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Shintani Funetion and its AppIication to

Automorphic L·funetions on Classieal Groups

I. The ease of Orthogonal Groups

Atsushi Murase and Takashi Sugano

§o. Introduetion

Let H be a connected reductive group with a faithful action on a vector space W.

We suppose that H preserves a non-degenerate s~etric (or skew-symmetric or

hennitian) fonn T of W. Let G be the stabilizer subgroup of an element Wo of W in

H. For a pair of automorphic forms F and f on H and G respectively, we defme a

,~'-

(0.1)

fooction COp,r on H(A) in the following manneT:

rop,t<h) = J F(gh)f(g)dg
G(Q)'l3(A)

(h E H(A)).

The object of this paper is to study this function, which we caU the global Shintani

function assoeiated with F anti f. Such a function was first introduced by Shintani

([Sm]; cf. [MS1]) for the case where H is the symplectic group of W =Q2(n+l)

equipped with the usual altemating fonn T and Wo =t(l, 0, "',0) E W. Note that

Wo is an isotropie vector with respect to T and that G is the Jacobi group of degree n

(a semi direct product of the Heisenberg group and SPn) in this case. Shintani made

several interesting conjectures and gave an application of bis function to the theory of
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automorphic L·functions of Siegel and Jacobi cusp fonns.

In aseries ofthe paper, we will study the Shintani function for the case where H

is a classical group and Wo is an anisotropie vector (hence G is a classical group of the

same type as H). We investigate the orthogonal group case in this frrst part ofthe paper.

To explain our results, let H =O(m+1) be the orthogonal group of a quadratic

space (W, T) of dimension m+1 and G be the stabilizer subgroup of H of a suitable

anisotropie vector of W. Then G is an orthogonal group O(m) of degree m. For a

pair of cusp forms F and f on H(A) and G(A), we defme Olp,r by (0.1). Let H =

H(H(Q~, H(Z~) (resp. H' =H(G(Q~, G(Z~)) be the Hecke algebra of H (resp. G) at

a fInite prime p. Let~} denote the restriction of Olp,r to H(Qp). If both F and f

are Hecke eigenforms and if p is a good prime, then ro =~} has the following

property:

(0.2) (Ijlp* ro *<I>p>(hp):= f~ fdyp Ijlp(XP> ro(~~y~l) <I>p(Ypl
Gp ~

Here ~ E Home(H, C) (resp. Ap E Home(H', C» is detennined by the local

component ~ (resp. 7l» of the automorphic representation rr (resp. 7t) assocated to F

(resp. f). The space of C-valued functions on G(Z~\H(Q~/H(Zp) satisfying (0.2) is

denoted by n(J\" Ap> and called the spaee 0/ loeal Shintani funetions attached to ~

and Ap. Then we may conjecture the following uniqueness oflocal Shintani functions:

(0.3) dime n(J\' ~):S;; 1 for every J\ and ",,?
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A similar fact was eonjeetured by Shintani ([ShiJ) in the ease of the symplectie

group. Furthermore he eonjeetured that the equality

(0.4)

t

In
-1

t
1

holds for CI) E n(~, "}, where ~(J\" s) and ~(~, s) are the local standard zeta

funetions attaehed to J\, and ~. These two eonjectures was proved in [MSl].

In this paper, we establish a similar fonnula to (0.4) for the ease of orthogonal

groups (Theorem 1.6), though the uniqueness problem (0.3) is still open in trus ease.

Furthennore we introduee and study a certain Rankin-Selberg eonvolution attaehed to F

and f. To be more precise, we let GI = O(m+2) be a bigger orthogonal group

eontaining H as the stabilizer subgroup of an anisotropie vector, and PI a maximal

parabolie subgroup of GI whose Levi eomponent is isomorphie to GL(l) x G. Then

we ean eonstnlet an Eisenstein series E(gI' f; s) on GI attaehed to a eusp form f after

Langlands ([L2J). The eonvolution of Rankin-Selberg type we study is given by

(0.5) Zp,t<s) = J F(h) E(h, f; s) dh.
H(Q)\H(A)

Unwinding the Eisenstein series in (0.5), we obtain the "basic identity" between Zp,t<s)

and a eertain integral of the Shintani funetion COp,f (Theorem 1.5). Then the local result

mentioned above implies that Zp.t<s) is equal to Llr~~~ i~2) up to an elementary faetor,

where L(F; s) (resp. L(f; s» is the standard zeta funetion of F (resp. f) (Corollary 1.7).

Therefore, at least when H is definite, we can describe the funetional equation of L(F; s)
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in tenns of that of L(f; s) (Theorem 1.8). The proof will be carried out along a similar

line as in [MS 1]. However, in order to incIude not only unimodular quadratic forms but

also maximal ones in our argument, we need various subtle facts of the arithmetic of

quadratic forms.

It should be mentioned a similarity between our convolution and that of Gelbart

and Piatetski-Shapiro for 0(2n) x GL(n) ([GPSR]; see also the work ofPiatetski­

Shapiro, Rallis and Schiffmann for G2 x GL(2) [PSRS]). The difference is that our

method yields a quotient of two standard zeta functions of O(m+1) and O(nl), though

their construction gives the L-function L(~ x <p, std®std; s), where ~ x <p is a cusp

form on 0(2n) x GL(n) (or on G2 x GL(2)) and std@std is the tensor product of the

standard representations of the L-groups. We should also note that our convolution may

be considered as an exampie of 11generalized Fourier coefficients of Eisenstein series" ,

which are studied in generality by Furusawa and Shalika ([FS]).

We now explain abrief account of the exposition. In §1, after preparing several

notation, we state our main results (§ 1.9). We show that these results are direct

consequences of two key lemmas (Lemma A and B). In addition, we discuss several

conjectures on analytic properties of the standard zeta functions of definite orthogonal

groups. The next two sections are of prelirninary nature. In §2, we constrllct

embeddings of E-hermitian spaces crucial in our argument and study its properties needed

to establish the basic identity. In §3, we summarize several facts of the aritbmetic of

maximal lattices of E-hennitian spaces to study the behavior of maximal open compact

subgroups under the embeddings. In these two sections, we include the cases of unitary
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grouPS of e-hennitian fonns for future application. The last two sections are devoted to

proofs of the key lemmas. The proof of Lemma A is straightforward and given in §4 .

The most difficult part is the proof of Lemma B, which can be seen as an analogue of

Böcherer's result on Hecke series of Siegel modular forms (see [BD. In fact, we prove

Lemma Bin §5 by induction on the degree of orthogonal groups. We note that the proof

of Lemma B uses Lemma A in an essential way.

As will be noted in §1, we may apply a similar methcxi for classical groups of

another type (tbe unitary groups, the quaternion unitary groups). We hope to investigate

these cases in a forthcoming paper.

This work was done during the frrst author's stay at MPI (Max-Planck-Institut ftlr

Mathematik) and the second author's stay at JAMI (Japan-V.S. Mathematics Institute).

The authors are grateful far financial support ofMPI and JAMI.
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§1. Main results

1.1 Embeddings of orthogonal groups Let T be a positive definite even

integral symmetrie matrix of rank m+1. Then the upper left m x m block S of T is

also JX>sitive definite and even integral. We say that a non-degenerate even integral

synunetrie matrix S ofrank m is maximal if Zm is a maximal Z~lattice with respect 10

S. In what folIows, we suppose that both S and T ate maximal. Then it is easy to see

that SI =[1 SI] is also maximal. Put

The duallattiees of L, M and LI are denoted by L* = S-IL, M* = 1 1M and

Li = SI-I LI' Let G = O(V, S), H = O(W, T) and GI = O(Vl' SI) be the orthogonal

groups: G(Q) = (g E GLm(Q) I tgSg = SI, ... etc.

We write

(
S -sa)T=

-taS -2a

andput Tl =[ ~]E Li. Theo

(1.1) ß = SI[11] = S[a] + 2a < O.

(a E L"', a E Z)

6



We define an embedding j: W ~ VI by

(1.2) (y E V, Z E Q).

Then VI =Q." E9 j(W) (direct orthogonal sum). Define an embedding t : H ~ G] by

(1.3) t(h) (t·" + j(w» = t·" + j(hw) (h E H, tE Q, W E W).

It is easy to see that t(H) is the stabilizer subgroup of " in GI: t(H) = (gi E G1 I g111

= " ). Let PI be a maximal parabolic subgroup of G] given by

t * *
Pt(Q) = ( 0 g *

o 0 Cl

I t E QX, g E G(Q)).

Lemma 1.1 (cf. Lemma 2.2, Proposition 2.4)

(i)

(ii)

G1 =P1·t(H).

[

1 _tat(g-l_l)S

p] (') t(H) = (O g

o 0

S«g-1-1)cx,a) ]

(I-:>a Ige G}=G.

Let t' be the embedding of G ioto H so that

, [ 1 _tcxt(g-1_1)S s«g_l-l)cx,cx)]

(1.4) t(t (g» = 0 g (l-g)a

o 0 1

for ge G. Then l'(G) is the stabilizer subgroup of (7 )e W in H. In fact, we have
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(1.5) t'(g) =(~ 0-;)(1 ) (g E G).

1.2 Maximal compact subgroups For a Z-Iattiee X and a prime number p, we

write Xp =X ®z Zp' By maximality of I.;" L; ={x E r; I ~S[x] E p-IZp} is a Zp-

lattice eontaining I.;, and ~ / Lp forms a finite dimensional vector spaee over Zp / pZp

= IFp' We set dp(S) = dim F ~ / Lp' It is known that 0 ~ dp(S) ~ 2. The quantity
p

dp(T) for T is similarly defined.

Let ~ = G(Z~, Up = H(Zp) and K I.p= GI(Z~ be maximal open eompaet

subgroups of Gp = G(Qp)' 1\ = H(Q~ and GI,p =GI(Qp) respectively.

Lemma 1.2 (cf. Lemma 3.6) lf dp(T) = dp(S), we have

t(Up) = t(H~ (") KI,p'

t'<Kp) = t'(G~ (") Up'

1.3 Hecke algebras In this subseetion, we let S E Mm(Z~ be a non-degenerate

maximal even integral symmetrie matrix (in this ease, "maximal" means that ~ is a

maximal Zp-Iattiee with respect to S). Put G = O(S) and K = G(Z~. Let H(Gp'~)

be the C-algebra of compaet1y supported bi-~-invariantfunetions on Gp. Denote by

Vp = vp(S) the Witt index of S at p. The Satake isomorphism 'Pp gives an

isomorphism of the Hecke algebra H(Op'~ onto Crrl
l

, ... , T;1]Wvp , where
p

C[r/, ... , T ~1]WVp denotes the algebraofpolynomials in r/, '..,T ~l invariant
p p

under the suhgroup Wy ofthe automorphism group of C[~' ... , T ;1] generated
p p

by the pennutations of Tl' ... , Ty and the involutions Ti ~ Ti-
l (1 ~ i S vp) ((see

p

[Sa]). Thus the C-algebra homomorphisms of H(Gp'~) to C are parametrized by
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A" the corresponding homomorphism of H(Gp'~ to C:

(1.6)

For A =(Al' ''', Av )E (Cx)vP/Wv ' we define the L·factor Lp(A; s) as follows (cf.
p p

[SU], [MS2]):

where

v (5)

(1.8) r;(A; s) = fi {(l- AiP-s) (1- Aj-Ip-s)}-I
i=l

and

(1.9) As,p(s) =

1

(1 + P1/2-s)

(1 _ p-2s)-1

(l_p-S)-l

(1 _ p-S)-l(l + p1-s)

(1 _ P-1/2-s)-1

(1 _ P-l(2-S)-1 (1 + p l/2-s)

(1 _ p-S)-I(l _ p-1-S)-1

if (no,p(S),ap(S)) = (0, 0) or (1, 0)

(1, 1)

(2, 0)

(2, 1)

(2, 2)

(3, 1)

(3, 2)

(4,2).

with noIP(S) =m - 2 vp(S). It is well-known that 0 ~ no,p(S) ~ 4.
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1.4 Automorphic forms on definite orthogonal groups Going back to the

notation of §1.1-2, we put Kr =rr~. Let SCKr) be the spaee ofautomorphie forms
p<-

on G(A) given as folIows:

S(Kr) = (f: G(A) ~ C I F(y·g·gookr) = f(g) for y E G(Q), g E G(A),

~ E G(R) and kr E Kr},

where Astands for the adele ring of Q. Note that G(Q)\G(A)/G(R)Kr is in fact a finte

set since S is positive definite. We similarly defme the space S(Ur) of automorphic

forms on H(A) left invariant under H(Q) and right invariant under H(R)Ur with Ur =

rr Up'
p<oo

The Hecke algebra H(Gc, Kr) = ~: H(Gp'~) (restricted tensor produet) aets

on SCKr) in a natural manner. Let fE S(Kr) be a Hecke eigenform on G(A). This

means that f is a eommon eigenfonn under the action of H(Gr, Kr)' Then, far eaeh p,

the Satake parameter Ar,p E (Cx)VP/Wvp is attached to f by f*cpp = A.~.p(<pp).f for <Pp

E H(Gp' ~). We set

(1.10) L(f; s) = rr Lp(f; s), Lp(f; s) = Lp(Ar.p; s).
p<oo

We call L(f; s) the standard zeta!unction attached to f. The L-funetion L(F; s) for a

Hecke eigenform FE S(Ur) is defined in a similar manner. For the standard zeta

functions of classical groups, refer to [GPSR) and [PSR).

1.5 The gamma factor of L(f; s) We set

(1.11) As.oo(s) =

10



f4
(21t)-ps (det S)s/2 11 r(s-p-l +2j) r(s-2+2j) if m == 0 (mod 4)

j==l

(pti)12 (p;1)12
(21t)-ps (det S)s/2 11 r(s-p-l+2j) 11 r(s-I+2j) if m == 2 (mod 4)

FI pI

(21t)-ps (2- l det S)s/2 fI r(S-P-~2j) if m is odd.
j=1

m
where p =["2 ].

For a Hecke eigenform fE S(Kr), define

(1.12) ~(f; s) =As,oo(s) L(f; s).

It is known that ~(F; s) is continued to a meromorphic function of s on C (cf. Lemma

1.3). We put

(1.13) c(f; s) = ~(f; s)
~(f; l-s)

1.6 Conjectures on analytic properties of ~(f; s) In this subsection, we

state several conjectures on ~(f; s) for a Hecke eigenform fESOCr) under the

assumption that S is a maximal positive definite even integral symmetrie matrix of rank

m.

Conjecture 1 ThefunctionaI equarion

~(f; s) = Ern ~(f; 1 - s)

holtis. Here we pur

if m == ± 3 (mod 8)

otherwise.
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Cojecture 2 The poles 0/ ~(f; s) are contained in the set {s =~ - klO ~ k ~ m-l}.

rn 2-rn
Funhemwre ~(f; s) has at most simple poles at s = '2 and 2 .

Conjecture 3 ~(f; s) has a simple pole at s =~ if anti only if f is a constant

Junction.

Remark. These conjectures are known to be tnle if m:S;; 3 or if f is constant (see

[MS2]).

1.7 Eisenstein series In this subsection, we recall the deftnition of

Eisenstein series on G. associated with fESCKr). We first define the action of G.(R)

on D =R ffi x R: (R~ is the set of positive real nurnbers). For X =(x, r) E 0, put X-

[ 1]-r - 2' S[x]
= ~ E R ffi

+
2

, Then, fOT (g, X) E G(R) x D, g<X> E D is defined 10

be g·X.... = (g<x>r'·j(g, X) with j(g, X) E R
X

• We let K.,oo = {g E G1(R) I g<xo>

= Xo} be a maximal cornpact subgroup of G1(R) with Xo = (a, -~A) E D. We see

that t(H(R» c K. 00' since ~ =" ..
For g. E G.(A), we fix an Iwasawa decomposition

where a(g.) e Ax, {3(g.) E G(A) and k. (g.) E K1,oo TI K.,p' For fe S(Kc) and
p<oo

SEC, Let f(gI; s) be a function on G.(A) given by

(1.14)

12



Here 1·1Adenotes the idele nonn ofAx
.

The Eisenstein series associated with f is defmed by

(1.15)

Put

(1.16)

where

O'm

um(s) =II (s +~+ 1- 2j)
j=l

(1.17) O"m =[~]

For a Hecke eigenform fE S(Kr), we define the normalized Eisenstein senes associated

with f as folIows:

Li { 1 if m is even
(1.18) EIIo(g, f; s) = 1- zlsl2 um(s) ~(f; s+1) E(g, f; s) x

~(2s+1) if m is odd

where ~(s) = 1t-sn. r(s/2) ~(s).

Lemma 1.3 ([LI]; see also [SuD Let fE S(Kr) be a Hecke eigen/orm. Then

E*(g, f; s) =(_I)O'm c(f; s) EIIo(g, f; -s).

1.8 Rankin-Selberg convolution and Shintani functions In this paper, we

study the following Rankin-Selberg convolution Zp,t<s) associated with FE S(Ur) and

fE S(Kr):

(1.19) z.,,r<s) = J F(h) E*(t(h), f; s- ±) dh.
H(Q)\H(A)

13



From now on, we often see H (resp. G) as a subgroup of GI (resp. H) via the

embedding t (resp. t '). By Lemma 1.3, we obtain

Proposition 1.4 The integral Zp.r<s) can be continued to a meromorphicjunction 0/

s on C anti ha.s ajunctional equarion:

ZP,r<s) = (_l)O"m e(f; s) Zp.r<I-s).

By unwinding the Eisenstein series in (1.19) and using Lemma 1.1, we get

ZFfs) =d(f; s) J J F(gh) f(ß(gh» la(gh)l~m2"l dg dh

G(A)\H(A) G(Q)'G(A)

f f rn-I
= d(f; s) F(gh) f(g' ß(h)) ICt(h)~ dg dh.

G(A)\H(A) G(Q)\G(A)

Here

(1.20)

Define

ß s/2-1/4 1 1 { 1
d(f; s) = I- 2 1 urn(s - ~) ~(f; s +z) x S(2s)

if m is even

if m is odd.

(1.21) ~,t<h) = f F(gh) f(g) dg
G(Q)\G(A)

(h E H(A)).

We call Olp,r the Shintanifunction associated with F and f. lbis funetion plays a

central role,in our paper. Note that COp/I) = < FIG(A)' 7 > where <, > is the usual

Petersson inner product in S(Kr)' By changing the variable g into g ß(h)-I, we obtain

Theorem 1.5 (The basie identity)

14



f rn-I
ZF.r<S) =d(f; S) COp.t<ß(h)-I h) IO:(h)~2 dh.

G(A)\H(A)

Remark. In view of Proposition 2.4 and Lemma 2.2 in the next section, it is easy to see

that a similar fonnula holds for eusp fonns F and f on the unitary groups of (not

necessarily defmite) t-hennitian fonns.

1.9 Main results In what follows, we assume that FE S(Uf) and fE S(Kr) are,

Hecke eigenforms. Let J\ E (Cx)vp(T) / Wv (T) and ~ E (Cx)vp(S) / Wv (S) be the
p p

Satake parameters corresponding to F and f. For h' E H(A) with the p-comPQnent =

1, the function hp ~ Olp/h'~ on l\, belongs to the C-vector space

!1(Ap' "-p) = (co :~ ~ C I (i) co(khu)= co(h) (k E ~,h E ~, up E U~

(ü) cp*ro*<1l =~I\(cp) J\1\(<1l)·ro (cp E H(Gp' ~, <1> E HOfp, U~)}

where

(cp*ro*<I»)(h) = f <Ix f dy cp(x) ro(xhy-1) <I»(y).

Gp Hp

We call !1(,\, "-p) the space of loeal Shintanifunetions associated with ~ and ~.

Such functions were first introduced by Shintani in his unpublished work ([Shi] ; see

[MS1] for detail) in another situation (G ~ the Jacobi group of degree n, H ~ SPn+l)'

One of our main results is as follows:

15



Then

i/rn is even

i/misodd

where Cp(s) =(1 _ P-S)-l.

From the above local result, we obtain the following global one:

Corollary 1.7 Assume that ap(T) = ap(s) tor every prime p. Let FESCUr) and f

E SCKr) be Hecke eigen/orms. Then

i/ m == 2 (mod 4)

otherwise

with a non-zero constant c independent 0/ F and f.

Cornbining Corollary 1.7 with Proposition 1.4, we get a relation between c(F; s) and

c(f; s) (for the definition of c(f; s), see (1.13».

Theorem 1.8 Let the asswnption be the same as in Corollary 1.7. Asswne that

ü>p11) '# O. Then

1
c(F; s) =XMH,oo(n'c(f; s - 2)

where XMH.oo(T) is the Minkowski-Hasse character 0/ T at the archimedian prime :

16



XMH 00(T) = {I
I -1

if m+ 1 == 0, 1, 2, 7 (8)

if m + 1 == 3, 4, 5, 6 (8).

Corollary 1.9 Let the asswnption be the same as in Theorem 1.8. Then

(i) IfConjecture 1 holdsfor f, then so doesfor F.

(ii) If Conjectures 1 anti 2 holdfor f, then so da for F.

(iii) If Conjectures 1, 2 and 3 holdfor f, then so do for F.

Proof The first part follows immediately from Theorem 1.8. As is well-known, all the

poles of E*(g, f; s) are contained in those of its constant tenn

J {
I _lX S -2-1S[X] ]

E~(g, f; s) = E* I m Xl g, f; s) dX.
Q"'\.\m

By straightforward calculation, we have

{
I if m is even }

= S(f; s+l) um(s) la~m/2l_N2Is/2 f(ß) x
S(2s+1) if m is odd

{
I if m is even }

+ (_I)O'm S(f; s) um(-s) laft+m/2 I-LV2rs/2 f(ß) x .
S(2s) if m is odd

We assume that f satisfies Conjectures 1 and 2. Theu the above fonnula implies that the

poles of E*(g, f; s) are contained in the set {-T+ k; 0::;; k::;; m) and the pole at s =-

~ is at most simple. Finally we assume that f satisfies Conjectures 1,2 and 3. By
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(1.22) the residue of E"'(g, f; s) at s =Tis equal to c lf(l) with a non-zero constant cl

if f is constant, and equal to 0 othenvise. Taking residues at s =m;1
of the both

sides of the fonnula for Zp/s) in Corollary 1.7, we obtain

{

<F, I>H if f is eonstant
~ Res ~(F; s) <FIa, f>a = .

s=(m+1)/2 0 othelWlse

where e2 is a non-zero eonstant and <,>a (resp. <'>H) stands for the Petersson inner

produet in S(Kr) (resp. S(Ur))' Therfore Conjecture 3 holds for Funder the

assumption COp.'<I) ':#; O. q.e.d.

Let S be a non-degenerate even integral symmetrie matrix ofrank m. We say

that S has the property (I) if S is maximal and if S satisfies one of the following

eonditions:

(i) m S 3.

(ii) There exist y E GLm(Z) and an even integral symmetrie matrix S' of rank m - 1

(
S' -S/~).

with the property (I) such that l' S Y= t I and ap(S) = ap(S/) for every p.
- ßS -2b

Furthennore suppose that S is positive definite and let f be an automorphie fonn

on 0(5) in the sense of §1.4.

Corollary 1.10 Let S E ~(Z) be a positive definite even integral symmetrie matrix

with the property (I). Let f be a Hecke eigenform on O(S). If f(l) ':#; 0, then

Conjeellues 1, 2 anti 3 holdfor f.

18



1.10 First maiD lemma We need two lemmas (Lemma A and Lemma B) to prove

Theorem 1.6. We let the notation be the same as in §1.1-2. Recall that gl E G1•p is

decompose into

with a(gl) E Q;, ß(gl) E Gp' k1(gI) E K1•p'

For x E ~(Qp)' we put ~np(X)= L leil where (pe l , "', per, 0, "', 0) is
• ei<O

a set of elementary divisors of x. For SEC, let NG '08 be the funetion on Gp defined
p

by

(1.23)

Obviously NG s is K -bünvariant. We define NH s in a similar manner.
p' -~ -~.

Lemma A Assume that ap(T) =ap(S). Then we have

NH s(t'(gß(h)-l).h) =la(h)lp
s NG s(g)

p' p'
(g E Gp' hE 1\,).

1.11 SecoDd maiD lemma Let S E ~(ZP> be a non-degenerate maximal even

integral symmetrie matrix. Put G =O(S) and K =G(Z~. Then Homc(H(G, K), C)

Q(A) be the space of right K-invariant funetions w on G satisfying w+cp =A:'(cp) w

for cp E H(G, K), where A" E Homc(H(G, K), C) is defined by (1.6). Let NG,s be

the function defined by (1.23).
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Lemma B For W E !l(A), we have

Jw(g) NG,s+m/2-I(g) dg
G

with a =ap(S) anti no =m - 2v.

Remark. This result is an analogue of Böcherer's result ([B]) for orthogonal groups.

1.12 Proof of Theoem 1.6 We end this section by giving proof of Theorem 1.6

assuming Lemma A and Lemma B. For ro E !l(J\' ~), consider the integral

IOl(s) =Jro(h) NHp,s+(m-I)/2 (h) dh.

f\,

By Lemma A, we have

IOl(s) = J dh Jdg ro(gh) NHp,s+(m-l)/2 (gh)
Gp\I), Gp

J J ß -1 s+(m-l)12= dh dg ro(g (h) h) I a(h) Ip NGp,s+(m-I)/2(g).

Gp~ Gp

Applying Lemma B to the integral aver Gp' we obtain

Jw(g ß(h)-lh) NGp,s+(m-I)/2(g) dg
Gp
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Vp(S}-l n (S)+l n (S)+l
x TI (1 _ p-(S+ 0 2 +j» (1 + p-(s-O+ 0 2 +j».

j=O

On the other hancL appJying Lemma B to the integral over I\> in the definition of 1(O(s),

weget

It remains to show that

(1.24)

if m is even

if m is odd.

if no(T) = no(S) - 1

if no(T) = no(S) + 1.

no(S) + 1 => vp(T) =vp(S). This implies that the Jeft-hand side of (1.24) is equal to

{

no(S)-1 no(S)-l
~I - p-Cs+ 2 )) (1 + p-Cs-iJ+ 2 ))

Then (1.24) is a straightforward consequence of the defmtions of AT,p(s) and AS,p(s) in

§1.3 in view of the following possibJe combination of (no(S), no(T); a):
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q.e.d.

(no(S), no(T); a) = (1, 0; 0), (2, 1; 0), (2, 1; 1), (3, 2; 1), (3, 2; 2),(4, 3; 2),

(0, 1; 0), (1, 2; 0), (1, 2; 1),(2, 3; 1), (2, 3; 2), (3, 4; 2).
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§2 Classical groups and embeddings

2.1 Classical groups Let k be a field whose characteristic is different fram 2.

Let K be a k-semisimple algebra that is one ofthe following three types:

{

k itself CD
K = a quadratic extention of k (ll)

a quaternion algebra over k (ill).

Let x ~ x be the involution of K given as follows:

{

the identity

the unique non trivial automorphism of K of k

the main involution of K over k

in case (I)

in case (II)

in case (111).

t-
For X E ~.n(K), put X* = X. For E = ±1, we say that S E Mm(K) is an E-

hermitian matrix if S* = ES.

Let S be a non-degenerate E-hennitian matrix ofrank m. We define the unitary

group U(S) by U(S)k ={g E GLm(K) Ig*Sg =S}. Let Km denote the space of m-

co]umn vectOTS in K. For x, y E Km, we write S(x, y) = x*Sy, S[x] = x*Sx. An E-

hennitian matrix S is said to be k-anisotropic if S[x] :t:. 0 for every x E Km-{O} and

k·isotropic otherwise. For ~ E K, we put

'C(~) = ~ + E ~ , N(~) = ~ ~ , Tr(~~ = ~ + ~.

Set d = dimkK and Je = di~er 'C. There exist the following five cases:

(O)-case (1) E = 1 (d=l, K=O)

(Sp)-case (I) E = -1 (d=1, K=I)

(U)-case (II) E = ±1 (d=2, K=I)

(U+)-case (Ill) E = 1 (d=4, K=3)

(UJ-case (lID E = -1 (d=4, K=I).
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In what follows, the (Sp)-case is excluded for simplicity, though the algebraic group SPn

appears as in (U+)-case for K = M2(K).

Lemma 2.1 If S is k-anisotropic and not oftype (er), then K is a division algebra.

Proof. Write S =(sij)' Since ~ =ESll , s11 is in the center of K (note that the

(UJ-case is excluded here). If K is not division, there exists x E K - (O) such that

x7 = O. Then we have sr(~) = 7 S1l X = s1l7x = 0, which contradicts to the

assumption that S is k-anisotropic. q.e.d.

2.2 Embeddings of e-hermitian spaces and unitary groups In what

follows, we fix a non-degenerate E-hennitian matrix S of rank m. Then S defines an

e-hermitian form on the right K-mooule V =Km, Put

and VI = (~). Choose and fix an element TI = [ ~ ] of VI (a E K, a E V) so that

(2.1) ti := SI[11] =t(a) + S[a]

is invertible in K. Then VI =11·K EB,,1. (orhtogonal surn with respect to SI) where

T1J. = IX E VI' SI(T1. X) = 0). Define a right K-linear isomorphism j of W = (~) =

Km+1 onto ,,1. c V1 by

(2.2)
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Let T be an E-hermitian matrix ofrank m+l given by

Then we have

(
S -sn)

T = --a*S -'t(a) .

(ye V, z e K).

By the assumption A e K
X

, T is non-degenerate. We write G, H and GI for the

unitary groups U(S), U(T) and U(SI) respectively.

Define an embedding t: H --+ GI by

(2.3) t(h) (11t + j(w» =11t + j(hw) (h e H, te K, w e W).

It is easy to see that t(H) = (gI e GI I g{Tl = 11). Let

[

t * * ]
PI = ( 0 g..:. I t E K X

• gE G)

o 0 t-I

be a maximal parabolic subgroup of GI' Then its unipotent radical is

[

1 -y*S ZJ
NI = (nI(y,z)= 0 1m Y Iye V,ze K,'t(z)+S[y] =0).

o 0 1

Lemma 2.2 We have

(hence PI (1 t(H) == G).

_n*(g-I - 1)*S

g

o

25
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Proof. By (2.4), PI = [t g T-
1

] 'D1(y, z) E 1(H) implies PI'11 = '11. It follows that

-1
t(a-S(y,a)+z)=a,g(a+y)=a, t- =1.

Solving these equations, we get

t =1, Y = (g-l - 1)a, z = S((g-l - l)a, a).

Since 't(z) + S[y] = 0, we are done. q.e.d.

We define an embedding t': G~ H by

(g E G).(2.4) l'(g) = (~ (l-;)a)

Then l(l'(g» = Pl(g) and l'(G) = (h E H Ih{~ )= (~)}.
2.3 The orbit space PI\GIIt(H) We now study the structure of the orbit space

Lemma 2.3 Assume that K is division. Then T is k-isotropic if and only ifthere

exisrs Xo E V sarisfying S[xoJ =ß.

Proof. The "ir' part is easy since T(~ )+ (~o}= -I:>. + I:>. = O. Assurne that Tis

k-isotropic. Then there exists a non-zero element y of W such that T[y] = O. We write

y =( ~ }1. + (~) with Ä. E K and XE V. Observe S[x] ='i'I:>. Ä.. If Ä. * 0, then

S[xA-1] = Li. If A. = 0 and x '# 0, we have S[x] = O. This implies that S is k-

isotropie and henee S[V] = t(K). We are done. q.e.d.
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Proposition 2.4 Assume that -K is division.

(i) If T is k-anisotropic, then 01 = Prt(H).

(ii) If T is k-isotropic, then 01 = Prt(H) U PrTo·t(H) where

and Xo is any element of V satisfying S[xo] =&.

Proof Let gl E GI and put grll =[ ~] (a', b' E K, a' E V). We Irrst show that

gl E P1't(H) if b':F- O. To prove this, we put z =-a + b' a' + S(a' - a, a). 1t is clear

that 't(Z) + 5[a' - a] =0 and Plll =gll1 with PI =[lf-1 1m bJ ·n l (a' - a, z) E

PI' Thus OUT assertion follows. Assume that T is k-anisotropic. If b' =0, we have

(a+u')'t(a) + S[a] = SI[11] = SI[gl11] = S[a1 and hence T[ 1 = S[a'] - S[a] -1(a) =

0, which contradicts to the assumption. Thus (i) is proved. We next assume that T is

k-isotropic. We claim that gl E P}Tot(H) if b' = O. Choose a pair (y, z) E V x K so

that 1- S(y, x~ = a', 1(Z) + S[y] = O. Since S[a1 =&, there exists an element g of °
such that gxo =a' by Witt's theorem. Thus we have PlI oll =[ ;, ] with PI =

[1 g 1]-n l (Y, z), which proves the proposition. q.e.d.

2.4 The unipotent radicals of parabolic subgroups The content of this

subsection will not be used in the paper, but we include it here for future application (see
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the remark of Theorem 1.5). Throughout this subseetion, we suppose that K is division

and that T is k-isotropic. Let Xa e V be as in Proposition 2.4 and pOl e = ( -x~+a )

(
X +a)E W, e' = °1 E W. Then T[e]= T[e1 = 0 and T(e, e') = -2.1 *" O. We see that

p' = (h E H I h'e = e·t (t E K
X
)} is a maximal parabolic subgroup of H.

Lemma 2.5

Proof Let he H. Then l(h) e 1'0-1PI 1'0 if and only if l(h)1'0_1(~ )=

1'o-{~) forsome te K
X

• Since 1'o-{~)=j(e).wehave l(h)yo-{~)=

j(h·e). The lemma follows from this. q.e.d.

Let W' be the orthogonal compliment of e·K + e'·K in W with respect to T.

The unipotent radical N' of p' is given by (n' E H I (i) n'·e = e, (ii) for w' E W',

n'·w' = eA + w' for some A E K}.

Lemma 2.6

(x E V)
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We denote me above vector by(~) Then we have g{~)=

remains to verify

(2.5) b' + (xo - cx)c' = x.

c'

b'+(xo-<.x)c'

*

To prove mis, let (~)=e :A. + e' :A.' + w' (1.., A: E K, w' E W'). It is easy to see that

T(e, G) = 0 and T(e', G) = 2S(xo' x) and hence we have A. = -ß-1S(xo' x),

'i' 0 ' (X-xo6-
IS(Xo,X») I & ]] th

f\, = ,w = . t 10 ows at
o

(y) (-xo+CX)(A.+A.")+X-xo6-
IS(Xo,X»)

n' = n'eA. + n'w' = e (A + A") + w' =
z A.+~"

where A." E K is detennined by n'w' = e~" + w'. It follows that b' = x + (-Xo + cx)~"

and c' = 'A",which implies (2.5). q.e.d.
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easily verified

§3. Maximal integral lattices of e-hermitian spaces

In this section, we let k be a finite extention of Qp' 0 its maximal order, p a

fixed prime element of 0, K a semisimple algebra over k as in §2 and 0 a maximal

order of K. We choose and fIX a prime element 7t of 0 if K is a division algebra. We

keep the notation of §2.

3.1 Integrallattices Let S E Mm(K) be a non-degenerate E-hemitian matrix. An

O-lattice L of V =Km is said 10 be O-inlegral with respect to S if S(x, y) E 0 and

S[x] E t(O) for every x, y E L. We say that S =(Sij) is integral if Om is O-integral

with respect to S. This is equivalent to the assertion II Sij E 0 and Sü E t(O) (l :s; i, j :s;

m)".

Let 0 =U(S) = (g E OLm(K) I g*Sg =S} be the unitary group of an integral E-

hermitian matrix S. We put

(3.1) 0 0 =0 (1 GLm(O), G~ =( gE Go I (g- 1) L* cL}.

where L* =S-IL is the duallattice of L =Om with respect to S. The following is

\
\

Lemma 3.1

(i) U EGO ~ U L =L, u L* =L*.

(ii) G~ is anormal subgroup 0/ Go'
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An O-integrallattice L is maximal with respect to S if and only if the following

assertion holels: Y E L·, S[y] E 't(0) => Y E L. We say that S is maximal if S is

integral and if Om is maximal with respect to S. .

Lemma 3.2 Suppose that S is maximal.

(i) If K is division, then S is GLm(O)-equivalent to [lv So eJ
v

] where Iv =

1

o

E GLv anti So E ~ (0) is a k-anisotropic E-hennitian matrix. Furthermore 0°0 =
o

{x E KOo I So[x] E 't(0)).

(ii) If K splits over k anti S is 0/ type (U) or (0+), then S e GLm(O).

Proof. The stRtement (i) is well-known (for example, see [Sa)). We give a proof of (il)

in the case of (0). The statement is similarly proved in the case of (U~. Suppose that

L = Om = om Ef) om is maximal with respect to S = (S',EtS') (S' E GLm(k)). If S' E

GLm(o), there exists X' E km - om such that S'X' E Om. Put X =(X', 0) E Km _

Om. Then SX = (S'X', 0) E L and S[X] = (0, tX') (S'X', 0) = 0 E t(O), which

contradicts to maximality of L. q.e.d.

3.2 Embedding of lattices In this subsection, we let S be a non-degenerate

maximal E-hennitian manix of degree m. Then the lattice LI = [ ~ ] = Om+2 of V I =

[~J =K
m

+
2

is maximal with respectto SI = [1 S EJLei (a, a) E 0 xC.
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(
S -sn) (V)Then T = is integral and defines an E-hennitian strueture on W = K

-n*S --'t(a)

=K ffi
+1. Let j : W ~ V 1 be an embedding of E-hermitian spaces given by

[

-eä'"z - S(n,y) ]
j{~) = y (y E V, Z E K).

z

Then j (M) is contained in LI where M =(~ ) is an O-integrallattice of W with

respect to T. Let t: H = U(T) ~ GI = U(SI) be as in §2: t(h) (11·t + j(X)) = ,,·t +

j(hX) (h E H, t E K, X E W). Note that TI =[ ~ ] E Li.

Lemma 3.3 t(H) f1 Gi.o = t(H';).

Remark. The inclusion t(H) n G1•0 ::> t(H~ does not always hold (see Proposition

3.7).

Proof Let X = T1·t + j(G) E VI (t E K, YE V, Z E K). We first show that (~) E

[

at-Eä'"z-scn,y)]
M*=r1M if Xe Li=T1-

1
L1. Since X= nt + y ,Xe Li

t + z

implies nt + y e L* and at - Eaz- Sen, y), t + Z E O. Then we have

(y) ( S(y-az) )
S z = -S(n,y}-t(a)z

(

S(nt+y)-Sa(t+z) )

= (at-eaz-S(n,y)-a(t+z) E M,

which proves OUT claim. Let h E H~. FOT X =T1·t + j«~) E Li, we have
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l(h)X =Tlt +j«~) + j«h - 1) G) E X (moll LI)'

since (h - 1) (~ ) e M by the above remark. This implies 1(h) e GI:o ' Next suppose

that h e H satisfies l(h) e GI:O ' For G)e M·, put

(

-S(cx,y}--'t(a)z)

Xo =T]"(-Z) + j(G) = y-;z e Li·

Since j«h - 1) G» = (l(h) - 1) X e LI' we see (h -1) G)e M and hence h e H~.

q.e.d.

Lemma 3.4 Suppose that K is division and let 1t be a prime element 0/ O. If ~ E

Li.prim = Li - Li·7t, then there exists an element u 0/ Gi.o such that u ~ = [ ; J.

Proof. Let ~=[;] (a.be O.ne C). If be OX,put u=[T 1 b-Je

Gi.o' If be 7t0 and a e OX, put u = [a 1a-IJ [1 1E]. Final1y suppose

that a, b E 1t0. Since cx E L;rim' we can find a pair (y, z) E A x 0 so that S(cx, y) E

OX and 't(z) + S[y] =O. Since

[
1 ][a] [ * ]y 1m CX = * ,
z -ey·S 1 b ya-eS(y,a)+b

the proof is reduced to the case where b E OX. q.e.d.
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3.3 We say that a pair (a, a) E 0 xL· is reduced if T{1; t~l } is not integral far

x x m (S -sa)every t E 0 fl K - 0 and every X E K with T = .
-a*S -t(a)

Lemma 3.5 Suppose that S is maximal and exclude the case where S is 01 (lT)­

type and K spUts over k. A pair (a, a) E 0 x L* is reduced if and only if M = Offi+
1

(
S -sa)is maximal with respect to T = .

-o:*S -t(a)

To prove this, we need the following result

Lemma 3.6 Let the asswnption be the same as in Lemma 3.5. 11 S[a] - S[ßt] E t(O)

* xtor a, ßE L and t E 0 - 0 , we have a - ßt E L.

*Proof If K splits, then we have L = L so that the assertion is trivial. Thus we

assume that K is division. Let 1 be the least non-negative integer satisfying (a-

Ißt)·1t E L. Suppose that 1~ 1. Then

S[(a - ßt)1t1- 1] = -;1-l.(S[o:] - t(S(o:, ßt» + S[ßt)).1t1- 1

Observe that S«a - ßt)1t1, ßt1tI- 2
) E 0 since (a - ßt)1t1E L and ßml

-
2

E L* (note

that tE 1tO and l- 2 ~ -1). Since -;-1·O·1t = 0, we have Sr(n - ßt)1t1- 1
] E t(O).

On the other hand, we have (0: - ßt)1t1- 1
E L*. Since S is maximal, we have

(a - ßt)1t1- 1 E L, which is a contradiction. Thus l = 0 and we are done. q.e.d.
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Proo/0/Lemma 35. First suppose that (a, a) E 0 x L* is not reduced. Then there

x x m (1 X) ( S S(X-aC
1

) )exists a pair (t, X) E (0 n K - 0 ) x K such that T[ -1] = 1
o t (X-at- )...S Zo

is integral, where Zo = S[X] - t(S(X, a)C1
) - 7-1t(a)C1

. Put Y = (;1 ). We show

that TY E M and T[Y] E 't(0), which implies that M is not maximal. The second

assertion is clear from Zo =T[Y]. To prove the first one, observe

(
S(X-aC1) ) 1

TY = 1 . By assumption, we see that Sex - at- ) is integral and it
-S(a,X)-'t(a)t-

remains to show that b =-S(a,X) - 't(a)t-1
E O. Observe Xt = (X - aCI ) ·t - (-a)

1 ... -
and X-aC, -a E L . We see that S[Xt - a] - S[-a] =S[Xt] - 't(S(Xt, a» = t zot +

't(a) E 't(0). Applying Lemma 3.6, we see that Xt E L and hence bE O. Next

suppose that M is not maximal. Then we can find an element Y =(~) of W - M

(X E V, Z E K) so that TY E M and T[Y] E 't(0). If Z E 0 ,then SX E L and

S[X] E 't(0), which implies XE L by maximality of S. This contradicts to the choice

of Y and hence we have Z e: O. If K is division, Z E 0 implies z-l E 0 n KX
- OX

and hence that (a, a) is not reduced. Assurne that K splits over k. We show that there

exists z' E KX satisfying

(3.2) z' == z (mcxl 0) and z,..-l E O.

Bya similar argument as above, the existence of such a z' implies that (a, a) is not.
reduced. First consider the case (TI) so that K =k EB k and z =(zl' ~). We rnay

assume that zl E 0 and ~ E o. In this case, put z' =(zl' 1). Next consider the case
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(III). In this case, K =~(k). Then we may assume that z =ul (pll 0 )U2 with ul'
o pv

u2 E OX = G~(o), J.I. < 0 and v ~ O. We put z' = ul (p; ~ ) u2. In both cases, z'

satisfies the condition (3.2). q.e.d.

3.4 For a maximal S, we now define an invariant a(S) of the GLm(O)-equivalence

class of S. First suppose that K is division. Then L' = (X E L* I S[X) E 't{1t-lO)} is

an O-integrallattice containing L and L'fL forms a finite dimensional vector space over

a finite field O/1tO. Then a(S) is defmed to be

(3.3) a(S) =dimOhtO L'fL.

We set a(S) = 0 when K splits over k. It is known that 0 ~ a(S) ~ 2. Let (a, a) be a

(
S -sa)reduced pair. Since T = is maximal by Lemma 3.5, we can also define

-a*S -'t(a)

For the remainder of this section, we assume the following:

(3.4) E = 1 ; moreover we exclude the case where p I 2 and K is a ramified

extention of k.

In particular, the orthogonal group case is included.

Proposition 3.7 Let (a, a) be a reduced pair and assume (3.4). If a(T) s; a(S),

then we have t(HO> = t(H) rl G 1,0 .
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Proof. To prove the proposition, we may assume that S is k-anisotropic in view of

Lemma 3.2. Note that, if K splits over k, then Sand T are unimodular and hence the

lemma is trivial (see Lemma 3.2). Suppose that K is division. A classification of k-

anisotropie E-hnnitian matrices (up to GLm(O)-equivalence) is available under the

assumption (3.4) (see [HS]). Then we can check our assertion case by case. The

verification is straightforward and we only list up the GLm(O)-equivalence classes of E-

hennitian matrices in the case where S is of type (U) or (U+) and K is division. The

classification in the case of (0) may be found in [E].

(1) (U), KIk: an unramified quadratic extention

(1.a) 00 = 0, a = °
(1.b) no =l,a=O,S=(r),re Ox

(1.c) no = 1, a= 1, S = (pr), rE Ox

(l.d) ß o =2, d = I, S =(~ ; } r, S E OX

(2) (U), K/k : a tamely ramified quadratic extention

(2.a) "0 =0, a=°
(2.b) no = 1, a= 0, S = (r), r E Ox

(
s 0) x(2.c) no = 2, a=0, S = 0 r ,s, r E 0 ,-sr e NKjk(K).

(3) (U+), K : a division quaternion over k

(3.a) no =0, a=°
(3.b) no =l,a=o,S=(r),re ox.

q.e.d.
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The following lemma is proved in a similar way as in the proof of the above

proposition.

Lemma 3.8 Assume (3.4). 11 a, ß E L* satisfy S[a] == S[ß] (mod t(O)), then there

exists an element u 01 Go such that ß== ua (mod L).

Proposition 3.9 Assume (3.4) and let K be a division algebra over k. lf (a, a) is

a reduced pair, then

(disjoint union).

Proof. Recall that t(H) is the stabilizer subgroup of " = [ ~Jin G I' Let gl E GI'

Put gI-I" = ~.-;-l with ~ E Li,prim (note that I is uniquely detennined). We frrst

show I~ O. If I< 0, we have gI-I" =[:~.J.1t with [:~'J E L~. Then

bU bU

T[(l a1t-
I_aU)] =( S -saU)

o 1t- I -a*S z

with z = S[a"] - -;-I(S[a] + t(a))1t- I
. Since SI["] = SI[gl-I11], we have z =

't( b" a") E 't(0) and hence that T[ (~ <Xlt:~~<X"} is integral, This contradicts to the

assumption that (a,O:) is reduced. By Lemma 3.4, there exists an element ul of Gt*o,

such that gl-ITJ =u{ ;,J-;-I with [ ;,JE Li· It follows that 't(lt
l

a-;1) +
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S[a-;1] ='t(a') + S[a1 and hence S[a-;1] == S[a1 (mod 't(O)). By Lemma 3.8, we

can find an element Uo of Go so that uoa' = a -;1_ 13 with ßE L. Choose an

element b of 0 so that 't(b) + S[ß] =O. Then

[

1 -ß*S b ] [ 1 ] [ a' ] [a" ]
~ 1; ~ U

o 1 ~'= (l; / E Li .

Put Yo= 1t
1a-;1_ a". Then Yo E 0 n Ker 't and

[

Xi

Thus there exists an element u of G1,o such that gI-l" =u

proves the proposition. q.e .d.
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§4. Proof of Lemma A

The object of this section is to prove Lemma A in §1.10. Let the notation and the

assumption be as in §l. 10. In particular, T and S are supposed to be maximal.

Throughout this section, we fIX a rational prime p and write H, U, G, K, GI and Kl

for ~, Up' Gp' ~,Gl,p and Kl ,p respecrively.

Let {pe l , "', per, 0, "', O} (0 appears (n - r) limes) be a set of elementary

divisors of x e ~(Qp)' Recall that J.ln,p(x) = Jln(x) is the surn of lei I with ei < O.

Note that p~(x) ~ coincides with the Zp-module generated by all the minors of x and

Zp' The following is easily verified.

Lemma 4.1

(i) For x, y E Mn(Qp)' we have J.ln(xy) ~ Jln(X) + Jln(Y).

(ii) For x E ~(Qp) and y E ~(Q~, we have lIm+n(~; ) ~ Ilm(x) + Iln(Y).

Since Lemma Ais trivial for a Qp-anisotropic T, we may assume that T is Qp-

isotrpie. By taking suitable Zp-bases of M and L, we may suppose that S, T and 51

have the following matrix forms:

(4.1) S=( IR -Rß)'T=( R1)'51 =( S 1)
- ßR -2b 1 1
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R[ß] + 2b E Qp' Then

., (Yl ) (-bY2
- R(ß'Yl) )

(4.2) J ( Y2 ) = Yl '

Y2

[
-S[(t]] [-S«(t,y)]

j(~t + j'(y» = ~ Dt + i '

t'(g)(~t + j'(y)) = ~t + j'(gy),

t(h)(11t + j(w)) = ~t + j(hw)

(Yl E Q;-I, YZ E Qp' tE Qp' YE V, W E W, g E G, h EH).

To prove Lemma A, we need an explicit fonn of t, which will be also used in the

next seetion.

Lemma 4.2

(i) Let h' E H' = OCR) anti t E Q~. Then we have

-1 0 0 0

t(e h' Cl»=

t

(h'-l)ß h' (l-h')ß 0

-I 1 0 1 0t -

UI Uz U3 t

with UI =b(-2 + t + Cl) + R(ß, (h'-l)ß), U2 =tßR(h'-t) and U3 =2b(1-t)

+ R(ß, (l-h')ß)·

(ii) Let x E Q~-I. Then we have
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(

1 _txR -2-
1
R[X])

t( 0 Im_l x ) =
o 0 1

1 0
x Im-l

0 0

-2-1R[x] t-xR

o 0
o 0

1 0

R(ß,x) 1

(iii) For g E G, we have

, [1 laS(l-g) -S(a,(l-g)a) ]

t(t (g)) = 0 g (l-g)a .

o 0 1

Proof. This is proved by straightforward calculation. q.e.d.

Prooj. We may assurne that R =[Iv Ro Iv ] and ß=(;; ) where v is the Witt

index of R, Ro is Qp.anisotropic and ßo E Q~-1-2V. Since t(U) c K1 by the

assumption and Proposition 3.7, we only have 10 check the assertion of the lenuna for h

= (p-r h' pT ) with h' = diag(pTI, ... , pTy
, Im+I-2v' p-TV, ... , p-TI) E H' (r, rl_

... , rv ~ 0). By Lemma 4.2, we have

o
o

q.e.d.

o
o

o
1

1

o
p~l 0 1 0

b(pr_1)2 lßoTo(pr-1) 2b(pr-1) 1

1

h'

r
p

t(h)=

-r
p

Thus N01.s(t(h)) =p-{r+r1+,,+rv)s =NH,s(h), which proves the lemma.

Proof0/Lemma A. We frrst note that the assertion of lemma A is equivalent to
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(4.3) NH,s(h) = la(1.(h»ls.Na •s(ß(1.(h») (h E H).

By Proposition 3.9, we get the decomposition H =U l.'(G)h/ U with hl =
l2:.0

(p-l Im-l pi). Thus we only have to verify (4.3) fOT h = l'(g)hl (g E G, I ~ 0). By

Lemma 4.1 (i), we have J.lm+l(h) ~ Jlm+I(1.'(g» + Jlm+I(h/) =Jlm+I(t'(g» + I. On the

other hand, by Lemma 4.3, Lemma 4.2 (Hi) and Lemma 4.1 (ii), we obtain Ilm+I(h) =

{

pi +: * ]
Jlm+2(1.(h» = 1lm+2(1.(t'(g)h/» = Jlm+2 0 g '" ) :2: Jlm(g) + /, which implies

o 0 p-I

Ilm(g) + / ~ Ilm+I(h) ~ llm+l(1.'(g)) + l. Applying Lemma 4.3 again (replace H and GI

by G and H, respectively), we have Jlm(g) =Jlm+I (t'(g») for gE G. Thus we have

NH,s(h) = Na,s(g)-p-/S. Since a(t(h)) = pi and ß(1.(h» = g, we are done. q.e.d.
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§5. Proof of Lemma B

Throughout this section, we keep the notation and the assumption of §1.11. In

particular, S E ~(Zp> is a non-degenemte maximal even integral symmenic matrix, G

following result is a key to the proof of Lemma B.

Proposition 5.1 For t E Q; and g E G, we have

= It Imll p-lor~t1.s (l-p-{s+m/2»(1+p-{s+rn/2--0»
~-------1""""-2""""S---~ NG,s+m/2-1(g)·

-p

We frrst demonstratC'l:.emma B assuming the above result. By Lemma 3.2, we

may assurne that S is afthe fann Sv = [Iv So Iv ] where Iv = : : and So

is a maximal even integral Qp-anisotropic symmenic matrix ofrank: no = m - 2v. Note

that dp(SJ = a. Put Gv = O(Sv) and Ky = Gv(ZP>. For A. E (ex)v/Wv' we define a

function ct>G A on Gv 10 be
v
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di ( -1 -1 Gwhere t = ag t1, "', !V, In ' lv ,"', t1 ), u e v is an upper unipotent matrix
o

of degree m and k E Kv. Then Lemma Bis equivalent to the following result

Proposition 5.2

(5.3) f <I>Gy.,,(g) NGy,s+m/2-l(g) dg
Gv

ProofofProposition 52. We prove the assertion by induction on v. The assertion is

trivial if v =O. Decompose gE Gv inlo n(x) [t r: Cl]k(x E Q;-Z, tE Q~, g' E

Gv_ l ' k E Ky). Then a Haar measure dg on Gv is given by dg =It 1-(m-2) dX dXt dg'

dk. Thus the left-hand side of (5.2) equals

(5.4) f dx f 1I 1-ß1+Z dXI f dg' <I>G ).{ 1 g' ])

Q m-2 QX G v 1
P P v-I t-

E (CX)V-l/WV_l and applying Proposition 5.1, we see that (5.4) equals

(5.5)
(1 _ p-{s+(m-2)/2)) (1 + P-(s+(m-2)/2-a))

1 -2s-p
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(1 _ -25)
The first integral in (5.5) is equal to P 1 and the indunctive

(I - AIP-S)(I - A.I p-S)

hypothesis asserts that the second one is equal to

These prove the proposition. q.e.d.

We now go back to proof of Proposition 5.1. We prove by induction on m. By

the bi-Kl-invariance of NG1•s' we see that

= NGl ,s+m/2c[ 1 1m 1] nlOC) [t g cJ [11m I}

= NGl's+m/2(n;.cX) [Cl g t J)

where

n1(X) =[ ~
-2-I S[X]

Next observe that

o
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J NG1 s+m/l(nl(X) [t g J) dX = J NG s+m/2( [Cl g-l ] nl(-X»dX
Qm' -1 Qm l'

p t P t

prove the following fact: For t E Q~ with o~(t) ~ 0, we have

(5.6) J N
G1

s+m/l(n1(X)[t g ] ) dX
Q;' t-1

(1 _ p-(s+m/2»(I + p-(s+m/2-d»
= It l-(s+rn/2) NG•s+m!2-1(g).........----";"",,;,,,.------------

1 -2s-p

We frrst verify (5.6) for the case where S is Qp-anisotropic. To do this, we

~ollect several facts about the arithmetic of Qp~anisotropicquadratic fonns. Let

V =Q~ ,L =Z~ and put Zx =2-1
S[X] for X E V.

Lemma 5.3 Suppose that S is Qp-anisotropic.

(i) XE L<=> Zx e Zp'

(ii) 11 XE L, then z"X1XE L and 1m - z"XIXtXS E K.

(iii) We have

J (1 - p-(s+m/l»)(1 + p-(s+m/2-d»)
1 + Iz

X
1-(s+m/2) dX = --:..-....---~~--'-----~

1 -2s
V~ -p

Lemma 5.4 The equality (5.6) ho/ds if S is Qp-anisotropic.
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Proof A straightforward ealeulation shows that, if XE L,

[ -1J-I , , -I -I -I t
k1=nkz X), k1=n1(-z Xt ) -1 (lm-z X XS)g .

By Lemma 5.3, we have kl , k) E K1 and henee the left-hand side of (5.6) is equal to

It r(s+m!2) (1 + JIzxr s+m/2) <IX).
V-L

The lemma follows from this and Lemma 5.3 (üi). q.e.d.

From now on, we assume that S is Qp-isotropie. We may suppose that S is of

the fonn (IR -Rß) where R is a non-degenerate maximal even integral symmetrie
- ßR -2b

matrix ofrank rn-I and a =ap(S) =ap(R). Furthennore we may assume that R = (J
v

Ra Jv )

. ß = (:: ) where V is the Witt index of R, Ra is Qp-anisotropie symmetrie matrix
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,
ofmnk n~ = m- 1- 2v and ßo E Q~.

Put H =O(T) and H' =O(R) with T =(1 R 1 ) We define embeddings

H' 1.0 1.' 1. (h' (l-h')ß)
4 G 4 H 4 G) as in §4, where we put lo(h') = 0 1 (h' EH').

By defmition, to(H') (resp. t'(G), t(H)) is the stabilizer subgroup of a (resp. ~,11) in

Let K 1 =G1(Zp)' K =G(Zp)' U =H(Z~ and U' =H'(Zp). For I E Z, put

M, =[ P-1 1m pi] E GI- By Proposition 3.9. we have the decomposition:

(5.7) (disjoint union).

We need the following variant ofLemma A.

Proof. Applying Lemma A fOT H ~ GI ~ H I = O{1 TI), we obtain

pi * *
Since tl(gl) = 0 h * tl(k1) and t1(k1) E H1(Zp) (see Proposition 3.7), we have

o 0 p-l

a(g)) = pi and ß(gl) = h. This proves the lemma q.e.d.
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(AB) (Ro -Roßo)
E G ( C D E O( t ). We note that to(h~ =diag(t1,

-ß R -2b° 0

Since both sides of (5.6) are bi-K-invariant functlons of gE G, we may assurne

that g =lo(ho)go where ho =diag(t!' "', ty, In" ~ 1, "', t}l) E H' and ~ =
°Iv

A B

Iv
C D

1 -1 -1 1)"', ty, n',!y, "', t 1 , .
o

(

Ro -Ro~o)
t is Qp-anisotropic and we may

- ~ R -2bo 0

take go =1 in this case.

Fix co ~ O. We calculate the following integral:

First obsenre that I(s) equals
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To calculate these integrals, we need three results from the arithmetic of locaI orthogonal

groups. We postpone their proof until the last part of this section. Put n
go

=

nl«g;;l- l)a). Note thai n
llo

= [1 g;;l 1] t(t'(gJ) (Lemma 4.2 (iii».

Lemma 5.6 For p ~ 0, we have n;~ Mro+p E 1(hp)M1p·K1 with some hp E H.

Here lp = Max(co + p, ~), Il = ~m(go) (Jor the definition 0/ ~m' see §l.l0).

Iv

A' B'
Remark. By the assumption of ~,wemay take hp = Iv

C' D'

. (A' B')Wlth
C' D'

Lemma 5.7 For U E p-pz; (p ~ 0) and XE Q;-l, we have

p'tp * *
Lemma 5.8 We have t'(g~hp E 0 I m_1 * U with 'tp = co + P-lp +~.

o 0 p-'tp

By Lemma 5.5 and Lemma 5.7, l(s) is equal to
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where ö(p~l) ={~ if P :2: 1

if P = O.
By Lemma 5.8, this is equal to

) dx.

By inductive hypothesis, I(s) equals

(l-p-(s+rn/2»)(1+p-(s+rn/2--a»)
X 1 -2(s+I/2) NH'ts+rn/2-1(h~.

-p

S· ) - -J,.1(s+rn/2-1) - (h)Ince NG,s+m!1-1(g - p NH,,s+rn/2-1(ho) for g - t o 0 go' we get

_ (l-p-(s+rn/l»)(1+p-(s+rn/2---d»)
I(s) - J(s) x 1 -2(s+I/2) NG,s+rn/2-1 (g)

-p

where J(s) is the sum

To evaluate this sum, recall that lp =Max(co + p, J.1), t p =co + P -lp + J.1 =

Min(co + p, Jl).
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Lemma 5.9

(i) P S t p <=> P ~ Jl.

(ii) If P > Jl, then we have t p = Jl and lp = co + p.

Proof. Observe that 'tp - P = co + Jl- Max(co + p, Jl). If P > Jl, then Max(co + p, Jl)

=co + p, which implies 'tp = Jl, lp = W + P and t p ~ p. Next suppose that p S Jl. Then

{
Jl - P if w+p ~ Jl

'tp - P= and hence t p ;;::: p. q.e.d.
co if co+p < Jl

By Lemma 5.9, J(s) is equal to

00

+ L. (1 _ P-1) pp-{O>+-p)(s+m/2)-{J.L-p)(m/2-1-s)+ll<s+m/2-1)

p=Jl.+l

(1 -1) -28
_ -ro(s+m/2) + -ro(s+ml2) - P P
- P P -28

1 - p

( /2)
1 -2(s+1/2)

= P-ro s+m _-_Po....-__
1 -2s-p

This implies that

l(s) = p-ro(s+m/2) (l-p-(8+m/2»)(1 +p-(S+ffi/2-O»)

1
-18 NG•s+m/2-1 (g),

-p

which completes the proof of (5.6).
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It now remains to show l..emma 5.6 -l..ernma 5.8. We [rrst prave Lemma 5.7

assuming Lemma 5.6. Put gl = nJ.(C-:-il ».[p-(/) lo(hO>~ PoJ with p ~ 0,

X E Q~-l. By Lemma 4.2, we have

-(ro+p)p

to(ho)~

ro+pp

5.7.

Ta prove the remaining lemmas, [mt consider the case vp(S) = vp(R). As was

noted befare, we may take ~ = 1 so that Lemma 5.6 and Lemma 5.8 are trivial in this

case. In what fallows we suppose that vp(S) = vpeR) + 1. In view of the remark after

Lemma 5.6, we mayassume that v =vp(R) =0 (that is, R is Qp-anisotropic).

(
R -Rß)Lemma 5.10 Let Rand S = be maximal even integral symmetrie

-lßR -2b

matriees 0/rank rn-I and fi, respeetively. Asswne that apeR) =ap(S), vpeR) =0

and Vp(S) = 1. Pur a =D-1(~ ) with D ~ R[/3l + 2b. FOT gE G =O(S),put ll. =

J.1m(g). Then
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Proof The assertion (i) and (ii) are trivial if J.1 = O. From now on we assume that J.1 >

O. For simplicity, we put L =Z;, M =Z~l, L* =S-lL and M* =R-1M. By

maximality of M with respect to R, M' = {x E M*12-1R[x] E p-1Zp} fonns a Zp-

lattice (see §3.4). Under our assumption a(R) = a(S), we have ßE M'* = R-1M' (see

the remark in the proof of Theorem 2.6 in [SuD.

Let g = (~~) be the block decomposition corresponding 10 m = (rn-I) + 1.

. (tc)By definition of ~,pJ.l.g is a primitive element of ~(ZP>. Since Sg~10. = - t

D
'

it is sufficient to show pJ.l. (:~ )e ~rim to prove the assertion Ci). Suppose that pJ.l. (:~ )

E p·L. We claim that, for every XE M, we have plJ.Ax E p·M, which implies plJ.A E

Since 2-1R[xplJ.], b(CxpJ.1)2 E p2Zp, R(pIJ.Ax, ß) E Zp and CxpJ.1 E pZp' we get

2-I R[AxpJ.1] E pZp. It follows that Axpll E p·M' and hence that R(pJ.1Ax, ß) E pZp

by the above remarks. This implies 2-I R[Axpll] E p2Zp. Then Lemma 3.2 (i) shows

our claim. We can prove plJ.B E pM in a similar way. Thus we get pllg E p·Mm(Zp)'

which is a contadiction. The assertion (i) has been proved. To prove (ii), it is sufficient
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to show that the first row of [ p: : }~ ] ·ng is integral and primitive. Observe that

proved that pJ.L·S(g-1_1)<X is integral and primitive. It remains to show that

2-1pJ.L·S[(g-1_1)<X] is integral. Take the least non-negative integer I satisfying

pl.(g-I_1)n E L. By (i), we have I ~).1. Assume that 1>).1. Then

2-1S[(g-1_1)npl-l)] = -S«g-1_1)npl, apl-2) E Zp since (g-1_1)npl E Land apl-2

'" -1 1-1 *' .
E L (note that I ~ 2). On the other hand, we see that (g -l)np E L by (1). Then

the maximality of Simplies (g-I_1)npl-l E L, which contradicts to the definition of l.

This shows that 1= Jl. Then the assertion (ü) follows from 2-1pJ.L.S[(g-I_1)n] =

Proo/0/Lemma 5.6. Recall thaI t(H) is the stabilizer subgroup of TI = [ ; ] in GI'

Put TI' = M"~p ngo'TI = [:~ ] 0 By Lemma 5.10 (i), we have plpoTl' E L~.prim'

Choose X E Z~ so that -SeX, ~laplp).+plp~ = 1. Then o} (X)ll"plp

= [ g~l;plp ] 0 We can find an element 1C of K so thaI Y = lCaplp - g~laplp E Z~.

Then
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Proo/0/Lemma 5.8. The proof ofLemma 5.6 shows that we can take hp E H so that

with X, Y E Z; and l( E K. Hence

lemma in view ofLemma 5.4. q.e.d.
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