element u of G_{o} such that $\beta \equiv \mathrm{u} \alpha(\bmod \mathrm{L})$.

Proposition 3.9 Assume (3.4) and let K be a division algebra over k . If (a, α) is a reduced pair, then

$$
\mathrm{G}_{1}=\bigcup_{l \geq 0}^{\cup} \mathfrak{l}(\mathrm{H})\left[\begin{array}{lll}
\pi^{-l} & & \\
& 1_{\mathrm{m}} & \\
& & \bar{\pi}^{l} l
\end{array}\right] \mathrm{G}_{1, o} \quad \text { (disjoint union). }
$$

Proof. Recall that $\mathfrak{l}(\mathrm{H})$ is the stabilizer subgroup of $\eta=\left[\begin{array}{c}\mathrm{a} \\ \alpha \\ 1\end{array}\right]$ in G_{1}. Let $\mathrm{g}_{1} \in \mathrm{G}_{1}$.
Put $\mathrm{g}_{1}^{-1} \eta=\zeta \cdot \bar{\pi}^{-l}$ with $\zeta \in \mathrm{L}_{1, \text { prim }}^{*}$ (note that l is uniquely determined). We first show $l \geq 0$. If $l<0$, we have $\mathrm{g}_{1}{ }^{-1} \eta=\left[\begin{array}{c}\mathrm{a}^{\prime \prime} \\ \alpha^{\prime \prime} \\ \mathrm{b}^{\prime \prime}\end{array}\right] \cdot \pi$ with $\left[\begin{array}{c}\mathrm{a}^{\prime \prime} \\ \alpha^{\prime \prime} \\ \mathrm{b}^{\prime \prime}\end{array}\right] \in \mathrm{L}_{1}^{*}$. Then

$$
\mathrm{T}\left[\left(\begin{array}{cc}
1 \alpha \pi^{-1}-\alpha^{\prime \prime} \\
0 & \pi^{-1}
\end{array}\right)\right]=\left(\begin{array}{cc}
\mathrm{S} & -\mathrm{S} \alpha^{\prime \prime} \\
-\alpha^{*} \mathrm{~S} & \mathrm{z}
\end{array}\right)
$$

with $\mathrm{z}=\mathrm{S}\left[\alpha^{\prime \prime}\right]-\bar{\pi}^{-1}(\mathrm{~S}[\alpha]+\tau(\mathrm{a})) \pi^{-1}$. Since $\mathrm{S}_{1}[\eta]=\mathrm{S}_{1}\left[\mathrm{~g}_{1}{ }^{-1} \eta\right]$, we have $\mathrm{z}=$ $\tau\left(\overline{b^{\prime \prime}} a^{\prime \prime}\right) \in \tau(O)$ and hence that $T\left[\left(\begin{array}{cc}1 \alpha \pi^{-1}-\alpha^{\prime \prime} \\ 0 & \pi^{-1}\end{array}\right)\right]$ is integral. This contradicts to the assumption that (a, α) is reduced. By Lemma 3.4, there exists an element u_{1} of $G_{1, o}^{*}$ such that $g_{1}^{-1} \eta=\mathrm{u}_{1}\left[\begin{array}{c}\mathrm{a}^{\prime} \\ \alpha^{\prime} \\ 1\end{array}\right] \bar{\pi}^{-l}$ with $\left[\begin{array}{c}a^{\prime} \\ \alpha^{\prime} \\ 1\end{array}\right] \in L_{1}^{*}$. It follows that $\tau\left(\pi^{l} \mathrm{a} \bar{\pi}^{l}\right)+$
$\mathrm{S}\left[\alpha \bar{\pi}^{l}\right]=\tau\left(\mathrm{a}^{\prime}\right)+\mathrm{S}\left[\alpha^{\prime}\right]$ and hence $\mathrm{S}\left[\alpha \bar{\pi}^{l}\right] \equiv \mathrm{S}\left[\alpha^{\prime}\right](\bmod \tau(O))$. By Lemma 3.8, we can find an element u_{0} of G_{o} so that $u_{0} \alpha^{\prime}=\alpha \bar{\pi}^{l}-\beta$ with $\beta \in L$. Choose an element b of O so that $\tau(\mathrm{b})+\mathrm{S}[\beta]=0$. Then

$$
\left[\begin{array}{ccc}
1 & -\beta^{*} S & b \\
0 & 1_{\mathrm{m}} & \beta \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& u_{o} & \\
& & 1
\end{array}\right]\left[\begin{array}{c}
a^{\prime} \\
\alpha^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
a^{\prime \prime} \\
\alpha \bar{\pi} l \\
1
\end{array}\right] \in L_{1}^{*}
$$

Put $\mathrm{y}_{0}=\pi^{l} \mathrm{a} \bar{\pi}^{l}-\mathrm{a}^{\prime \prime}$. Then $\mathrm{y}_{0} \in O \cap \operatorname{Ker} \tau$ and

$$
\left[\begin{array}{lll}
1 & 0 & \mathrm{y}_{0} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{a}^{\prime \prime} \\
\frac{\bar{\pi}^{l}}{} \\
1
\end{array}\right]=\left[\begin{array}{lll}
\pi^{l} & & \\
& 1 & \\
& & \bar{\pi}^{-l}
\end{array}\right]{\bar{\eta} \bar{\pi}^{l}} \quad .
$$

Thus there exists an element u of $G_{1, o}$ such that $g_{1}{ }^{-1} \eta=u\left[\begin{array}{lll}\pi^{l} & & \\ & 1 & \\ & & \\ & & \bar{\pi}^{-l}\end{array}\right] \eta$. This
proves the proposition. q.e.d.

§4. Proof of Lemma A

The object of this section is to prove Lemma A in §1.10. Let the notation and the assumption be as in $\S 1.10$. In particular, T and S are supposed to be maximal. Throughout this section, we fix a rational prime p and write H, U, G, K, G_{1} and K_{1} for $H_{p}, U_{p}, G_{p}, K_{p}, G_{1, p}$ and $K_{1, p}$ respectively.

Let $\left\{\mathrm{p}^{\mathrm{e}_{1}}, \cdots, \mathrm{p}^{\mathrm{e}_{\mathrm{r}}}, 0, \cdots, 0\right\}$ (0 appears ($\mathrm{n}-\mathrm{r}$) times) be a set of elementary divisors of $x \in M_{n}\left(Q_{p}\right)$. Recall that $\mu_{n, p}(x)=\mu_{n}(x)$ is the sum of $l e_{i} \mid$ with $e_{i}<0$. Note that $\mathrm{p}^{-\mu_{\mathrm{n}}(\mathrm{x})} \mathbf{Z}_{\mathrm{p}}$ coincides with the \mathbf{Z}_{p}-module generated by all the minors of x and \mathbf{Z}_{p}. The following is easily verified.

Lemma 4.1

(i) For $\mathrm{x}, \mathrm{y} \in \mathrm{M}_{\mathrm{n}}\left(\mathrm{Q}_{\mathrm{p}}\right)$, we have $\mu_{\mathrm{n}}(\mathrm{xy}) \leq \mu_{\mathrm{n}}(\mathrm{x})+\mu_{\mathrm{n}}(\mathrm{y})$.
(ii) For $\mathrm{x} \in \mathrm{M}_{\mathrm{m}}\left(\mathrm{Q}_{\mathrm{p}}\right)$ and $\mathrm{y} \in \mathrm{M}_{\mathrm{n}}\left(\mathrm{Q}_{\mathrm{p}}\right)$, we have $\mu_{\mathrm{m}+\mathrm{n}}\binom{\mathrm{x} *}{0 \mathrm{y}} \geq \mu_{\mathrm{m}}(\mathrm{x})+\mu_{\mathrm{n}}(\mathrm{y})$.

Since Lemma A is trivial for a Q_{p}-anisotropic T, we may assume that T is Q_{p} isotrpic. By taking suitable Z_{p}-bases of M and L , we may suppose that S, T and S_{1} have the following matrix forms:

$$
S=\left(\begin{array}{cc}
R & -R \beta \tag{4.1}\\
-{ }^{t} \beta R & -2 b
\end{array}\right), T=\binom{R^{1}}{1}, S_{1}=\binom{S^{1}}{1}
$$

$\left(R \in M_{m-1}\left(Q_{p}\right), \beta \in Q_{p}^{m-1}, b \in Q_{p}\right)$. Furthermore the embeddings $V=Q_{p}^{m} \xrightarrow{j^{\prime}} W=$ $\mathrm{Q}_{\mathrm{p}}^{\mathrm{m}+1} \xrightarrow{\mathrm{j}} \mathrm{V}_{1}=\mathrm{Q}_{\mathrm{p}}^{\mathrm{m}+2}, \mathrm{G} \xrightarrow{\mathfrak{l}^{\prime}} \mathrm{H} \xrightarrow{\mathbf{l}} \mathrm{G}_{1}$ are given as follows: Put $\xi=\left(\begin{array}{l}\mathrm{b} \\ \beta \\ 1\end{array}\right) \in$
$M^{*}=T^{-1} M, \eta=\left(\begin{array}{c}0 \\ \alpha \\ 1\end{array}\right) \in L_{1}^{*}=S_{1}^{-1} L_{1}$ where $\alpha=D^{-1}\binom{\beta}{1} \in L^{*}=S^{-1} L, D=T[\xi]=$
$R[\beta]+2 b \in Q_{p}$. Then

$$
\begin{align*}
& j^{\prime}\left(\binom{y_{1}}{y_{2}}\right)=\left(\begin{array}{c}
-b y_{2}-R\left(\beta, y_{1}\right) \\
y_{1} \\
y_{2}
\end{array}\right), \tag{4.2}\\
& j\left(\xi t+j^{\prime}(y)\right)=\left[\begin{array}{c}
-S[\alpha] \\
\alpha \\
1
\end{array}\right] D t+\left[\begin{array}{c}
-S(\alpha, y) \\
y \\
1
\end{array}\right], \\
& \mathfrak{l}^{\prime}(g)\left(\xi t+j^{\prime}(y)\right)=\xi t+j^{\prime}(g y) \\
& \mathfrak{l}(h)(\eta t+j(w))=\xi t+j(h w)
\end{align*}
$$

$$
\left(y_{1} \in Q_{p}^{m-1}, y_{2} \in Q_{p}, t \in Q_{p}, y \in V, w \in W, g \in G, h \in H\right)
$$

To prove Lemma A, we need an explicit form of t, which will be also used in the next section.

Lemma 4.2

(i) Let $\mathrm{h}^{\prime} \in \mathrm{H}^{\prime}=\mathrm{O}(\mathrm{R})$ and $\mathrm{t} \in \mathrm{Q}_{\mathrm{p}}^{\mathrm{x}}$. Then we have

$$
\mathfrak{l}\left(\left(\begin{array}{lll}
\mathrm{t} & & \\
& h^{\prime} & \\
& & \mathrm{t}^{-1}
\end{array}\right)\right)=\left[\begin{array}{cccc}
\mathrm{t}^{-1} & 0 & 0 & 0 \\
\left(\mathrm{~h}^{\prime}-1\right) \beta & h^{\prime} & \left(1-h^{\prime}\right) \beta & 0 \\
\mathrm{t}^{-1}-1 & 0 & 1 & 0 \\
\mathrm{u}_{1} & \mathrm{u}_{2} & \mathrm{u}_{3} & \mathrm{t}
\end{array}\right]
$$

with $\mathrm{u}_{1}=\mathrm{b}\left(-2+\mathrm{t}+\mathrm{t}^{-1}\right)+\mathrm{R}\left(\beta,\left(\mathrm{h}^{\prime}-1\right) \beta\right), \mathrm{u}_{2}={ }^{\mathrm{t}} \beta \mathrm{R}\left(\mathrm{h}^{\prime}-\mathrm{t}\right)$ and $\mathrm{u}_{3}=2 \mathrm{~b}(1-\mathrm{t})$
$+R\left(\beta,\left(1-h^{\prime}\right) \beta\right)$.
(ii) Let $\mathrm{x} \in \mathrm{Q}_{\mathrm{p}}^{\mathrm{m}-1}$. Then we have

$$
\left.\mathfrak{l}\left(\begin{array}{ccc}
1 & -{ }^{\mathrm{t}} \mathrm{xR} & -2^{-1} \mathrm{R}[\mathrm{x}] \\
0 & 1_{\mathrm{m}-1} & \mathrm{x} \\
0 & 0 & 1
\end{array}\right)\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\mathrm{x} & 1_{\mathrm{m}-1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
-2^{-1} \mathrm{R}[\mathrm{x}] & -{ }^{\mathrm{t} x R} & \mathrm{R}(\beta, \mathrm{x}) & 1
\end{array}\right] .
$$

(iii) For $\mathrm{g} \in \mathrm{G}$, we have

$$
\mathfrak{l}\left(\mathrm{l}^{\prime}(\mathrm{g})\right)=\left[\begin{array}{ccc}
1 & \mathrm{t} \alpha \mathrm{~S}(1-\mathrm{g}) & -\mathrm{S}(\alpha,(1-\mathrm{g}) \alpha) \\
0 & \mathrm{~g} & (1-\mathrm{g}) \alpha \\
0 & 0 & 1
\end{array}\right]
$$

Proof. This is proved by straightforward calculation. q.e.d.
Lemma 4.3 If $\partial_{\mathrm{p}}(\mathrm{T}) \leq \partial_{\mathrm{p}}(\mathrm{S})$, then we have $\mathrm{N}_{\mathrm{H}, \mathrm{s}}(\mathrm{h})=\mathrm{N}_{\mathrm{G}_{1}, \mathrm{~s}}(\mathrm{l}(\mathrm{h}))$ for $\mathrm{h} \in \mathrm{H}$.
Proof. We may assume that $\mathrm{R}=\left[\begin{array}{c}\mathrm{J}_{v} \\ \mathrm{R}_{\mathrm{o}} \\ \mathrm{J}_{v}\end{array}\right]$ and $\beta=\left(\begin{array}{c}0_{v} \\ \beta_{\mathrm{o}} \\ 0_{v}\end{array}\right)$ where v is the Witt
index of R, R_{o} is Q_{p}-anisotropic and $\beta_{0} \in Q_{p}^{m-1-2 v}$. Since $l(U) \subset K_{1}$ by the assumption and Proposition 3.7, we only have to check the assertion of the lemma for h $=\left(\begin{array}{lll}\mathrm{p}^{-r} & & \\ & h^{\prime} & \\ & & p^{r}\end{array}\right)$ with $h^{\prime}=\operatorname{diag}\left(p^{r}, \cdots, p^{r} v, 1_{m+1-2 v}, p^{-r} v, \cdots, p^{-r_{1}}\right) \in H^{\prime}\left(r, r_{1}\right.$, $\cdots, r_{v} \geq 0$). By Lemma 4.2, we have

$$
\mathrm{l}(\mathrm{~h})=\left[\begin{array}{llll}
\mathrm{p}^{\mathrm{r}} & & & \\
& & & \\
& \mathrm{~h}^{\prime} & & \\
& & 1 & \\
& & & \\
& & & \\
& &
\end{array}\right] \mathrm{k}_{1}, \mathrm{k}_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
p^{r}-1 & 0 & 1 & 0 \\
b\left(p^{\mathrm{r}}-1\right)^{2} & \mathrm{t}_{\beta_{0}} T_{0}\left(p^{\mathrm{r}}-1\right) & 2 b\left(p^{r}-1\right) & 1
\end{array}\right] \in K_{1}
$$

Thus $\mathrm{N}_{\mathrm{G}_{1}, \mathrm{~s}}(\mathrm{l}(\mathrm{h}))=\mathrm{p}^{-\left(\mathrm{r}+\mathrm{r}_{1}+\cdots+\mathrm{r}_{v}\right) \mathrm{s}}=\mathrm{N}_{\mathrm{H}, \mathrm{s}}(\mathrm{h})$, which proves the lemma. q.e.d.

Proof of Lemma A. We first note that the assertion of lemma A is equivalent to

$$
\begin{equation*}
N_{H, s}(h)=|\alpha(l(h))|^{s} \cdot N_{G, s}(\beta(l(h))) \quad(h \in H) \tag{4.3}
\end{equation*}
$$

By Proposition 3.9, we get the decomposition $H=\bigcup_{l \geq 0} \mathfrak{l}^{\prime}(G) h_{l} U$ with $h_{l}=$
$\left(\begin{array}{llll}\mathrm{p}^{-l} & & & \\ & 1_{\mathrm{m}-1} & \\ & & \mathrm{p}^{l}\end{array}\right)$. Thus we only have to verify (4.3) for $\mathrm{h}=\mathrm{l}^{\prime}(\mathrm{g}) \mathrm{h}_{l}(\mathrm{~g} \in \mathrm{G}, l \geq 0)$. By
Lemma 4.1 (i), we have $\mu_{\mathrm{m}+1}(\mathrm{~h}) \leq \mu_{\mathrm{m}+1}\left(\mathrm{l}^{\prime}(\mathrm{g})\right)+\mu_{\mathrm{m}+1}\left(\mathrm{~h}_{\mathrm{l}}\right)=\mu_{\mathrm{m}+1}\left(\mathrm{l}^{\prime}(\mathrm{g})\right)+l$. On the other hand, by Lemma 4.3, Lemma 4.2 (iii) and Lemma 4.1 (ii), we obtain $\mu_{m+1}(h)=$ $\mu_{\mathrm{m}+2}(\mathrm{l}(\mathrm{h}))=\mu_{\mathrm{m}+2}\left(\mathrm{l}^{\left.\left.\left.\left(\mathrm{l}^{\prime}(\mathrm{g}) \mathrm{h}\right)\right)\right)=\mu_{\mathrm{m}+2}\left[\begin{array}{lll}\mathrm{p}^{l} & * & * \\ 0 & \mathrm{~g} & * \\ 0 & 0 & \mathrm{p}^{-l}\end{array}\right]\right) \geq \mu_{\mathrm{m}}(\mathrm{g})+l \text {, which implies }, ~}\right.$ $\mu_{\mathrm{m}}(\mathrm{g})+l \leq \mu_{\mathrm{m}+1}(\mathrm{~h}) \leq \mu_{\mathrm{m}+1}\left(\mathrm{l}^{\prime}(\mathrm{g})\right)+l$. Applying Lemma 4.3 again (replace H and G_{1} by G and H, respectively), we have $\mu_{m}(g)=\mu_{m+1}\left(\mathrm{l}^{\prime}(\mathrm{g})\right)$ for $\mathrm{g} \in \mathrm{G}$. Thus we have $\mathrm{N}_{\mathrm{H}, \mathrm{s}}(\mathrm{h})=\mathrm{N}_{\mathrm{G}, \mathrm{s}}(\mathrm{g}) \cdot \mathrm{p}^{-l \mathrm{~s}}$. Since $\alpha(\mathrm{l}(\mathrm{h}))=\mathrm{p}^{l}$ and $\beta(\mathrm{l}(\mathrm{h}))=\mathrm{g}$, we are done. q.e.d.

§5. Proof of Lemma B

Throughout this section, we keep the notation and the assumption of $\S 1.11$. In particular, $S \in M_{m}\left(Z_{p}\right)$ is a non-degenerate maximal even integral symmetric matrix, G $=O(S)$ and $K=G\left(Z_{p}\right)$. We put $\partial=\partial_{p}(S)$. Let $G_{1}=O\left(S_{1}\right)$ and $K_{1}=G_{1}\left(Z_{p}\right)$ with $S_{1}=\left[\begin{array}{l}1 \\ S \\ 1\end{array}\right]$. For $X \in Q_{p}^{m}$, put $n_{1}(X)=\left[\begin{array}{ccc}1 & -{ }^{t} X S & -2^{-1} S[X] \\ 0 & 1_{n} & X \\ 0 & 0 & 1\end{array}\right] \in G_{1}$. The
following result is a key to the proof of Lemma B.

Proposition 5.1 For $\mathrm{t} \in \mathrm{Q}_{\mathrm{p}}^{\times}$and $\mathrm{g} \in \mathrm{G}$, we have

$$
\begin{align*}
& \int_{Q_{p}^{m}} N_{G_{1}, s+m / 2}\left(n_{1}(X)\left[\begin{array}{c}
t \\
g \\
\\
t^{-1}
\end{array}\right]\right) d x \tag{5.1}\\
& =|t|^{m / 2} p^{-1 \operatorname{lord}_{p} t \cdot s} \frac{\left(1-p^{-(s+m / 2)}\right)\left(1+p^{-(s+m / 2-\partial)}\right)}{1-p^{-2 s}} N_{G, s+m / 2-1}(g)
\end{align*}
$$

We first demonstrate Lemma B assuming the above result. By Lemma 3.2, we may assume that S is of the form $S_{v}=\left[\begin{array}{ll} & J_{v} \\ & S_{0} \\ J_{v} & \end{array}\right]$ where $J_{v}=\left(\begin{array}{ll}0 & \\ & \\ & \\ & \\ 1 & \\ 1 & \\ & \end{array}\right)$ and S_{0} is a maximal even integral Q_{p}-anisotropic symmetric matrix of rank $n_{o}=m-2 v$. Note that $\partial_{p}\left(S_{0}\right)=\partial$. Put $G_{v}=O\left(S_{v}\right)$ and $K_{v}=G_{v}\left(Z_{p}\right)$. For $\lambda \in\left(C^{\times}\right)^{v} / W_{v}$, we define a function $\phi_{G_{v} \lambda}$ on G_{v} to be

$$
\begin{equation*}
\phi_{G_{v}, \lambda}(t u k)=\prod_{j=1}^{v} \mid t_{j} I^{n_{0} / 2+v-j} \lambda_{j} \operatorname{ord}_{p}\left(t_{j}\right) \tag{5.2}
\end{equation*}
$$

where $t=\operatorname{diag}\left(t_{1}, \cdots, t_{v}, 1_{n_{0}}, t^{-1}, \cdots, t_{1}{ }^{-1}\right), u \in G_{v}$ is an upper unipotent matrix of degree m and $k \in K_{v}$. Then Lemma B is equivalent to the following result.

Proposition 5.2

$$
\begin{align*}
& \int_{G_{v}} \phi_{G_{v}, \lambda}(g) N_{G_{v}, s+m / 2-1}(g) d g \tag{5.3}\\
& =L_{p}^{o}(\lambda, s) \times \prod_{j=0}^{v-1}\left(1-p^{-\left(s+j+n_{0} / 2\right)}\right)\left(1+p^{-\left(s+j-\partial+n_{0} / 2\right)}\right)
\end{align*}
$$

Proof of Proposition 5.2. We prove the assertion by induction on v. The assertion is trivial if $v=0$. Decompose $g \in G_{v}$ into $n(x)\left[\begin{array}{lll}t & & \\ & g^{\prime} \\ & & \\ t^{-1}\end{array}\right] k\left(x \in Q_{p}^{m-2}, t \in Q_{p}^{\times}, g^{\prime} \in\right.$ $G_{v-1}, k \in K_{v}$). Then a Haar measure $d g$ on G_{v} is given by $d g=\left.I t\right|^{-(m-2)} d X d^{\times} t d^{\prime}$ dk . Thus the left-hand side of (5.2) equals

$$
\begin{align*}
& \left.\int_{Q_{p}^{m-2}} d x \int_{Q_{p}^{\times}}|t|^{-m+2} d^{\times} t \int_{G_{v-1}} d g^{\prime} \phi_{G_{v}} \lambda\left(\begin{array}{l}
t \\
g^{\prime} \\
t^{-1}
\end{array}\right]\right) \tag{5.4}\\
& \times N_{G_{v}, s+m / 2-1}\left(n(x)\left[\begin{array}{c}
t \\
g^{\prime} \\
t^{-1}
\end{array}\right]\right) .
\end{align*}
$$

Observing $\left.\quad \phi_{G_{v}, \lambda}\left[\begin{array}{cc}t & \\ & g^{\prime} \\ & t^{-1}\end{array}\right]\right)=|t|^{(m-2) / 2} \lambda_{1}^{\text {ord }_{p} t} \phi_{G_{v-1}} \lambda^{\prime}\left(g^{\prime}\right)$ with $\lambda^{\prime}=\left(\lambda_{2}, \cdots, \lambda_{v}\right)$
$\epsilon\left(\mathbf{C}^{\times}\right)^{v-1} / W_{v-1}$ and applying Proposition 5.1, we see that (5.4) equals

$$
\begin{equation*}
\frac{\left(1-\mathrm{p}^{-(\mathrm{s}+(\mathrm{m}-2) / 2)}\right)\left(1+\mathrm{p}^{-(\mathrm{s}+(\mathrm{m}-2) / 2-\partial)}\right)}{1-\mathrm{p}^{-2 \mathrm{~s}}} \tag{5.5}
\end{equation*}
$$

The first integral in (5.5) is equal to $\frac{\left(1-\mathrm{p}^{-2 s}\right)}{\left(1-\lambda_{1} \mathrm{p}^{-s}\right)\left(1-\lambda_{1}^{-1} \mathrm{p}^{-s}\right)}$ and the indunctive
hypothesis asserts that the second one is equal to

$$
L_{p}^{o}\left(\lambda^{\prime}, s\right) \prod_{j=0}^{v-2}\left(1-p^{-\left(s+j+n_{0} / 2\right)}\right)\left(1+p^{-\left(s+j-\partial+n_{o} / 2\right)}\right) .
$$

These prove the proposition. q.e.d.

We now go back to proof of Proposition 5.1. We prove by induction on m. By the bi- K_{1}-invariance of $\mathrm{N}_{\mathrm{G}_{1}, s}$, we see that

$$
\begin{aligned}
& N_{\mathrm{G}_{1}, s+\mathrm{m} / 2}\left(\mathrm{n}_{1}(\mathrm{X})\left[\begin{array}{lll}
\mathrm{t} & & \\
& \mathrm{~g} & \\
& & \mathrm{t}^{-1}
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =N_{G_{1}, s+m / 2}\left(n_{1}^{\prime}(X)\left[\begin{array}{lll}
t^{-1} & & \\
& & \\
& & \\
& & t
\end{array}\right]\right. \text {) }
\end{aligned}
$$

where

$$
\mathrm{n}_{1}^{\prime}(\mathrm{X})=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\mathrm{X} & 1_{\mathrm{m}} & 0 \\
-2^{-1} \mathrm{~S}[\mathrm{X}] & -\mathrm{X} \mathrm{XS} & 1
\end{array}\right]
$$

Next observe that

$$
\begin{aligned}
& \left.\int_{Q_{p}^{m}} N_{G_{1}, s+m / 2}\left(n_{1}(X)\left[\begin{array}{ll}
t & \\
& g \\
& t^{-1}
\end{array}\right]\right) d X=\int_{Q_{p}^{m}} N_{G_{1}, s+m / 2}\left[\begin{array}{ll}
t^{-1} & \\
& g^{-1} \\
& \\
t
\end{array}\right] n_{1}(-X)\right) d X \\
& =|t|^{m} \int_{Q_{p}^{m}} N_{G_{1}, s+m / 2}\left(n_{1}(X)\left[\begin{array}{c}
t^{-1} \\
\\
g^{-1} \\
\end{array}\right]\right) d X
\end{aligned}
$$

(note that $N_{G_{1}, s}\left(g_{1}^{-1}\right)=N_{G_{1}, s}\left(g_{1}\right)$ for $g_{1} \in G_{1}$). These show that we only have to prove the following fact: For $t \in Q_{p}^{\times}$with $\operatorname{ord}_{p}(t) \leq 0$, we have

$$
\begin{align*}
& \int_{\mathbf{Q}_{\mathrm{p}}^{\mathrm{m}}} \mathrm{~N}_{\mathrm{G}_{1}, \mathrm{~s}+\mathrm{m} / 2}\left(\mathrm{n}_{1}^{\prime}(\mathrm{X})\left[\begin{array}{ll}
\mathrm{t} & \\
& \mathrm{~g} \\
& \\
\mathrm{t}^{-1}
\end{array}\right]\right) \mathrm{dX} \tag{5.6}\\
& =\left.\mathrm{It}\right|^{-(\mathrm{s}+\mathrm{m} / 2)} \mathrm{N}_{\mathrm{G}, \mathrm{~s}+\mathrm{m} / 2-1}(\mathrm{~g}) \frac{\left(1-\mathrm{p}^{-(\mathrm{s}+\mathrm{m} / 2)}\right)\left(1+\mathrm{p}^{-(\mathrm{s}+\mathrm{m} / 2-\partial)}\right)}{1-\mathrm{p}^{-2 \mathrm{~s}}} .
\end{align*}
$$

We first verify (5.6) for the case where S is \mathbf{Q}_{p}-anisotropic. To do this, we collect several facts about the arithmetic of \mathbf{Q}_{p}-anisotropic quadratic forms. Let $V=Q_{p}^{m}, L=Z_{p}^{m}$ and put $z_{X}=2^{-1} S[X]$ for $X \in V$.

Lemma 5.3 Suppose that S is Q_{p}-anisotropic.
(i) $\mathrm{X} \in \mathrm{L} \Leftrightarrow \mathrm{z}_{\mathrm{X}} \in \mathrm{Z}_{\mathbf{p}}$.
(ii) If $\mathrm{X} \notin \mathrm{L}$, then $\mathrm{z}_{\mathrm{X}}^{-1} \mathrm{X} \in \mathrm{L}$ and $1_{\mathrm{m}}-\mathrm{z}_{\mathrm{X}}^{-1} \mathrm{X}^{\mathrm{t}} \mathrm{XS} \in \mathrm{K}$.
(iii) We have

$$
1+\int_{\mathrm{V}-\mathrm{L}}\left|\mathrm{z}_{\mathrm{X}}\right|^{-(\mathrm{s}+\mathrm{m} / 2)} \mathrm{dX}=\frac{\left(1-\mathrm{p}^{-(\mathrm{s}+\mathrm{m} / 2)}\right)\left(1+\mathrm{p}^{-(\mathrm{s}+\mathrm{m} / 2-\partial)}\right)}{1-\mathrm{p}^{-2 \mathrm{~s}}}
$$

Lemma 5.4 The equality (5.6) holds if S is \mathbf{Q}_{p}-anisotropic.

Proof. A straightforward calculation shows that, if $\mathrm{X} \notin \mathrm{L}$,

$$
\begin{aligned}
& n_{1}^{\prime}(X)\left[\begin{array}{lll}
\mathrm{t} & & \\
& \mathrm{~g} & \\
& & \mathrm{t}^{-1}
\end{array}\right] \\
& =n_{1}\left(-z^{-1} X\right)\left[\begin{array}{lll}
z^{-1} & & \\
& & 1_{m} \\
& & \\
& & \\
& n_{1}^{\prime}\left(-z^{-1} X\right) & \\
& & \\
& & \\
m_{m}-z^{-1} X^{t} X S & \\
& & \\
& & \\
& t^{-1}
\end{array}\right] \\
& =\mathrm{k}_{1}\left[\begin{array}{llll}
(\mathrm{zt})^{-1} & & \\
& & 1_{\mathrm{m}} & \\
& & & \\
& & & \mathrm{zt}
\end{array}\right] \mathrm{k}_{1}^{\prime}
\end{aligned}
$$

with $\mathrm{z}=\mathrm{z}_{\mathrm{X}}=2^{-1} \mathrm{~S}[\mathrm{X}]$ and

$$
k_{1}=n_{1}\left(-z^{-1} X\right), k_{1}^{\prime}=n_{1}^{\prime}\left(-z^{-1} X t^{-1}\right)\left[{ }_{-1}\left(1_{m^{-1}}^{-1} X^{t} X S\right) g^{-1}\right]
$$

By Lemma 5.3, we have $k_{1}, k_{1}^{\prime} \in K_{1}$ and hence the left-hand side of (5.6) is equal to

$$
|t|^{-(s+m / 2)}\left\{1+\int_{V-L} \mid z_{X} X^{-(s+m / 2)} d X\right\}
$$

The lemma follows from this and Lemma 5.3 (iii). q.e.d.

From now on, we assume that S is Q_{p}-isotropic. We may suppose that S is of the form $\left(\begin{array}{cc}R & -R \beta \\ -{ }^{2} \beta R & -2 b\end{array}\right)$ where R is a non-degenerate maximal even integral symmetric matrix of rank m-1 and $\partial=\partial_{p}(S)=\partial_{p}(R)$. Furthermore we may assume that $R=\binom{R_{o}}{J_{v}}$,$\beta=\left(\begin{array}{l}0_{v} \\ \beta_{0} \\ 0_{v}\end{array}\right)$ where v is the Witt index of R, R_{o} is Q_{p}-anisotropic symmetric matrix
of rank $n_{o}^{\prime}=m-1-2 v$ and $\beta_{0} \in Q_{p}^{n_{0}^{\prime}}$.
Put $\mathrm{H}=\mathrm{O}(\mathrm{T})$ and $\mathrm{H}^{\prime}=\mathrm{O}(\mathrm{R})$ with $\mathrm{T}=\left(\begin{array}{c}1 \\ \mathrm{R}^{1} \\ 1\end{array}\right)$. We define embeddings $H^{\prime} \xrightarrow{\mathfrak{l}_{0}} \mathrm{G} \xrightarrow{\mathrm{l}^{\prime}} \mathrm{H} \xrightarrow{\mathbf{l}} \mathrm{G}_{1}$ as in $\S 4$, where we put $\mathrm{l}_{0}\left(\mathrm{~h}^{\prime}\right)=\left(\begin{array}{c}h^{\prime}\left(1-h^{\prime}\right) \beta \\ 0 \\ 1\end{array}\right)\left(h^{\prime} \in H^{\prime}\right)$. By definition, $\mathrm{l}_{0}\left(\mathrm{H}^{\prime}\right)\left(\right.$ resp. $\left.\mathfrak{l}^{\prime}(\mathrm{G}), \mathfrak{l}(\mathrm{H})\right)$ is the stabilizer subgroup of α (resp. ξ, η) in G (resp. H, G G_{1}).

Let $\mathrm{K}_{1}=\mathrm{G}_{1}\left(\mathbf{Z}_{\mathrm{p}}\right), \mathrm{K}=\mathrm{G}\left(\mathbf{Z}_{\mathrm{p}}\right), \mathrm{U}=\mathrm{H}\left(\mathbf{Z}_{\mathrm{p}}\right)$ and $\mathrm{U}^{\prime}=\mathrm{H}^{\prime}\left(\mathbf{Z}_{\mathrm{p}}\right)$. For $l \in \mathbf{Z}$, put $\mathrm{M}_{l}=\left[\begin{array}{llll}\mathrm{p}^{-l} & & \\ & & 1 \mathrm{~m} & \\ & & & \\ & & \mathrm{p}^{l}\end{array}\right] \in \mathrm{G}_{1}$. By Proposition 3.9. we have the decomposition:

$$
\begin{equation*}
G_{1}=\bigcup_{\Sigma 0} \mathfrak{l}(H) M_{l} K_{1} \quad \text { (disjoint union). } \tag{5.7}
\end{equation*}
$$

We need the following variant of Lemma A.

Lemma 5.5 If $\mathrm{g}_{1}=\mathrm{l}(\mathrm{h}) \mathrm{M}_{l} \mathrm{k}_{1}\left(\mathrm{~h} \in \mathrm{H}, l \geq 0, \mathrm{k}_{1} \in \mathrm{~K}_{1}\right)$, then

$$
\mathrm{N}_{\mathrm{G}_{1}, \mathrm{~s}}\left(\mathrm{~g}_{1}\right)=\mathrm{p}^{-l \mathrm{~s}} \mathrm{~N}_{\mathrm{H}, \mathrm{~s}}(\mathrm{~h})
$$

Proof. Applying Lemma A for $H \xrightarrow{\mathbf{l}} \mathrm{G}_{1} \xrightarrow{\mathrm{l}_{1}} \mathrm{H}_{1}=\mathrm{O}\left(\binom{\mathrm{T}}{\mathrm{T}}\right.$, we obtain

$$
N_{G_{1}, s}\left(\mathrm{l}\left(\mathrm{~h} \beta\left(\mathrm{~g}_{1}\right)^{-1}\right) \cdot \mathrm{g}_{1}\right)=\left|\alpha\left(\mathrm{g}_{1}\right)\right|_{\mathrm{p}}^{\mathrm{s}} \mathrm{~N}_{\mathrm{H}, \mathrm{~s}}(\mathrm{~h}) \quad\left(\mathrm{h} \in \mathrm{H}, \mathrm{~g}_{1} \in \mathrm{G}_{1}\right)
$$

Since $\mathrm{l}_{1}\left(\mathrm{~g}_{1}\right)=\left(\begin{array}{lll}\mathrm{p}^{l} & * & * \\ 0 & h & * \\ 0 & 0 & \mathrm{p}^{-l}\end{array}\right) \mathrm{l}_{1}\left(\mathrm{k}_{1}\right)$ and $\mathrm{l}_{1}\left(\mathrm{k}_{1}\right) \in \mathrm{H}_{1}\left(\mathrm{Z}_{\mathrm{p}}\right)$ (see Proposition 3.7), we have $\alpha\left(\mathrm{g}_{1}\right)=\mathrm{p}^{l}$ and $\beta\left(\mathrm{g}_{1}\right)=\mathrm{h}$. This proves the lemma. q.e.d.

Since both sides of (5.6) are bi-K-invariant functions of $g \in G$, we may assume that $g=l_{0}\left(h_{o}\right) g_{o}$ where $h_{o}=\operatorname{diag}\left(t_{1}, \cdots, t_{v}, 1_{n_{0}^{\prime}}, t_{v}^{-1}, \cdots, t_{1}^{-1}\right) \in H^{\prime}$ and $g_{0}=$ $\left(\begin{array}{ccc}1_{v} & & \\ & A & \\ & & \\ & & \\ & & \\ & & \\ & D\end{array}\right) \in G\left(\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in O\left(\left(\begin{array}{cc}R_{0} & -R_{0} \beta_{0} \\ -t_{\beta_{0}} R_{o} & -2 b\end{array}\right)\right.\right.$. We note that $\nu_{0}\left(h_{0}\right)=\operatorname{diag}\left(t_{1}\right.$, $\left.\cdots, t_{v}, 1_{n_{o}^{\prime}}, t_{v}^{-1}, \cdots, t_{1}^{-1}, 1\right)$.

Remark. If $v_{p}(S)=v_{p}(R)$, then $\left(\begin{array}{cc}R_{0} & -R_{0} \beta_{0} \\ -\beta_{0} R_{o} & -2 b\end{array}\right)$ is Q_{p}-anisotropic and we may take $g_{0}=1$ in this case.

Fix $\omega \geq 0$. We calculate the following integral:

$$
I(s)=\int_{Q_{p}^{m}} N_{G_{1}, s+m / 2}\left(n_{1}^{\prime}(X)\left[\begin{array}{lll}
p^{-\omega} & & \tag{5.8}\\
& v_{0}\left(h_{0}\right) g_{0} & \\
& & p^{\omega}
\end{array}\right]\right) d X .
$$

First observe that I(s) equals

$$
\begin{aligned}
& \int_{Q_{p}^{m-1}} N_{G_{1}, s+m / 2}\left(n_{1}^{\prime}\left(\binom{x}{0}\right)\left[\begin{array}{ll}
p^{-\omega} & \\
l_{0}\left(h_{o}\right) g_{o} & \\
p^{\omega}
\end{array}\right]\right) d x \\
& +\sum_{\rho \geq 1} \int_{p^{-\rho} Q_{p}^{x}} d u \int_{Q_{p}^{m-1}} d x N_{G_{1}, s+m / 2}\left(n_{1}^{\prime}\left(\binom{x}{1-u}\right)\left[\begin{array}{ll}
p^{-\omega} \\
& l_{o}\left(h_{o}\right) g_{0} \\
& \\
p^{\omega}
\end{array}\right]\right)
\end{aligned}
$$

To calculate these integrals, we need three results from the arithmetic of local orthogonal groups. We postpone their proof until the last part of this section. Put $n_{g_{0}}=$ $\left.n_{1}\left(g_{0}^{-1}-1\right) \alpha\right)$. Note that $n_{g_{0}}=\left[\begin{array}{lll}1 & & \\ & g_{0}^{-1} & \\ & & 1\end{array}\right] \mathfrak{l}\left(\mathfrak{l}^{\prime}\left(g_{0}\right)\right)$ (Lemma 4.2 (iii)).

Lemma 5.6 For $\rho \geq 0$, we have $\mathrm{n}_{\mathrm{g}_{0}}^{-1} \mathrm{M}_{\omega+\rho} \in \mathfrak{l}\left(\mathrm{h}_{\rho}\right) \mathrm{M}_{l_{\rho}} \cdot \mathrm{K}_{1}$ with some $\mathrm{h}_{\rho} \in \mathrm{H}$.
Here $l_{\rho}=\operatorname{Max}(\omega+\rho, \mu), \mu=\mu_{m}\left(g_{0}\right)\left(\right.$ for the definition of μ_{m}, see §1.10).
Remark. By the assumption of g_{0}, we may take $\mathrm{h}_{\rho}=\left(\begin{array}{cccc}1_{v} & & & \\ & \mathrm{~A}^{\prime} & & \mathrm{B}^{\prime} \\ & & 1 & \\ & & { }^{\prime} & \\ & C^{\prime} & & \mathrm{D}^{\prime}\end{array}\right)$ with $\left(\begin{array}{ll}\mathrm{A}^{\prime} & \mathrm{B}^{\prime} \\ \mathrm{C}^{\prime} & \mathrm{D}^{\prime}\end{array}\right)$ $\in O\left(\left(\begin{array}{cc}R_{0} & -R_{0} \beta_{0} \\ -^{t} \beta_{0} R_{o} & -2 b\end{array}\right)\right.$.

Lemma 5.7 For $\mathrm{u} \in \mathrm{p}^{-\rho} \mathrm{Z}_{\mathrm{p}}^{\times}(\rho \geq 0)$ and $\mathrm{x} \in \mathrm{Q}_{\mathrm{p}}^{\mathrm{m}-1}$, we have

$$
n_{1}^{\prime}\left(\binom{x}{1-u}\right)\left[\begin{array}{llll}
p^{-\omega} & & \\
& & l_{0}\left(h_{o}\right) g_{o} & \\
& & p^{\omega}
\end{array}\right] \in \mathfrak{l}\left(n(x)\left(\begin{array}{lll}
u & & \\
& h_{0} & \\
& & u^{-1}
\end{array}\right) \mathfrak{l}^{\prime}\left(g_{0}\right) h_{\rho}\right) M_{l} \cdot K_{1},
$$

where we put $\mathrm{n}(\mathrm{x})=\left(\begin{array}{ccc}1 & -{ }^{\mathrm{t}} \mathrm{xR} & -2^{-1} \mathrm{R}[\mathrm{x}] \\ 0 & 1_{\mathrm{m}-1} & \mathrm{x} \\ 0 & 0 & 1\end{array}\right) \in \mathrm{H}$ for $\mathrm{x} \in \mathrm{Q}_{\mathrm{p}}^{\mathrm{m}-1}$.
Lemma 5.8 We have $\mathrm{l}^{\prime}\left(\mathrm{g}_{0}\right) \mathrm{h}_{\rho} \in\left(\begin{array}{ccc}\mathrm{p}^{\tau} & * & * \\ 0 & 1_{\mathrm{m}-1} & * \\ 0 & 0 & \mathrm{p}^{-\tau_{\rho}}\end{array}\right) \mathrm{U}$ with $\tau_{\rho}=\omega+\rho-l_{\rho}+\mu$.

By Lemma 5.5 and Lemma $5.7, \mathrm{I}(\mathrm{s})$ is equal to

$$
\sum_{\rho=0}^{\infty} p^{\rho}\left(1-\delta(\rho \geq 1) p^{-1}\right) p^{-l_{\rho}(s+m / 2)} \times \int_{Q_{p}^{m-1}} N_{H, s+m / 2}\left(n(x)\left(\begin{array}{lll}
\mathrm{p}^{-\rho} & & \\
& h_{0} & \\
& & p^{\rho}
\end{array}\right) \mathfrak{l}^{\prime}\left(g_{0}\right) h_{\rho}\right) d x
$$

where $\delta(\rho \geq 1)=\left\{\begin{array}{ll}1 & \text { if } \rho \geq 1 \\ 0 & \text { if } \rho=0 .\end{array}\right.$ By Lemma 5.8, this is equal to

$$
\sum_{\rho=0}^{\infty} p^{\rho}\left(1-\delta(\rho \geq 1) p^{-1}\right) p^{-l} \rho^{(s+m / 2)} \times \int_{Q_{p}^{m-1}} N_{H, s+m / 2}\left(n(x)\left(\begin{array}{ll}
p^{\tau_{\rho}-\rho} & \\
& h_{0} \\
& p^{-\left(\tau_{\rho}-\rho\right)}
\end{array}\right)\right) d x
$$

By inductive hypothesis, I(s) equals

$$
\begin{aligned}
& \sum_{\rho=0}^{\infty} p^{\rho}\left(1-\delta(\rho \geq 1) p^{-1}\right) p^{-l_{\rho}(s+m / 2)-\left(\tau_{\rho}-\rho\right) \cdot \frac{m-1}{2}-\left|\tau_{\rho}-\rho\right|(s+1 / 2)} \\
& \quad \times \frac{\left(1-p^{-(s+m / 2)}\right)\left(1+p^{-(s+m / 2-\lambda)}\right)}{1-p^{-2(s+1 / 2)}} N_{H^{\prime}, s+m / 2-1}\left(h_{0}\right)
\end{aligned}
$$

Since $N_{G, s+m / 2-1}(g)=p^{-\mu(s+m / 2-1)} N_{H^{\prime}, s+m / 2-1}\left(h_{o}\right)$ for $g=i_{0}\left(h_{o}\right) g_{0}$, we get

$$
\mathrm{I}(\mathrm{~s})=\mathrm{J}(\mathrm{~s}) \times \frac{\left(1-\mathrm{p}^{-(\mathrm{s}+\mathrm{m} / 2)}\right)\left(1+\mathrm{p}^{-(\mathrm{s}+\mathrm{m} / 2-\partial)}\right)}{1-\mathrm{p}^{-2(\mathrm{~s}+1 / 2)}} \mathrm{N}_{\mathrm{G}, \mathrm{~s}+\mathrm{m} / 2-1}(\mathrm{~g})
$$

where $J(s)$ is the sum

$$
\sum_{\rho=0}^{\infty} p^{\rho}\left(1-\delta(\rho \geq 1) p^{-1}\right) p^{-1} \rho^{(s+m / 2)-\left(\tau_{\rho}-\rho\right) \cdot \frac{m-1}{2}-\left|\tau_{\rho}-\rho\right|(s+1 / 2)+\mu(s+m / 2-1)}
$$

To evaluate this sum, recall that $l_{\rho}=\operatorname{Max}(\omega+\rho, \mu), \tau_{\rho}=\omega+\rho-l_{\rho}+\mu=$ $\operatorname{Min}(\omega+\rho, \mu)$.

Lemma 5.9

(i) $\rho \leq \tau_{\rho} \Leftrightarrow \rho \leq \mu$.
(ii) If $\rho>\mu$, then we have $\tau_{\rho}=\mu$ and $l_{\rho}=\omega+\rho$.

Proof. Observe that $\tau_{\rho}-\rho=\omega+\mu-\operatorname{Max}(\omega+\rho, \mu)$. If $\rho>\mu$, then $\operatorname{Max}(\omega+\rho, \mu)$ $=\omega+\rho$, which implies $\tau_{\rho}=\mu, l_{\rho}=\omega+\rho$ and $\tau_{\rho} \leq \rho$. Next suppose that $\rho \leq \mu$. Then $\tau_{\rho}-\rho=\left\{\begin{array}{ll}\mu-\rho & \text { if } \omega+\rho \geq \mu \\ \omega & \text { if } \omega+\rho<\mu\end{array}\right.$ and hence $\tau_{\rho} \geq \rho$. q.e.d.

By Lemma 5.9, $\mathrm{J}(\mathrm{s})$ is equal to

$$
\begin{aligned}
& \sum_{\rho=0}^{\mu}\left(1-\delta(\rho \geq 1) \mathrm{p}^{-1}\right) \mathrm{p}^{\rho-\omega(s+m / 2)-\mu} \\
& +\sum_{\rho=\mu+1}^{\infty}\left(1-\mathrm{p}^{-1}\right) \mathrm{p}^{\rho-(\omega+\rho)(s+m / 2)-(\mu-\rho)(\mathrm{m} / 2-1-s)+\mu(s+m / 2-1)} \\
& =\mathrm{p}^{-\omega(\mathrm{s}+\mathrm{m} / 2)}+\mathrm{p}^{-\omega(\mathrm{s}+\mathrm{m} / 2)} \frac{\left(1-\mathrm{p}^{-1}\right) \mathrm{p}^{-2 s}}{1-\mathrm{p}^{-2 s}} \\
& =\mathrm{p}^{-\omega(\mathrm{s}+\mathrm{m} / 2)} \frac{1-\mathrm{p}^{-2(\mathrm{~s}+1 / 2)}}{1-\mathrm{p}^{-2 \mathrm{~s}}}
\end{aligned}
$$

This implies that

$$
\mathrm{I}(\mathrm{~s})=\mathrm{p}^{-\omega(\mathrm{s}+\mathrm{m} / 2)} \frac{\left(1-\mathrm{p}^{-(\mathrm{s}+\mathrm{m} / 2)}\right)\left(1+\mathrm{p}^{-(\mathrm{s}+\mathrm{m} / 2-\partial)}\right)}{1-\mathrm{p}^{-2 \mathrm{~s}}} \mathrm{~N}_{\mathrm{G}, \mathrm{~s}+\mathrm{m} / 2-1}(\mathrm{~g}),
$$

which completes the proof of (5.6).

It now remains to show Lemma 5.6 - Lemma 5.8. We first prove Lemma 5.7 assuming Lemma 5.6. Put $\left.g_{1}=n_{1}^{\prime}\binom{x}{1-p^{-\rho}}\right) \cdot\left[\begin{array}{ll}p^{-\omega} & \\ & \mathrm{l}_{0}\left(h_{0}\right) g_{o} \\ & \\ & p^{\omega}\end{array}\right]$ with $\rho \geq 0$, $x \in Q_{p}^{m-1}$. By Lemma 4.2, we have

$$
\begin{aligned}
& \left.g_{1}=n_{1}^{\prime}\binom{x}{0}\right) n_{1}^{\prime}\left(\binom{0}{1-p^{-\rho}}\right)\left[\begin{array}{lll}
p^{\rho} & & \\
& 1_{m} & \\
& & p^{-\rho}
\end{array}\right]\left[\begin{array}{lll}
\mathrm{p}^{-(\omega+\rho)} & & \\
& & \mathrm{l}_{0}\left(h_{o}\right) g_{0} \\
& & \\
& & \\
& & p^{\omega+\rho}
\end{array}\right] \\
& =v\left(n(x)\left[\begin{array}{llll}
\mathrm{p}^{-\rho} & & \\
& & & \\
& & h_{0} & \\
& & p^{\rho}
\end{array}\right] \mathfrak{l}^{\prime}\left(g_{0}\right)\right) \cdot n_{g_{0}}^{-1} M_{\omega+\rho} . \\
& \text { By Lemma 5.6, } g_{1} \text { is in } \mathbf{l}\left(\mathrm{n}(\mathrm{x})\left[\begin{array}{llll}
\mathrm{p}^{-\rho} & & \\
& & & \\
& h_{0} & \\
& & \mathrm{p}^{\rho}
\end{array}\right] \mathfrak{l}^{\prime}\left(\mathrm{g}_{0}\right) \mathrm{h}_{\rho}\right) \mathrm{M}_{l_{\rho}} \cdot \mathrm{K}_{1} \text {, which proves Lemma }
\end{aligned}
$$

5.7.

To prove the remaining lemmas, first consider the case $v_{p}(S)=v_{p}(R)$. As was noted before, we may take $g_{0}=1$ so that Lemma 5.6 and Lemma 5.8 are trivial in this case. In what follows we suppose that $v_{p}(S)=v_{p}(R)+1$. In view of the remark after Lemma 5.6, we may assume that $v=v_{p}(R)=0$ (that is, R is Q_{p}-anisotropic).

Lemma 5.10 Let R and $\mathrm{S}=\left(\begin{array}{cc}\mathrm{R} & -\mathrm{R} \beta \\ -{ }^{\mathrm{t}} \beta \mathrm{R} & -2 \mathrm{~b}\end{array}\right)$ be maximal even integral symmetric matrices of rank $\mathrm{m}-1$ and m , respectively. Assume that $\partial_{\mathrm{p}}(\mathrm{R})=\partial_{\mathrm{p}}(\mathrm{S}), \nu_{\mathrm{p}}(\mathrm{R})=0$ and $v_{\mathrm{p}}(\mathrm{S})=1$. Put $\alpha=\mathrm{D}^{-1}\binom{\beta}{1}$ with $\mathrm{D}=\mathrm{R}[\beta]+2 \mathrm{~b}$. For $\mathrm{g} \in \mathrm{G}=\mathrm{O}(\mathrm{S})$, put $\mu=$ $\mu_{\mathrm{m}}(\mathrm{g})$. Then
(i) $\mathrm{p}^{\mu} \mathrm{g}^{-1} \alpha \in \mathrm{~L}_{\text {prim }}^{*}$.
(ii) $n_{g}=n_{1}\left(\left(g^{-1}-1\right) \alpha\right) \in\left[\begin{array}{ccc}\mathrm{p}^{-\mu} & 0 & 0 \\ * & * & 0 \\ * & * & \mathrm{p}^{\mu}\end{array}\right] \cdot \mathrm{K}_{1}$.

Proof. The assertion (i) and (ii) are trivial if $\mu=0$. From now on we assume that $\mu>$ 0 . For simplicity, we put $L=Z_{p}^{m}, M=Z_{p}^{m-1}, L^{*}=S^{-1} L$ and $M^{*}=R^{-1} M$. By maximality of M with respect to $R, M^{\prime}=\left\{x \in M^{*} \mid 2^{-1} R[x] \in P^{-1} \mathbf{Z}_{p}\right\}$ forms a Z_{p} lattice (see §3.4). Under our assumption $\partial(R)=\partial(S)$, we have $\beta \in M^{* *}=R^{-1} M^{\prime}$ (see the remark in the proof of Theorem $2.6 \mathrm{in}[\mathrm{Su}]$).

Let $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ be the block decomposition corresponding to $m=(m-1)+1$. By definition of $\mu, \mathrm{p}^{\mu} \mathrm{g}$ is a primitive element of $\mathrm{M}_{\mathrm{m}}\left(\mathrm{Z}_{\mathrm{p}}\right)$. Since $\mathrm{Sg}_{\mathrm{o}}^{-1} \alpha=-\binom{{ }^{t} C}{{ }^{t} \mathrm{D}}$, it is sufficient to show $\mathrm{p}^{\mu}\binom{{ }^{t} \mathrm{C}}{{ }^{t} \mathrm{D}} \in \mathrm{L}_{\text {prim }}$ to prove the assertion (i). Suppose that $\mathrm{p}^{\mu}\binom{{ }^{t} \mathrm{C}}{{ }^{t} \mathrm{D}}$ $\in p \cdot L$. We claim that, for every $x \in M$, we have $p^{\mu} A x \in p \cdot M$, which implies $p^{\mu} A \in$ $\mathrm{p} \cdot \mathrm{M}_{\mathrm{m}-1}\left(\mathrm{Z}_{\mathrm{p}}\right)$. Observe that

$$
\begin{aligned}
& 2^{-1} R\left[x p^{\mu}\right]=2^{-1} S\left[\binom{x}{0} p^{\mu}\right]=2^{-1} S\left[g\binom{x}{0} p^{\mu}\right]=2^{-1} S\left[\binom{A x}{C x} p^{\mu}\right] \\
& =2^{-1} R\left[A x p^{\mu}\right]-R\left(p^{\mu} A x, \beta\right) \cdot \operatorname{Cxp}^{\mu}-b\left(C_{x p}\right)^{\mu} .
\end{aligned}
$$

Since $2^{-1} R\left[x p^{\mu}\right], b\left(\operatorname{Cxp}^{\mu}\right)^{2} \in p^{2} Z_{p}, R\left(p^{\mu} A x, \beta\right) \in Z_{p}$ and $C x p{ }^{\mu} \in p Z_{p}$, we get $2^{-1} R\left[A x p{ }^{\mu}\right] \in p Z_{p}$. It follows that $A x p^{\mu} \in p \cdot M^{\prime}$ and hence that $R\left(p^{\mu} A x, \beta\right) \in p Z_{p}$ by the above remarks. This implies $2^{-1} R\left[A x p{ }^{\mu}\right] \in p^{2} Z_{p}$. Then Lemma 3.2 (i) shows
 which is a contadiction. The assertion (i) has been proved. To prove (ii), it is sufficient
to show that the first row of $\left[\begin{array}{ccc}\mathrm{p}^{\mu} & 0 & 0 \\ * & * & 0 \\ * & * & \mathrm{p}^{-\mu}\end{array}\right] \cdot \mathrm{n}_{\mathrm{g}}$ is integral and primitive. Observe that the first row is given by ($\left.\mathrm{p}^{\mu},-\mathrm{p}^{\mu} \cdot{ }^{\mathrm{t}}\left(\mathrm{S}\left(\mathrm{g}^{-1}-1\right) \alpha\right),-2^{-1} \mathrm{p}^{\mu} \cdot \mathrm{S}\left[\left(\mathrm{g}^{-1}-1\right) \alpha\right]\right)$. We have proved that $\mathrm{p}^{\mu} \cdot \mathrm{S}\left(\mathrm{g}^{-1}-1\right) \alpha$ is integral and primitive. It remains to show that $2^{-1} \mathrm{p}^{\mu} \cdot \mathrm{S}\left[\left(\mathrm{g}^{-1}-1\right) \alpha\right]$ is integral. Take the least non-negative integer l satisfying $\mathrm{p}^{l} \cdot\left(\mathrm{~g}^{-1}-1\right) \alpha \in \mathrm{L}$. By (i), we have $l \geq \mu$. Assume that $l>\mu$. Then $\left.2^{-1} \mathrm{~S}\left[\left(\mathrm{~g}^{-1}-1\right) \alpha \mathrm{p}^{l-1}\right)\right]=-\mathrm{S}\left(\left(\mathrm{g}^{-1}-1\right) \alpha \mathrm{p}^{l}, \alpha \mathrm{p}^{l-2}\right) \in \mathrm{Z}_{\mathrm{p}}$ since $\left(\mathrm{g}^{-1}-1\right) \alpha \mathrm{p}^{l} \in \mathrm{~L}$ and $\alpha \mathrm{p}^{l-2}$ $\in \mathrm{L}^{*}$ (note that $l \geq 2$). On the other hand, we see that $\left(\mathrm{g}^{-1}-1\right) \alpha \mathrm{p}^{l-1} \in \mathrm{~L}^{*}$ by (i). Then the maximality of S implies $\left(\mathrm{g}^{-1}-1\right) \alpha p^{l-1} \in \mathrm{~L}$, which contradicts to the definition of l. This shows that $l=\mu$. Then the assertion (ii) follows from $2^{-1} \mathrm{p}^{\mu} \cdot \mathrm{S}\left[\left(\mathrm{g}^{-1}-1\right) \alpha\right]=$ $-\mathrm{S}\left(\mathrm{p}^{\mu}\left(\mathrm{g}^{-1}-1\right) \alpha, \alpha\right) . \quad$ q.e.d.

Proof of Lemma 5.6. Recall that $\mathrm{l}(\mathrm{H})$ is the stabilizer subgroup of $\eta=\left[\begin{array}{l}0 \\ \alpha \\ 1\end{array}\right]$ in G_{1}. Put $\eta^{\prime}=M_{\omega+\rho}^{1} n_{g_{0}} \cdot \eta=\left[\begin{array}{c}0 \\ g_{0}^{-1} \alpha \\ p^{-\omega-\rho}\end{array}\right]$. By Lemma $5.10(i)$, we have $p^{l_{\rho} \cdot \eta^{\prime} \in L_{1, p r i m}^{*}}$.

Choose $\mathrm{X} \in \mathbf{Z}_{\mathrm{p}}^{\mathrm{m}}$ so that $-\mathrm{S}\left(\mathrm{X}, \mathrm{g}_{\mathrm{o}}^{-1} \alpha \mathrm{p}^{l_{\rho}}\right)+\mathrm{p}^{l_{\rho}-\omega-\rho}=1$. Then $\mathrm{n}_{1}^{\prime}(\mathrm{X}) \eta^{\prime} \cdot \mathrm{p}^{l_{\rho}}$ $=\left[\begin{array}{c}0 \\ \mathrm{~g}_{\mathrm{o}}^{-1} \alpha \mathrm{p}^{l} \rho \\ 1\end{array}\right]$. We can find an element κ of K so that $\mathrm{Y}=\kappa \alpha \rho^{l} \rho-\mathrm{g}_{\mathrm{o}}^{-1} \alpha \mathrm{p}^{l} \rho \in \mathrm{Z}_{\mathrm{p}}^{\mathrm{m}}$.

Then

$$
\mathrm{n}_{1}(\mathrm{Y}) \mathrm{n}_{1}^{\prime}(\mathrm{X}) \cdot \mathrm{p}^{l_{\rho} \eta^{\prime}}=\left[\begin{array}{c}
0 \\
\kappa \alpha \mathrm{p}^{l_{\rho}} \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& \kappa \\
& \\
& 1
\end{array}\right] \mathrm{M}_{l_{\rho}}^{-1} \cdot \mathrm{p}^{l} \rho \eta
$$

which implies $M_{l_{\rho}}\left[\begin{array}{lll}1 & & \\ & \kappa^{-1} & \\ & & 1\end{array}\right]{ }_{n_{1}}(\mathrm{Y}) \mathrm{n}_{1}^{\prime}(\mathrm{X}) \mathrm{M}_{\omega+\rho}^{-1} \mathrm{n}_{\mathrm{g}_{0}} \in \mathrm{l}(\mathrm{H})$. We are done. q.e.d.

Proof of Lemma 5.8. The proof of Lemma 5.6 shows that we can take $h_{\rho} \in H$ so that

$$
n_{g_{o}} l\left(h_{\rho}\right)=M_{\omega+\rho} n_{1}^{\prime}(-X) n_{1}(-Y) M_{l_{p}}^{1}\left(\begin{array}{lll}
1 & & \\
& \kappa & \\
& & 1
\end{array}\right)
$$

with $X, Y \in Z_{p}^{m}$ and $\kappa \in K$. Hence

$$
l^{\prime}\left(l^{\prime}\left(g_{0}\right) h_{\rho}\right)=\left(\begin{array}{lll}
1 & & \\
& g_{0} & \\
& & 1
\end{array}\right) M_{\omega+\rho} n_{1}^{\prime}(-X) M_{l_{\rho}}^{-1} n_{1}\left(-Y p^{-l} \rho\right)\left(\begin{array}{lll}
1 & & \\
& \kappa & \\
& & 1
\end{array}\right)
$$

Since $-\mathrm{Yp}^{-l_{\rho}}=-\kappa \alpha+\mathrm{g}_{0}^{-1} \alpha=\left(\mathrm{g}_{0}^{-1}-1\right) \alpha-(\kappa-1) \alpha$, we have $\mathrm{n}_{1}\left(\mathrm{Yp}^{-l_{\rho}}\right)=$
$n_{g_{0}} \cdot n_{1}(-(\kappa-1) \alpha)$. Note that $n_{1}(-(\kappa-1) \alpha)=l\left(l^{\prime}(\kappa)\right)\left(\begin{array}{lll}1 & & \\ & \kappa^{-1} & \\ & & 1\end{array}\right) \in K_{1}$ and $n_{g_{0}} \in\left[\begin{array}{ccc}\mathrm{p}^{-\mu} & 0 & 0 \\ * & 1_{m} & 0 \\ * & * & p^{\mu}\end{array}\right]$
K_{1} (see Lemma 5.10 (ii)). Thus $\mathrm{i}\left(\mathrm{l}^{\prime}\left(\mathrm{g}_{\mathrm{o}}\right) \mathrm{h}_{\rho}\right) \in\left[\begin{array}{ccc}\mathrm{p}^{-\tau} \rho & 0 & 0 \\ * & 1_{\mathrm{m}} & 0 \\ * & * & \mathrm{p}^{\tau}\end{array}\right] \mathrm{K}_{1}$, which proves the
lemma in view of Lemma 5.4. q.e.d.

References

[B] Böcherer, S. "Ein Rationlitătssatz für formale Heckereichen zur Siegelschen Modulgruppe" Abh. Math. Sem. Univ. Hamburg. 56: 35-47, 1986.
[E] Eichler, M. "Quadratische Formen und orthogonale Gruppen." 1952 SpringerVerlag. Berlin-Göttingen-Heidelberg.
[FS] Furusawa, M. and J. A. Shalika. "On Fourier coefficients of Eisenstein series." , Algebraic Analysis, Geometry and Number Theory, Proceeding of JAMI International Conference, The Johns Hopkins University, 1989.
[GPSR] Gelbart, S., I. Piatetski-Shapiro and S. Rallis. "Explicit constructions of automorphic L-functions.", Springer Lecture Notes in Mathematics. 1254, 1985.
[HS] Hina, T. and T. Sugano. "On the local Hecke series of some classical groups over p-adic fields." J. Math. Soc. Japan. 35(1): 133-152, 1983.
[L1] Langlands, R. "Functional equations satisfied by Eisenstein series", Springer Lecture Notes in Mathematics. 544, 1976.
[L2] Langlands, R. "Euler products", Yale Mathematical monographs 1, 1971.
[MS1] Murase, A. and T. Sugano. "Whittaker functions on the symplectic group of Fourier-Jacobi type." to appear in Compositio Math.
[MS2] Murase, A. and T. Sugano. "On standard L-functions associated with holomorphic cusp forms on $\mathrm{O}(2, \mathrm{~m}+2)$." preprint. : 1990.
[PSR] Piatetski-Shapiro, I. and S. Rallis. " ε factor of representations of classical groups." Proc. Natl. Acad. Sci. USA 83: 4589-4593, 1986.
[PSRS] Piatetski-Shapiro, I., S. Rallis and G. Schiffmann. "L functions for the group G_{2}." Bull. of the Amer. math. Soc. 23(2): 389-399, 1990.
[Sa] Satake, I. "Theory of spherical functions on reductive algebraic groups over padic fields." I.H.E.S. Publ. Math. 18: 5-69, 1963.
[Shi] Shintani, T. Unpublished notes.
[Su] Sugano, T. "Jacobi forms and the theta lifting." preprint. : 1990.

