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Shintani Function and its Application to

Automorphic L-functions on Classical Groups
I. The case of Orthogonal Groups

Atsushi Murase and Takashi Sugano

§0. Introduction

Let H be a connected reductive group with a faithful action on a vector space W.
We suppose that H preserves a non-degenerate symmetric (or skew-symmetric or e

hermitian) form T of W. Let G be the stabilizer subgroup of an element w, of W in

H. For a pair of automorphic forms F and f on H and G respectively, we define a

function g ¢ on H(A) in the following manner:

(0.1) O ¢(h) = j F(gh)f(g)dg . (h e H(A)).
G(Q\G(A)

The object of this paper is to study this function, which we call the global Shintani
Sfunction associated with F and f. Such a function was first introduced by Shintani
([Shil; cf. [MS1]) for the case where H is the symplectic group of W = Q2(™+D
equipped with the usual alternating form T and w,= t(1, 0, ---,0) € W. Note that

w,, 1s an isotropic vector with respectto T and that G is the Jacobi group of degree n

(a semi direct product of the Heisenberg group and Sp,) in this case. Shintani made

several interesting conjectures and gave an application of his function to the theory of



automorphic L-functions of Siegel and Jacobi cusp forms.

In a series of the paper, we will study the Shintani function for the case where H
is a classical group and w,, is an anisotropic vector (hence G is a classical group of the
same type as H). We investigate the orthogonal group case in this first part of the paper.

To explain our results, let H = O(m+1) be the orthogonal group of a quadratic
space (W, T) of dimension m+1 and G be the stabilizer subgroup of H of a suital;le

anisotropic vector of W. Then G is an orthogonal group O(m) of degree m. For a

pair of cusp forms F and f on H(A) and G(A), we define g by (0.1). Let H =
HH(Q), H(Z)) (resp. H ‘= H(G(Q). G(Z))) be the Hecke algebra of H (resp. G) at
a finite prime p. Let co(ll,-’} denote the restriction of g t0 H(Qp). If both F and f
are Hecke eigenforms and if p is a good prime, then @ = G)E:p,)f has the following
property:

(0.2) (Pp* 0 *Dp)(hy) = I dxj .[ dy, ¢p(xy) w(xphpygl) D, (yp)
% H,

=A@ A @ oty  (hye HQY.D e H, o e H).

Here Ap € HomC(H , C) (resp. lp e HomC(H 7, ©)) is determined by the local
component 1'[p (resp. n:p) of the automorphic representation IT (resp. &) assocated to F
(resp. f). The space of C-valued functions on G(Zp)\H(Qp)/H(Zp) satisfying (0.2) is
denoted by Q(Ap, lp) and.callcd the space of local Shintani functions attached to A,

and 7Lp Then we may conjecture the following uniqueness of local Shintani functions:

(0.3) dimg¢ Q(Ap, lp) <1 forevery Ap and lp?



A similar fact was conjectured by Shintani ([Shi]) in the case of the symplectic

group. Furthermore he conjectured that the equality

t

1 L (A,
(0.4) j o( n 1 )hjs‘“‘1 dt =m(1)x_m
X t L (A, s+1/2)
Q 1 p(*p

holds for w e Q(Ap, 7\])), where Lp(Ap, s) and Lp(kp, s) are the local standard zeta

functions attached to Ap and Xp These two conjectures was proved in [MS1].

In this paper, we establish a similar formula to (0.4) for the case of orthogonal
groups (Theorem 1.6), though the uniqueness problem (0.3) is still open in this case.

Furthermore we introduce and study a certain Rankin-Selberg convolution attached to F

and f. To be more precise, we let G, = O(m+2) be a bigger orthogonal group
containing H as the stabilizer subgroup of an anisotropic vector, and P, a maximal
parabolic subgroup of G; whose Levi component is isomorphic to GL(1) x G. Then

we can construct an Eisenstein series E(gy, f; s) on G, attached to a cusp form f after
Langlands (JL2]). The convolution of Rankin-Selberg type we study is given by

(0.5) Zp () = J. F(h) E(h, f; s) dh.
H(Q)\H(A)

Unwinding the Eisenstein series in (0.5), we obtain the "basic identity” between Zg J(s)

and a certain integral of the Shintani function wg £ (Theorem 1.5). Then the local result

L(F; s)

mentioned above implies that Zg (s) is equal to ST

up to an elementary factor,

where L(F; s) (resp. L(f; s)) is the standard zeta function of F (resp. f) (Corollary 1.7).

Therefore, at least when H is definite, we can describe the functional equation of L(F; s)



in terms of that of L(f; s) (Theorem 1.8). The proof will be carried out along a similar
line as in [MS1]. However, in order to include not oﬁly unimodular quadratic forms but
also maximal ones in our argument, we need various subtle facts of the arithmetic of
quadratic forms.

It should be mentioned a similarity between our convolution and that of Gelbart
and Piatetski-Shapiro for O(2n) x GL(n) ([GPSR]; see also the work of Piatetski-
Shapiro, Rallis and Schiffmann for G, x GL(2) [PSRS]). The difference is that our
method yields a quotient of two standard zeta functions of O(m+1) and O(m), though
their construction gives the L-function L(® X ¢, std®std; s), where ® x @ is a cusp
form on O(2n) X GL(n) (or on G, x GL(2)) and std®std is the tensor product of the
standard representations of the L-groups. We should also note that our convolution may
be considered as an example of "generalized Fourier coefficients of Eisenstein series” ,

which are studied in generality by Furusawa and Shalika ([FS]).

We now explain a brief account of the exposition. In §1, after preparing several
notation, we state our main results (§1.9). We show that these results are direct
consequences of two key lemmas (Lemma A and B). In addition, we discuss several
conjectures on analytic properties of the standard zeta functions of definite orthogonal
groups. The next two sections are of preliminary nature. In §2, we construct
embeddings of €-hermitian spaces crucial in our argument and study its properties needed
to establish the basic identity. In §3, we summarize several facts of the arithmetic of

maximal lattices of €-hermitian spaces to study the behavior of maximal open compact

subgroups under the embeddings. In these two sections, we include the cases of unitary



groups of e-hermitian forms for future application. The last two sections are devoted to
proofs of the key lemmas. The proof of Lemma A is straightforward and given in §4 .
The most difficult part is the proof of Lemma B, which can be seen as an analogue of
Bocherer's result on Hecke series of Siegel modular forms (see [B]). In fact, we prove
Lemma B in §5 by induction on the degree of orthogonal groups. We note that the proof

of Lemma B uses Lemma A in an essential way.

As will be noted in §1, we may apply a similar method for classical groups of
another type (the unitary groups, the quaternion unitary groups). We hope to investigate

these cases in a forthcoming paper.

This work was done during the first author's stay at MPI (Max-Planck-Institut fir
Mathematik) and the second author's stay at JAMI (Japan-U.S. Mathematics Institute).

The authors are grateful for financial support of MPI and JAML



§1. Main results

1.1 Embeddings of orthogonal groups Let T be a positive definite even

integral symmetric matrix of rank m+1. Then the upper left m xm block S of T is
also positive definite and even integral. We say that a non-degenerate even integral
symmetric matrix S of rank m is maximal if Z™ is a maximal Z-lattice with respect to
S. In what follows, we suppose that both S and T are maximal. Then it is easy to see

1
that Sl=[ S :| is also maximal. Put
1

Z
m L m+1 m+2
L=Z,M=(Z)=Z ,L1= L |=2Z ,
YA

m v m+1 Q m+2
V=L®ZQ=Q ,W=M®ZQ=(Q)=Q ,V1=L1®ZQ= v =Q .
Q

The dual lattices of L, M and L, are denoted by L¥= S-IL, M* = T—IM and
L} =S, L. Let G=0(V,$),H=0(W, T) and G, =0(V,, S,) be the orthogonal
groups: G(Q) = {ge GL_(Q)!'gSg = S}, - etc.

We write

S -Sa
T=( ) (e l* ae Z)

andput n=| o | € L]. Then
1

(1.1) A =8§,[Mm]=S[a] +2a <0.



We define an embedding j: W -V, by

y -az — S(o,y)
(1.2) iyl e V.ze Q).
z

Then V; =Q-m & j(W) (direct orthogonal sum). Define an embedding 1: H — G, by

(1.3) 1th) (tn + j(w)) = tn + jthw) (he Hite Q,we W).

It is easy to see that 1(H) is the stabilizer subgroup of M in G;: W(H) = {g; € Gl gM
=1]}. Let P, be a maximal parabolic subgroup of G, given by

t * =

PQ=( 0g * |lte Q" ge GQ).

00 ¢!

Lemma 1.1 (cf. Lemma 2.2, Proposition 2.4)

i Gy =P, uH).
1 olg-ns s -Deso)

(ii) Pl ={| ¢ g (1-g)a lge G} =G.
0 0 1

Let v be the embedding of G into H so that

1 So'e™-DS S -Doya)
(1.4) wE=| o g (1-g)o,
0 0 1

for ge G. Then V'(G) is the stabilizer subgroup of (?)e W in H. In fact, we have



(1.5) V() = (g “‘f’“ ) g e G).

1.2 Maximal compact subgroups Fora Z-lattice X and a prime number p, we

. . , w1 - .
write Xp =X®, Zp. By maximality of Lp, Lp ={xe Lp i -z-S[x] €p 1Zp} isa Zp-
lattice containing L, and LI,D /Ly, forms a finite dimensional vector space over Z, / pr
=F, We set ap(S) = dim F, LI’) /Lp. It is known that 0 < ap(S) < 2. The quantity
ap('n for T is similarly defined.
Let Kp = G(Zp), Up = H(Zp) and Kl'p= Gl(Zp) be maximal open compact

subgroups of Gp = G(Qp), I-Ip = H(Qp) and Gl’p = Gl(Qp) respectively.

Lemma 1.2 (cf. Lemma 3.6) If ap('l') = ap(S), we have

l(Up) = 1(Hp) N Kl'p,

l'(Kp) = 1’(Gp) N Up,
1.3 Hecke algebras In this subsection, we let S € Mm(Zp) be a non-degenerate
maximal even integral symmetric matrix (in this case, "maximal” means that Zg' isa
maximal Zp-latticc with respect to ). Put G=0(S) and K =G(Z). Let H(Gp, K,
be the C-algebra of compactly supported bi-Kp-invariant functions on Gp. Denote b-y

Vp =vp(S) the Witt index of S at p. The Satake isomorphism ‘Pp gives an

1 1
isomorphism of the Hecke algebra H(Gp, I%) onto C['l't y Tf p]va , where

+1

v

1 1
C[Ti N T\j,:l]w\’p denotes the algebra of polynomials in Ti , -, T
P p

invariant
h £ hi £ T *
under the subgroup va of the automorphism group of C[T;, -, Tvp] generated

by the permutations of T, -, T

v and the involutions T, — Ti—l (1<ig vp) ((see
p

[Sa]). Thus the C-algebra homomorphisms of H(Gp, Kp) to C are parametrized by



(Cx)vpfwv (Satake parameters). For A= (A, -, A, )€ (Cx)"P/Wv , we denote by
P P P

A" the corresponding homomorphism of H(Gp,Kp) to C:

(1.6) AN(@) = ¥ (@), -, xvp) (¢ € HGp, K)).

For A=(h;,~, A, )€ (Cx)vp/Wv , we define the L-factor Lp(k; s) as follows (cf.
P P

[Su], [MS2]):

(1.7) Ly $) =Lo(A; syAg p(s),
where
v (S)

(1.8) Lo s) = i} (a-rpHa-a7p !

and
1 if (no‘p(S),ap(S)) = (0,0 or (1, 0)

(1 + ! (1,1

(1-p257" 2, 0)
a-p%! @, 1)

(19 Asy0=1 1-p5 1 +p'™ 2,2)
(1-p /25 3, 1)
(1 -p 2571+ pE) (3, 2)
A-pHTa-p ! 4, 2).

with no'p(S) =m-2 vp(S). It is well-known that 0 < no’p(S) <4,



1.4 Automorphic forms on definite orthogonal groups Going back to the
notation of §1.1-2, we put K¢ = H I(p Let S(K;) be the space of automorphic forms
p(”

on G(A) given as follows:

S(Kp) = {f: G(A) = C I F(y-g-g.ky) =f(g) for ye G(Q), g e G(A),

.. € G(R) and k;e K},

where A stands for the adele ring of Q. Note that G(Q)\NG(A)/G(R)K is in fact a finte
set since S is positive definite. We similarly define the space S(Up) of automorphic
forms on H(A) left invariant under H(Q) and right invariant under H(R)U, with Ug=
I1u,
pecon p

The Hecke algebra H(Gy, Ky = g' H(G,_, K;) (restricted tensor product) acts

on S(K;) in a natural manner. Let fe S(K;) be a Hecke eigenform on G(A). This

means that f is a common eigenform under the action of H(G, Kp). Then, for each p,

the Satake parameter lf,p € (Cx)vpfva is attached to f by f*‘Pp=)"?.p((P prf for @,

€ H(Gp, Kp). We set

(1.10) Lt ) = T Lyt o), Lyt 90 = LG ).
p<eo

We call L(f; s) the standard zeta function attached to f. The L-function L(F;s) fora

Hecke eigenform F € S(Uy) is defined in a similar manner. For the standard zeta

functions of classical groups, refer to [GPSR] and [PSR].

1.5 The gamma factor of L(f; s) We set

(1.11) Ag . (s) =

10



@ 12
@2n) S (det §)%? f_[ [(s—p-1+2j) ['(s=2+2j) if m= 0 (mod 4)

j=1 .
(p+1)/2 (p=D)P2

1 @r)P* (det §)%2 T(s—p-1+2j) [(s-142j) if m=2 (mod 4)

j=1 Fl
| 2n) % 27 det 5)2 IE[ F(s—p—%—l—Zj) if m is odd.
=1
where p=| %].

For a Hecke eigenform fe S(Kj), define
(1.12) E(f; 5) = Ag () L(f; 5).

It is known that &(F; s) is continued to a meromorphic function of s on C (cf. Lemma
1.3). We put

E(f; s)

1.1 fi5)=
(1.13) c(f; s) E(E 1s)

1.6 Conjectures on analytic properties of E£(f;s) In this subsection, we

state several conjectures on &(f; s) for a Hecke eigenform f e S(Kp under the

assumption that S is a maximal positive definite even integral symmetric matrix of rank

m.
Conjecture 1 The functional equation
E(f,s)= e, E(f; 1—5)

holds. Here we put

{—1 if m=%3 (mod 8)

1 otherwise.

11



Cojecture 2 The poles of &(f; s) are contained in the set {s = %— -kl0<k<m-1}.

Furthermore &(f, s) has at most simple poles at s = % and lg_m .

Conjecture 3 &(f; s) has a simple pole at s = % if and only if £ is a constant

Sfunction.

Remark. These conjectures are known to be true if m <3 or if f is constant (see

[MS2]).

1.7 Eisenstein series  In this subsection, we recall the definition of
Eisenstein series on G, associated with fe S(K;). We first define the action of G(R)

on D=R™x Ri (R>+< is the set of positive real numbers). For X =(x,r) e D, put X~

1
-1 — -2-S[x]
e R™2 Then, for (g, X) € G(R) xD, g<X>€ D is defined to

X
1

be gX” = (g<X>)"j(g X) with j(g, X) € R*. Welet K; . =(ge G;(R) | g<X,>
=X,} bea maximal compact subgroup of G;(R) with X = (q, —-%—A) e D. We see
that t(HR)) c K o since X, =".

For g, € G,(A), we fix an Iwasawa decomposition

alg)) * *
g = 0 Plg) = ky(gy)
0 0 ofgy™

where a(g) € A%, B(g,) € G(A) and k(g e KI.NH K, p- For fe S(Kp and
p(oo
se C, Let f(g;;s) be afunctionon G,(A) given by

(1.14) f(gy; §) = f(B(g)) (gl (g, € G1(A).

12



Here |- A denotes the idele norm of A

The Eisenstein series associated with f is defined by

(1.15) Eg,fi)= 2 fopgps+5) (81 € Gy(A)).
1 €P1(QNG,(Q)
Put
o-l'ﬂ
(1.16) u, () =Jl} (s+F+1-2))
where
(1.17) O =[]

For a Hecke eigenform f e S(Ky), we define the normalized Eisenstein series associated

with f as follows:

1 if m is even

» A sf2
1.18) E*(g, f;s) = | —=1| f; s+1) E(g, f;
(18 B 6.9 = (-7 un(®) 566 s+1) B s)x{ EQs+1) if m is odd
where E(s) = Y2 T'(s/2) L(s).
Lemma 1.3 ([L1]; see also [Sul) Let fe S(K;) be a Hecke eigenform. Then

E*(g, f; s) = (<1)°m c(f; 5) B*(g, f; —s).

1.8 Rankin-Selberg convolution and Shintani functions In this paper, we

study the following Rankin-Selberg convolution Zp ((s) associated with Fe S(Up) and

fe SKp:

(1.19) Zp (s) = _[ F(h) E*(1(h), f;s—:l,:) dh.
H(Q\H(A)

13



From now on, we often see H (resp. G) as a subgroup of G, (resp. H) via the

embedding 1 (resp.1”). By Lemma 1.3, we obtain

Proposition 1.4 The integral ZF'(-(S) can be continued to a meromorphic function of

s on C and has a functional equation:

Zp ((s) = (<1)°m c(f; 5) Zg (1-5).

By unwinding the Eisenstein series in (1.19) and using Lemma 1.1, we get

m—1
Zps) = d(f; §) I J F(gh) f(B(gh)) la(gh)fs 2 dg dh
G(ANH(A) GIQNG(A)

m-1
| | rm b a2 dg dh.
G(ANH(A) G(QN\G(A)

Here

1 if m is even

A sn-1/4 1 1 {
1.20 fis)=1-%I -3 s
(1.20) dif;s)=1-7 Um(s =) &(F s +3) % £2s) if m is odd.

Define

(1.21) W (h) = .[ F(gh) f(g) dg (h € H(A)).
G(QN\G(A)

We call ¢ the Shintani function associated with F and f. This function plays a
central role.in our paper. Note that ®g ,f(l) =< FIG( A) T > where < , > is the usual

Petersson inner product in S(K;). By changing the variable g into g B(h)—l, we obtain

Theorem 1.5 (The basic identity)

14



-1
Zg () = d(£; 5) I g (B ') Ia(h)liﬂz— dh.
G(ANH(A)

Remark. 1In view of Proposition 2.4 and Lemma 2.2 in the next section, it is easy to see
that a similar formula holds for cusp forms F and f on the unitary groups of (not

necessarily definite) e-hermitian forms.

1.9 Main results In what follows, we assume that F e S(Uy) and fe S(Kj) are
. x\v_(T) x\v_(S)

Hecke eigenforms. Let Ape (CH'p /va('D and Xpe (CH'p /va(S) be the

Satake parameters corresponding to F and f. For h’ e H(A) with the p-component =

1, the function hp - O I(h’hp) on Hp belongs to the C-vector space

Q(Ap,l.p)={(o:Hp—)Cl(i) w(khu)= o) (ke K, he Hy,u e Uy
(i) r0+® = 1@ A @0 (0 € HG,, Ky, ® & HH, Up))

where

(p**®)(h) = .[ dx J dy o(x) w(xhy™) O(y).

Gp Hp

We call Q(Ap, )..p) the space of local Shintani functions associated with Ap and lp

Such functions were first introduced by Shintani in his unpublished work ([Shi] ; see

[MS1] for detail) in another situation (G — the Jacobi group of degree n, H —» Sp,_ ).
One of our main results is as follows:

Theorem 1.6 Assume that apm = BD(S). For we Q(Ap, ?».p), define

m-1

Z,(s) = _[ o(Bh)"'h) Ia(h)I;+T dh.
G\,

15



Then

L_(A_: 1 if mis even
D( P’ s) (1) X{ »
Cp(2s) if mis odd

where Cp(s) =(1- p_s)'l.

From the above local result, we obtain the following global one:

Corollary 1.7 Assume that ap(T) =ap(S) for every prime p. Let Fe S(Uyp) and f

€ S(Kp) be Hecke eigenforms. Then

%—- s ifm=2 (mod4)

ZF,f(s) =c (;JF_f(l)-'c:,(F; $) up, (s — %) um(%— s) X

1 otherwise

with a non-zero constant ¢ independent of F and f.

Combining Corollary 1.7 with Proposition 1.4, we get a relation between c(F; s) and

c(f; s) (for the definition of c(f; s), see (1.13)).

Theorem 1.8 Let the assumption be the same as in Corollary 1.7. Assume that

@p (1) #0. Then

c(F; 8) = XMy w(T)-c(f; s — %)

where Yy (T) is the Minkowski-Hasse character of T at the archimedian prime :

16



1 ifm+1=0,1,2,7(8)

wo(T) =
XMH, {_1 if m+1 =3,4,5,6(8).

Corollary 1.9 Let the assumption be the same as in Theorem 1.8. Then

(i) If Conjecture 1 holds for f, then so does for F.
(ii) If Conjectures 1 and 2 hold for f, then so do for F.

(iii) If Conjectures 1, 2 and 3 hold for f, then so do for F.

Proof. The first part follows immediately from Theorem 1.8. As is well-known, all the
poles of E*(g, f; s) are contained in those of its constant term

J' 1 -'xs —27's[x]
Ej(g, f; 5) = mE* 1. X g, f; s) dX.
Q™A 1

By straightforward calculation, we have

(8
(1.22) E( B £9)
o
o | IS+mJ?-|N25’2f|3 1 if mis even }
= &(f; s+1) up(s) lafy " A2 £(B) % {§(2s+l) if m is odd

1 if m is even }

—1)%m E(F; §) up(-s) oS ™2 a2 {
+E1Tm B 5) up(-s) lafy @) &(2s) if mis odd

We assume that f satisfies Conjectures 1 and 2. Then the above formula implies that the

poles of E*(g, f; s) are contained in the set {—?+k;05k5m} and the pole at s =—

% is at most simple. Finally we assume that f satisfies Conjectures 1, 2 and 3. By

17



(1.22) the residue of E*(g, f; s) at s = = is equal to ¢,f(1) with a non-zero constant ¢
2 1 1

if f is constant, and equal to 0 otherwise. Taking residues at s = El%'l of the both

sides of the formula for Zg 'f(s) in Corollary 1.7, we obtain

<F, 1>y if f is constant

¢y Res &(F;s) <Flg, f>g ={

s=(m+1)/2 0 otherwise

where ¢, is a non-zero constant and <,>; (resp. <,>y) stands for the Petersson inner
productin S(Kp) (resp. S(Up)). Therfore Conjecture 3 holds for F under the

assumption wg (1) #0. g.ed.

Let S be a non-degenerate even integral symmetric matrix of rank m. We say
that S has the property (I} if S is maximal and if S satisfies one of the following
conditions:

i) mg<3.

(ii) There exist Ye GL,(Z) and an even integral symmetric matrix S* of rank m -1
s =SB

with the property () such that ¥ S y:( g
—BS" -2b

) and 9,(S) =9,(S") forevery p.

Furthermore suppose that S is positive definite and let f be an automorphic form

on O(S) in the sense of §1.4.

Corollary 1.10 Let S € M_(Z) be a positive definite even integral symmetric matrix

with the property (I). Let f be a Hecke eigenform on O(S). If (1) %0, then

Conjectures 1,2 and 3 hold for f.
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1.10 First main lemma We need two lemmas (Lemma A and Lemma B) to prove

Theorem 1.6. We let the notation be the same as in §1.1-2. Recall that g; € G, p is

decompose into

a(g)) * *
0 ﬁ(gl) * kl(gl)
0 0 ag)’

with o(g)) € Q, B(g;) € Gp, ky(g)) € Ky
For x € Mn(Qp), we put p.np(x)= 20 le;l where {p°1, ey per, 0, -, 0} is
* e:<

1

a set of elementary divisors of x. For se C, let Ng. s be the function on Gp defined
P
by

(1.23) N (8 = pHmp8)s (g€ Gp).

Obviously Ng , is K,-biinvariant. We define NHps in a similar manner.
p' >

Lemma A Assume that apm = ap(S). Then we have

NHP_S(I.'(gB(h)'I)-h) =lo(h)y Ng_(8) (g€ Gy he H).

111 Second main lemma Let Se€ M, (Z,) be a non-degenerate maximal even

integral symmetric matrix. Put G=0(S) and K= G(Zp). Then HomC(H (G,K), C)
is identified with (CX)V/WV, where v is the Witt index of S. For A € (CX)VIWV, let

Q(A) be the space of right K-invariant functions w on G satisfying w*@ = AMN@) w

for ¢ e H(G, K), where A* € HomC(H(G, K), C) is defined by (1.6). Let Ngs be

the function defined by (1.23).
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Lemma B For we Q(A), we have

J w(g) NG,s+mf2_l(g) dg
G

v-1
=Ly sy [T - p 42y 1 4 8572002, e war)
J!:
with d = ap(S) and ny=m-2v.

Remark. This result is an analogue of Bécherer's result ([B]) for orthogonal groups.

1.12 Proof of Theoem 1.6 We end this section by giving proof of Theorem 1.6

assuming Lemma A and Lemma B. For w e Q(Ap, ).p), consider the integral

Ip(s) = -[ @(h) Ny S+(m-1)2 (h) dh.
Hp P

By Lemma A, we have

I,(s) = .[ dh J. dg o(gh) NHP,S+(m_1)/2 (gh)

Gp, G,
= f dh J dg (g BM) 0 Lah) B PNG o 1n(e).
GP\}H’ GP ?

Applying Lemma B to the integral over Gp, we obtain

.[ o(g By k) NG, s+m-1)n(®) 48
G
P

. Vp(s)-l no(S)-i—l _ n,(S)+1 .
=Lps+3) I.=OI (A-p 7ty (1 4+ p O+ ),
j |

x w(B(h)~h)
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where n (S) =m— 2vp(S) and d = ap(S) = ap(r ). Thus we have

Io® = Zo©Ly; s +7)

vp(S)-1 n,(S)+1 n(S)+1
x H A-p &7 D) Qe p &Rz ),

On the other hand, applying Lemma B to the integral over Hp in the definition of I (s),

we get

Vp(D-1 ny(T) n (T)
Io($) = LAy 8) H (=g ) (14 Ty ),

It remains to show that

Vp(T)" ! n,(T) n (T)
g a _p—(s+T+j)) (1+p —(5—0+ == > +_|))

vp(S)-1 n(S)+1 n (S)+1 _
H (1 - p—(s+ > _])) A +p —(s—0+ —5— +_]))
0

(1.24)

A (5) x{l if m is even

B Agpls+75) CD(ZS)—1 if m is odd.

To prove this, observe that n(T) =n(S) -1 =>vp(T) =vp(S) +1 and that n(T) =
n,(S)+1=> vp(T) = vp(S). This implies that the left-hand side of (1.24) is equal to

n(5)-1 ny(S)-1
(1-p =7 (1 +p 5, if ng(T) = ng(S) — 1

1 if 0 (T) = n (S) + 1.

Then (1.24) is a straightforward consequence of the defintions of AT'p(s) and As’p(s) in

§1.3 in view of the following possible combination of (n(S), n(T); 9):
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g.ed.

(S, ny(T); 0y = (1,0;0), (2, 1,00, (2, 5 1), (3,2; 1), (3, 2; 2),(4, 3; 2),

(0,1, 0), (1,2, 0), (1, 2; 1),(2, 3; 1), 2, 35 2), (3, 4; 2).
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§2 Classical groups and embeddings

2.1 Classical groups Let k be a field whose characteristic is different from 2.

Let K be a k-semisimple algebra that is one of the following three types:

k itself )
K =19 a quadratic extention of k  (II)
a quaternion algebra over k (III).

Let x — x be the involution of K given as follows:

the identity in case (I)
{thc unique nontrivial automorphism of K of k  in case (II)
the main involution of K over k in case (ITI).

For X € M, ((K), put X*="X. For =11, we say that S € M,(K) isan &
hermitian matrix if S* =¢S.

Let S be a non-degenerate €-hermitian matrix of rank m. We define the unitary
group U(S) by U(S), = {g e GL(K)| g*Sg=S}. Let K™ denote the space of m-
column vectors in K. For x,y e K™, we write S(x,y) = x*Sy, S[x] = x*Sx. An e-
hermitian matrix S is said to be &-anisotropic if S[x]#0 forevery x € K™-{0} and

k-isotropic otherwise. For € € K, we put
WO =t+el ,NE)=LE, TrE) =5+ €.

Set d =dim K and x=dimKer 1. There exist the following five cases:

(O)case (@) e=1 --- (d=I,k=0)
(Spycase (I e=-1 ---. (d=1,x=1)
< (U-case dAI) e==x1 --- - (d=2,x=1)
(Uh-case () e=1 ... (d=4,x=3)
\(U)-case (III) €=-1 -- - (d=4, x=1).
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In what follows, the (Sp)-case is excluded for simplicity, though the algebraic group Sp,
appears as in (U*)-case for K = M,(K).
Lemma 2.1 If S is k-anisotropic and not of type (U ), then K is a division algebra.

Proof. Write S= (sij). Since sy, =€y, 8;; isin the center of K (note that the

(U )-case is excluded here). If K is not division, there exists x € K— {0} such that

— X —_— —_—
x x =0. Then we have S[(O)] = X 571X = 81 x x =0, which contradicts to the

assumption that S is k-anisotropic. g.e.d.

2.2 Embeddings of e¢-hermitian spaces and unitary groups In what
follows, we fix a non-degenerate €-hermitian matrix S of rank m. Then S defines an

e-hermitian form on the right K-module V =K™. Put

£
§;= S € GLy,2(K)
1
K a
and V;=| V | Choose and fix anelement n=| o | of V,(ae K, e V) so that
K 1
(2.1) A :=5,m] =1(a) + S[a]

is invertible in K. Then V, =n-K ® ni (orhtogonal sum with respect to S;) where
\%
nl ={Xe V,;15;(n, X)=0). Define aright K-linear isomorphism j of W = (K ) =

K™ onto 'n‘LCVI by

y —eaz-S(a,y)
(2.2) j((z ) - y (ye V,ze K).
z
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Let T be an e-hermitian matrix of rank m+1 given by

(] p=sui(} ) e V,ze K.

Then we have

( S -Sa )
T= .
—o*S —1(a)

By the assumption A € K, T is non-degenerate. We write G, H and G, for the
unitary groups U(S), U(T) and U(S;) respectively.

Define an embedding 1: H — G, by

(2.3) ) (Mt + j(w)) =Nt + j(hw) (he Hite K,we W).

It is easy to see that 1(H) = (g, € G;!g;n=n). Let

t * *
P={]0g * lte K*,ge G)
00!

be a maximal parabolic subgroup of G,. Then its unipotent radical is

1-y*Sz

N1={n1(y,z)= [0 lm y:l lye V,ze K, 1(z) + S[y] =0).
0 0 1

Lemma 2.2 We have

1 —a*g™! - 1)*s S(g™ - Da, o)
PiniM)={p®=| ¢ g (1-g)o lge G)
0 0 1

(hence P; N1i(H) = G).
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Proof. By (2.4),p; = & ‘ny(y, z) € (H) implies p;n =n. It follows that

1

ta-Sy,a)+z)=a,glx+y)=q, T =1,

Solving these equations, we get
t=l,y=(g" - Do, z= S - Do, 0.
Since 1(z) + S[y] =0, we are done. g.e.d.

We define an embedding ": G — H by

2.4) V(g) = (f) ‘l“f)“ ) g € G).

Then 1(1'(g)) = py(g) and V(G) = (he HI h-(c;l )= (T) }.

2.3 The orbit space P\G,/t(H) We now study the structure of the orbit space

Pl\G I/I(H).

Lemma 2.3 Assume that X is division. Then T is k-isotropic if and only if there

exists x, € V satisfying S{x;] = A.
X
Proof. The "if" part is easy since T[(? )—9» ( 0° )] =-A+A=0. Assume that T is

k-isotropic. Then there exists a non-zero element y of W such that T[y] =0. We write

y=(?)l+ (3) with A€ K and x € V. Observe S[x]=7A A. If A #0, then

S[xl_l] =A. If A=0 and x #0, we have S[x] =0. This implies that S is k-

isotropic and hence S[V] = 1(K). We are done. g.e.d.
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Proposition 2.4 Assume that K is division.
(i) If T is k-anisotropic, then G, =P-1(H).
(i) If T is k-isotropic, then Gy =P \(H) U P-Y 1(H) where

1

Yo=| Im [nj(x,— 0, Sx,—a, 0)—a)

and x is any element of V satisfying S[x,] =A.

’

a
Proof. Let g;e Gyandput gyn=| o | (2",b" e K, &’ e V). We first show that
b!

g, € P u(H) if b” 0. To prove this, we put z=-a + b’ a’ + S(&’ — o, o). Itis clear
% -1
that 7(z) + S[a’~ ] =0 and pyn=gm with p; = 1, -nl(a’ -, Z)€E
bl
P;. Thus our assertion follows. Assume that T is k-anisotropic. If b’ =0, we have

1(a) + S[ad = ;M1 = S,[gM] = S[o] and hence T[(“‘;"') = S[e'] - S[o] —1(a) =

0, which contradicts to the assumption. Thus (i) is proved. We next assume that T is
k-isotropic. We claim that g, € P{Tu(H) if b"=0. Choose a pair (y,z)e VxK so

that 1-S8(y, x)) =a’, ©(z) + S[y] =0. Since S[a] = A, there exists an element g of G

r

a
such that gx = a’ by Witt's theorem. Thus we have p,Y n=| ¢’ | with p;=
0

1
|: g :I-nl(y, z), which proves the proposition. g.e.d.
1

2.4 The unipotent radicals of parabolic subgroups The content of this

subsection will not be used in the paper, but we include it here for future application (see
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the remark of Theorem 1.5). Throughout this subsection, we suppose that K is division

. .. —X,+a
and that T is k-isotropic. Let x,€ V be as in Proposition 2.4 and put ¢ =( x(; )

e W,e' = (xoz-a )e W. Then T[e]=T[e'] =0 and T(e,e’) =—2A=0. We see that

P'’={he Hlhe=et(te K} isa maximal parabolic subgroup of H.

Lemma 2.5 Y, P, T, u(H) =1(P).

Proof. Let he H. Then wh)e Y, P, Y

0

1

if and only if l(h)‘I'O—1 0 |=
0

1

1 1
-1 X -1 . -1
Y, g t for some te K. Since Y, g =j(e), we have 1(h) T, 8 =

j(h-e). The lemma follows from this. gq.e.d.

Let W’ be the orthogonal compliment of e¢-K +¢"K in W with respectto T.
The unipotent radical N” of P’ is givenby {n’e HI (i) n"e =g, (ii) for w' € W’,

nw’ =ek +w for some Ae K}.

’ -1
Lemma 2.6 T,AUN) Y, N,

1 1 0 *
Proof. We first note that, if g, € G, satisfies g,| 0 [=} 0 Jand g| x |=| x |,
0 0 0 *

1
then we have g, € N;. Let g, =Y, 1(n") To-l (n” € N"). Since TO‘I 0 |=jte), we
0

1 1
have g;| 0 [=Y,un")j(e)=",je)=| O |. A directcalculation shows that
0 0
0 S(x,-0., X) y
o x x =nu+j((z)) (xe V)
0 0
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with y = A'IS(xo, X),y=X— (lA_IS(xo, X),Z = ——A_IS(xo, X) and hence

0
-1 - ’ y
)Y, | X [=mp+jn (z )
0
a’ 0 c
We denote the above vector by | b’ | Then we have g;| x [=| b+(x;—o)c” |. It
¢ 0 .
remains to verify
(2.5) b+ (x, - o)’ = x.

To prove this, let (z)= eA+e’ A +w (A, A e K,w e W), ltis easy to see that

T(e, (i ) =0 and T(¢, (i)} =25(x,, x) and hence we have A =-A"'S(x_, x),

41
N =0,w = ("“"OA S(Xgr%) ) 1t follows that
0

- AN +x-x A7'S(x .,
n’(i) =neA+nw=eA+A")+w= (( Xo ) A+AT)+x-x, (X:%) )

A+L”

where 1 e K is determined by n'w’=e A" + w’. It follows that b’ = x + (-x, + 0)L”

and ¢’ = A”,which implies (2.5). gq.e.d.
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§3. Maximal integral lattices of €-hermitian spaces

In this section, we let k be a finite extention of Qp, 0 its maximal order, p a
fixed prime element of 0, K a semisimple algebra over k asin §2 and O a maximal
order of K. We choose and fix a prime element ©t of O if K is a division algebra. We

keep the notation of §2.

3.1 Integral lattices Let S € M (K) be a non-degenerate e-hemitian matrix. An
O-lattice L of V=K" is said to be O-integral with respectto S if S(x,y)e O and
Six] € ©(0) forevery x,y e L. Wesay that S = (s;y) is integral if O™ is O-integral

with respect to S. This is equivalent to the assertion "sij € O and s; € 1(0)(1<€i,j<
m)".

Let G=U(S)=(ge GL_(K)!g*Sg=S} be the unitary group of an integral &-

hermitian matrix S. We put

(3.1) G, =GNGL(0),Gy=(ge G, | (g-1)L*cL).

where L* = S7'L is the dual lattice of L = 0™ with respect to S. The following is

\

easily verified. '

Lemma 3.1
(i) ue G, >ulL=L,ul*=L"

(ii) GZ is a normal subgroup of G, .
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An O-integral lattice L is maximal with respect to S if and only if the following

assertion holds: Y € L*, S[Y] € ©(0) = Y e L. Wesaythat S is maximal if S is
integral and if O™ is maximal with respect to S.

Lemma 3.2 Suppose that S is maximal.
0 1

() If K is division, then S is GL_(O)-equivalent to S where J,, =
Ty 1 0
€ GL, and S,e€ M, (O) isa k-anisotropic €-hermitian matrix. Furthermore O =
0

{xe K| S,[x]1 € 1(0)).

(ii) If K splits over k and S is of type (U)or (U"), then S e GL_(O).

Proof. The statement (i) is well-known (for example, see [Sa]). We give a proof of (ii)
in the case of (U). The statement is similarly proved in the case of (U"). Suppose that
L=0"=0"® 0" is maximal with respect to S = (5,€'S") (8’ e GL_(k)). If S’ ¢
GL,(0), there exists X' e k™ - 0™ such that $’X’e o™. Put X=(X’,00e K™ -
O™. Then SX =(8X’,0)e L and S[X] = (0, 'X") (X", 0) =0 € 1(0), which

contradicts to maximality of L. g.e.d.

3.2 Embedding of lattices In this subsection, we let S be a non-degenerate

0
maximal €-hermitian matrix of degree m. Then the lattice L; = |: L } =0™2 of V, =
0
K 3
|:V:|= K™?2 is maximal with respect to S;=| s |. Let(aoe OxL"
K 1
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S -Sa Vv
Then T = 1s integral and defines an &-hermitian structure on W = ( )
—a*S —1(a) K

Km+ 1

. Let j: W — 'V, be an embedding of €-hermitian spaces given by

—€az-S(a,y)

j(@)= y (ye V,ze K).
Z

L
Then j(M) is contained in L; where M =(

OJ is an O-integral lattice of W with

respect to T. Let 1: H=U(T) = G, =U(S,) beasin §2: 1(h) (Mt +jX)) =n-t+
a

j(hX) (he H,te K,Xe W). Notethat n=| o [e L].
1

Lemma 3.3 H) N G'l"o =1(H}).

Remark. The inclusion W(H) NG, , D 1(H,) does not always hold (see Proposition

3.7).

Proof. Let X=n-t+j((z))e V, e K,ye V,ze K). We first show that [i)e

at— € az- S(a,y)

M*=T'M if Xe L} =T, 'L,. Since X = at +y ,XeLl}

t + z

implies at+ye L* and at—€a z— S(a, y),t+ze€ O. Then we have

S (y ) _ S(y-az)
z —-S(o,y)-1(a)z
( S(at+y)-Sou(t+z) )
= — eM
(at—€ a z-S(a,y))-a(t+z)

which proves our claim. Let he Hy. For X =n-t+ j(@) e L], we have
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W)X =1t +j((§ )) +j(th=1) (i’)} =X (modL,),

since (h—1) (Z ) € M by the above remark. This implies 1(h) € G;",,. Next suppose

that h € H satisfies w(h) € Gl'fo. For (Z)e M", put

-S(o,y)-t(a)z
Xo=M(-2) + j((Z)) = y-oz e L.
0

Since j((h-1) (z))=(1(h)—l)Xe L,,wesee (h—1) (z)e M and hence he Hy,.

g.ed.

Lemma 3.4 Suppose that K is division and let &= be a prime element of O. If L e
*

L‘{'pﬁm =L] - L%, then there exists an element u of G’i'.o suchthat ul=| «

1
a )
Proof. let{=| o | (a,be O,aeL*. If be OF put u= 1 €
b b~}
a e
Glo- If be n0 and ae O*, put u= 1 1 . Finally suppose
a’! 1

that a, b e n0. Since o e L;rim’ we can find a pair (y,z) € AX O sothat S(a, y) €

0* and 7(z) + S[y] =0. Since

1 a *
y lm o = * s
z -€y'S 1 b ya-£S(y,a)+b

the proof is reduced to the case where b e 0. qed.
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1 X
3.3 We say that a pair (a, &) € O xL* is reduced if T[|  _, |] is notintegral for
0 ¢!

X X m . S S
every te ONK -0 andevery Xe K" with T= .
—*S —1(a)
Lemma 3.5 Suppose that S is maximal and exclude the case where S is of (U )-
type and K splits over k. A pair (a, o) € O xL* isreduced if and only if M = o™
S -Sa
is maximal with respectto T = . .
—a'S —t(a)

To prove this, we need the following result.

Lemma 3.6 Let the assumption be the same as in Lemma 3.5. If S[a] - S[Bt] € ©(0)

for o, Be L and te O - 0%, we have a—PBte L.

‘ - . - -
Proof. If K splits, then we have L =L so that the assertion is trivial. Thus we
assume that K is division. Let / be the least non-negative integer satisfying (o —

Bt)-nle L. Suppose that /2> 1. Then

St - Bor = w FL(S[al - 1S, BY) + S[Ptlyn!

= 1 "L (Sl - SR -1 7 LS (e - Boyr, Bt H)-m).

Observe that S((o — Bt)nl, ﬁml“z) € O since (o — Bt)nl e L and Bntl"z eL’ (note

that te mO and /—22-1). Since m ~1-O-n=0, we have S[(a—BO)n" '] e 1(0).
On the other hand, we have (o — Bt)nl_1 e L*. Since S is maximal, we have

(o — Bt)ﬂii—l e L, which is a contradiction. Thus /=0 and we are done. g.e.d.



Proof of Lemma 3.5.  First suppose that (a, ) € O xL* is not reduced. Then there

1 X S S(X—ar™!
exists a pair (t, X) e (0 "K*—=0")x K™ such that T[ ( R )] = | ( )
X-at )*S  z

Ot
(4]

- X
is integral, where z, = S[X] - t(S(X, a)t—l) -t _li(a)t_l. Put Y= (t_l ) We show

that TY € M and T[Y] € 1(0O), which implies that M is not maximal. The second

assertion is clear from z,="T{Y]. To prove the first one, observe

S(X-0u7) . s .
TY = .t By assumption, we see that S(X — ot ) is integral and it
=S(o, X)-1(a)t”

remains to show that b = -S(a,X) — 1(a)t ' € 0. Observe Xt = (X - af™}) t— (=00

1

and X—af,—0 e L. We see that S[Xt— o] — S[~a] = S[Xt] - 1(S(Xt, &) = Tzt +

t(a) € 1(0). Applying Lemma 3.6, we see that Xte L. and hence be O. Next
X
suppose that M is not maximal. Then we can find an element Y = ( , ) of W-M

X e V,ze K) sothat TYe M and T[Y] € 1(0). If ze O ,then SXe L and
S[X] € 1(0), which implies X € L by maximality of S. This contradicts to the choice
of Y and hence we have z e O. If K is division, z¢ O implies z ' € O N K*~ 0"
and hence that (a, a) is not reduced. Assume that K splits over k. We show that there

exists z € K satisfying
(3.2) 2=z (mod0) and 2" ' € 0.

By a similar argument as above, the existence of such a z’ implies that (a, o) is not

reduced. First consider the case (I) so that K=k @k and z=(z;, z)). We may

assume that z; € 0 and z, € 0. Inthis case, put z’ = (z;, 1). Next consider the case
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Ho
(ID. In this case, K = My(k). Then we may assume that z = u, [p v )u2 with uy,
0p

T8
u, € 0" = GL,(0), 4 <0 and v20. Weput z'=u, (pO ?)uz. In both cases, z’
satisfies the condition (3.2). g¢.e.d.

3.4 For amaximal S, we now define an invariant 9(S) of the GL_(O)-equivalence

class of S. First suppose that K is division. Then L' = {X e L*IS[X) e 1(11:‘10)} is
an O-integral lattice containing L. and L'/L. forms a finite dimensional vector space over

a finite field O/rO. Then J(S) is defined to be

(3.3) as) = dimOhrO L/L.

We set d(S) =0 when K splits over k. Itis known that 0 <9(S) £2. Let (a, ) bea
S -Sa

reduced pair. Since T =
-a*S —1(a)

) is maximal by Lemma 3.5, we can also define

o(T).

For the remainder of this section, we assume the following:

(3.4) e=1; moreover we exclude the case where p12 and K is a ramified
extention of k.

In particular, the orthogonal group case is included.

Proposition 3.7 Ler (a, &) be a reduced pair and assume (3.4). If o(T) < I(S),

then we have 1(H ) = 1(H) N G],0 .
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Proof. To prove the proposition, we may assume that S is k-anisotropic in view of
Lemma 3.2. Note that, if K splits over k, then S and T are unimodular and hence the
lemma is trivial (see Lemma 3.2). Suppose that K is division. A classification of k-

anisotropic €-hrmitian matrices (up to GL,(O)-equivalence) is available under the

assumption (3.4) (see [HS]). Then we can check our assertion case by case. The
verification is straightforward and we only list up the GL_ (O)-equivalence classes of €-
hermitian matrices in the case where S is of type (U) or (U+) and K is diviston. The

classification in the case of (O) may be found in [E].

(1) (U), K/k : an unramified quadratic extention
(1.2) n,=0,0=0
(1b) n,=1,8=0,S=(),re 0"

(1c) ny,=1,0=1,8=(pr),re 0"
s 0 X
(1.d) no=2,a=1,S=(0pr)r,seo

(2) (U), K/k : a tamely ramified quadratic extention
(2a) n,=0,0=0

2.b) n,=1,9=0,S=(r),re 0

s 0
2.c) n0=2,a=0,S=[0r),s,re 0, —sr e Nm(K).

(3) (U, K : a division quaternion over k
(3.a) n;=0,0=0

(3b) n,=1,3=0,8S=@),re 0"
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The following lemma is proved in a similar way as in the proof of the above

proposition.

Lemma 3.8 Assume (3.4). If o, Be L* satisfy S[a] = S[B] (mod t(0)), then there

exists an element u of G, such that B =uo. (mod L).

Proposition 3.9 Assume (3.4) and let K be a division algebra over k. If (a,) is

a reduced pair, then

n'l
G, = U 1(H) I Gy, (disjoint union).
120 I ’
T
a
Proof. Recall that 1(H) is the stabilizer subgroupof n=| o | in G;. Let g € G;.
1

Put g 'n={ n~ with {e L] . (note that I is uniquely determined). We first

I44 r”

a a

show 20, If [ <(, we have gl"ln= o’ |'m with | o/ | € L;. Then
b” bll

1 an o S -So”
T( 1 1= .
0 =« -a'S z

with z=8§[a"]- = _I(S[a] + 't(a))n_l. Since §,[n]= Sl[gl_l‘n], we have z=
— 1 a _l_al.’ ) ]
7( b” a”) € 1(0) and hence that T[ 1 ] is integral. This contradicts to the
0 =nm
assumption that (a, &) is reduced. By Lemma 3.4, there exists an element u; of G,

’ 4

a a
such that gl_l‘n =yl o |7 ~ with o | € L]. Itfollows that t(nl am l) +
1 1
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S[a?’] =1(a") + S['] and hence S[a;l] = S[a’] (mod 1(0)). By Lemma 3.8, we

can find an element u, of G, sothat u,0'=0a = I B with B e L. Choose an

element b of O so that t(b) + S[B] =0. Then

"

1-B*Sb 1 a’ a
01, B [ g :I o« |[=| an! €Ly,
0 0 1 1 1 1

Put yo=nla1r ! _a”. Then Yo € O nKert and
1 0 yo an TCI
010 [|ax!]|=| !_ |n='
00 1 1 x
nl
Thus there exists an element u of G, , such that gl_ln =u 1 n. This

proves the proposition. gq.e.d.
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§4. Proof of Lemma A

The object of this section is to prove Lemma A in §1.10. Let the notation and the

assumption be as in §1. 10. In particular, T and S are supposed to be maximal.

Throughout this section, we fix a rational prime p and write H, U, G, K, G, and K,
for Hp, Up, Gp, Kp, Gl,p and Kl,p respectively.

Let {p°1, -, pr, 0, -, 0} (O appears (n — r) times) be a set of elementary
divisors of x € My(Qp). Recall that ju, ,(x) =t (x) is the sum of le;| with ¢; <0.
Note that p*n®™ Z,| coincides with the Z-module generated by all the minors of x and

Z,. The following is easily verified.

Lemma 4.1
(1) For x,ye Mn(Qp), we have W (xy) € Uo(X) + 1 (y).
(1i) For x e Mnng) and y e Mn(()_p), we have N +n((; :) 2 () + u(y).

Since Lemma A is trivial for a Qp-anismmpic T, we may assume that T is Qp-

isotrpic. By taking suitable Zp-bases of M and L, we may suppose that S, T and S,

have the following matrix forms:

R R 1 1
(4.1) S= ,T=[ R |,8,=| S

~'BR —2b 1 1
y
(Re My, ;(Q,), Be Q). be Q). Furthermore the embeddings V=Qf - W=
j L ! b
anl - VI=Qg'+2, G - H — Gy aregivenasfollows: Put £=| B e
1



0

M'=T™™M,n=| o« e L]= S_11L1 where o = D_I(B )e L*=S"'L,D= T[E] =

1
1

R{fl+2be Qp. Then

-by, =R(B.y;)

42) +7 y] )_-
4. J( o Y1 ,

Y2
=-S[a] -S(o,y)
jEt+ji(y = o Dt + y ,
1 1

V(@)Et+i(y) =Et+j(gy),
wh)(nt + j(w)) = &t + j(hw)

(ylng‘_l,yze Qp,te Qp,ye V,we W,ge G, he H).

To prove Lemma A, we need an explicit form of 1, which will be also used in the

next section.

Lemma 4.2

(i) Let e H=OR) and te Q;. Then we have

(! 0 0 0
(-1 h" (1-h)B O

-1 1 0 1 0
L. ul UZ U3 t_J

with Uy =b(=2 + t+ 1) + R(B, (W=1)P), u, = BROV—1) and uy = 2b(1-1)

+ R(B, (1-h")P).
(1) Let xe Qg"l. Then we have
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1 0 0 0

1 -%xR —27IR[x] x 1., 0 0

W 01, x )= 0 0 1 0
0 0 1 27 Rix] xR R(Bx) 1

(iii) For g e G, we have

1 'aS(1-g) -S(a,(1-g)o)
wweE =| o g (1-g)ot
0 0 1

Proof. This is proved by straightforward calculation. g¢.e.d.
Lemma 4.3 If apm < BP(S), then we have Ny ((h) = NGI.s(‘(h)) for he H.

Iy 0,

Proof. We may assume that R = R, and B={ B, |where v is the Witt
Iy 0,
index of R, R, is Qp-anisotropic and B e Qg‘_l_zv. Since 1(U) <K, by the

assumption and Proposition 3.7, we only have to check the assertion of the lemma for h
_r

P
h’ Wlth h’ = diag(prl, "y prv, 1m+1_2v3 p_rvi Tty p—rl) € H’ (r: rl!

T

P

., 1, 2 0). By Lemma 4.2, we have

pr 1 0 0 0
i 0 1 0 0

W= "k k=l 1o | <K
o bE-1)* BT, 01 26D 1

Thus Ng () = p VS 2 Ny (h), which proves the lemma.  g.e.d.

Proof of Lemma A. We first note that the assertion of lemma A is equivalent to
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(4.3) Ny ¢(h) = lau(b))*Ng (Bat)) (he H).

By Proposition 3.9, we get the decomposition H = \U V(G)h; U with h;=
20

11 . Thus we only have to verify (4.3) for h=1(g)h; (g€ G,120). By

!
P

Lemma 4.1 (i), we have W (b)) sp . ,0°(g) + Lo (h) = Mo, U(@) + 1 Onthe

other hand, by Lemma 4.3, Lemma 4.2 (iii) and Lemma 4.1 (ii), we obtain L. ,(h) =
pxo»

Hme20) =1 @) =g 0 g * P2 u,(g) +/, which implies
00p™

M@+ sp () <p 1((g)) + 1. Applying Lemma 4.3 again (replace H and G,
by G and H, respectively), we have P (g) =, ,((g)) for ge G. Thus we have

Ny(h) = Ng ((@)p™". Since a(u(h)) =p' and B(u(h) = g, we are done.  g.e.d.
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§5. Proof of Lemma B

Throughout this section, we keep the notation and the assumption of §1.11. In
particular, S € Mmmp) is a non-degenerate maximal even integral symmetric matrix, G

=0(S) and K =G(Z,). We put 3=3,(S). Let G, =O(S,) and K, =Gy(Z,) with

1 1 -'xs —27's[x]
S, = 1s . For Xe Qp,put ny(X)=| 0 1, X € G,;. The
0 0 1

following result is a key to the proof of Lemma B.

Proposition 5.1 For te Q: and g e G, we have

t

(5.1) _[mNGl_s+m/2(nl(X) e e
p t

-(s+m/2))(1 +E—(s+mf2—a))

l—p_zs NG S+m/f2-1 ().

= |t [V2 ordyts (1-p

We first demonstrate .emma B assuming the above result. By Lemma 3.2, we
0 1
Ty

may assume that S is of the form §,, = S, where J,, = - and S,

v 1 0
is a maximal even integral Qp-anisotropic symmetric matrix of rank n,=m —2v. Note

that ap(so) =d. Put G, =0(S,) and K, = Gv(Zp). For A € (CX)V/WV, we define a

function ¢ ; on G, tobe
v

(52) g, A(tuk) =113 |tj|nof2+v—j ljordp(lj)



where t = diag(t;, -, t,, 1, , tv_l, ey tl"l), ue G, is an upper unipotent matrix
0

of degree m and k € K,,. Then Lemma B is equivalent to the following result.

Proposition 5.2

(5.3) I 06,48 Ng_ s+m/2-1(8) d8
G

v

v=1
- Lg(l, s) X g (1- p—(s+j+n0f2))(1 + p—(s+j—8+n0/2)).

Proof of Proposition 5.2. 'We prove the assertion by induction on v. The assertion is
t

’

trivial if v =0. Decompose g e G, into n(x) g k xe Qg‘ —2, te Q;, g'e

t—l

G,_;» k € K,). Then a Haar measure dg on G,, is given by dg=1t ™2 gx 4% dg’

dk. Thus the left-hand side of (5.2) equals
t
(5.4) j dx _[ It 72 @5 I dg'og 2 € )
m-—. X G v
Qp Qp v-1

t

’

X NGV,S+mf2—1(n(x) g ).

Observing ¢GV A g Y=t (m-2)/2 K‘l)rdpl ) G, ]'l,(g') with A" = (A,, -, &)

t—l

€ (CX)V—I/WV_l and applying Proposition 5.1, we see that (5.4) equals

(1- p—(s+(m“2)/2))(1 + p-(5+(m-2)/2-a))
-2s

(5.5)
l1-p
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t —tord_tl ’ ") dg’
< jﬁ“’p oS g%y I 0. BING . sem-2)-1(8) dg
Q: Gv—l v

-2s
The first integral in (5.5) is equal to U=P ) 404 theindunctive
(1-Xp )1 -2yp)
hypothesis asserts that the second one is equal to

v-2

Lg(l', $) g a- p—(s+j+n°ﬂ))(1 + p—(s+j—a+n0f2))'

These prove the proposition. gq.e.d.

We now go back to proof of Proposition 5.1. We prove by induction on m. By

the bi-K,-invariance of NG1 & we see that

t

N G] .s+m,;f2(n 1 (X) g )
-1
t

1 t 1
= NGps+mf2( [: Im ] ny(X) & |: Im ] )
1 e

t_l

= NGl,s+mf2(n,l X) g )

where
1 0 0
1 (X) = X 1, O©
271s1x3 -'Xs 1

Next observe that



t t—l

Jm NGl'S"‘mﬂ(nl(X) 8 | )dX = m NGl,s+mf2( -1 n, (=X))dX
Qp t Qp

m
=t d"m NGl,s+m/2(n1(X) g'l )X
P

(note that NGl's(gII) = NG1 ’S(gl) for g; € G;). These show that we only have to

prove the following fact: For te Q; with ordp(t) <0, we have

t

(5‘6) -[ NGI,S+m/2(n,1 (X) g ) dX
Qm

p i

L s+m/2) (1 — p &™)y 4 p(s+m/2-9),
— 1t Ng .

.s+m/2—1(g) -2s

1-p
We first verify (5.6) for the case where S is Qp-anisotropic. To do this, we

collect several facts about the arithmetic of Qp-anisotropic quadratic forms. Let

V=Qp ,L=27 andput zy =27'S[X] for X e V.

Lemma 5.3 Suppose that S is Q -anisotropic.

P
(i) XelLeozge Zp.
(i) If Xe L, then zx Xe L and 1 -7 X'XS € K.

(i) We have

a- p—(s+m/2)) a+ p—(s+m/2—a)) |

1+ I lzy T2 dx = —

V-L l-p

Lemma 5.4 The equality (5.6) holds if S is Qp-anisotropic.
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Proof. A straightforward calculation shows that, if X & L,

t

nj(X) g
t_l
;! -1 t
=n,(-z"'X) 1m0 12 XXs g
-1
Zz -1 t

(@)

= kl 1 m k’l
zt

with z=zy = 27'S[X] and

-1

k; = n,(—z"1X), K} = n)(—<2" "Xt Iyt

1= K= (12 X'XS)g
-1

By Lemma 5.3, we have k;, k] € K; and hence the left-hand side of (5.6) is equal to

L™ (4 _[ g T2 g ).
V-L

The lemma follows from this and Lemma 5.3 (iii). gq.e.d.

From now on, we assume that S is Qp-isotropic. We may suppose that S is of

R -R
the form ( IB B ) where R is a non-degenerate maximal even integral symmetric
-BR -2b

matrix of rank m—1 and d = ap(S) = ap(R). Furthermore we may assume that R = R,
Iy
0y
,B=| B, |where v isthe Wittindex of R, R is Qp-anisotropic symmetric matrix
0

Vv
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, no
ofrank ny=m-1-2v and B, e Q.
1

Put H=0O(T) and H' =O(R) with T= R . We define embeddings
1

’

1 L L ’ _
H’ -(-; G —» H — G, asin §4, where we put 10(h')=(t(1) a ?’)B) (h’ € H').

By definition, 1,(H") (resp. V(G), 1(H)) is the stabilizer subgroup of o (resp. &, ) in
G (resp. H, G).

Let K, = Gl(Zp), K= G(Zp), U= H(Zp) and U’ = H'(Zp). For le Z, put

M= 1, € G,. By Proposition 3.9. we have the decomposition:

5.1 G, = UuHMK, (disjoint union).
20

We need the following variant of Lemma A.
Lemma §.5 If gy =uh)Mk; (he H,/20,k; € K,),then

NG, s(81) =P° Nyg (h).

1
Proof. ApplyingLemmaAfor H - G, —» H;=0( T |[), weobtain
1

NGI,S(I(hB(gl)_l)gl) = Ia(gl)llsg NH’s(h) (h € H, gl € Gl)'

pl *x ok
Since 1 (g)) =] 0 h *» [y(k)) and 1 (k)€ HI(Zp) (see Proposition 3.7), we have
00 p_l

a(gy) = p‘ and B(g;) =h. This proves the lemma. g.e.d.
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Since both sides of (5.6) are bi-K-invariant functions of ge G, we may assume

that g =1,(h)g, where hy = diag(t;, -, t,, 1,7, 1, -, ;) e H and g, =
0

\Y)
AP G((AB) of M %) Wena that 1,(h,) = diag(t
€ € . e tha = s
lv cD —'B,R, -2b °
C D
y by, ln',t;l, t{l, 1).
]
Ro _ROBO
Remark. If vp(S) =vp(R), then is Q,-anisotropic and we may
t Y
-B,R, —2b

take g, =1 in this case.

Fix w2 0. We calculate the following integral:

-
P
(5.8) I(s) = Im N smp®M®| g,  [rax.
Qp w
p
First observe that I(s) equals
p~m
‘[ NG s+m/'2(n1((0 )) 1'o(ho)go ) dx
Qm_ ©
p
p—m
+ 2 J. du J. dx NG ,s+mf2(nl(( )) 10(ho)go ).
p21 P—pQ Qp -1 o

p
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To calculate these integrals, we need three results from the arithmetic of local orthogonal

groups. We postpone their proof until the last part of this section. Put ng =
0
1

nl((g;1 — Da). Note that ng = ggl 1(V'(g,)) (Lemma 4.2 (iii)).
: .
-1 .
Lemma 5.6 For p 20, we have ngo Mmp € "(hp)MIP'Kl with some hp e H.

Here lp = Max(® + p, W), 1 = W, (8,) (for the definition of p, see §1.10).

1

v
, ‘ AN B | (AP
Remark. By the assumption of g, we may take hp = 1, with oD
cC D
Ro _ROBO
e O( )
-BoRy —2b
Lemma 5.7 For ue p_pZ;J< (p20) and xe Q;’—l, we have
p u
X
g (( l—u)) Lhog, cn@| o V(gohp) M1p°K1’
p® u
1 xR —27R[x]
whereweput n(x)=| 0 1__, e € H for xe le_l.
0 O 1
pr * Ok
Lemma 5.8 We have V(g)hye | O 1., * U with ty=@+p~1, +|L.
0 0 p'p

By Lemma 5.5 and Lemma 5.7, I(s) is equal to
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p_p

2, pP(1 = 8(p2yp™) po+ ™) I Nusmn®® | Bg gy dx
p=0 Qm-l
p p°
1 ifp21l o
where 8(p=1) = By Lemma 5.8, this is equal to

0 if p =0.
o peP
2 pP(1 - 8(p21)p ) p o+ .[ N ssmp2(n(x) by ) dx.
P Q! 5 (TP

By inductive hypothesis, I(s) equals
3 m-1
2 pP(1 - 5(p2])p_1) p‘lp(S"""ﬁ)‘{‘fp--ﬁ)-—2 -t -pl(s+1/2)
p=0

(1— p—(s+m/2)) a +p—(s+m/‘2—a))

. 1_p—2(s+l/2) NH’.s+ml2-l(h0) .

(s+m/2-1) NH’

Since Ng s +mﬁ__1(g) = p_"l " +mp-1(hy) for g= 1,(h,)g,. we get

(1_p—(s+mﬂ))( 1 +p—(S+mf2—a))
_p~26+17) NG s+m/2-1(8)

I(s) = J(s) x

where J(s) is the sum

i pp(l — & pzl)p_l) p—lp(s+m/‘2)—(1:p—p)-m_Tl—Irp—pl(s+1/2)+u(s+m/2-l) )
p=0

To evaluate this sum, recall that lp = Max(w + p, W), T, =0+p- Ip +u=

Min(w + p, W).
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Lemma 5.9
(1) ps'rp S PSH.

Gi) If p > W, then we have T,=H and lp=o)+p.

Proof. Observe that T~ P=0+U— Max(w + p, ). If p >y, then Max(w +p, 1)

= ® + p, which implies To=H, Ip =w+p and T < p. Next suppose that p <. Then

L-—p if o+p2p
T—P=

and hence T, 2. q.e.d.
® if o+p <p

By Lemma 5.9, J(s) is equal to

i (1 - 8(p1)p™t) pPOs+mD+
p=0

£ Y (1= ph) pP@P) M- (u-p) (2 1-syHu(s+m2-1)

p=p+1
_ p-o)(s+m/2) + p—(o(s+m/2) (1- 2_1)2_25
1-— p-2s
_ —o(s+mf2) 1 ~ 2—2(“1,2)
=P 1 -2s
-PpP
This implies that

s+m/2) (l_p—(s+mf‘2))(1 +p—(s+m/‘2—a)) N
G,s+m/2-

) =p -

which completes the proof of (5.6).
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It now remains to show Lemma 5.6 — Lemma 5.8. We first prove Lemma 5.7
-

p
X .
assuming Lemma 5.6. Put g; =nj ((1 5 )) . 1,(hy)g, with p20,
X € Q? -1 By Lemma 4.2, we have
-(w+p)
x o \|¥ P
g1= n'l((o )) n’l(( l_p_p )) 1m 10(110)};0
pf pO*P
pr 1
=n@)| by [V(g))ng My

_ P

- p_p -
By Lemma 5.6, g; is in u(n(x) h, 1’(g0)hp) M, -K,, which proves Lemma

p
_ pP ]

5.7.

To prove the remaining lemmas, first consider the case vp(S) = vp(R). As was
noted before, we may take g, =1 so that Lemma 5.6 and Lemma 5.8 are trivial in this
case. In what follows we suppose that vp(S) = vp(R) + 1. In view of the remark after
Lemma 5.6, we may assume that v = vp(R) =0 (thatis, R is Qp-anisotropic).

R -RB

Lemma 5.10 Let R and S = .
-BR -2b

) be maximal even integral symmetric

matrices of rank m—1 and m, respectively. Assume that ap(R) = ap(S). vp(R) =0

and v (S)=1. Put o=D" (E’) with D =R[B] +2b. For ge G=0(S), put p=

W, (8). Then
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6)) pug_lae L;ﬁm.
pHtoo

@) ng=ni(g -Doye| * » 0 [K,.
* % p”’

Proof. The assertion (i) and (ii) are trivial if @ =0. From now on we assume that |t >
0. For simplicity, we put =27, M=2"",L"=5"'L and M’ =R"'M. By
maximality of M with respectto R, M’'={x € M| 2_1R[x] € p"IZp} forms a Zp-
lattice (see §3.4). Under our assumption 9(R) = 9(S), we have fe M” = R'M (see
the remark in the proof of Theorem 2.6 in [Su]).

AB
Let g= ( C D) be the block decomposition corresponding to m=(m~- 1) + 1.

t
‘ _ C
By definition of p, p"'g is a primitive element of Mm(Zp). Since Sgola = - (t j,
D
t

it is sufficient to show p* (t

t

C
)e Lprlm to prove the assertion (i). Suppose that p”( )
D l

D
€ p-L. We claim that, for every x € M, we have p”Ax € p-M, which implies pMA €

p-Mm_l(Zp). Observe that
- _ ) 4 _ X _ Ax
2RO = 2781 ot =278l ( )t =278t )
= 27IR[Axp"] — R(p*Ax, B)-Cxp" — b(Cxp™)2.

Since 2_1R[xp”], b(Cxp”)2 € p2Zp, R(pMAx, B) € Zp and Cxp'e PZ,,, we get
2'1R[Axp”‘] € pZ, It follows that Axp" € p-M’ and hence that R(p"Ax, B) € pZ,
by the above remarks. This implies 2”'R[Axp] € p’Z,. Then Lemma 3.2 (i) shows
our claim. We can prove p"'B € pM in a similar way. Thus we get p“g € p-Mm(Zp),

which is a contadiction. The assertion (i) has been proved. To prove (ii), it is sufficient
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"0 0
to show that the firstrowof | * *
-

g is integral and primitive. Observe that
* %
the first row is given by (", —p™YS(g-1)a), —27p*-S[(g™~1)ax]). We have
proved that pu-S(g_l—l)a is integral and primitive. It remains to show that
2_1p"1 -S[(g"l——l)a] is integral. Take the least non-negative integer / satisfying
pt-(g_l—l Jae L. By (i), we have [ 2 p. Assume that /> p. Then
2-18[(g‘1—1)0tpf—1)] = 4((g-l-—l)apt, apluz) € Zp since (g-l—l)apl e L and ozpl_2
eL" (note that /2 2). On the other hand, we see that (g_l—l)ap"_1 el by (i). Then
the maximality of S implies (g_1~~1)otpl-1 € L, which contradicts to the definition of /.

This shows that /= . Then the assertion (ii) follows from 2_1pp'«S[(g_1—1)a] =

—S(p”(g_l—l)a, o). q.ed.

0
Proof of Lemma 5.6. Recall that 1(H) is the stabilizer subgroupof n=| a [ in G;.
1
0
Put ' = M'ml+p ng M= ggla . By Lemma 5.10 (i), we have plP-n’ € L; prim-
o ,
p o

ChooseoX € Z,' sothat -S(X, gglaplp) +p'p®P = 1. Then n’l(X)T]'-plP

= gglaplp . We can find an element  of K so that Y = kap'p - g;laplp c Zgl_
1

Then
0 1
n (V) mpen’ = wople [=| « wpl-p’c’n,
1 1
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which implies Mlp ! nl(Y)n’l(X)M_m:_p ngo € W(H). We are done. gq.ed.

Proof of Lemma 5.8. The proof of Lemma 5.6 shows that we can take hp € H so that

1
ng 1(hp) = M, 17 CX0m;-Y) M,‘p1 K
1

with X, Y e Zg‘ and x € K. Hence

1 1
W)= B Mgy, 01(X) M,‘p1 n(-Ypo)| «
1 1

Since —Yp_lp =-Xo + g‘(;lot = (ggl - Do~ (x - 1), we have nl(Yp_IP) =

1 p™ 0 0
ng ‘ny(-(k-1)er). Note that n,(~(x-1)o) = 1('(K)) 1 €eKyandng el * 1,0
0 0
1 * * le-
PP 0 O
K, (see Lemma 5.10 (ii)). Thus 1(1'(g0)hp) € * 1, 0 K, which proves the
* a* ptp

lemma in view of Lemma 5.4. g.ed.
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