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Abstract
The famous Kneser-Milnor Theorem states that every compact orientable

3-manifold can be presented as a connected sum of prime factors, which are
unique up to order. Is a similar prime decomposition theorem true for 3-
orbifolds? In 1994 Carlo Petronio posed this question and answered it posi-
tively for 3-orbifolds containing neither bad nor nonseparating 2-suborbifolds.
The question also makes sense for knotted graphs in 3-manifolds. We show
that in general the answer is negative in both cases. Moreover, the set of all
possible counterexamples admits an acceptable description. We conjecture
that, in a certain sense, it is generated by a finite number of basic counterex-
amples.

1 Introduction

We begin by considering knotted graphs in 3-manifolds. Transition from
knotted graphs to orbifolds is straightforward. We describe it in the last
section.

Definition 1. A knotted graph is a pair (M,G), where M is a closed oriented
3-manifold and G an arbitrary graph (compact one-dimensional polyhedron)
in M . Two knotted graphs are equivalent if they are homeomorphic as pairs.

Definition 2. A 2-sphere S ⊂ (M, G) is called compressible if there is a
disc D ⊂ M such that D ∩ S = ∂D, D ∩ G = ∅, and each of the two discs
bounded by ∂D on S intersects G. Otherwise S is incompressible.

By analogy with connected sums of 3-manifolds we define three types
of connected sums of knotted graphs, see [2, 5]. Let (Mi, Gi), i = 1, 2, be
knotted graphs and Bi ⊂ Mi 3-balls such that both pairs (Bi, Bi ∩ Gi) are
homeomorphic to (Con S2, Con X), where a subset X of S2 consists of 0, 2,
or 3 points and Con is the cone. Additionally we assume that both spheres
Si = ∂Bi are incompressible. Choose a homeomorphism h : (S1, S1 ∩ G1) →
(S2, S2 ∩G2) which reverses the induced orientations of S1, S2.
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Definition 3. The pair (M, G) obtained by gluing together the manifolds
Mi \ Int Bi, i = 1, 2, by h is called a connected sum of (Mi, Gi) and denoted
(M1, G1)#(M2, G2).

Altogether there are 1, 2, or 6 different homeomorphisms for k = 0, 2,
and 3 respectively. Suppose that one of the pairs (Mi, Gi) (say (M1, G1) is
trivial, i.e., homeomorphic to the suspension (double cone) over a 2-sphere
S with k = 0, 2, or 3 selected points. Moreover, we assume that S is the
boundary of the ball B1 used for the summation. Then the sum coincides
with the other pair. Such a summation is called trivial.

Definition 4. A knotted graph (M,G) is called prime if it cannot be pre-
sented as a nontrivial connected sum.

2 Existence of prime decompositions

It is convenient to have an independent description of operations inverse to
connected summations.

Definition 5. Let (M, G) be a knotted graph and S ⊂ (M, G) a general
position sphere in (M, G). Then S is called admissible if S is incompressible,
separates M , and X = S ∩ G consists of 0, 2, or 3 points. An admissible
sphere is called trivial if it bounds a ball B ⊂ M such that (B, B ∩ G) is
homeomorphic to (Con S2, Con X).

Definition 6. Let (M, G) be a knotted graph and S ⊂ (M,G) an admissible
sphere. Then the reduction of (M,G) along S consists in cutting (M, G)
along S and taking cones over (S±, S± ∩ G), where S± are two copies of
S appearing under the cut. The resulting knotted graphs will be denoted by
(MS, GS), (M ′

S, G′
S). The reduction along S is nontrivial if so is S.

The following example shows that our additional assumption that spheres
used for constructing connected sums are incompressible is essential.

Example 1. Let a knot K in M = S2 × S1 be obtained from the knot
K0 = {∗} × S1 by tying a local trefoil t. See Fig. 1. Note that K is in fact
isotopic to K0. Indeed, by deforming some little arc of t all the way across
S2×{∗}, we can change an overcrossing to an undercrossing so that K comes
undone. Let S ⊂ M be a sphere surrounding t, see Fig. 1. Note that S is
compressible. If we were allowed to use compressible spheres for constructing
connected sums and reductions, we would have (M, K) = (M,K0)#(S3, t).
Therefore there would be no hope for existence of a prime decomposition for
(M, K0), since the above splitting could be iterated ad infinitum.
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Figure 1:

Figure 2:

On the other hand, the incompressibility assumption guaranties existence
of prime decompositions.

Proposition 1. Every nontrivial knotted graph can be presented as a con-
nected sum of prime factors.

Proof. Let us apply to a given knotted graph (M, G) nontrivial spherical
reductions as long as possible. It follows from a version of the H. Kneser
Lemma proved in [2] (Lemma 5) that the number of those reductions is
bounded by a constant depending only on (M,G). So we stop.

3 A counterexample to uniqueness

Let Pi, Qi, 1 ≤ i ≤ 3, be six 2-spheres in S3 such that the following conditions
hold:

1. Pi ∩Qj is a circle for (i, j) = (1, 3), (3, 1), (2, 2), (3, 3) and empty for all
other pairs (i, j).

2. P3 separates P1 from P2, and Q3 separates Q1 from Q2. See Fig. 2
(left).

Let us join P3 with P1 and P2 by thin tubes and denote by P the resulting
2-sphere. Similarly, we join Q3 with Q1, Q2 by tubes and get a 2-sphere Q.
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Figure 3:

Note that P ∩Q consists of four circles, which decompose each sphere into an
annulus, a twice punctured disc, and three discs. Choose 3-balls X,X ′, Y, Y ′

in the complement of P ∪Q such that X, X ′ are outside P but inside Q, and
Y, Y ′ are inside Q but outside P . See Fig. 2 (right).

Let us cut off those balls and attach to the resulting four times punctured
sphere S3

∗ two 3-dimensional handles HX , HY ≈ S2 × I such that they join
∂X with ∂X ′ and ∂Y with ∂Y ′ respectively. We get a 3-manifold M ≈
(S2 × S1)#(S2 × S1) with spheres P,Q inside.

Let us describe a knotted graph G ⊂ M . It has only 3-valent vertices.
Two of them lie in HX , four in HY , and the remaining four in S3

∗ . The edges
inside the handles serve as decorations for distinguishing them. G intersects
all 6 disc components of (P ∪ Q) \ (P ∩ Q), each at exactly one point. See
Fig. 3.

Since P is admissible, we may reduce (M, G) along it. We get two knot-
ted graphs GP , G′

P in two exemplars of S2 × S1. See Fig. 4. Since any
separating 2-sphere in S2 × S1 bounds a ball, one can easily prove that
both knotted graphs are prime. Note that GP has eight vertices (four of
them lie in HY ) while G′

P has four vertices (two in HX). The reduction of
(M, G) along Q also gives two knotted graphs GQ, G′

Q similar to GP , G′
P .

The only difference is that GQ and G′
Q have six vertices each. Those num-

bers show that decompositions (M, G) = (S2 × S1, GP )#(S2 × S1, G′
P ) and

(M, G) = (S2 × S1, GQ)#(S2 × S1, G′
Q) are distinct.

4



Figure 4:

4 General structure of counterexamples

Let us divide the set G of all knotted graphs into two subsets C and R. The
first one consists of counterexamples to the prime decomposition theorem,
i.e., of knotted graphs having different prime decompositions. Each knotted
graph fromR has only one prime decomposition. We call such graphs regular.

Let (M, G) be a knotted graph. Note that if (M,G) = (M1, G1)#(M2, G2)
and one of the factors, say, (M1, G1), is a counterexample, then so is (M, G).
One may say that (M, G) is induced by (M1, G1).

Definition 7. A knotted graph (M, G) ∈ C is called basic if it is not induced
by a graph from C or, equivalently, if all of its factors are regular. The set of
all basic counterexamples will be denoted by B.

It follows from the definition that if (M, G) ∈ B, then the following
statements hold:

1. For any nontrivial admissible sphere S ⊂ (M, G) each of the graphs
(MS, GS), (M ′

S, G′
S) obtained by the reduction along S has a unique

prime decomposition.

2. There is a pair of admissible spheres P,Q ⊂ (M,G) such that the
union of prime factors of (MP , GP ), (M ′

P , G′
P ) is different from the one

of (MQ, GQ), (M ′
Q, G′

Q).

We shall say that the pair of spheres P, Q ⊂ (M,G) as above is significant.
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Definition 8. Let Pi, Qi ⊂ (Mi, Gi), i = 1, 2, be significant pairs of spheres
and Ni = N(Pi ∪ Qi) regular neighborhoods of their unions. Then the pairs
Pi, Qi are called equivalent if there is a homeomorphism h : N1 → N2 taking
P1 ∪Q1 to P2 ∪Q2.

Conjecture 1. Any basic counterexample (M,G) ∈ C contains a sig-
nificant pair Pi, Qi of spheres such that the intersection of the spheres is
transversal and consists of no more than six circles.

Conjecture 2. The number of equivalence classes of significant pairs of
spheres is finite.

One can easily see that the first conjecture implies the second. Let us
describe a few arguments in favor of Conjecture 1. The main idea is to
decrease the number #(P ∩ Q) of circles in P ∩ Q by several surgery tricks
similar to ones used in [2, 3]. Suppose that there is a disc D ⊂ P such that
D ∩Q = ∂D and D ∩G = ∅. Then the surgery of Q along D transforms Q
into two spheres S1, S2. See Fig. 5. Since Q is incompressible, at least one of
them (say S1) does not intersect G.

Figure 5:

Case 1. Suppose that S1 is separating. If it is nontrivial, then at least
one of the pairs P, S1 and Q,S1 is significant. By construction, #(P ∩ S1)
and #(Q ∩ S1) are less than #(P ∩Q) (after a small isotopy of S1). If S1 is
trivial, then #(P ∩Q) can be decreased by an isotopy of Q invariant on G.

Case 2. Suppose that S1 is nonseparating. Then we connect S1, S2 with a
thin tube so as to obtain a new admissible sphere S3, see Fig. 5 to the right.
Since Q is nontrivial, so is S3. As above, at least one of the pairs P, S3 and
Q,S3 is significant and #(P ∩ S3), #(Q ∩ S3) are less than #(P ∩Q).

Further on we may assume that every disc component of (P ∪Q)\(P ∩Q)
intersects G. Since P, Q are admissible, each of them contains either two or
three disc components. All other components are annuli, except one disc
with two holes in the case of three disc components.

Suppose that #(P ∩Q) > 6. Then one can find two neighboring annular
components A1, A2 ⊂ P such that for i = 1, 2 we have Ai ∩ Q = ∂Ai and
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Ai ∩ G = ∅. This was the motivation behind the restriction on the number
of intersection circles in Conjecture 1. Let us perform two surgeries of Q.
The first surgery along A1 transforms Q into into a sphere S1 and a torus
T . The second surgery along a parallel copy of A2 transforms S1 ∪ T into
either a sphere S2 or the union of a sphere and a torus. See Fig. 6. If one of
the spheres S1, S2 together with P form a significant pair, we are done. The
obstacle is that this may be not the case. However, in all examples I have
considered the described surgery tricks turned to be sufficient for decreasing
the number of intersection circles to no more than six.

Figure 6:

Another argument in favor of Conjectures 1,2 is that for global knots
(i.e., for knots in 3-manifolds) they are true. Indeed, one can extract from
the prime decomposition theorem of K. Miyazaki [4] that for knots there is
actually only one basic counterexample. The intersection of corresponding
significant spheres consists of 3 circles.

5 From knotted graphs to orbifolds

It is well-known that any closed orientable 3-orbifold can be presented as
a pair (M,G∗), where M is an orientable 3-manifold and G∗ a collection
of disjoint circles and trivalent graphs in M such that each circle and each
edge of G∗ carries an order in {n ∈ N : n ≥ 2}. The edges outgoing any
vertex should have orders (2, 2, n) for n ≥ 2, or (2, 3, n) for n ∈ {3, 4, 5}.
See [1, 5]. Let G be a knotted graph in a 3-manifold M such that G is a
disjoint union of circles and trivalent graphs. In order to transform (M, G)
into a 3-orbifold it suffices to equip all circles and edges of G with appropriate
orders. The simplest way to do that is to take all orders equal to 2. So the
counterexample in section 3 can be easily converted into a counterexample
for the prime decomposition theorem for 3-orbifolds.
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