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Abstract

We show how the construction of the integrable Sturm-Liouville
equations proposed in 1882 by Gaston Darboux can be extended to
the case of the linear and nonlinear integrable partial differential equa-
tions and their lattice versions. The power of the Darboux transforma-
tion method is illustrated by several examples including the simplest
possible construction of the rational solutions of the KdV and KP
equations. We mainly concentrate around the lattice equations since
in the existing presentations of the Darboux transformation method
many important points are missing. At the end of the paper we show
how the method can be extended to the case of the multidimensional
functional equations with generalized shift operators. More applica-
tions to concrete integrable systems and further generalisations will
be reported in the second part.



1 Introduction

We wish to expose here some general features of the algebraic approach
to completely integrable linear and nonlinear partial derivative or lattice
equations invented in 1979 by the present author [1] as a natural extension of
Darboux covariance theorem [2] concerning Sturm-Liouville equation. Later
this method was extended to a larger class of systems mainly by Salle and
present author and summarized in [5], where the more detailed bibliography
and much more concrete examples can be found. Somehow the detailed
explanation of space-time discretized or lattice version of the method , briefly
outlined in [1, article 2] never was discribed in detailes. It was ommited in
[5] since at the time there were no much social interest to such a systems.
Somehow many of their remarkable properties were studied by Ablowitz and
Ladik [6] , Hirota [7] , Miwa [8] and other researchers: (9] , [10], [11] , [12],
[13], [14] .

In particular it was shown by Hirota that his bilinear functional-difference
equation reproduces in certaine limits most part of the known integrable
continuous or differential-difference systems. Last time the interest to the
space time discretized systems grows quickly motivated by many parallels
between quantum and classical integrable systems on a lattice , especially by
recognizing the fact that the eigenvalues of the commuting quantum transfer
matrices can be found as the solutions of the certain functional equations
derived by means of the fusion rules [15] , [16] ,[17],[18], [19] , [20] , [21] . The
associated equations can be identified with Hirota like equations with certain
boundary conditions or with discrete Zakharov-Scabat equations. Some of
these equations still are not well studied. Another source of appearence of
the generalized Hirota equations involving some dilatation operators instead
of lattice shifts is the theory of quantum group representations and quantum
7-functions relevant also to some aspects of the theory of matrix models [19).
Works of the last time mainly explore the Plukker relations as a tool for
obtaining determinant representations for solutions of Hirota - like equations
and also the algebrogeometric approach . Our approach is different and
can be combined as in KP and KdV case with algebrogeometric method of
integration.

By the pedagogical reasons somehow we start from the brief exposition of
some basic features of Darboux transformation method as formulated in [1]
for the case of the partial derivative equations , explaining how to construct



some important classes of the solutions. Some formulas , for instance explicite
expression of the Wronskian corresponding to 1-soliton-2positons solutions of
the KdV equation ,were never published before. We give also a brief outline of
main theorems concerning the differential difference case allowing systematic
application (which can be found in [5], see also [26], [24], [25]) to the 1-
dimensional and 2-dimensional Toda lattices and also to their nonabelian
versions and higher flows.

For ”continuous” systems our approach represents a far going generali-
sation of the factorisation method for ordinary differential equations coming
back to the works of Frobenius and to the original work of Darboux [2] ,
developped further by Crum [22] . There are also deep parallels between the
structure of Darboux-like dressing formulas explained below and algebraic
Bethe anzatz method . In a case of stationary one dimensional Schrodinger
operator (see [5] ) the Dirac construction of the eigenfunctions and eigenval-
ues of quantum oscillator is easily recovered , quantum g-oscillators are also
here [23]. Some how we have no intention to discuss stationary reductions
leading to this kind of applications here.

We also omit the discussion of the hamiltonian aspects of the theory which
are not still completely understood. More detailed applications to concrete
functioinal equations will be exposed separately. We also omitted here the
discussion of the binary Darboux transformation (see [5] and references there
for differential-difference and continuous case ) . Associated results also
will be explained elshwere. The results connected with differential-difference
systems were never explained in detailes before and are sufficiently precised
and extended with respect to the brief remarks in [1, article 2] including the
new concept of the mixed Darboux transformation (see subsection 3.3) . The
results of the sections 4 , 5 are new and were never published before.



2 Darboux Transformation Approach to the
matrix KP Hierarchie

2.1 Covariance Theorems and simplest applications

Let f(z,t) be an M x M matrix valued solution of the following PDE :

n

f=3 tm(a)f™, f=af, f™ =7 f (1)
m=0
with M x M matrix coefficients. Let ¢ be some fixed invertible matrix
solution of the same equation , o = 8,¢ - ¢! where ¢! means the inverse
matrix. The matrix function % defined by the formula

¥ =(0: —0)f = D(f) (2)

is called the Darboux transformation of f . Obviously it is fixed by the choice
of ¢. Now we have the following statement (Generalized Darboux theorem):
Theorem 1 [1]

Equation (1) is covariant with respect to the action of the Darbouz transfor-
mation i.e. ¥ is the solution of the following PDE

n
=3 dm(z,t) - ™ (3)
m=1
The coefficients ., are defined by the recursive relations:
rt}"n = Up, ﬂ'n—l = Up—1 + uq(ll) + [un: J]J (4)
Up—g = Up_o + u,(ll_)l + o™t + uMo 4 [un_1, 0] + [tn, 0o, (5)
n
Up—] = Up_1 + ufcl) — oug + Z C'T";lﬁma(m_k); k=n-1,...,1. (6)
m>k

The [,] above denotes the commutator of two matrices.

Th. 1 implies in particular the Darboux covariance property for the
ordinary differential equations of any order-. To get this result it is enough
to assume that all the coefficients in (1) are ¢ independent and reduce our
consideration to the class of particular solutions of the form

f=x(z,NeM, o=z, \)eM



Then we obviously get the following statement.
Theorem 2. The equation

3 umx™™ = Ay, (7)

m=0

is covariant with respect to Darbous transformation (2) i.e. the function

Y= Xz — OX, 0=

, where ¢ = ¢(z, \1) is a fized solution of (7) with A = Ay, gives the solution
of the transformed equation

3 ™™ = Ay, (8)

m=0

where the coefficients U, are defined by the same formulas as in the Th. 1 .

In scalar case the formulas for the coeflicients become simpler since all
commutators vanish. Original result of Darboux [2] is recovered just by
taking n = 2,ue = 1 in the formulation of Th. 2 . Theorem 1 was proved
in {1] where it was also proposed to call (2) Darboux transformation. Most
important examples of scalar problems allowing the application of the Th. 1
are the second order evolution equations :

fy = foz +uf, (9)
fi= foen+ Susf 407, o)

According to the Th.1 for both of them the transfomation of the coefficient
u with respect to the action of the Darboux transformation is given by the
formula

i =u+ 20" = u+ 202 log . (11)

Now it is obvious from the Darboux theorem that having one solvable Sturm-
Liouville equation with potential « we get another one with potential @ fixed
by the choice of A; and the solution ¢(z, A;). Varying ¢ in the formula for
Darboux transformation we recover all the solutions of the Sturm-Liouville
equation with the potential 4. Now we can take for this new equation one



more point A = Ay , fix some solution at this point and generate a new solv-
able potential via the same theorem. This process can be continued and we
obviously get this way an infinite number of the solvable potentials depend-
ing also of any desired number of parameters. Darboux himself used this
process to construct the explicit solutions for the Sturm-Liouville equation
with the potential n(n + 1)/ cosh® z.

Later it was discovered by Crum [22] that the iterations of the Darboux
transformation for the Sturm-Liouville case can be completely described by
fixing finite number of points A; for starting equation and choosing in arbi-
trary way the solutions ¢, at these points. Than the resulting 1-function
corresponding to the n-times iterated Darboux transformation is expessed
very simply (see next section ) as the ratio of two Wronskian determinants.
The Theorem 1 somehow gives much more allowing to perform the same
kind of the constructions in the case of linear and nonlinear partial differ-
ential equations. To illustrate this point let us recall that the compatibility
condition of the system (1-2) implies that the function u(z,t) is the solution
of the KP-I equation :

3ty + Op(duy + Butsy + Uggy). (12)

Assuming that ¢ is a fixed solution of the system (1-2) we can conclude that
the Darboux transformation % of f generated by ¢ solves the system of the
same form with the coefficients @ and v , caculated from Th.1 . Hence for
any fixed solution u of the KP equation and any solution ¢ of the associated
linear system (9-10) we get the new solution of (12) defined by (11). Of
course as in the case of the Sturm-Liouville equation we can iterate the
process of construction of the new solvable systems of the form (9-10) and the
associated solutions of the KP equation. Starting from the trivial solution
u = 0 we already produce a lot of the explicit solutions including all the
rational solutions decreasing when 2 — 400 (see below for detailes). To
apply the same technique to construct the explicit solutions of the KdV
equation:

Uy = 6Uly — Ugey (13)

we need only to apply Th.1 to the system

_f:r:x + U'f = )‘f:
ft = _4f:r:c:z: + 67f'f:c + Su'xf (14)



and remark that in this case u transforms according to the formula
i=u—20W. (15)

. For instance taking ¢ = cosh k) (z — 4k?t + z,),u = 0, with real values of
T1, k1 we recover immediatly 1-soliton of the KdV equation given by (15).In
addition we get from (2) the solution of the linear system (14) associated with
this solution. Again we can iterate this process of creation of the new solvable
potentials an infinite number of times getting in particular all the nonsingular
n-solitons solutions by applying n-times the Darboux transformation to the
starting system (14) with u = 0 . Again the result of the n-times application
of the Darboux transformation can be described by simple formula containing
the Wronskians of the solutions of the starting system as explained in the next
subsection. It is obvious from the previous discussion that all the hierarchy
of the higher KP flows (Zakharov-Shabat systems) also allows the application
of the same Th. 1.

2.2 Multiple Iterations of the Darboux Transforma-
tions

For simplicity we discuss here only the scalar problems. Let ¢q,..., ¢y are

different linearly independent solutions of (1) . Now let the function

represents the result of action of the sequence of the N consecutive Darboux
transformations on f:

Yivy=Dn-Dy-y--- Dy f (16)

Below we shall use the standart notation W(py,...,on)
for the wronskian of N functions i.e. W = det A, Ay = 0 g, i,k =

1,...,N. In these notations the first order differential operator D, can be
written as
Dy, = 0y — ok, 0k = O log g, (17)
where the function @y is defined by the formula
W1, - -5 x)
= ) 18
T Wien s onm) 18)

It is important to observe that o) are the symmetric functions of ¢; . It
will be clear that we get the same result as in (16) by replacing the operators
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Dy by D, where the functions &} are built from Diry-- -5 i, IN A same way
as in (17) and sy = (41,..., %) are any subsets of (1,...,N) formed from k
different entries , s; € Sg,...,€ S, .

Formula (16) constitutes the far going generalization of the Dirac construc-
tion of the eigenstates of the quantum harmonic oscillator in terms of the
powers of creation operator applied to a vacuum vector.

Theorem 3

The function vy 15 a symmetric function of p1,...,on given by the ratio of
two Wronskians w( f)
L1y.- PN,
= 19
r"b[N] W(‘Pla"':(pN) ( )

For the particular case when (1) is replaced by the Sturm-Liouville equa-
tion this theorem was proved by Crum [22] . We shall give the proof in a
general case of (1) with scalar coefficients. Originally the associated state-
ment was first obtained in [1] . The hint of the proof was outlined also in
[5].

First it is evident that the RHS of (19) vanishes if f coincide with one of
; . Next it is obvious that RHS of (19 ) represents the action of the linear
differential operator with highest term 0% on f :

N-1
Y= 3 anf™ + [, (20)
m=0
The fact that this expression vanishes when when f = ¢;, i=1,...,N
is equivalent to the system of N linear algebraic equations solvable via the
Kramer rule i.e. fixes the coefficients a,, uniquely assuming that
W{(pi1,...,on) # 0, since W is just the determinant of this system. Third
step of the proofis given by induction. For N=1 the statement of the theorem
is obtained by rewriting RHS of (2) as W (¢, f)/¢ and hence is trivial. Now
to complete the induction we have to assume that the result of the action of
the N — 1 consecutive Darboux transformations applied to f is given by the

formula

W(p1,-- -, on-1, f)
W(‘ph R (PN—I) .
To fix some solution of the corresponding linear PDE satisfied by vy_y
we have to take f = @n in the RHS of (21) where ¢y is some additional

Y- = (21)



solution of (1) linearly independent with ¢y, ..., pny_;. Now the linear equa-
tion satisfied by (22) is covariant with respect to the action of the Darboux
transformation Dyy) on ¥py_y) :

Din(Yv—y)) = 1/)[(11\;),1] —onYin-1,  On = Ozlog¥ivon) 1w - (22)
Now it is evident that
D(lﬁ[N_l]) jf:‘ﬁk: 0, k=1,...,N, (23)

and hence being differential operator acting on f (of the same structure as
(20) ) coincide with tjn;. O
Remark It it easy to check that the coincidence of the RHS of (19) with
(22) ,proved above,is equivalent to the Jacobi identity for Wronskians :
W[ W(QO:[, s (10N—1)g)7 WY(@I: - PN-1, f) ] =
=W(er,-.,on-1,9, )} W(pr, ..., on-1), (24)

with ¢ = pp.

Every differential equation for f

W((pl)'--’(pNJf):O) ‘ (25)
is of the form (7) with A = 0 and hence is covariant with respect to the
N-times application of the Darboux transformation where ¢y,..., @y are

arbitrary linearly independent N times differentiable functions.From thus we
conclude that our proof of the Th. 5 provides the independent proof of the
Jacobi identity . Crum [22] proved the particular case of the Th. 3 for the
Sturm-Liouville equation by using the Jacobi identity. Our proof concerns
much more general situation and we get the Jacobi identity for free. Using
the Th. 3 it is easy to conclude that in scalar case we get simple expessions
for the first coefficients of the N-times Darboux transformed equation (1) .
Most simple case is to assume that u, = u(t),u,—1 = p(t) and hence are
invariants with respect to the action of DT defined by (2). Now as a result
of the repeated N-times action of the DT we get for un),—2 the following
repesentation :

N
U[N]n—2 = Un-2 + nu, - Z 0[(;3] —
m=1
= Un-2 ¥ nunai lOgW((pl’ s :‘PN)a (26)

9 .



W( Ply- -5 Pm—1, (Pm)
W(e1,.. -#’m—1)

Olm) = 33 log Pim]s Plm] = (27)

Another way to compute the coefficient u(y) 2 is to substitute (20) into
the differential equation

mn

= D upm - YN (28)

m=1

for 1n) . Than equating the coefficients of the higher order derivatives of f
in the LHS and RHS of (28) it is easy to see that

U[N=-2),n = Un—2 + nuna(ll): (29)

The coefficient a; is given by the formula

01 v f
UL R
W(en,...,on)

Taking the derivative of a; we get the same result as before.

The formulas enable one to get very easy all the rational solutions of the
KP II equation decreasing when z — oco. To do this [1] it is enough to take
u = 0,v = 0 and choose ; apropriately . Ior instance taking

w; = (O + g(k) ) exp(kz + k*y + k3t)|k=kj (31)

we get the whole family of the rational solutions of ”"general position” ob-
tained in a different and much longer way by Krichever [37] . Solutions of
general position correspond to asymptotically free movements of the particles
of the associated Calogero-Moser system i.e. the poles z = z;(y,t) behave
asymptotically linear as a function of ¥y when y — oo . By contrast taking
@; in a form of some linear combination of Schur polynomials [1, article 3]

le. .
;= Z cij a}c exp(kz + k%y + kst)|k=0, (32)

=1

10



and substituing them into (26) with
Uy =1,n=2,Up o =1u=0

we get the family of ”separatrix” (with respect to the trajectorys of associated
Calogero-Moser system) rational solutions of the KP-I equation . See [1,
article 3] for more details. We refere on [5] for construction of real valued
nonsingular solutions of KP-II and KP-I equations depending on any number
of the functional parameters. Briefly the idea is to take

5 = /pj(k) exp(kz + Ky + k°t) dk (33)

and next to impose the requirements on the densities p;(k) providing nonva-
nishing of the Wronskian W ( ¢y, - -, ¢, ). To get the real valued nonsingular
solutions including the nonsingula rational multi lumps solutions (first found
in [40]) for KP-II case (which differs from (12) by the sign of the first term )
the idea of the binary Darboux transformation invented in [27] and making
use of conjugated linear system is extremely usefull .

2.3 Generalized wronskian formulas and applications
to KdV

Here we explain the extended version of Wronskian formulas obtaiened in
[3] allows one to construct all the rational solutions of KdV equation (much
easier than in other approaches : compare with [39] , [37] , ) . We also
get from these generalized wronskian formulas some long range oscillating
solutions introduced in [3] . The author proposed to call them positons since
in spectral sense they are connected with Wigner- von Neumann resonances

spectral singularities embedded in the positive continuous spectrum of
the Schrodinger operator (for more detailed study of their properties and
interactions with solitons see [4] or [28] .

Let u(z,t) be some fixed solution of the KAV equation We denote by ¢,
... ¢, different, solutions of system () taken at some values A = A, ..., A= A,

respectively. With these functions we construct two Wronskian determinants
W, and W, as follows:

Wl = W(¢l)' . )¢§ml)’¢27 s ’(bgmz)a R ¢na ce '7¢$7,mn))7 (34)

11



W2 = W(¢1a' . '3¢(1m1)’¢23' R (27"2),- . -,an,,-- 'a(bszmn)af)a (35)

where m; > 0 are some given numbers and ¢§-") 1= i (@, A)|a=r; -
Moreover, we define ‘

i = u—20°logW, (36)

Fo= WoWi. (37)

Equations (35-36) represent a natural generalization of the result correspond-
ing to the case my, ma..., m, = 0 . The same arguments as in [3] lead to
the following theorem:

The system (14) is covariant with respect to the generalized Darboux
transformation f — f, i.e. f satisfies the system obtained from (14) by the
change v — 4, f — f . The function @ represents a new solution of the KdV
equation.

Note that we can replace the parameter A by any parameter k& being
locally in analytic one to one correspondence with A, replacing the derivatives
with respect to A by derivatives with respect to &£. In particular we can use
k = v/X in the neighborhoud of the points A = Ay, ..., \,, assuming that the
dependence of 1; on k is also of analytical character.

Here we dicuss briefly the application of (35-36) to the case u = 0. There-
fore we will write u instead of & when it can not create a confusion.

Now to construct the rational solutions of KdV equation we take mq,...,m,
to be arbitrary entries . The functions ¢; are defined by the formula

¢; = exp(kz — 4kt + P;(k))|p=x;, Im k = 0. (38)

The P;j(k) are arbitrary real polynomials of order < m; and To obtain the
rational solutions we substitute into the generalized Wronskian formula the
functions ¢§m):

¢\ = a7 exp(ka — 4kt + Pi(k))|ken- (39)
The solution obviously comprises n+3_7_; m; arbitrary real parameters. The

obtained formula containes more particular family of solutions calculated by
Krichever which is obvious from the simple comparison with results [37] .

12



2.4 Positon and Soliton-Positon solutions
Positon solution of the KdV equation is defined by the formula

u = —20;log W (p1, p1,,) = —20; log(2k1g1 — sin 2p;) =

_ 32k2(sinT — kygcosT)sinT

(sin 2T — 2k19)? :

p=sinT,T = k(z + dkit + 21 (k1)),

g =0T =2+ 12k 4+ y1; k1, 21,71 3 R,pr, = Op,p = gcosT. (41)

The unique pole zy(t) of (2) is determined by the formula

o(t
To = —12k% + 41 + %,6 = sin(8 — 16k}t + 2k (7, — 1)), (42)
1
2T
5(t + 2—161) =4(). (43)

The associated solution is slowly decaying at infinity and essentialy differs
from well known soliton solutions.
Soliton-positon solution of the KdV equation is defined by the
formula
U= _282 logw(plaplkl ) S): s = cosh Y',
Y =b(z —4b*t +1),r € R. (44)

The Wronskian in this formula can be computed explicitely :

W = 2kbsin® Tsinh Y + ((b* — £%)27 ' sin 27" — k(k® + b*)g) cosh Y.  (45)

«

For the plot and asymptotic properties see [4]. It is remarkable that for all
real values of parameters the expession (45) has only one zero on the real
axis as a function of z.

The 2- positons solution is determined by the formulas

u= _233 logW(plyplkl,p%p?kz)a

P = sin Tl,Tl = k1($ +x1 + 4’C%t), Dk, — 9 COSTl
=T+ y + 12k%;

Pa = SinTz, T2 = kz(ﬁl? =+ ) + 4;()%'[3),

P2k, = g2 €08y,

g2 = T+ y2 + 12k2¢,

Imz, =Imy =Imz,=Imy, =0; k12> 0

13



Remarkably the associated r-function almost factorises into the product of
the two tau-functions 71,75 corresponding to individual positons : It has
to be mentioned that the same wronskian can be written in a much more

compacte forme in terms of the 7-fonctions 7 5 of the individual positons (

__ sin 27} __ §in 2T: .
T =S — kg, o= BEE — kygo)

W = (k¥ — k3)*rimo — dkika(kycos Ty sin Ty — kg sin Ty cos T5)%. (46)

Using (46) is evident that in the area where 0 < ¢; < 1 << ¢y and t —
oo (implying g» — o0), we have the following asymptotic estimate for the
solution

u = —292logmi[1 4+ 0(g;")]. (47)

In the area where 73 is fixed and ¢ — oo (i.e. g1 — o0), we have similar
asymptotics up to the change 7 — 72,91 — ¢2. Thus we have shown that
asymptotically two positons are going from their mutual collision without,
any change. Even additional phases appearing e.g. in the description of a
collision of two solitons are absent.

For all real values of parameters with k; # ko the Wronskian (46) has
exactly two real zeros which never coincide.

2-positon-1-soliton solution.
This solution being also of the form (37) is produced by the wronskian
W (p1, P1ky> P2, D2k S)- This wronskian also can be computed explicitely with
help of Maple. Initial form of the answer produced by Maple takes about 3
pages of printed output but it can be simplified ordering the answer by iso-
lating terms proportional g;gs, g1, g2 , and terms free of these factors. Below
we write g instead of g; and d instead of g, to simplify the notations. The
final result is

W = gdk ko (k? — k2)2(b% + k?)(b? + k2) cosh Y —

—2dky kab(b? + k2)(k? — k2)?sin? T} sinh Y +

+8k, (k2 — k2)?(k? — b?) (k2 + b?) sin 2T} cosh Y+

+2ky (k2 — k2)%(k3 — b%)(k? — b*) sin 2T cosh Y —

—2gk1kob(0? + k2) (k2 — k?)?sin? Ty sinh Y+

+cosh Y{—4k3ko (k2 + 0?)2 cos? T} — dk3k, (k2 + b?)? cos® T+

+4k1]€2[k%(l)2 + k%)z + k%(bz -+ k‘%)2] COS2 T1 COS2 T2+

+3[V*(9K3kS + OkT — k& — KkSY + (b* + K3k3) (ki + k3 + 6k2k3)] sin 277 sin 215 }+
+[kab(k3b? — 3k{b% + 3K2kS — kS — 2k1k2 + 2k2k2b%) sin 2T sin® Th+

+k1b(kib? — 3kib? + 3kikZ — kS — 2k3k? + 2k3k2b°) sin 2T sin® 7] sinh Y

14



When k; = ko = k the expression for W in (10) simplifies:
W = —4k*(k? + b*)?sin®(z, — 23) cosh Y (48)

Again Wronskian has exactly two real zeros as a function of x |, for ky # ks
which never coincide.

Remark The last statement is confirmed by the asymptotic analysis and
numerical experiments but still the complete proof is missing. Most remark-
able in the behaviour of the multi positon-soliton solutions studied in {4] that
asymptotically they behave almost as simple as multisoliton solutions :it is
possible to find explicit formulas describing the associated phase shifts given
in terms of the spectral data.

Darboux transformations can be applied as well to the starting finite-gap
solutions expressed by means of the Riemann theta-functions of compact
Riemann surfaces since associated solutions of the linear problems (Baker-
Akhieser functions ) are known [32] ,[34], [34] ,[36], [38] . Associated results
are most interesting in the case of 2 + 1 dimensional systems but we have no
intention to discuss these applications here and pass to the lattice version of
Darboux transformations.

3 Lattice Darboux Transformations

Now we start to describe the lattice versions of the Darboux transformations
which can be applied along the same lines as above to the difference , differ-
ential difference or difference difference linear and nonlinear systems. First
we consider the class of the differential difference equations of the form

N
fn = Z bm(nat)fn-i-'m’n = 05 :|:1 :t2: ret (49)

m—=——M
for the matrix function f,(¢) with the coefficients by, (n, t) of the same matrix
dimension. Let ¢,(¢) be the fixed solution of the same system , and oF =

@nomiy- Right and left Darboux transformations ¥ of f, are defined by the
formula

Ui = o — 03 fa1. (50)

The following statement represents the natural lattice version of the Th.1
Theorem 4

15



The function = defined above satisfy to the following system of differential-
difference equations

. N
wi:: Z dm(n,t)fn+m, (51)
m=—M

where the coefficients d,(n,t) are given by the formulas
a. The case (+) i.e. for the right Darbouz transformation :

d_M = b—Ma
d] = (Z'n]\f:_]l [b_m - Unb_m—l(n + 1)] Pn—m + b——M(Pnr-M) (10;:7’
3=0,...,M—1;

dy = (Z,jx;}c [Onbm(n 4+ 1) = by 1] @ngma1 + onby(n + 1)<PN+n+1) Ptk
k=1,...,N -1,

dny = onbn(n + 1)<Pn+N+1<Pr_LJ1rN-

b.case (=) i.e. for the left Darbouz transformation :

dk(n: t) = [Eﬁl;}c (bm (n) - U;bm+1(n - 1)) ‘Pn-}-r.n + by (n)(non+N] ‘P,:.{l_ka
k=0,...,N—1,

d_x(n, t) = [Z;zk:—M Oy bm (n - 1)‘Pn+m—l - ;1k=——1M bm(”)‘ﬁnwn] (P;ilm

E=1,...,M—1;

d—M =o b_py(n—1)- (U;—M)_l-

The proof of the Th. 4 for the case b can be found in [1, article 2] . In the
case of the right DT the same idea as their works without any troubles so we
omit the proof here. It is important to observe that the first coeflicient b_,,;
remains invariant under the action of the right DT and the last coefficient
by is stable with respect to the action of the left DT.
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Another important remark is that for the coefficient dy in the case «.
and respectively for the coefficient d_,; for the case b. we get from Th. 6
two different representations . Their origin follows naturaly from the proof
which we omitted here since the same effect take place for the difference
difference equation. This explains also the presence of the two types of
Darboux dressing formulas for the Toda lattice and its two-dimensional and
nonabelian versions first discovered in [24], [26]. For further applications
to nonlinear systems and explanation of important concept of the binary
lattice DT see [5] . For the multiple iterations of left and right DT we obtain
the compact expessions similar to (19) but involving instead of Wronskians
their difference versions : Casorati determinants . Since the corresponding
formulas are the same for the case of the difference difference equations their
proof follows after the next subsection.

3.1 DT Covariance of the Difference-difference equa-
tions

Let us replace now continuous time evolution by the discrete time evolution.
This leads to the following difference diffrence equation representing the time
discretized version of (49).

N
G+ = D bn(n i) fasm(f); n=0,£1,£2...;7 =0,%1,%2,....

m=—M
(52)
Let ¢n(j) be a fixed solution of (52) and 0,(j) = ¢, (j)¢ni1(j). If the discrete
time argument is omitted below this means that it takes the value j. Once
again all the functions and coefficients in (52) are square matrices of the same
fixed order. The definition (50) of the Darboux transformation used in the
differential difference case remains valid without any change. The covariance
properties of (52) with respect to its action can be summarized as follows.
Theorem 5.
The equation () is covariant with respect to the action of the Darbouz trans-
- formation

D= fn _)'l)bn:fn”anfn+1: (53)
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i.e. the function 1, satisfy to the following lattice equation.

1/’71(.7 + 1 Z d (n J ":bm-f—n( ) (54)

where the coefficients are defined by the formulas

d’—M = b—M:
doprpr = —Onoprbopr + boprgr — on(§ + 1boy(n + 1, 7),

= SPMb_pryr — 00 (G Dboprrimi(n + 1, )] 0nnris - Otm—
—b_prr Onn Ot

m=-M+1,... N.

Proof. According to the definition (50) of %, and taking into account (52)
(7 + 1) can be written as follows

Ipn(j + 1) = fn(.? + 1) - Un(j + 1) fn+1(j + 1) =

N
Z b (72, 7) frem(3) — 00 (7 + 1) Z bm(n+1,7) - fagme1(5).  (53)

m=—M m=—M

Substitutig (50) into RHS of (54) we can also represent ,,(j + 1) in the form

1/] (.7 +1 Z d n .7 [fn+m( ) 0n+m(j)fn+m+l(j)]' (56)

m=—-M

Now the equation (54) certainly holds if the coeficients of f,4.,(j) in the
RHS of (55) and (56 ) are the same. Equating these coefficients we get the
following system of the matrix recursive relations

dM = bM:

dm(n,5) = dm-1 (1, 5)On4m-1(7) = bm(n, §) = onlf + 1)bm-1(n + 1, 5),
m=—M+ 1 N,

—dy(n, J)0n+N(J) —on(j + 1)by(n+1,7).
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This system is overdetermined. We can consider M + N + 1 first relations
as the system of linear algebraic equations for the apriory unknown coeffi-
cients d,,, m = —M, ..., N. The last relation also defines the coefficient dy
uniquely and the obtained result should be compatible with that obtained
from solving the system of the first M + N + 1 equations. In abelian case
the matrix M of this system is given by the formula

1 0 0 0 0

—~Opn—M 1 0 0 0

M= 0 —On—M+1 1 0 0
0 0 oo —Onp4N-2 1 0

\ 0 0 . 0 —Op4+N-1 1

The inverse matrix can be easily computed :

1 0 0 . 0 0
On—M 1 0 e 0 0
M_l On—MOn—M+1 On—M+1 1 0 s 0
N-2 N-2
k=—M Tn+k Hk:—M-H Ontk - -- On+N-2 1 0
N-1 N-1 1
Hk:_M Ontk Hk:—M.H Opntk  +++ OngN-20n4N—-1 OTnyN-1

The products of o terms simplifies being written in terms of y-functions:

m+n

II 0:() = omli) - Prsnsa (4) (57)
k=m

This means that instead of sigmas every matrix element of M~! different
from zero can be written as a ratio of the two y-functions . Now for the so-

lutions of the system under consideration we obviously obtain the formulas
provided by the Th.4

The straightforward calculation shows that the same formulas gives the
solution of the same system in nonabelian case if we keep the order of all
matrix products as written above. Of course the inversion of M was not
neccessary for the proof of Th.4 . It was included only for explain how the
solutions of recursive relations were found. To complete the proof we have
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to check that the last of formulas in the overdetermined system defining the
coefficient dy as

M+N

-1
dy = Z b M1 Pr—MHPriN —
=1
M+N

=0+ 1) D oMo Pn—mt1 Onin (58)
1=0
is compatible with the last of relations produced by equating the coefficients
of fryn+1. Changing the summation index by taking £ = —M + [ we can in
abelian case identify the first sum in the RHS of (58) with ¢,(j+1) o5 v ().
The second sum in the RHS of (58) can be easily computed taking into
account that by definition of ¢,

N

(Pn+l(j + 1) = Z bm(n + lsj)(pn+m+l(j)7 (59)
m=—M

This formula can be rewritten as follows

N-1

> bn(n+1,)0ntme1(J) = @ar1(G+ 1) —by(n+ 1, 1) onintr- (60)
M

Changing in the second sum of the RHS of (58) the summation index from

I tom = —M+1—1 we easily conclude with help of (60) that the second
term in RHS of (58) is equal to

—0n{j + 1) [Pntr(§ + 1) = by(n + 1aj)90N+n+1] @XrlﬁLn(j)-

Now it becomes obvious that the RHS of (58) coincides with
on(j + 1) -bn(n=1,7)0,i5(4), which completes the proof.0
In full analogy with the consideration above for the left DT we have the
following statement.
Theorem 5.

The equation (52) is covariant with respect to the action of the left Darboux
transformation D~

D™= fn _)17&7: = f’n - U;fn—l)
0 (7) = eals) - 032:05)- (61)
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1.e. the function v satisfy to the following lattice equation.
N
Yn(j + 1) = Z dm(naj)¢m+n(j) (62)
m=—M
where the coefficients are defined by the formulas

dN(na .}) = bN(na .7)1
dk(ﬂ,j) = {Zﬁ:k bm(naj) - Uvz(j + 1) er;}c bm-l-l (TL - 17j)(pﬂ+m] W;-}—k:

k=-M,. .. N-1;

dopr = 0n(i+1)-b_ye(n—1,5)0t,,, : "
a(n,j + 1) = [ anz—M bm(n7j)90n+m(j)] : [22;=—M bm(n B l’j)@"*'m"l(j)]

3.2 Iterations of the lattice Darboux transformations
and Casorati determinants

Here we show that the n-times iterated lattice Darboux transformation is

described by the simple formula containing the ratio of the two Casorati

determinants. We start from the case (+) i.e. Darboux transformation of
fn(j) is given by the formula

_ Cas[fa, on(1)]

D fy, = hn = fn - Un[l]fn+1 - (Pn—i-l(l) ) (63)
def fn (pn(l)
CaS[fn, (;017,(1) N fn—l-l (pn+1(1) } . (64)

More generaly we define Casorati determinant of m functions f,(1), ..., fu(m)
by the formula

Cas|[fn(1),..., fa(m)] =det A, Ajx = forj—1(k); 5 k=1,...,m. (65)
Let ¢, (1),...,@.(m) be m different solutions of (49) or (52) with
Caslpn(l),...,oa(m)] #0.

Theorem 6
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The result tpmn of the m-times application of the Darbour transformation
to any given solution f, of (49) or (52) 1s given by the following formula

_ Cas[fm ‘;On(]-)’ sy (von(m)] _

Y = %
) CGS[(PH.(]-), ce :(pn(m)] ( )
Defining the "left” lattice DT as

W) = om0 facr, 08 = - 07 (67)

we can describe the result zp[‘;])n of the m-times action of DT on f, by the
formula
_ Cas I fa, oa(1), -, a(m) ]

w(f) —
(rln ™ Cas) [ n_1(1), ..., @n-1(m) I’

(68)
where
Cas I pn(1), ..., on(m)] := det A, Ajk = pp_j1(k), 5,k =1,...,m. (69)

Proof We give the proof only for case (+) since case (—) can be treated in
a same way. Below in the proof sign (+) will be omitted for brevity. First it
is obvious that the result of the m-times iterative application of the lattice
Darboux transformation to f,, can be written as follows

"/"[m],n = DDy Difn = (70)
= fotoifos1 + -+ Gnfrim, (71)

where D; is defined by specifying some solution of the equation obtained
after 5 — 1 application of the DT to the starting equation. Expanding the
nominator of (66) by the elements of its first column we obviously get the
same structure. Now the proof can be easily achieved by induction. We
observe that RHS of (66) vanish when f, = ¢,(j), j=1,...,m . If we show
that RHS of (71) has the same property this fixes the coefficients ay,. .., a,
uniquely since we can interpret the relations

m
fn+zakfn+k|fn=¢n(j) :O; .7 = 17"-7m1 (72)

k=1
as a system of linear algebraic equations for unknown coefficients a;. The
determinant of this system is obviously coincide with denominator of the
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RHS of (66). Now to complete the induction ,since the formula ( ) is true
for m = 1, it is enough to demonstrate that the validity of the formula

Cas(fn, on(1), ..., on(m —1)]
"J)m-— n = 3 73
tn=1l Caslen(), .., pn(m — 1)] (73)
for the result of m — 1 application of the DT to f, implies that its own

Darboux transformation

Yim—1]n — Opn—-1]n¥lm—1]m+1> (74)

Tn—1in = V- 1}2 V1) a1 fazn(m)» (75)

vanish if f, = ©,(7) , which is completely evident. Now we can identify RHS

of (71) with RHS of (66) taking into account the uniqueness of the solution
of (72).0

Remark. In whole analogy with continuos case the coincidence of the RHS

of (74) with (66) proved above is equivalent to the following identity (we take

gn = ©n(m). relating four Casorati determinants (below we write C' instead
of Cas in order to compactify the notations):

C[(pn(l), - ')‘Pn(m - 1)agn,fn] : C[‘Pn+1(1)> . -a(:on+1(m - 1)] =
= C[C[‘pn(l), . 'a(von(m - 1)7971]’0[9071(1)) .- -79071(777')) fn ] (76)

In our approach this identity (known in the literature as Silvester formula)
is obtained as a free biproduct. The existing proofs of this identity using
Laplace decomposition of the determinants are a bit longer. For the case (—)
we have of course quite similar identity obtained by replacing C by C(~) and
n+1lbyn—-1.

3.3 Mixed lattice DT

The simple observation concerning the subsequtive application of the left and
right DT to initial linear equation is that they do not commute i.e.

D* - D™ fo=c1fa+ c2fntr + C3fn1 # (77)
D™ -D* = g1 fu + Gofns1 + G3fnn- (78)

Here we mean that D~ f in (77) was defined by fixing some solution ¢, (1)
of (52) or (49) . Next taking f = ¢,(2) we get a fixed solution of the
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transformed equation thus defining the action of D* on D~ - f,, . In (78) we
first fix ¢,,(2) or ¢, (1) for define the action of D* on f, and take the notused
of these two functions for define the action of D~ on D*f, . For any order
of use ¢y, pn(2) the RHS of (77) and (78) are different and ¢1,¢9; # 1 . So it
is obvious that for a mixed compositions of finite number of DT there is no
chances to get the formulas as simple as (66) or (73).

It is easy to prove somehow that RHS of both equations (77-78) vanishe
if we take f, = @a(l),¥n(2) . This means that multiplying D* - D™ f, on
ci! and D~ D*f, on g7' we get the same resulting function ¥, (1,2) of the
form

Ya(1,2) = fo+ a1 faor + b1 frna (79)

vanishing when f = 3,2 . This vanishing properties as before define f
uniquely and it is obvious that (52) is covariant with respect to the action of
the mixed DT defined by the formula

D(L?‘)fn:'l/)n(l:Q)- (80)

The covariance follows from the left and right DT covariance established
above and from the fact that (52) is covariant with respect to the action
of the trivial gauge transformations f — G(z,j) - f where G € GL(N,C)
, reducing in abelian case to multiplication on nonvanishing functions. It
is easy to obtain the general formulas decribing the transformation of the
coefficients of (52) under the action of the mixed DT . We give here for brevity
only the associated result for the simplest difference - difference equation

f'n(j:r - 1) =p- fn.+u' fn—l’p:p(jir):u = u(jalr)' (81)

According to the covariance of (81) with respect to the action of (80) we have
(writing 4, instead of v, (1,2, 7,7) and specifing only the shifted variables)

Yn = PP + Uthp_1. (82)

The coeflicients p , @ are decribed by the following formulas

p+i-bin—1)=p+b(r—1) -un+1),
pray+i=u+a(r—1) pn-1),
day(n —1) = ai(r — Du(n — 1),
prby=bi(r—1) p(n+1).
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More generally normalising the same way result of N-times application of
the right Darboux transformation to s obtained after M -times application
of the left Darboux transformation to f,, we get

Un(N, M) =g(r,5)- D} ... DY - Dy ... Dy fn = - (83)

N M
= fn+zalfn+t+ Z bmfn—m- (84)
=1 m=1 ’

The coefficients in (84) are fixed by the following vanishing requirement
wn(N,M)ifn=wn(k)=0,]€=1,...,M+N. (85)

where @, (1) are N + M fixed different linearly independent solutions of (52)
and g is the normalisation factor. In whole analogy with previous consider-
ations we can prove the following statement
Theorem 7
The function (N, M) defined above is given by the formula

wn(N: M) = %a

Air, = Pnint1-i(k),

i=1,... M+ N+1,k=1,...., NN+2,... N+ M+1,

Ains1 = fatN+1-ir

-B'ilc = Q0n+N+1—i(k)7ia k= 1) Tt N+ M.

Remark.9y p i o symmetric function of v,(7) .

The proof of the theorem literally repeats the proof of the Th.6 and can be
easily completed by the reader. Again it is obvious from previous consider-
ations that (52) is covariant with respect to the action of the mixed lattice
DT : f = %a(N, M)

The theorems proved above do not exhaust the list of useful covariance
properties leading to the interesting applications to integrable systems. One
usefull concept which we also missed to discuss for continous systems is the
lattice binary DT . The interested reader can find some preliminary results
about it in [5] , [25]. Its more detailed presentation applicable to the hier-
archies of the lattice equations of any order will be reported elsewhere. It is
also not difficult to obtaine the law of transformation of the coefficients of
(52) under the action of the mixed DT of any order defined above. We omit
here the assosiated resuts for brevity. The necessary type of calculation will

25



* be illustrated in the last section devoted to the functional equations with
generalized shift operators. Also we have no intention to reproduce all the
results concerning the particular classes of solutions for continous systems
for the lattice systems (i.e. the construction of the rational solutions , mul-
tisoliton solutions , discussion of lattice lumps , positons etc.) Here we will
only illustrate the main ideas of applications of the lattice DT to the simplest
lattice Zakharov-Schabat equations.

4 Construction of the solutions of the lattice
Zakharov-Schabat equations

We consider here for concretness only the simplest case corresponding (see
below) to the Hirota bilinear difference equation. Our appproach somehow
works without any modifications for the higher Zakharov Scabat equations
and their nonabelian versions. Asssociated applications of general theorems
proved above will be reported elsewhere. The "minimal” Zakharov Shabat
equation which we will call also Hirota equation can be obtained as the
compatibility condition of the following linear system.

fn(jvr_l)=fn(j77‘)+u(naja'r)'fn—l(j>'r)’ (86)
fn(j_ly'r) :fn+1(j7’r)+v(ln’:ju’r)'f‘n(j:'r)1 (87)
n,5,1 € Z.

More precisely we can represent f,(j — 1,7 — 1) as a linear combination of
fx(g, ) first replacing j by j — 1 in (86) and than transforming the RHS of
the obtained equation with help of (87). Next we can compute the same
quantity first replacing 7 by 7 — 1 in (87) and than transforming the RHS of
the produced equation with help of (86). Equating the coefficients of f,(j,7)
and f,_1(7,7) we get the following system

v(n,7,7) +u(n,j—1,r)=uln+1,5,7) + v(n,j,r — 1). (89)

This system represents the simplest possible of the ¥ Zakharov-Schabat ”
difference-difference equations. The system (88-89) can be also rewritten as
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follows

u(nyj - 1:T) - u(n+ 1uja T) = v(n,j,'r - 1) - 'U('I'l,j, T)) (90)
u(n,j,r) _ 'U(TL— 1:j:T)
’U;(‘ﬂ,j - ]-:Ir) B v(n,j,r - 1)

It is connected with original Hirota bilinear form by the following formulas

(91)

Tn— 1(3,7‘) Tn+1(]=7" — 1)

ulm 4.7} = Tn(dyr — 1) - mU,)) 52)
oln. i r Tn(J,T) 7_n+1(.7 1’T
( & ) Tn(] ) Tn+1(]7r)' (93)

The function tau is the solution to original Hirota bilinear equation first writ-
ten explicitly in [7]. Hirota also found some kind of 3-solitons solution and
conjectured the formula for N-solitons solutions. This formula was proved
and generalized by Miwa who also found some four terms bilinear integrable
equation [8] and solved it using the free fermions formalism of Kyoto school.
The form of the solution obtained by Miwa somehow is rather complicated
and has some advantages and disadvantages from the point of view of con-
crete applications. Hirota equation in bilinear form reads :

Tn(.7+ ]-a T)Tn(ja T+ 1) _Tn(ja T)Tn(j + 15 T+ 1) +Tn+1(j+ 11 T)Tn—l(ja T+ 1) =0.

(94)
Both equations (86-87) are covariant with respect to the action of the left
lattice DT (50). With respect to the action of the right DT the system
(86-87) is not covariant . From the Th. 5 we get immediatly the following
formulas for the coefficients of the DT transformed system

'Uq(ﬂ.,j,?’) =crn(j,7“—1)-u(n—1,j,7")-0;_11(j,7") = ( )
@nldsr — Dn—2(4,7) _ (96)

Pn-1(7,7 — L)pn-1(J, 7)
=u(n, f,7) + on(f, 1) — oul(d,r — 1); (97)
(98)
(99)
)

o (n,5,m) =0n(j —1,7) - v(n=1,5,7) 05, (j,7) =

U 1ﬂ%1uﬂ
%10—10%mﬂ
= v(n,j,r) + On+1 (.71 ) (J 11 T) (100

_U(Tl—]. J:T)
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It has to be mentioned that according to the Th.5 the formulas (95 ,97,98,100)
remain valid in the nonabelian case.

It is easy to prove (see the last section for the derivation in more general
context) that the coefficients of the system

w[N],-n(j7 r= 1) = w[N},n(.ji T) + 'U'N(na j: T)w[N],n—l (]a T)) (101)
’lvb[N],n(j -1, T) = 77[)[1\1"],%-}-1 (J} T) + 'UN(TL, ja r'r'),lib[N],n(j, T) (102)

obtained after application of the N-fold left DT are described by the following
formulas

. Cﬁ(n,j,r—l)-Cﬁ(n—Q,j,T) .
_ culn— N 103
N (M) = e = L7 =1) Cym =Lz, 7 Nam) (103)
. _ Cﬁ(n,j—l,r)-CJ(n—l,j,T)
o dr) = = T,5 = 1.) - Gy, 4,7)

~v(n— N,j,r). (104)

Here as before we put
C;;('I’L,j, T') = detA, Aik = (,On_i+1(k3);i, k= 1, cey, N.

Now if we put in particular © = v = 1 we can obviously identify the tau
functions in (92-93) with Casorati determinants

(4,7) = Cyn(n—1,5,7). (105)

In the last case we also can easily construct the solutions to the starting
system (86-87), depending on arbitrary number of functional parameters in
whole analogy with the similar construction for the KP equation [1, article
1]. First we find the particular solutions by separation of variables :

falGyr k) =k (k= 1)"", (106)

where k = k; + ¢k 1s an arbitrary complex parameter. For any real valued
continuous density function p(k;, k2) with compact support not including
the points £ = 0,k =1 the integral

oull) = [ [ b, o) - 673 (6 = 1) ey - ey (107)

gives the solution to the system (86-87). Its real part and imaginary part
represent the real valued solutions to the same system. In particular taking k&
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real and choosing N different densities p;(k) we get the real valued solutions
of (86-87) with u = 1,v =1 in a following form :

/ pu(k) - K9k — 1) dk. (108)

Substituting the obtained solutions with { = 1,..., N into determinant (105)
we obviously get the solution of the Hirota equation depending on N func-
tional parameters. In whole analogy with the similar consideration in [5] we
can isolate nonsingular globaly bounded solutions. It is important to observe
that the ”starting solutions” (107) are the functions of the form f;(r—j,n—r).
Performing one step Darboux transformation with one of them we already
get the nontrivial 7-function solving the Hirota equation :

i) = eua(ir ) = [ p(R)- K=" T dR (109)

The 7-functions (109) corresponding different densities p;(k) form an infi- -
nite dimensional linear subspace in the space of the solutions of the Hirota
equation.

4.1 More general lattice Zakharov-Shabat equation

Next particular example deals with an auxilary linear system slightly more
general than that of the previous subsection . '

This equation can be obtained as the compatibility condition of the fol-
lowing linear system.

fn(jaT_l):p'fn+u'f1l—17 (110)
fn(j_]-ar)ZQ'fn+1+U(naj,T)'fn—-1, (111)
n,J,r € Z.

Here and below to shorten the notations we shall often omit arguments of the
coefficients if they coincide with (n, 7, 7) specifying only the shifted variables
so that p(’r— 1) = p(n,j,7—1), fas1 = far1(4,7) and so on. We can represent
fn(j —1,7—=1) as a linear combination of fi(j,r) first replacing 7 by 5 —1 in
(110) and than transforming the RHS of the obtained equation with help of
(111). Next we can compute the same quantity first replacing r by r — 1 in
(111) and than transforming the RHS of the produced equation with help of
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(110). Equating the coefficients of f,,1(5,7) , fu(4,7) and fu_1(4,7) we get
the following system of 3 nonlinear equations:

pU—~1)-qg=q(r—1) -p(n+1), (112)
gir—=1)-uln+1)+v(r—-1)-p=
=p(i—1)-v+u(—1)-gn—1), (113)

u(j—1)-v(n—-1) =v(r—-1) u. (114)

This system represents the slightly more complicated case with respect to
that of the previous section. Of course we can reduce it to the previous case
performing appropriated gauge transformation but we prefere not fixing the
gauge and consider the system (110-111) in its original more symmetric form.
First the linear system (110) is covariant with respect to the action of the left
and right Darboux transformations (50). The left DT leaves the coefficents
p and ¢ invariant and the transformation law for v and » under the action of
the M-fold left DT is given by the formulas :

upy =uln— M) apy(r—1)-ay (n—1) = (115)
=u(n,j,r)+a(r—1)-pln—1)—p-a;. (116)

v =v(n—M)-ay(j—1)-ay = (117)
=v(n,j,r)+a(j—1) -gin—1)—q-a1(n+1). (118)

The coefficients a;(n, j,7), ap(n, j,7) can be easily computed from decom-
position of 1,/){;\4],71

M
¢f§\4,n] = fu+ Z Cm fr—m- (119)
m=1
. From (73) we-obviously get the following expessions for a, ayy

) det B
. G.I(TL,],'I") = m] (120)
By, =¢n_it1(k);i=1,34,.... M+ 1;k=1,..., M. (121)
A = (,Dn_i(ki);?:,k =1,..., M. (122)

det C'

M

=(— 123
ay = (=1)" =, (123)
C’ik = (pnfiﬂ(k);’i,/ﬂ = 1,...,]‘/[. (124)
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Here as before ¢,(k) = ¢,(j,7, k) are different fixed solutions of the sys-
tem (110-111). In particular (117) and (117) mean that the multiplicative
dressing formulas for uys, v can be written in a following explicit form :

, Cy(n,j+1,7)-Cy(n—2,4,7) .

p—rg * - 12

UN(n’],T) C;/(TL - la] 1’7‘) ' C;/(n - 1aja T) U(n N’]’T)’ ( 5)
C';,(n,j,r 1)01:(”_25]’7")

C;[(n—l,j,T-*-l)‘Cgr(n—l,j,T)

UN(n)jaT) = ‘U(n—N,j,T). (126)

Here as before we put

C’;,(n,j,r) = detA,Aik - gOn_i+1(l{3);i, k= 1, . .,N.

Now using the covariance of the same system with respect to the action
of the right DT applying it N-times we keep the coefficients u and v invariant
and we get for the coefficients p and q of the transformed system the following
formulas :

C¥(n,j,r —1)-CH(n+1,4,7)
CHn+1,5,7—1)-CH(n,4,7)
CHin,7—1,r)-CH(n+2,7,7)
Ciin+1,j—1,7)-Ch(n+1,5,7)

pm =p(n+M)- (127)

av = q(n + M) (128)
Now if we put in particular u = v = p = ¢ = 1 we obviously get the same
starting solutions of (110-111) as given by the formulas (107-108) and we
get again the family of the solutions described by Casorarty determinants
formed from the functions (107-108). Of course the system (110-111) allows
also the application of the mixed DT. But we omitted these formulas here
for brevity.

5 Equations with generalized shift operators

Let us consider the following class of the functional-differential equations

N

i@, t) = > unlz,t)-T™(f),z € R", (129)

m=—M
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or functional difference equations of the form
N

f(ﬂ?,j—}-l) = Z um(x:j) Tm(f) (130)
m=—M
In (130-131) T is assumed to be an invertible linear operator commuting with
8, in the case (130) and with the shift operator A : A(f)(z,7) = f(z,7+1)
in case of (131) which is of course more general and contains continuous time
evolution in appropriated limit. So below we formulate all the statments for
(130). T is also supposed to satisfy the following additional requirement

T(fl 'fz) = T(fl) 'T(fz)a T(I) =1 (131)

For many particular choices of T listed above x instead of be in R™ might
be the point of some Lie group or more generally the point of some smooth
manifold : most part of the theorems listed below are valid for this more
general case also .

Again we can consider the general case where the coefficients u,, are matrix
valued functions , f is a matrix valued solution of the same matrix dimension
as the coefficients , and 7T'(f) is a matrix valued function of the same matrix
dimension as f . [ is a unit matrix. Of course there is a lot of operators
satisfying to these requirements.

Let us list the some important examples of T operators.

T(f)(z,t) = f(z +6);z,6 € R,

T f(z,t) = flz —6,1)

T(f)(z,t) = f(qz,1),q € C,q #0,

T f(z,t) = flg7'z,1)

T(f)(z,t) = f(Uz,t), T (f)(z,t) = f(U '=,1),
UeGL(n,R),x € R"

T(f)(z,t) = f(g(z),t), T~ f(z,t) = f(g7"(z),1),
g € Dif f(R"),

T(f)=U-f- U, U=U(z) € GL(n,C).

Let ¢(z,t) be a fixed solution of (131) and (in nonabelian case) ¢~! means
the result of its matrix inversion. In whole analogy with previous sections
we define left and right Darboux transformations D* by the formulas

DYf=f—0ot-T(f), ot = -[T()™, (132)
D f=f-0"-Tf), 0" = - [TYe)™", (133)
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It is instructive to observe that under the first two choices of T in the list
above in a limit § — 0 and ¢ — 1 respectively we recover from D* the
classical Darboux transformation . More precisely we have the following

formulas
of =8y f =limdé_1D*f =lim(1 — ¢)"' D* (134)
§—0 q—1

Of course we can reproduce the formulas for the iterated classical Darboux
transformation coming to the same kind of limits in the formulas listed above.

We can prove that (131) is again covariant with respect to the action of
Dt and D~. The transformation law of the coefficients remains the same as
described by the formulas of the previous section if we replace there f, m
by T™(f)(z,7) , o5 (j) by ot defined by (133) etc . More precisely for the
coefficients of the Dt transformed equation

N
Y5+ = D wlw,g)  THW)(,9), (135)
k=—-M
we get the following formulas :
U—pf = UM,
Goprgpr = Uy + T M0 u_py — o (5 + DT (un),

m = St Muspgr — 0T (G + DT (ue s )IT Y4 (p) - [T™ ()] 71—

[=q]

_u—M'T_M((p)'{Tm((p)]—la m:—M'l'l’:N:

iy = 0¥ (§ + )T (u) [T (o))

There is no any difference in the proof providing that the general require-
ments imposed on T are satisfied.

Now the result 1% of the action of L-fold right Darboux transformation
on f reads .

Yy = DD D -—f+XL:a T‘(f)—M (136)
N — LiL/L—1 1 — £ i _detB’ )

where . . .
Ap =T7Hf), Ay =T e(f - 1));
7 = 1,...,L+1;j:2’_“’L+1’
By =Tp(j)); 4ji=1,...,1L
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Above ¢(j),7 =1,..., L are L different fixed solutions of (131). The proof of
the last statement contains nothing new with respect to similar statements of
the previous sections and explores the fact that the RHS of (136) obviously
vanishes if we take f = ¢(),7 = 1,..., L As before expanding the det A by
the elements of the first column we easily compute all the coefficients a; in
(136). In particular for a; and a, we get the formulas

_ _det@
M =~ B

Qui=y¢;i=1...L Qiy=T(g);1=2,...,L

ar = (=1)" &5

Hj:Ti—l((pj); ?:,j=1,...,L.

Remark. Despite the fact that all the formulas here are looking quite similar
to the lattice situation of previous section we have much more flexibility. For
instance assuming that operator T is cyclic i.e . TF = I we see that (7
vanishes as well as the coefficients a;,! < L — 1 and a;, = —1.

Substiting the decomposition given by the middle equation (136) into the
LHS and RHS of the equation satisfied by % (z, 7)

(2,5 +1) = D G - T™ (1) (137)

m=pg
it is easy to show that the coefficients %; can be found from the following
recursive relations

U_pr = U_pr,
Uopror = Uoppr +a1(z, j+ 1) - Tlu_p) —u_pr - T (a1),

ﬂ_M+2 + ﬁ-M-{-l . T_M+1 (al) + u_MT_M(CLg) =

U_p2 + 01{%, 5 + D)T (uoprq1) + 02(z, § + )T (u_pr),
ﬂ'p + Em+l=p "']'m ' Tm+l(a'£) = u’p + Zl+m=p a (xaj + ]-) ’ Tl(um))

p=-M+1,-M+2,...,L;

Uy = G,L(Cﬂ,j + 1)TL(’U.N) . [TN(GL)]—I.
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From this structure it is obvious that in the case of the cyclic operator T
satisfying T* = I we have a periodic closure of the chain of the Darboux
transformations : the equations (187) and (180) coincide. The same conclu-
sion concerns of course the functional equations

N
> um(z) T™(f) =X f, (138)
m=—-M
obtained as stationary reduction of (1-2).
Remark Important particular case of (138) with scalar coefficients and M =
—1, N = 1 with general T satisfying the requirements of this section was first
considered by Salle [23] , who considered in particular the applications of the
special case T(f)(z) = f(q - x) to construct explicitely the spectrum and
eigenfunctions of the certain g-oscillator reproducing in a limit ¢ — 1 the
spectrum and eigenfunctions of quantum harmonic oscillator. Somehow in
[23] it was not mentioned that algebraically this is the same construction as
in the case of the lattice Schrodinger equation and hence it is in one to one
correspondence with stationary reduction of the simplest case of (1, article 2]

6 Concluding Remarks

So far we have proposed here enough general concept of the generalized Dar-
boux transformation allowing application to a broad class of linear and non-
linear patial differential , differential difference or functional difference equa-
tions with matrix valued coefficients. The main tool to introduce them was
to explore certain vanishing properties of the assosiated ¥-functions defining
N-fold or mixed (N,M) DT. It is instructive to compare the results of the last
section concerning periodic closures of the sequence of Darboux transforma-
tions with the discussion of the same problem in [29] , [30]. There the same
question was studuied for the case of the stationary 1-dimensional Shrédinger
operator allowing application of the original result by Darboux [2] and Crum
[22]. It was shown that the possibility of the periodic closure depends on
the choice of parameters (starting solutions) and its period depends also on
the structure of the associated background potentials. This was used to give
some new characterisation to the finite gap periodic potentials (first explic-
itly constructed together with the associated eigenfunctions in terms of the
Riemann theta functions of the hyperelliptic curves in [34] ,[33], [32] see also
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[35] , {36] for detailed review) and also to some new trancsendents general-
izing Penleve transcendents. Our situation in the case of cyclic operator T
is essentialy different : we have the periodic closure for any initial variety of
"potentials”. Looking at the sequence of the DT as on some discrete time
dynamics we can hence generate the strictly periodic dynamics in a huge
variety of situations. Additional comment is that in all known situations
the Darboux transformations in contrast with general dressing transforma-
tions are canonical i.e. they preserve certain symplectic structures or Poisson
brackets (see the end of [5] and references there. This observation and sys-
tematic hamiltonian interpretation of DT are not yet developped enough.
Some additional results in this direction can be found in [31].
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