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Abstract

We introduce the K3 mirror surfaees and establish a link between this sym
metry and the duality of Amold on 14 exceptional singularities of modality one.
The combinatorial deseription of non-linear ehange of variables is presented 10

the study of birational geometry in the mirror symmetry eontext for manifolds
with vanishing first Cbern elass.

Introduction

This note will be devoted to discussing the topological properties of mirror
symmetry of eomplex manifolds with trivial first Chern class. We shall study
the mirror manifolds by orbifold construetion. Tbe eombinatorial nature of the
cohomology (with the coefficient in eomplex numbers) will be our main concern
here, especially those properties related to the eorresponding N=2 eonfonnal field
theory [22]. The mirror symmetry has been studied on a large elass of Cl = 0
Kahler 3--folds, i.e. Calabi-Yau spaees [2, 5, 8, 15, 22]. The topological aspect
of this symmetry principle essential1y lies in the context of torie geometry [15],
hence the same treaunent works also for manifolds of any dimension [3, 16]. A
remarkable fact in dimension 2 and 3 about this approach appears in the nOD
singular structure of the canonical model in this construction [10, 14], even
though the same property is expected 10 hold in general. It has been known
that the orbifold construction of mirror manifolds is elosely related to the strange
duality of Amold for the 14 exceptional singularities of modality one [1, 18,
11, 19, 21]. But the mathematicallink between these two subjects has not been
thoroughly explored yel It is the aim of this paper is to extract this relation
from the rnirror structure of K3 surfaces. At this momen~ it is not clear how
general the orbifold teehnique and the method of non-linear change of variables
[9, 22] (or fractional transformation in [19]) eould be for constructing Calabi
Yau mirror manifolds, even though they are extremely useful in most known
examples. However the deeper understanding of the relation between mirror
symmetry and Amold' s duality should provide further infonnations for the general
mirror eonstruction of Cl = 0 manifolds.

The mirror symmetry means a pair of Cl = 0 rn-folds having the same
eohomology by interchanging HI,I and Hm-I,l. For m = 2, these manifolds
are K3 surfaces, hence with the same HI,I = Hm-l.l. Nevertheless, one can
still introduce a refined structure on HI,I for those K3 in this context, and again
speak of the mirror symmetry as higher dimensional eases. The space HI,1 is now
expressed by a sum of certain subspaces, which depends on a birational model of
the K3 as a hypersurface in weighted 3--space. The deseription will be given in
Sect 3. Having the mirrof K3 surfaces, we can make contact between Amold's
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duality and this mirror structure in Sect 4. In Sect 1, we briefty review the
main results in [10, 15, 16] which will be nreded for the discussion of this paper.
The non-linear change of variables in [9, 11, 19] is quite similar to the birational
teehnique studied by T. Shioda [17], but some extra consideration is required for
the Cl = 0 structure. In Sect 2, we shall derive the mathematical structure of
non-linear change of variables using the combinatorial description of Sect 1. For
the purpose of illustration, most of the discussions in this paper is followed by
some specific examples.

I am most pleased to acknowledge several fruitful discussions with Professor
K. Saito during my short stay at Kyoto University. And I would also like to
thank Professor F. Hirzebruch for the opportunity of visiting Max-Planck-Institut
für Mathematik while this work was done.

Section 1. Mirror Mainifolds

As apreparation to the discussion of this paper, we begin with a general
framework on mirror manifolds through the orbifold construction.

Let Z be a degree d quasi-smooth hypersurface in the weighted

projective space Wpr;~"'ln.) defined by a quasi-homogeneous polynomial
f(Z) (= f(Zt, .. . , Zn»). Assume n > 3, and

n

d = L: n j , gcd(n j Ij ~ i) = 1 Vi. (1)
;=1

Let G be a diagonal subgroup of

Then the quotient

x = Z/G.

is a V-manifold with the trivial canonical sheaf. The cohomology of X can be
described by the Jacobian ring of f(Z),

in the following procedure. Denote

n'
qi = -!. for i = 1, ... ,n ,

d
Zk = Zft ... Z:n ,for k = (kt, ... , kn) E Zn ,
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JI = the Jacobian ring of !(ZIZi = 0 for i E I), I C {I, ... , n}.

The linear action of Ginduces one on erZ], hence on J, JI. For a non-negative
integer m, let

(JI)G,m = the subspace of (JI)G generated by [Zl:] with (3)

k = (kI, . .. , kn ), ki = 0 for i EI, L: qj (kj +1) = m + 1.
jeI

JG,m = (Je)G,m .

By L: qi = 1,
i

n

JG,m = the subspace of JG generated by [ZI:] with L: qiki = m.
i=l

Then the following is a well-known fact for Hodge theory of X [20] :

(Here the subscript in Hn-a,l(X)o refers the primitive part of the cohomology;
in the case n > 4, this subscript can be dropped. )

Consider the special marginal defonnation of the Fennat hypersurface in
Wpn-1 .

(nl, ...,n.)"

Z: f(Z) = t ;. zt; - tZ1 ••• Zn = 0 , tEe - {O}. (5)
;=1 •

Now the space (4) has a canonical basis expressed by a combinatorial data

depending only on qi (= i). It is defined by the method of tone geometry

as folIows. Given an-dimensional lattice N and its dual M := H omz(N, Z),
denote NQ = N ®z Q, NR = N ®z R, MQ = M ~z Q, MR = M ®z R , and
the pairing of NR and MR by

<,>: NR X MR -+ R, (x,y) ....... < x,y >

Consider an-dimensional rational simplicial cone C in NR with its dual cone

C:= {y E MRI < x, y >~ 0 for x E C} .
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For a given data (N,C,q,v) with q E N n Int(C), v E M n Int(C) and

< q, v >= 1, define

E(N,C,q,v) = {x E Nncl < X,v >= I} n u Int(i-clim face of Cl,
l<i«n-l)

n

e1
, •.. ,en

: the primitive elements in N with C = L R2:,oe i
,

i=l
n

el,' .. , ln : the primitive elements in M with C= L R;:::oei.
i=l

Assume the following conditions hold:

< e l
, v >=< q, ei >= 1 für all i .

Then we have

(6)

n n

q =L qiei = L;i ,
i=l i=l

n n

V = L qiei = L ei ,
i=l i=l

n n

N(C):= EBle i C N c EBZ;i ,
i=l i=l

n n

EB lei C M C N(C)*:= EB lei,
i=l i=l

(7)

here {ei}?=l ({;i}~=l) is the dual basis of {ei}~l ({ei}?=l resp.) in

MQ (NQ resp.), and qi = -t for some positive integer di. It follows

(8)

Regard WP(';)l as a compactification of the (n - 1)-torus T with

Homalg. gp(T, C*) = N(C)/(N(C) n Qq) (9)

Then the homogeneous coordinate Zi of WP(';)l can be identified with ei E
N(C)*. Hence we have the correspondence:

ei ~ zti für all i ,

v ~ Zl'" Zn

and these are the monomials appeared in the equation (5). One can identi.fy the

quotient ffir=l l;i / ffi?=l lei with the diagonal group

Dq := {dia[a], ... , an] E GLn(C)1 at i = 1Vi} .
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It acts on Cn
, hence on C[Z!, ... , Zn]. Now the subgroup of Dq,

SDq = Dq n SLn(C) ,

is just the group SD of (2) for the polynomial f( Z) defined by (5). It contains
the cyclic group

Q =< dia [e2riql, ... , e2riqn] >

The lattice Neorresponds the subgroup

with

(11 )

(10)

Q C G(N) C SDq . (12)

For G = G(N), we shall also denote the lattices N, M by Na, Me respectively.
Regard the lattice Ne/(Ne n Qq) as the group of I-parameter subgroups of the
(n - l)-torus T /e:

Homalg.gp(T /G, C*) = Ne/(Ne n Qq)

here T is the torus in (9). The quotient WP(n~)1 /G is eonsidered as the T /G
compactification associated to the CODe C, and we have the Calabi-Yau hyper
surface

X= Z/G (13)

with Z defined by (5). From now on we will usually write

[Zl,". ,Zn] = the orbit of [Z!, ... , Zn] in X far [Z!, ... , Zn] E Z .

Consider the dual data (M,C,v,q) of (N,C,q,v). Through the identifieation

n n n n

Dq = EB Z;i / EB lei = EB lei/ EB lei,
i=l i=l i=l i=l

the subgroup G(M) also satisfies the condition (12). We shall eall G(N), G(M)
the mirror subgroups. From this definition, the eharaeterization of mirror sub
groups G, G' of SDq is given by one of the following equivalent eonditions:

{Na = MG'
MG = NG'

In particular, Q and SDq are mirrors of each other. The subset E ( MG, C, v, q)
in the lattice MG encodes the essential part of the cohomology of X, and the
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following proposition provides a combinatorial description of nn-3,1(x)o' For
its argumen4 one could refer to [16].

Proposition 1.

and the elements

[ze] , k E E(MG,C,v,q) U {v},

form a basis of JG,l.

For convenience, in the following we shall simply write E(N), E(M) for

E(N,C,q,v), E(M,C,v,q) if there is no danger of confusion. Now the sim-

plicial cones C, C are the first quadrant cones with respective to the bases

{eil :=1 ,{eil7=1 respectively. For a subset I of {I, ... ,n}, by the I -face of
the cone, we mean those elements having zero value for all the j-tb coordinates
with j rt I. Define

E(N; I) = E(N) n (I - face of Cl,
E(N; Ir = E(N; I) - UE(N; J),

JSI

and similarly for E(M; I), E(M; It. Then we have

n-2 n-2

E(N) = U E(N; 1)*, E(M) = U E(M; 1)* . (14)

111=2 111=2

-For a group C satisfying (12), there is a birational model Z / C for Z / C such that

the exceptional divisors in ZfC are essentially described by E(NG). Moreover~-for n = 4 and 5, these birational mcx:lels Z /G are non-singular projective-manifolds. Using Proposition 1 and a description of the defonnation of Z /G,
ODe can establish a correspondence between cohomology Hl,l, H n - 3,1 of ZjG
and ZTc' for a mirror pair G, G'. Tbe detail can be fouod in [16]. In particular,

for n = 5, ZTG and ZIC' are Calabi-Yau spaces with

H2 ,1 (ZjG) ~ Hl,l (ZlG') ,
H1,1(iTa) ~H2,1(ZlG').

For n = 4, we have Hn - 3 ,1 = Hl,l. However, the mirror property for K3
surfaces ZjG, ZIC' appears in a more refioed stnlcture of Hl,l which will be
discussed in Sect 3.
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Section 2. Non -linear Change of Variables

In this section, the non-linear change of variables will be derived using
the combinatorial data introduced in the previous section. Let (N, C, q, v),

(M,C,v,q). {eir=l' Fi}"=l' {ei}~=l' {ei}~=l be the same as before. and
they satisfy the conditions (ti) (7) (8). Then N = Ne with G = G(N) defined
by (11). Consider an-dimensional rational simplicial cone :F in NR generated
by n elements f1, ..• , f" of C n N with

q E Int(:F), < fi,v >= 1 Vj . (15)

The dual basis {fj}1=1 of {fi} ;=1 generates the dual cone I, and we have

:FeC, f::JC

Write
"r = L f! e

i
,1 5: j 5: n,

i=l

then
n

f! E Q~o, L f{ = 1 .
i=l

"From E Zfi e N, it follows that
i=l

and

for mi E Z~o. In fact, we have .

(16)

(17)
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By (15), one has the expression

n

q= Lqjti
;=1

with (19)

ni, cl satisfying (1). And the relation (16) gives

(20)

Let T' be the (n - 1)-torus which has the I-parameter subgroups defined by

Homalg.gp(T', C·) = (ffii=IZF)/((ffii=IZP) n Qq) (21)

Then WP(~) is the compactification of T' associated to the cone :F, and has the

homogeneous coordinate [Yl, .. " Yn] through the identification:

f. +-+ Yi for al1 i .

By (17) (20), we have the correspondence:

(22)

n .'" II m~ei +-+ lj'
;=1

v +-+ Yi ... Yn

for all i ,

(24)

(23)

Now the relation (18) defines a non-linear change of variables from WP(~) to

wpn-l.
(ni) •

n .

Xi = II ljft for i = 1, ... , n .
;=1

From the above relation, the equation (5) is transfonned into

n 1 .'""' II m~g(Y) = L.J -:- Yj I - tY1 ••• Yn ,
. 1 d. ..= )

and denate

y = {(YI E WP(~)I g(Y) =o} (25)

We may regard

C' := NI (t Zf ) ,
]=1

8
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as a diagonal group acting on [Yl,"" Yn ] which leaves the polynomial g(Y)
invariant The quotient WP(~)/GI is the c9mpactification of (n - 1)-torus

T' / (ß, which satisfies

Homalg. gp ( T' /C', C·) = NI (N n Qq)

As T' lau and T IG have the same I-parameter subgroups, the relation (23) defines
an isomorphism:

hence birational maps

WP(~)/Gf ~ ... -+ WP(n~)I/G,

y/cf ~ ••• -+ X, (27)

with X, Y /(;1 defined by (13) (25) (26). 115 inverse is given by

n ,
h'·

~ = TI Xi J for i = 1, ... , n , (28)
i=1

( ) ( ')-1with hi. = f! .
) 15i,i:5n I 1:5i,i:5n

Notice that one can also reverse the above construetion by starting from the
non-linear ehange of variables (23), whieh is the procedure given in [9, 11, 19].
We now illustrate the above discussion by the following examples of Calabi-Yau
spaees.

Example 1. Consider the hypersurface in WP(2,2,2,1,1):

Z : f(Z) = ~zt +~Z~ +~Z: +~Z: +~Z~ - tZ1Z2Z3Z..ZS = 0 .
4 4 4 B B

Now the group SDq is isomorphie to (Z/3Z)3 x (Z/BI) and Q is generated by

[
m lti 1a.i. l&. lU]dia e .. ,e ;' ,e , ,e 8 l e 8 • Let G be the subgroup of SDq defined by

[
lti 1.!i 1U 1!i 1U] [ :w. ln]G =< dia e , ,e , ,e , , e • ,e' ,dia 1, 1, 1, e • ,e- 8 >,

and

x = Z/G,

N=Na.
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(j = 4,5.)

S

, v = Lei .
;=1

By (6) (7), we have

e1, .•• , eS = the standard hase in RS,

el, . .. , es = the standard hase in RS• ,

" 1· ". 1·
el = -ei, ei = 4e; (i = 1,2,3) i e) = -e), ej = 4ej

4 8
S

C= LR~oe; ,
;=1

S

C = LR~oei ,
i=1

1 3 1
q = - L e; + _(e4 + eS)

4 . 8
1=1

Consider the rational cone
S

:F = L R~ofi
;=1

where
1 0 0 0 0
0 1 0 0 0

( fl f2 f3 f4 fS) = ( e1 e2 e3 e4 eS) 0 0 1 0 0
0 0 0 1 1

90 0 0 0 g-
or

1 0 0 0 0
0 1 0 0 0

( e1 e2 e3 e4 eS) = ( fl r f3 f· fS) 0 0 1 0 0
0 0 0 1 -1

T0 0 0 0 "[

Then we have
S

N = L Zfi+Z el+Z q ,.

i=1

1 ( 1 2 3) 3 cl 1 S
q = 4 f + f + f + 28' +"7 f ,

hence (24) (25) (26) are now

[
lU 2ti l.ti !ri 1ri]at =< dia e • ,e .', e :1 ,e n ,e--r >,

WP(rli) = WP(2,2,2,l,l)' WP(nt) = WP(7,7,7,3,4)'

Y :g(Y) = ~(t 1';4 +YlYs +YS
7

) - tl1Y2Y3l'4Ys = 0 in Wpt7.7.7.3,4)'

Y = Y/G'
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The corresponding non-linear changes of variables (23) (28) are expressed by

(29)

I

which define the biraional map Y +- ... --+ X. q.e.d.
Example 2. Consider the quintic in projective 4-space:

Let

G =SDq,

X = Z/SDq 1

N = Nsn.,.

By (6) (7), we have

e1, , eS = the standard base in R5 ,

el, , es = the standard base in RS* ,
" 1·
el = Sei , e; = 5e; Vi,

5

C = LR~oe; ,
;=1

1 5 .

q = 5' Lei,
;=1

Consider the rational cone

5

C= LR~oe; ,
;=1

S

V= Le;
i=1

5

:F= LR~ofi
;=1

where
4 1 0 0 0'5 I0 1 0 0'5 I( fl f2 f3 f4 fS ) = ( el e2 e3 e4 eS) 0 0 I 0! I0 0 0 1

! II 0 0 0'5 '5
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or
256 -64 16 -4 1

i , ~ W ~

( e1 e2 e3 e4 eS) = ( fl r f3 fl fS) "M ~ W
~1 :r 2R~ 2~S- 4

~ 2P; ~~ 2~S ~R~w 2ii5 m 21ß' 205

Then we have

5

N = LZfi+Zel+Zq ,
i=l

1 5 , 1 5 ,

q = - L e
l = - L f' ,5, 5,

1=1 1=1

hence

I :w; [ ß-2' ..L2' .=.12' .l1.2' =!12 ,]G = < e ~ id. ,dia e20~ TI, e20~ TI, e20~ "'I, e20~ TI, e 20~ "'I >,

wptRi) = WP(n:) = P4,

Y: g(Y) = ~(t y;4Y;+I +15411) - tY1Y2 Y3 1'4Ys = 0 In p4.
1=1

The corresponding non-linear change of variables for the biraional map
Y./ G' +- ... -+ X is given by

m ...L -40 ~ =!!
Y;1 - Z 20~ Z 20S Z m Z 206 Z 206

- 1 234 5
.=!! III ...L .=!. .1!.

~2 - Z 206 Z 206 Z 206 Z 206 Z 20~
- 1 2 3 4 5

~ =!! 2ü. ...L. .=!.Y3 - Z 206 Z 206 Z 206 Z 206 Z 206
- 1 2 3 4 5

.=.1 ~ =!1 m ...L
~4 - Z 'Jos Z 20S Z 20S Z 'Jos Z 20S

- 1 2 3 4 5
...L .=.1 ~ .:!1 m.

~s - Z 'Jos Z 20S Z 'JOfi Z 'Jos Z 'Jos
- 1 2 3 4 5

q.e.d.

For the case of interest to us, we shall focus only on those polynomials
g(Y) of (24) whose zeros have exactly one critical point in C n at the origin. In
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this situation, both y / G', X have only abelian quotient singularities, where the
method of toroidal compactification can be applied for resolving the singularities.

For n = 4 and 5, the uminimal" toroidal resolution Y / G', X are non-singular
projective manifolds with the trivial canonical bundle. From all the examples we

have studied, there should exist a biregular isomorphism between y IG' and X
in a general context such that it is compactible with the map (27). Here we shall
illustrate this phenomenon through an example of Calabi-Yau space. For n = 4,
more examples related to Amold's strange duality will be discussed in Sect 4.

For later use, we descrii~ the connection between the non-linear change of
variables and birational relations of cyclic quotient singularity in surface cases.
The results should be well-known to specialists. But the required formulation
could not be found in literature, so we just derive it here. For a positive integer
d, we denote

Ad-l = C2/dia [e1f,e=T!],
(ZI, Z2) = the element in Ad-l determined by (ZI, Z2) E C2

,

~l = the minimal resolution of Ad-l'

Lemma 1 For positive integers d, h with d > h, the map

L : Ah- 1 -+ Ad-l

defined by the relation

( ~ ~)(Zt,Z2) = YIY2 'Y2 for (Yl,Y2) E Ah-b (ZI,Z2) E Ad-l, (30)

is an injective morphism with the image Ad-l - ~( Zl , 0) IZl f 0}. Furthermore,

the morphism L induces the embedding between their minimal resolutions,

t : A;;:1 -+ ~1 .
Prüof. It is obvious that the morphism L defines an isomorphism between

Ah-l and Ad-l - {(Zl, 0) IZl f:. 0}, and its inverse is given by

The expression of local coordinates of ~l is well-known. It can be obtained
by the method of toroidal compactification using the combinatorial data from the
intersection of first quadrant cone with the lattice
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for k = 1, ... , h .

In this set, al1 the elements with 1 as the sum of its components are given by

pi = (~ ) , i = 0, ... , d.

For each pi, there associates a divisor Dpi in A:;:I. Then Dpi (1 ~ i < d - 1) are
the exceptional divisors, and DpO, Dp~ the proper transfonn of {Zl = O}, {Z2 = O}
respectively. For each k, (pl:-I, pI:) forms a basis of the above lattice and its dual

basis defines a local affine coordinate of Ad-h denoted by (SI., tk). The local
equations of Dp"-l, Dpit are {SI. = O}, {tl: = O} respectively, and the relation
between (SI:, tl:) and (z}, Z2) is given by

I: k-d
SI. = zl z2

{ I-I. d-k+l ,for k = I, ... ,d. (31)
tk = zl z2

Similarly, .cl has the divisors D(pi)' , 0 ~ i ~ h, and coordinate systems
(s~,t~) ,1::; k::; h,

S
I _ yl:yl:-h
I: - I 2

{ t l I-I: h-k+1 ,for k = I, ... , h . (3.2)
I: = YI Y2

By (30) (31) (32), one has
,

{ SI: = sI.

tk = tJ.

Therefore the morphism i is an embedding uneier which

d

i : A-;:I ~ A-Z-I - U D~
j=h+l

q.e.d.
Example 3. Let X, Y be the Calabi-Yau orbifolds in Example 1. Their

singularities are described by

Sing (Y)= {Y4 = Ys = O} U{[O, 0, 0,1, O]},

Sing (X)= {X. = Xs =O} .

The exceptional divisors in their Calabi-Yau resolutions

Uy: Si --+ y,
-.

Ux: X--+X

14



are given by

6

Uy1
( {Y4 = Y5 = O}) = UEI;, a fiber bundle with fiber A;,

k=1

(7yl( ([O, 0,0,1, On) = E :::: p2 with Op2( -3) normal bundle,
7

U X1 ({X4 = Xs = O}) = UDA;, a fiber bundle with fiber :4;.
k=1

The non-linear change of variables (23) defines a birational morphism

cp: y-{[O, 0,0, 1, On -+ x
with c.p( {}5 = O}) = Sing(X). In fact, 'P defines the biregular morphism

<p : y - {Ys = O} :::: X - {Zs = O} .

The above isomorphism can be extended 10 the one between Y and X with

E +-+ the proper transform of {Zs = O} in X ,
Ei +-+ Di for i = 1, ... ,6,

_ 6 _ 7

such that the fiber AG of U Ei embeds in A7 of U Di as in Lemma 1. By
i=1 i=1

..... ..... 6
identifying Y with X, Y is obtained by blowing down U Ei to a curve, E to a

i=1
7

point; while X by blowing down U Di to a curve, (see Figure 1). q.e.d.
i=l

Remark. By (19) (20), the data (:F, N, q, v) discussed in this section satisfies
only half of the conditions in (6) (7). In particular, < q, (i ># 1 for some i, which
means the equation (24) of Y is not of Fennat-type. The combinatorial description
of Seclidoes not apply to Y. The question of a canonical representative in the
lattiee N for the cohomology of Y is rather intrlguing. It should shed some light
on some further principles of the mirror symmetry.

Section 3. Mirror Symmetry of K3 Surfaces

In this section the case of n = 4 is discussed. Then the only /' s involved in
(14) are I/I = 2 and we have E(N)[ = E(N)j. In this case, the resolution of X,

(7: X -+ X = Z/C ,

is a K3 surface. The singular set of Xis a union of XI (:= X n {Zi = 0, i E I}).
In fact,

XI c Sing(X) {:> E(NG)[ -:F 0 .
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In whieh ease XI eonsists of only a finite elements, and q-I (x) is a union of
exeeptional divisors parametrized by E(Na)I for each x E X. Let 8/1 be the
D--cocyele of XI with the value one for each of its elements. Then the eomplement
of C/I in HO(XI) is HO(XI)o having a basis with indices E(Ma)II. As always,
we identify ,

with a basis of

EB {HO(D)ID : exceptionaJ divisor in X over XI} ,

whieh is eontained in HI,I (X) via the isorilorphism:

H1,l (x) ~ H1,I(X) EB EB{ H'l(D)ID: exceptionaldivisor in x},
HI,I(X) =:: C(Fubini) EB HI,I (X)o .

(Here (Fubini) denotes the elass of the Fubini metrie of WP(ßi)' Defioe

HI,I (X) c := HI,I (X)o ,

HI,I (X) := C(Fubini) EB EB {CßI ß E E(Nah x 81'}, (33)
d I

HI,I (X) := EB {Cßj ß E E(Na)I x E(MG)l'}'
n I

then we have

HI,I (X) =:: HI,I (X) c EB HI,I (X) n EB HI,1 (X) d' (34)

Now, using Proposition 1 and the relation (33), from Hodge theory and the
strueture of exceptional divisors of X, one ean derive the following mirror
property of K3 orbifolds by the same argument as Theorem 4 of [15]:

Proposition 2 Let G, G' be a pair of mirror subgroups of SDq and

X = Z/G, X' = Z/G'. Theo

HI,I (X) c =:: HI,I (Xi) d '

HI,I (X) d =:: HI,I (Xi) c '

HI,I (X) n =:: HI,I (Xi) n .

Section 4. Strange Duality of Arnold
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Among the 14 exceptional singularities of modality one, there is a duality of
Amold with the Dolgachev and Gabrielov numbers exchanged [1, 18]. Bach of
these 14 families is given by 3 indices k}, k2 , k3 of homogeneity and an integer
d(= ICoxter numberl) with the relation d = kl +k2+k3 +1, hence corresponds to
an one-parameter family of quasi-smooth hypersurfaces in WP(k},~ 1;;,,1 . Through
this relation, these 14 exceptional singularities have been explained by 16 surfaces
in [6, 12]. In this section, we shall connect the Amold's duality with mirror K3
surfaces introduced in the previous section. At this momen~ only part of these
14 exceptional singularities are found 10 have link with the mirror K3 surfaces
of Fennat-type in weighted 3-sapces. Here is the list ( with notations in [I]) of
which these relations have been obtained in this paper:

Notation,

Ul2

Wl2

EH
QlO
Qu
Zu

Homogeneity,
4,4,3
10,5,4
12,3,8
6,9,8
6,4,7
3,5,9

d =ICoxter numberl
12
20
24
24
18
18

(35)

For each d in the above table, there exist integers n}, n2, n3 such that

dn. ~ 2, d. = - E Z, for i = 1,2,3,
ni

d = nl +n2 + na + 1, (36)
nl is divisible by n2 .

The solutions of n], n2, n3 are as follows:

d
12
20
24
18

n], n2, n3

4,4,3
10,5,4
12,3,8
6,2,9

(37)

For the above integers d, nI, "2, "a, we consider the following two families of
hypersurfaces in Wpa(n n.. n I):

1, ·°4' 3,

Z : f(Z) = zt1 + z;' +zt3 +zt - tZIZ2ZaZ4 = 0,
d-ni

Z· : f·(Z) = L ZiZj"j + L Z1
j +zt - tZI Z2ZaZ4 = o.

1~i"j9

"jl"j
lSjSJ

n j .01 f&Celor of 01 bll Di

17



By the list of weighted K3 hypersurfaces [7, 13], the integers d, nl, n2, na which
satisfy the condition (36) with quasi-smooth families Z, Z· are given by (37)
plus one more solution

(38)

Denote snq, sn· the groups (2) for '(Z), ,·(Z) respectively. The subgroup
Q of (10) is now given by q. = i (i = 1,2,3), q. = 2. For al1 cases in (37)
and (38), we have

In fact, SDq is generated by the subgroup Q and the element dia [e~,e-~, 1,1].
Then

(
d2 ' )d = d2da , (nI, n2, na) = d

1
da, da, d2 , gcd(d2, da) = l.

For SD·, we have

(39)

Hence

sn· = { < Q, dia[1,~1, -1,1] >
. [.UJ. 1ti ]< Q,dia e 3 ,e- 3,1,1 >

for d = 12,20,24,
for d = 18,

for d = 10.

{

0 for d = 12,20,24,
SD· := sn· /Q ~ Z/2Z for d = 18,

Z/3Z for d = 10 .
Z· / SD· =Z· / SD·

(40)

(41)

Ni the singularities of Z, Z· have the same structure, the same decomposition
(34) of the cohomology of Zapplies also 10 Z;. Hence the K3 swfaces X, Z;
fonn a mitror pair in the sense that Proposition 2 holds. Through the non-linear
change of coordinates of X, we are going 10 describe a quasi-smooth hypersurface

a
Y in same WP(ni,n;,~,l) with d = 1 +i~ ni for each d, such that Y/SD· is

birational to X. Let fl, f2, fa , f4 be the elements in N SDq defined by

{

(el,e2)(~ ~)
(fl,f) = (~i )

(eI, e2) t dld~l if nl = n2,

f3 = e3 , f4 = e4 .

18



Then {fi} :=1 generates a simplicial cone:F in (NSD,,)R satisfying (15). We have

4

NSD" = L Zfi+Z q for d = 12,20,24,
i=1
4

NSD" = L Zfi+Zq+Z eZ for d= 18,10.
i=1

The non-linear change of variables associated to {fi}:=1 will detennine a degree

d quasi-smooth hypersurface Y in WP(n~,~,~,1) and a diagonal group GI such

that X is birational to y / G'. In fact, the Wp3( I I I 1)' Y,Y/e' are as follows:n t , Fli, n3 ,

d = 12,20, (ni,n~,n~) = (nt,nz,n3), Y/G' =Y =Z· ;

d=24, (n~,n~,n~)=(6,9,8), Y/G'=Y,

Y = {Yl Yl+ y1
4+Yl+ Y.l4

- t .TI lj = o}; (42)
J=1

d = 18, (ni, n2' n;) = (3,5,9), Y/ C' = Y/ < dia[-1, -1, 1, 1] >,

Y = {Yi123 +yl +1'32 +yr - t ITY; = o};
J=1

d = 10, (n~,n~,n~) = (2,2,5), Y = Z·, Y/G# = Z·/SD· .

In the above discussion, we have seen that the mirror pair (X, Z·) leads to a
pair (Y, Z· /SlF) of K3 orbifolds with the hyperswface y. Using (40) and
the technique of non-linear change of variables, one can show that Z· /sn· is
birational to the following hypersurfaces in weighted 3-space:

d = 12,20,24 Z· / sn· = Z· ;

d = 18, Z· / sn· +- ... -+ hypersurface in WP(6,4,7,1) defined by
4

wt +W1wt +W2 wi +W:8
- t II Wj = 0;

j=1

d = 10, Z· / sn· +- ... -+ hypersurface in WP(2,2,S,1) defined by
4

wtwl +wlwt +W3
2 +wl° - t II Wj = 0 .

j=1

These hypersurfaces are all quasi-smooth except d = 10. For d t 10, Le. d
in (37), the pairing of Y with the above hypersurface is the ones of Amold's
duality in (35).
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We now describe the birational equivalence between X and Y /et from the
identified K3 surface X = y"/öe. By (39), one can show that

zn {Za = Z. = O} = [0,1,0,0]1001 = -1},

Z n {ZI = Z.. = o} = { 0, 1, e~ , o]},
z n {Z2 = Z. = o} = { 1, 0, e~ , 0] },
Zn {Zl = Z'J = o} = [O,O,ß,l]lß°;S = -1}.

Therefore the singular set of X (:= Z / SDq ) consists of 3 + da elements,
8],82,8a, b], ... , bdJ, where

81 = [O,l,e~,O], 82 = [1,O,e"5f,O], 8a = [e'5t',1,0,0],

bk = [O,O,e'5;-(I+2k),1] ,k = 1, ... ,da ,

with the singularity-type

bk: Ad1-1 (1 ~ k ~ da),

al : Adl-1, 82: Agcd(nl,n;s).dl-l, aa: An~-l .

Let q: X -t X be the K3 resolution. Consider the following pI curves in X:

q-1(bk) = Ek,l U U Ek,d1 -1 ,1 ~ k ~ da ,

q-1(a1) = D1,1 U U D1,d
1
-1 ,

0'-1(a2) = D2,l U U D2,gcd(nl,n;s)d1-l ,

0'-1(8a) = Da,l U U Da,n~-I ,

ri = the proper transform of {Zi = O} in X, i = 1,2,

such that the only intecsection among these curves are given by:

Ek,j . Ek,j+1 = 1, Di,j . Di,j+l = 1,

r 1 . DI,l = 1, r2 . D 2,gcd(nl,n;s)01-1 = 1,

r1 .EI,I = 1, r2 .Ek,OI-1 = 1 .

The above relations can be realized in their dual graphs:
d = 20,
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d - 24,

r"D',8
D,,&
D",

TD,,3
[D3"

Dl1" r'",I D',l
D3 ,1

~EII
r, ~r,

3,1

d - 18,

r·t

D',T
D',8
D"S

D1"I f~~::D, ,
D1,I D,:l

eD3,l

E1,1 EI"

r,
E"I E",

d - 12,

DI,' D","
eD3,3
eD3,'

D1,l D"l eD3,l

d - 10,

B1,1 BI" EJ.,3 EI,'
--.--.-----.

~,1 E", Eoz,3 &", r.. ,

By (41), X is birational to Y /GI by the change of variables

Z3 = Ya

Z. = Y4
Z J::'l

2
Zl Z2 J~~l for d = 20,24, 18,

for d = 12, 10.
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...... -
Identify X with Y/GI through Lemma 1. Then Y/GI is obtained by blowing
down the following curves:

d1-l [. ]U D1,; )-+ 1,0,e'5;,0
;=1

gcd(nlln3)d1-l

f2 U U D2ti )-+ [0, 1,0,0)
;=1

n,-1
U Da,; )-+ [1, -1,0,0]

;=1
d1-l

f 1 U U D1,; )-+ [0,1,0,0]
;=1
d1-l

f 2 U U D2,; )-+ [1,0,0,0)
;=1

n,-1

U Da,; )-+ [1,-1,0,0)
j=1

for d = 20,24,18,

for d = 12, 10.

......
The above data determine the Dolgachev numbers of Y for the families d =
12,20,24 in (35). We can also obtain the Dolgachev number of Z; from the
dual diagram of its exceptional curves, then compare it with the corresponding
Hl,l(y)o. This indicates the coincidence between the Dolgachev and Gabrielov
numbers in the Amold's duality. For d = 18, the diagrams for resolution of
y, Z· / sn* can also be obtained, and one can find their relation with the ones
for Y/ GI, Z*. We shall not give the detail here.

Remark. All the hypersurfaces discussed in this section are defined by a
quais-homogenous polYnomial f(Z., Z2, Za, Z4) in some WP(llll"la,l) with the
degree d = 11 + 12 + la + 1. Any such surface has the same cohomology as the
MUnor fiber V := {(ZI' Z2, za) E C3 IF(z., Z2, Z3) = I}, where

In fact, the hypersurface is the compactification V of V. Since the curve

{[Z., Z2, Za) E WPfnl,I'I2,rlJ) IF(Z., Z2, Za) = O} is of genus 0, the Hodge theory
of Milnor fiber V implies

H
2 (17)0 ~ C[ZI, Z2. Z3l! (::)

[20]. Therefore the conclusion obtained in this section can also be fonnulated in
tenns of Jacobian ring of the polYnomial F(ZI, Z2, Za).
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