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Abstract

We introduce the K3 mirror surfaces and establish a link between this sym-
metry and the duality of Amold on 14 exceptional singularities of modality one.
The combinatorial description of non-linear change of variables is presented to
the study of birational geometry in the mirror symmetry context for manifolds
with vanishing first Chern class.

Introduction

This note will be devoted to discussing the topological properties of mirror
symmetry of complex manifolds with trivial first Chern class. We shall study
the mirror manifolds by orbifold construction. The combinatorial nature of the
cohomology (with the coefficient in complex numbers) will be our main concern
here, especially those properties related to the corresponding N=2 conformal field
theory [22]. The mirror symmetry has been studied on a large class of ¢; = 0
Kahler 3—folds, i.e. Calabi-Yau spaces [2, 5, 8, 15, 22]. The topological aspect
of this symmetry principle essentially lies in the context of toric geometry [15],
hence the same treatment works also for manifolds of any dimension [3, 16]. A
remarkable fact in dimension 2 and 3 about this approach appears in the non-
singular structure of the canonical model in this construction [10, 14], even
though the same property is expected to hold in general. It has been known
that the orbifold construction of mirror manifolds is closely related to the strange
duality of Amold for the 14 exceptional singularities of modality one [1, 18,
11, 19, 21]. But the mathematical link between these two subjects has not been
thoroughly explored yet. It is the aim of this paper is to extract this relation
from the mirror structure of K3 surfaces. At this moment, it is not clear how
general the orbifold technique and the method of non-linear change of variables
[9, 22] (or fractional transformation in [19]) could be for constructing Calabi-
Yau mirror manifolds, even though they are exttemely useful in most known
examples. However the deeper understanding of the relation between mirror
symmetry and Amold’s duality should provide further informations for the general
mirror construction of ¢; = 0 manifolds.

The mirror symmetry means a pair of ¢; = 0 m-folds having the same
cohomology by interchanging A1 and H™ 1!, For m = 2, these manifolds
are K3 surfaces, hence with the same H!"! = H™ 11  Nevertheless, one can
still introduce a refined structure on H1! for those K3 in this context, and again
speak of the mirror symmetry as higher dimensional cases. The space H"! is now
expressed by a sum of certain subspaces, which depends on a birational model of
the K3 as a hypersurface in weighted 3—space. The description will be given in
Sect. 3. Having the mirror K3 surfaces, we can make contact between Arnold’s
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duality and this mirror structure in Sect. 4. In Sect. 1, we briefly review the
main results in [10, 15, 16] which will be needed for the discussion of this paper.
The non-linear change of variables in [9, 11, 19] is quite similar to the birational
technique studied by T. Shioda [17], but some extra consideration is required for
the c; = 0 structure. In Sect. 2, we shall derive the mathematical structure of
non-linear change of variables using the combinatorial description of Sect. 1. For
the purpose of illustration, most of the discussions in this paper is followed by
some specific examples.

I am most pleased to acknowledge several fruitful discussions with Professor
K. Saito during my short stay at Kyoto University. And I would also like to
thank Professor F. Hirzebruch for the opportunity of visiting Max-Planck-Institut
fur Mathematik while this work was done.

Section 1. Mirror Mainifolds

As a preparation to the discussion of this paper, we begin with a general
framework on mirror manifolds through the orbifold construction.

Let Z be a degree d quasi-smooth hypersurface in the weighted
projective space WPS"1 defined by a quasi-homogeneous polynomial

N1yenyfin)
f(2) (= f(Z1,...,2,)). Assume n > 3, and

d=2nj , gcd(nﬂj#i):l\?’i. (1)

i=1

Let G be a diagonal subgroup of
SD := {dia[e,...,an] € SLa(C)| f(e121,...,anZy) = f(21,.-.,24)}. (2)
Then the quotient

X=Z2/G.

is a V-manifold with the trivial canonical sheaf. The cohomology of X' can be
described by the Jacobian ring of f(Z),

of
J= C[Zl,...,Z,,]/(—a—Z:) ,
in the following procedure. Denote

ng .
q.'=j for 1=1,...,n,

ZE=2zbh ... 2% for k=(ki,..., k) €Z",
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J; = the Jacobian ring of f(Z|Z; =0for i€ l), I C{1,...,n}.

The linear action of G induces one on C{Z], hence on J, J;. For a non-negative
integer m, let

(;]I)G'"‘ = the subspace of (JI)G generated by [Z"] with (3)
k=(k,...,kn), ki=0fori€l, Y gi(kj+1)=m+1.
ier
3G,m - (JG)G,m )
By > ¢ =1,

36™ = the subspace of J¢ generated by [Z"] with Z giki = m.

i=1
Then the following is a well-known fact for Hodge theory of A’ [20] :
HM (X, =2 39 (4)

(Here the subscript in H™~31(X’), refers the primitive part of the cohomology;
in the case n > 4, this subscript can be dropped. )

Consider the special marginal deformation of the Fermat hypersurface in
WPn—l

(nl,...,n.):
n 1 d‘
Z: f(Z)_l;diZi ~tZy---Zy=0, te C—{0}. (5)
Now the space (4) has a canonical basis expressed by a combinatorial data
depending only on ¢; (: -j—) It is defined by the method of toric geometry
as follows. Given a n—dimensional lattice N and its dual M := Homz(N,Z),
denote N = N@1Q NMp=N@zR, Mg =M@z Q, Mg = M @zR, and
the pairing of Ng and MR by
<,> Npx Mg —R, (z,y) »<z,y> .

Consider a n—dimensional rational simplicial cone C in Ng with its dual cone

C:={yeMg| <z,y>>0 for z €C}.
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For a given data (N,C,q,v) with ¢ € NNInt(C), v € M N Int(d) and
< q,v >= 1, define

E(N,C,q,v)={zse NnC|<z,v>=1}(] |J Int(i-dim face of C),
1<i<(n-1)

n
el,...,e" : the primitive elements in N with C =z Rzoei,

=1

n
€1,...,6 : the primitive elements in M with C =ZRZO€.-.

1=1

Assume the following conditions hold:
<e v>=<gqé>=1 for all i. (6)

Then we have

n

n n n
g=Y qe=) ¢, v=3 q&=) e,

=1 i=1 i=1 1=1

N(C) :=éze" CNC ézé’ , (7)
1=1

1=1

Pzéi c M cNECY = Ple,
i=1 i=1
here {ei}, ({¢} ) is the dual basis of {e'}%, ({&i}i; resp.) in
=
Mgq (Nq resp.), and ¢; = i— for some positive integer d;. It follows
€ =d;e; for all 2, (8)

Regard WPE‘;)I as a compactification of the (n — 1)-torus T with

Homag (T, C*) = N(C)/(N(C)NQq) . (9)

Then the homogeneous coordinate Z; of I./VPE‘;)1 can be identified with ¢; €
N(C)*. Hence we have the correspondence:

& « 2% forall i,
ver 2y Zn

and these are the monomials appeared in the equation (5). One can identify the
quotient @*_,Ze' / @™, Ze* with the diagonal group

=1

D, = {dia[a,,...,a,.] € GLy(C)| a¥ = IVi} .



It acts on C", hence on C{Z,,...,Z,]. Now the subgroup of D,
SDy = DyNSL.(C) ,

is just the group SD of (2) for the polynomial f(Z) defined by (5). It contains
the cyclic group

Q =< dia[e*™™,... ] > | (10)
The lattice N corresponds the subgroup
G(N)= N/ @l Z¢' (11)
with
Q CG(N) CSD, . (12)

For G = G(N), we shall also denote the lattices N, M by Ng, M respectively.
Regard the lattice Ng/(Ng N Qgq) as the group of 1-parameter subgroups of the
(n —1)-torus T/G:

Homyg ¢(T/G, C*) = Ng/(Nc N Qq)

here T is the torus in (9). The quotient WP;',;)I /G is considered as the T/G-
compactification associated to the cone C, and we have the Calabi-Yau hyper-
surface

X=Z/G (13) P

with Z defined by (5). From now on we will usually write
(Z1,...,2Z,) = the orbit of [Z),...,Z,] in X for {Z),...,Z,]€ 2.

Consider the dual data (M, ¢,v, q) of (N,C, q,v). Through the identification

D, = ézé‘/éze‘ = éle;/élé’;,
=1

=1 =1 =1

the subgroup G(M) also satisfies the condition (12). We shall call G(N), G(M)
the mirror subgroups. From this definition, the characterization of mirror sub-
groups G, G’ of SD, is given by one of the following equivalent conditions:

{NG = Mg
Mg = Ng

In particular, Q and SD, are mirrors of each other. The subset EgMa,é,v,q)
in the lattice Mg encodes the essential part of the cohomology of A, and the
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following proposition provides a combinatorial description of H"~%1(X),. For
its argument, one could refer to [16].

Proposition 1.

Hn—3,1(x)0 ~ JG’I ,

and the elements
(24, k€ E(Mg,¢,v,0) U o},

form a basis of J1.

For convenience, in the following we shall simply write E(N), E(M) for
E(N,C,q,v), E(M, é,u,q) if there is no danger of confusion. Now the sim-
plicial cones C, C are the first quadrant cones with respective to the bases
{e'}i_, ,{&}iz, respectively. For a subset I of {1,...,n}, by the I—face of
the cone, we mean those elements having zero value for all the j—th coordinates
with 7 & I. Define

E(N;I) = E(N)N (I — face of (),
E(N;I)* = E(N; 1) - | ] E(N; J),
JCI

and similarly for E{(M;I), E(M;I)*. Then we have

n—2 n—2
EN)= | EW;D', EM)y= | E(M; D). (14)
|7]=2 H|=2

For a group G satisfying (12), there is a birational model 2—.’-\/G for Z/G such that
the exceptional divisors in Z/G are essentially described by E(Ng). Moreover,
for n = 4 and 5, these birational models Z/G are non-singular projective
manifolds. Using Proposition 1 and a description of the deformation of Z/G,
one can establish a correspondence between cohomology H', H*~%! of Z Z/G
and Z/G' fora r a mirror pair G, G'. The detail can be found in [16] In particular,
forn=5 2 / G and 2 / G’ are Calabi-Yau spaces with

2! (Z’TG) ~ Hl,l(z’/'a:) ’
78 (576‘) ~ g1 (é‘féa).
For n = 4, we have H*~%! = H'!. However, the mirror property for K3

surfaces Z / G, 2 / G’ appears in a more refined structure of H1:! which will be
discussed in Sect. 3.



Section 2. Non - linear Change of Variables

In this section, the non-linear change of variables will be derived using
the combinatorial data introduced in the previous section. Let (N,C,q,v),

(M C,v q) {e'}i)s {g'} , {ei}ioy, {€i}=, be the same as before, and
they satisfy the conditions (é) (7) (8). Then N = Ng with G = G(N) defined

by (11). Consider a n—dimensional rational simplicial cone F in Np generated
by n elements f1,..., " of C N N with

gent(F), <f,o>=1Vj . (15)
The dual basis {f;};_, of {f'};_, generates the dual cone ¥, and we have

FccC, Fo¢

Write

n

F=Y fl ,1<j<n,

then .
fle Qo , Zf.j=1 : (16)

=1

no
From } 7§ C N, it follows that
Jj=1

Mcd 1,
j=1

Bvl . fl
()= Eei)

for m? € Zo. In fact, we have

m'::dlf.]’ for 1Si,j5n,

el _ f1
( : ) = (-G)l_(_i,jgn( E ) . (18)
€n fn



By (15), one has the expression

n ) nf.
g=)Y d;ff with gi= 5 (19)
j=1

n;, d satisfying (1). And the relation (16) gives

v=if,- . (20)

Let T! be the (n — 1)—torus which has the 1-parameter subgroups defined by
Homa.lg.gp (Tlr C') = (EB?=IZF)/((®?=1ZP) n QQ) . (21)

Then WP"r:1 is the compactification of T* associated to the cone F, and has the
homogencoﬁs coordinate [Y3,...,Y;] through the identification:

fi @Y, forall :. (22)
By (17) (20), we have the correspondence:

n ,
& o [[Y™ forall i,

j=1
ve Y)Y,
Now the relation (18) defines a non-linear change of variables from WPE‘;_,; to
n—1, '
WP(m) : ) |
Xi=[[YF fori=1,...,n. (23)
j=1

From the above relation, the equation (5) is transformed into

=Yzl -mva, @
J

1=1

and denote
Y= {[Y] € WPE';5| g(Y) = 0} . (25)

We may regard

Gt = N/ (Z Zfi) , (26)
1=1



as a diagonal group acting on {Y,...,Y,] which leaves the polynomial g(Y)

n-1

invariant. The quotient WP(n_,) /G! is the compactification of (n — 1)—torus
T#/G!, which satisfies

Homug. g (T!/G*, C*) = N/(N N Q)

As TY/G* and T/G have the same 1-parameter subgroups, the relation (23) defines
an isomorphism:

/G ~T/G,
hence birattonal maps

n=1 4 AN n—1
WP/ = WP /G

V/IGP -5 X, (27)
with X, Y/G? defined by (13) (25) (26). Its inverse is given by
Yi=[[XP fori=1,..,n, (28)
i=1

; i — ()
with (hj)lsi,jgn - (f‘ )15.‘,j5n'

Notice that one can also reverse the above construction by starting from the
non-linear change of variables (23), which is the procedure given in [9, 11, 19].
We now illustrate the above discussion by the following examples of Calabi-Yau
spaces.

Example 1. Consider the hypersurface in WP?2.2,2,1.1):

1

8

Now the group SD, is isomorphic to (2/327)* x (2/8Z) and Q is generated by
o [am i oami oam 2m

cha.[c t,e 1 ,et e et ] Let G be the subgroup of SD, defined by

1 1 1 1
Z:f(2)= Zz} + Zz; + Zz; +-28 + gzg ~ 12122732425 =0.

2z 3xm

G =< dia.[eafi,elfi,e t.,e . ,elfi],dia.[l, 1, l,eg'?,c_zfi] >,

and



By (6) (7), we have

el,...,e° = the standard base in R%,
e1,...,e5 = the standard base in R®*

v 1 . v 1o :
e'=Ze', éi=4e; (1=1,2,3); eJ=§e’, €;=4e; (j =4,5.)

5 5
C=ZR20€£ , C‘=ZR206;' ,

i= i=1
1 ¢ 1- 1 5
q=ZZe'+§(e4+es) , v=Ze,~
i=1 1=1
Consider the rational cone
5
F=Y Ryf
=1

where
1 00 0 O
01 0 0O

(F 12 P Py=(e e & e )0 010 o0,

0 00 1 %
0 0 0 0 g

or
1 0 0 0 0
01 0 0 O

(el €* e et eS)=(f ## # f# )]0 0 1 0 o

0 00 1 =
0 0 0O —;

Then we have

5

N=> 1f+1e'+1q ,.
=1
Ll ey, 3y 1
g=2(F +f +f)+28f“+7f ,
hence (24) (25) (26) are now
Gt =< dia [ez'F, cllﬁ, ezz_i’caz:'i’ cqi] >,

wWP{

(ni

) = WP‘(‘z'z’tz’l,l), wpzﬂ:) = WP?7,7,7,3,4))

3

1 .

Y:g(Y)= g( E Y,“ + Y48Y5 + Y57) -t'Y.Y3Y Y5 =0 in WPz7,7,7,3,4) )
=1

y=Y/G'.
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The corresponding non-linear changes of variables (23) (28) are expressed by

1 -
24 = Vi, Ya= 22" L (29)

Zi=Y; (‘=11233)a {Yi:zf (i=112)3)a
{Zs=}’57 Ys = Z'

which define the biraional map Y «~ --- = X. g.ed.
Example 2. Consider the quintic in projective 4—space:

5
Z:f(2)= %Zz{' —t2,2,7:74%s =0 in P*.
=1

Let
G = SD,,
X =Z/SD,,
N = Ngp,

By‘(6) (7), we have

e',...,e> =the standard base in R®,

e1,...,es = the standard base in R®*,

e'=ge, i =05e; Vi,

where

(f] f2 fa f4 f5)=(el e 3 ¢t 65)

wi— O O O b
o O O b
o O obin]— O
O = O O
that— O O O

11



or

(=)
|
1S

256 —64 1

20

w

208

(e & e S)=( £ P f P

B
[y =
hin

EE
|

S
H
e
2R

&
&5l
2

Then we have

5
N =Y 1f+1e'+1q ,

1 l'-.-51
q= g Z € E f' ’
1=1 :=l

hence

] 5 . . =4 . -8
G‘=<eaflt'd.,dia[cﬁ]52n 853?21 c.‘mZn 651.%21: 82—0}211 >,

— 4 — 4

y: g(Y) ‘-(ZY Y.+1+Y5Y1) — t"Y2YaYaYs =0 in P*,

1=1

The corresponding non-linear change of variables for the biraional map
Y/G} ... — X is given by

7, = Yliyzl
Zz_}”Y“
l

Z =YY}
g. l
Z=YY
Zs =Y, Y

=64

Y Zzoszzos Zs_?z :o.-.Z 705
YZ Zzosz%&z?&iz:oaz%

.I.L -3" Z.iﬁ.
Y; = Z 205 Z 705 Z 205 Z 205 Zsms ,
_1. .LL it m .
}/4 = Zlnos Z 205 Zszos 24105 Zszos
Y- = Zﬁz#z%z:oszgﬁ
5= 4 5

q.e.d.

For the case of interest to us, we shall focus only on those polynomials
g(Y) of (24) whose zeros have exactly one critical point in C" at the origin. In
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this situation, both J/ G}, X have only abelian quotient singularities, where the
method of toroidal compactification can be applied for resolvmg the singularities.

For n = 4 and 5, the “minimal” toroidal resolution )/ Gt X are non-singular
projective manifolds with the trivial canonical bundle. From all the examples we
have studied, there should exist a biregular isomorphism between )/ G' and X
in a general context such that it is compactible with the map (27). Here we shall
illustrate this phenomenon through an example of Calabi-Yau space. For n = 4,
more examples related to Amold’s strange duality will be discussed in Sect. 4.

For later use, we describe the connection between the non-linear change of
variables and birational relations of cyclic quotient singularity in surface cases.
The results should be well-known to specialists. But the required formulation
could not be found in literature, so we just derive it here. For a positive integer
d, we denote

Ag1 = Cz/dia[ezii,e%ﬂ] ,
(z1,23) = the element in A4_; determined by (z;,2;) € C?,
Ay-1 = the minimal resolution of A4_;.
Lemma 1 For positive integers d, h with d > h, the map
L1 Apyp — Ag
defined by the relation

(21,22) = (ylyzdﬁh,yga) for (y1,y2) € An-1, (21,22) € Ag—1 , (30)

is an injective morphism with the image A4, — { (z1,0) | 21 # 0}. Furthermore,
the morphism . induces the embedding between their minimal resolutions,

t: Apm1 = Ag

Proof. It is obvious that the morphism ¢ defines an isomorphism between
An_y and Ag_; — {(21,0) |21 # 0}, and its inverse is given by

_d=h d - —_
(yla y2) = (2122 T:z?,x) for (ylwyi') € Ah—lv (21122) € Ad—l .

The expression of local coordinates of fl;:l is well-known. It can be obtained
by the method of toroidal compactification using the combinatorial data from the
intersection of first quadrant cone with the lattice

(i) 2(2)+2(4).

13
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In this set, all the elements with 1 as the sum of its components are given by

For each p‘, there associates a divisor D in A;:l. Then D, (1<i<d-1)are
the exceptional divisors, and D, D« the proper transform of {z; = 0}, {z; = 0}
respectively. For each k, (p*~1, p*) forms a basis of the above lattice and its dual
basis defines a local affine coordinate of A—;:l. denoted by (si,tx). The local
equations of Dju-1, Dy are {s; =0}, {t; =0} respectively, and the relation
between (si,tx) and (z1,22) is given by

k_k—d
Sk = 272, ;

,for k=1,...,d. 31

{tk z}...kzg_k+1 ’ ’ ( )

Similarly, A’;:l has the divisors D( o)’ ,0 <1 £ h, and coordinate systems
(sh,th) ,1 S k< A,

o = ykyk=h
{ i:=y1}_iy$’_k+l ,for k=1,...,h. (32)
By (30) (31) (32), one has
o
{Sk_s,k for k=1,...,h.
tk =tk

Therefore the morphism ¢ is an embedding under which

d
iAo~ A - | Dy
i=h+1

q.e.d.
Example 3. Let X', Y be the Calabi-Yau orbifolds in Example 1. Their
singularities are described by

Sing (V)= { Y4 = Y5 = 0} U {[0,0,0,1,0]},
Sing (X)= {X4 = X5 =0} .

The exceptional divisors in their Calabi-Yau resolutions

oy 5’—»3’,
cy: X =X

14



are given by

6

03'({Ya=Ys =0}) = | J Ex, a fiber bundle with fiber As,
k=1

35'({[0,0,0,1,0]}) = E ~ P? with Opa2(—3) normal bundle,

T
a;,l({)q = Xs = 0}) = (J D&, a fiber bundle with fiber 4.
k=1

The non-linear change of variables (23) defines a birational morphism
v: Y-{0,0,0,1,0]} - X
with o({Ys = 0}) = Sing(X). In fact, ¢ defines the biregular morphism
¢: Y-{Ys =0} X —{Z =0}.
The above isomorphism can be extended to the one between Y and X with

E « the proper transform of {Zs =0} in X,
E; » D; for :=1,...,6,

— 6 — 7
such that the fiber As of |J E; embeds in A7 of |J D; as in Lemma 1. By

=1 i=1
- ~ 6
identifying Y with A, ) is obtained by blowing down | J E; to a curve, F to a
=1

7
point; while X by blowing down |J D; to a curve, (see Figure 1). g.e.d.
1=1

Remark . By (19) (20), the data (F, N, ¢, v) discussed in this section satisfies
only half of the conditions in (6) (7). In particular, < g, fy,- >s£ 1 for some 2, which
means the equation (24) of Y is not of Fermat-type. The combinatorial description
of Sect. 1 does not apply to Y. The question of a canonical representative in the
lattice N for the cohomology of Y is rather intriguing. It should shed some light
on some further principles of the mirror symmetry.

Section 3. Mirror Symmetry of K3 Surfaces

In this section the case of n = 4 is discussed. Then the only I's involved in
(14) are {I| = 2 and we have E(N); = E(N);. In this case, the resolution of X,

c: X 5 X=Z/G ,

is a K3 surface. The singular set of X is a union of X; (:= Xn{Z =0, ¢ I}).
In fact,

Xy C Sing(X) & E(Ng); #9.

15



In which case X; consists of only a finite elements, and o~ (z) is a union of
exceptional divisors parametrized by E(Ng); for each z € X. Let §; be the
O—cocycle of X; with the value one for each of its elements. Then the complement
of 6 in H®(Xy) is H°(X]), having a basis with indices E(M¢);.. As always,
we identify '

(E(Ng); x 61) | | (E(N); x E(Mg)y.)
with a basis of

@ {HO(D)|D : exceptional divisor inX over .’c'f} ,
which is contained in H! (f ) via the isomorphism:

HY (f) ~ HY(X) @ EB{H{’(D)|D : exceptional divisor in .«‘?},
H"(X) ~ C(Fubini) ® H"(X), .
(Here (Fubini) denotes the class of the Fubini metric of WP%M)). Define

HY(R) = HY (%),

[4

H“(f)d = C(Fubini) ® @) {CBI B € E(Ng); x 81}, (33)
I

B (%) =D 1{CAI € E(Na); x E(Ma)p.},
I

then we have

119\ ~ gli{ v Li{ v 1L,1{ ¥
(7)1 (8) @ (7) (7). oo
Now, using Proposition 1 and the relation (33), from Hodge theory and the
structure of exceptional divisors of X, one can derive the following mirror
property of K3 orbifolds by the same argument as Theorem 4 of [15]:
Proposition 2 Let G, G' be a pair of mirror subgroups of SD, and
X=Z/G, X'=2Z/G. Then

c

Section 4. Strange Duality of Arnold
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Among the 14 exceptional singularities of modality one, there is a duality of
Armold with the Dolgachev and Gabrielov numbers exchanged [1, 18]. Each of
these 14 families is given by 3 indices ki, k9, k3 of homogeneity and an integer
d(= |Coxter number|) with the relation d = k; +k3+k3+1, hence corresponds to
an one-parameter family of quasi-smooth hypersurfaces in WP:(;kln kaks,1): Through
this relation, these 14 exceptional singularities have been explained by K3 surfaces
in [6, 12]. In this section, we shall connect the Arnold’s duality with mirror K3
surfaces introduced in the previous section. At this moment, only part of these
14 exceptional singularities are found to have link with the mirror K3 surfaces
of Fermat-type in weighted 3—sapces. Here is the list ( with notations in [1]) of
which these relations have been obtained in this paper:

Notation, Homogeneity, d =|Coxter number]|

Urz 4,4,3 12
Wiz 10,5,4 20
Ei4 12,3,8 24 : (35)
Q1o 6,9,8 24
Un 6,4,7 18
713 3,5,9 18

For each d in the above table, there exist integers ny,n2, n3 such that

d .
n 22 di=— €Z, fori1=1,23,

n;
d=ny +nz+n3+1, (36)
ny is divisible by n; .

The solutions of ny,nq,n3 are as follows:

d ni,ny,n3

12 4,43

20 10,54 . (37)
24 12,3,8

18 6,2,9

For the above integers d,ny,n,,n3, we consider the following two families of
hypersurfaces in WP

3 .
(nllnﬂv“-'hl).

Z:f(2)=ZP +Z0 4+ 2P + 728 —t212:2324 =0,

d=nj
ZfM2)= Y zzv + ¥ ZY + 23 —t2,2,2,2, = 0.

1<if <3 16543
njln; n; ot facctor of other n;
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By the list of weighted K3 hypersurfaces {7, 13], the integers d, n, ng, n3 which
satisfy the condition (36) with quasi-smooth families Z,2Z* are given by (37)
plus one more solution

(d; nl’n21n3) = (10; 2,2,35) ’ (38)

Denote SD,;, SD* the groups (2) for f(Z), f*(Z) respectively. The subgroup
Q of (10) is now given by ¢; = 3- (=1,2,3), ¢4 = § . For all cases in (37)
and (38), we have

ISD,|=d-dy .

In fact, SD, is generated by the subgroup @ and the element dia [ez‘?, e'z‘?, 1, 1] .
Then

d .
d = dyd; , (n1,n2,n3) = (d—:ds,da,dz), ged(de,d3) = 1.  (39)
For SD*, we have
Q for d = 12,20, 24,
SD* = { < Q,dia[l,_—l,—.l,l] > for d = 18,
<Q,dia[ez'g'l,e‘3?,l,1] > for d =10.

Hence

SD* :=8D*/Q ~{ 7/21 for d = 18, (40)
/37  for d=10.
2*/SD* =2*/SD*

{ 0 for d=12,20,24,

As the singularities of Z, Z* have the same structure, the same decomposition
(34) of the cohomology of Z applies also to Z*. Hence the K3 surfaces X,z
form a mirror pair in the sense that Proposition 2 holds. Through the non-linear
change of coordinates of X', we are going tc; describe a quasi-smooth hypersurface

Y in some WP?H. oy With d =1+ Y- n! for each d, such that Y/SD* is
1 T Ty, i=1

birational to X'. Let f!, 2, %, f be the elements in Nsp, defined by
-1
1 .2 a £
(e’e)giﬁ:_l 0) if ny # ng,
(', 1) = &=
(el,ez) al- i'a-'i if ny = na, (41)
1 1

f3=83,f4=84 .

18



Then {f'} _, generates a simplicial cone F in (Ngp, ), satisfying (15). We have

Nsp, = er’+zq for d =12,20,24,

i=1
4

Ngp, = ZZfi+Zq+Z e? for d=18,10.
i=1

The non-linear change of variables associated to {§'}_ will determine a degree
d quasi-smooth hypersurface Y in WP(n,, nl 1) and a dlagonal group G* such

that X is birational to Y/ G*. In fact, the WP?}_ ot at 1y Do Y/G? are as follows:

d=12,20, (n},ny,n}) = (n1,ng,n3), V/G'=Y=2*;

d=24,  (n},nh,n})=(6,9,8), Y/G =
4
y = {Y] Y22+ Y14+ Y32+ Y424 - t l-[ y} = 0}; (42)
j=1

d=18, (n},n},n})=(3,5,9), Y/G'=Y/<dia[~1,-1,1,1]>,

y={Y1Y23+Y16+}32+Y;18—tHYJ~=O};

=1
d=10, (ni,ny,ny)=1(2,2,5), Y=2*, Y/Gt = Z2*/SD* .
In the above discussion, we have seen that the mirror pair (X', Z2*) leads to a
pair (Y, Z*/SD*) of K3 orbifolds with the hypersurface ). Using (40) and

the technique of non-linear change of variables, one can show that 2*/SD* is
birational to the following hypersurfaces in weighted 3—space:

d=12,20,24 2*/SD*=2*;
d=18, Z*/SD* « --- — hypersurface in WF’?6 47,1) defined by
W3+ WiWs + W Wi+ W, -tHW =0,
d=10, Z2*/SD* « ... — hypersurface inJ;\l/P:(’z’zlsll) defined by
W3W22+W,2W23+W§+W}°—tf[w,-=0.

These hypersurfaces are all quasi-smooth except d = 10. For d # 10, ie. d
in (37), the pairing of ) with the above hypersurface is the ones of Arnold’s
duality in (35).
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We now describe the birational equivalence between & and )/ G? from the
identified K3 surface X = Y/G®. By (39), one can show that

20 {23 = Z; =0} = {[a,1,0,0]|a® = -1},
zn{zl=z4=0}={o,1,e5i,o ,
Zﬂ{Zg=Z4=0}={ 1,0,¢d 0|},
20 {2 = 2, =0} = {[0,0, 8, 1]j6* = —1}.

Therefore the singular set of X (:= Z/SD,) consists of 3 + d3 elements,
al,ag,ag,bl,...,bd,. where

ap = [0,1,e5i,0], ap = [1,0,eif,o Ay = [eﬁ‘,l,o,o],

be = [0,0,eA0 0] k=1, dy,
with the singularity-type
bi: Az (1 <k < dg),
ay . Ad;—l , a3 :Agcd(m,n;)-d;—l ; aj A,‘,_l .

Leto: X — X be the K3 resolution. Consider the following P! curves in X':

o i by)=Ex U---UEgq4 ) ,1<k<d;,

o™ Na1) =Dy U---UDyg1 ,

a_l(az) = D2;1 U Tt U DZ,gcd(n;,n;)d;-l 3

o~} a3) =D31U---UD3pm
I'; = the proper transform of {Z; =0} in &, i=1,2,

such that the only intersection among these curves are given by:

Ej-Erjua=1, Dij-Dijn=1,
Fl : Dl,l = 13 I‘Z ’ D2,gcd(n;,n;)d1—1 = 1)
h-Eyi=1, Ti-Epg=1.

The above relations can be realized in their dual graphs:
d = 20,

Da gy
D33 Dy
D22 D3 g

Dy Dy,
Eyz
1, 3
Es
I ES s
Es)

20

Dl,l'




Q.
Il

24,

D
D 3.2
3.2 [DS:]

Dag
Dy
D36
Das
gn.i

2,3
Dl,?I D2.2

Dy Day *Dy 1

'Da,a
*Dy 2
'Da,1

E1n E1a B3 By
——

B3y B33 B3 Bpu
Iy e —

Ia

By (41), X is birational to }/G? by the change of variables

Z3=Y;
1 Zs=Yy
Zi= Y'Y,  (n= 230
{Zz= Yl‘hr {Yz= lezz,—& for d = 20,24,18,

dy =1 -
2=, A
dy—-1 -1 dy—1 .

{ Z2 pu— Y#I-Y bI {Y’z = Zf]-? 22;1—2 fOl‘ d = 12, 10.
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Identify X' with y75t through Lemma 1. Then Y/G? is obtained by blowing
down the following curves:

dy—-1 T
U Dy; ~ (1,0,¢%,0]
J=1
ged(ny,na)d; -1 -
LU U Dy = [0,5,0,0] for d = 20,24, 18,
=
na=1 N
D3J o [17_1’0101
=1
di—1 ——
ryu U Dl,j — [0,1,0,0]
=1
dy—1 N
r,u y D;; » [1,0,0,0] for d =12,10.
)
nz—J]. ——
U D3,j o [1,—1,0,0]
1=1

The above data determine the Dolgachev numbers of 53 for the families d =
12,20,24 in (35). We can also obtain the Dolgachev number of Z* from the
dual diagram of its exceptional curves, then compare it with the corresponding
HYY(Y),. This indicates the coincidence between the Dolgachev and Gabrielov
numbers in the Amold’s duality. For d = 18, the diagrams for resolution of
Y, Z*/SD* can also be obtained, and one can find their relation with the ones
for Y/ G}, Z*. We shall not give the detail here.

Remark . All the hypersurfaces discussed in this section are defined by a
quais-homogenous polynomial f(Z;, Zs, Z3, Z4) in some WP‘E’,l ate,1) With the
degree d = ¢ + €2 + £3 + 1. Any such surface has the same cohomology as the
Milnor fiber V := {(21,22,23) € C3|F(z1,zg,23) = 1}, where

F(Zy,22,23) = f(Z1,23,23,0).

In fact, the hypersurface is the compactification V of V. Since the curve
{{zl, T, Z) €WPS, (21,7, 25) = o} is of genus 0, the Hodge theory
of Milnor fiber V implies

aF
Hz(V)O ~ C[21,22,23]/ (3_2,)

[20]. Therefore the conclusion obtained in this section can also be formulated in
terms of Jacobian ring of the polynomial F(Z,, Z,, Z3).
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