
EISENSTEIN SERIES AND QUANTUM
AFFINE ALGEBRAS

M.M. Kapranov

Department of Mathematics
Northwestem University
Evanston IL 60208

USA

MPI96-47

Max-Planck-Institut
rur Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Germany





EISENSTEIN SERIES AND QUANTUM AFFINE ALGEBRAS

M.M. KAPRANOV

The classical Eisenstein-Maass series is thc surn

1 ys/2
E(z, s) = 2" L Icz + d1 2 ' Z = x + yi E C, y > 0, sEC. (1)

c,dEZ
(c,d)=l

It converges for Re(s) > 1 and analytically continues to a meromorphic function in"
s, which satisfies the functional equation

(*(s)E(z,s) = (*(1- s)E(z,2 - s), (2)

(3)

where (*(s) = 1T-s / 2f(s/2)((s) is the full zeta function of Spec(Z).
This paper started frorn thc observation that the siluplest function field analog of

(1), in whieh Z is replaced by the polynomial ring F q [x], is related to the quant um

affine algebra Uq(;t;). More precisely, the Eisenstein series in this case is naturally
a function on Bun(pl), the set of isomorphism classes of vector bundles on p~ ,

q

and the space R of such functions has a natural algebra structure (Hall algebra, as
modified by Ringel [R3]) , given by the parabolic induction. Thc analog of E(z, s)
is in fact the product E(tl)E(t2) of two shnpler elelnents of R, and the analog of
(2) can be writtcn a..'3 thc commutation relation in R:

(pi (t 2 /t 1 )
E(t2)E(td = q ( (-1 / ) E(tdE(t2),

pI q t2 t1

where (pI (t) = 1/(1 - t)(1 - qt) is the zeta-function of Pi .
q

Relations like this are fanIiliar in the theory of vertex operators [FLM] [FJ].
In partieular, (3), being written in the polynomial fonn, turns out to be identieal
to oue of the relations written by Drinfeld [Drl-2] for his "loop realization" of
Uq(;L;). So R is identified with thc natural "pointwise uppertriangular" subalgebra

Uq(Ii+) C Uq(.;t;).

The main results of this paper (TheorCllls 3.3, 3.8.4 and 6.7) show that for an
arbitrary snlooth projcctive curve X over F q the structure of the algebra R formed
by unramified automorphic fonns and of its natural extensions, is strikingly similar
to the structure of the quantum affine algebras Uq(g) for Kac-Moody algebras g
and of their natural subalgebras. The role of thc simple roots of g is playcd here
by unranlified cusp eigenforms, and the role of the Cartan matrix is played by
the Rankin-Selberg convolution L-functions. Thus R is analogous to Uq(Ii+) with
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funetional equations of general Eisenstein series providing c0111mutation relations
among the generating functions.

These results ean be viewed as "continual" analogs of results of Ringel [RI-3]
and Lusztig [Lu 1-3] on realizing quantlull Kac-Moody algebras by llleans of Hall
algcbras associatcd to the category of representations of a quiver, instead of thc
eategory of coherent sheaves on a curve. The two types of categories have very
similar properties, in particular, they have homological dimension 1.

The Langlands conjectures bring cusp fornls (Le., sinlple roots of our generalized
root systenl) in correspondence with irreducible representations of thc geometrie
fundamantal group of the curve X. This becomes therefore analogous to the weH
known McKay correspondence for finite subgroups in SL(2, C). These subgroups
are in correspondenee with affine Dynkin graphs of type A, D, E, and for a subgroup
G the vertices of the eorresponding graph correspond to irreducible represcntations
of G. Including all coherent sheaves (and not just vector bundles) into the general
framework of Hall algebras alnounts to considering Hecke operators acting in Ull

ranüfied autolllorphic farms. It turns out that some natural generating functions
for these Hecke operators are analogous to Drinfeld's generators for the pointwise
Cartan subalgebra Uq(h[t]) C Uq(g).

One nice outcollle of this analogy is that it finally provides some explanation of
Drinfeld's construction, which since its publication 10 years ago, was reproduced
and used rnany tünes, but without questioning its nature (Le., asking why the
formulas have exactly this form and not same other). From our point of view,
eaeh of these fonnulas has a clear conceptual llieaning. SOlne of them express
functional equations for Eisenstein series, others the fact that Eisenstein series
are eigenfunctions of Hecke operators, still other express the commutativity of thc
unramified Hecke algebras and so on.

What scems IlIore inlportant, though, is the conclusion this analogy brings about
thc theory of autolllorphie fonus. Namely, the algebra fonned by all unralnified
automorphic fornlS (on all the GLn ) and by the Hecke operators, corresponds
in our analogy, to just one half of Uq(g), namely the quantization of the subal
gebra n+[t, t- 1

] ffi h[t]. It nlcans that one should "double" the whole theory of
automorphic fornls by finrling the autolllorphic analog of the lnissing subalgebra
n-[t,t- 1] ffi h[t- 1]. In this paper we do this (in our unranüfied context) byap
plying Drinfeld's quantum double construction [CP] to the Hopf algebra structurc
given, essentially, by taking the constant terms of an automorphic -form. Certainly,
thel'e should be a bettel' and more conceptual definition of this double, and the
author plans to address this in a future paper. However, the purely algebraic iden
tification of the double given in Theorem 6.7, exhibits it a.s a self-contained quantum
group-likc structnre involving all the autoillorphic L-functions at oncc, and oue can
begin to study its representation theory, which is of gl'eat interest because of the
relation with L-funetions. For instancc, one can generalize Frcnkel-Jing bosoniza
tion construction [FJ] ta our autolllarphic case. This will be done elsewhere; here
let us point out just Olle thing: the validity of the lnost non-trivial relation (6.7.5)
for the bosonization operators is equivalent to the fact that the zeta-function (x (t)
has only two "trivial" poles at t = 1, q-l (and they produce the two sumnlands in
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the RHS of (6.7.5)) and an the other L-functions associated with cusp fOr111S have
no poles.

There are two further contexts in which the described approach can be pursucd.
Olle is that of "geo111etric Langlands correspondence", in which we consider a curve
X over the cOlllplex numbcrs rather than F q' Instead of functions on the discrete
set Bun(X/Fq ) one should consider here the cohonlology of the moduli stack of an
vector bundles (such stack-theoretic cohoInology involves, for instance, the coho
mology of classifying spaccs of stabili:l'.ers of points, Le., behaves like eqllivariant
cohomology). Results of Grojnowski [GroJ on equivariant cohomology of the spaces
of C-representations of quivers suggcst that in our case we should get quantized
double-affine algebras, as in [GKVJ.

Anothcr direction concerns automorphic forms over nlunber fields. Thc results
of this paper Inake it clear that there should be a nunlber-thcoretic analog of the
theory of quantlun affine algebras in which curves over F q are replaced with spectra

of the rings in number fields. For instance, the 1l10st imInediate analog of Uq(;t;)
corresponds to (coIupactified) Spec(Z) instead of p~ and is generated by values of

q

operator fields E± (s) (generating thc analogs of Uq(~)) sub j ect to relations like

E+(s)E+(t) = (*(8 - t) E+(t)E+(s)
(*(s - t + 1)

and sinlilar other relations involving the Riemann zeta. The author hopes to bc
able to say TI10re about these questions in thc future.

Let us give abrief overview of the contents of the paper. In Section 1 we recan
thc general fnullework of Hall-Ringel algebras, including the recent rcsult of Green
[GrJ on the categorical description of the comultiplication in the case of honlological
diInension 1. In Grecn's fonnulation one gets, on the Ringel algebra, a structure of
abialgebra in a certain twisted sense (familiar frolll [Lu 1-2]). To get abialgebra
in the ordinary sense, we add the Cartan generators in thc standard way. We also
supply a formula (1.6.3) for the antipode in this bialgebra which seems to be new.

Section 2 scrves to fix the notation rclated to unranüfied automorphic forms on
an algebraic curve X/Fq (with respect to an the groups GLn ). The most inlportant
concept for us is tbat of the Rankin-Sclberg convolution L-function associated to
two cusp fornls.

In Section 3 we fonulliate tbe 111ain results about the Hopf algebra formed by the
unralnified autoIuorphic forms on all the GLn together with an the Hecke opera
tors. We introduce the appropriate generating functions and state thc Inain result
(Theorenl 3.3) describing Illultiplication and comultiplication of these generating
functions in a completely explicit way. We also prove (Theorenl 3.8.4) that the co
efficients of our generating functions gcneratc the subalgebra formed by unramified
automorphic fOTITIS.

Section 4 contains proofs of the results stated but left unproved in Section 3.

In Section 5 we COIupare the rcsults of Section 3 with the structure of quanttnn
affine algebras in the "new realization" of Drinfeld. We observe an analogy between
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two theories; we show also that in the siInplest instances (curve pI, affine algebra
;7;) thc analogy becoInes the identity.

Finally in Section 6 we describe Drinfeld's quantum double of the Hopf algebra
constructed in Seetion 3. This seelns to be a very important "semisinlple" object
naturally appearing in the theory of automorphic forms. The main technical tool
here is the use of Heisenberg doubles [AF) [ST] which are easier to handle. In par
ticular, we get a vcry transparent fonnula for thc mllitiplication in the Heisenberg
double of the Ringel algebra in terms of long exact sequences. Then we find the rc
lations in thc Drinfeld double by using the recent work of Kashaev [Kas] who fonnd
an embedding of the Drinfeld double into the tensor product of two Heisenbcrg
doubles.

I would like to thank A. Goncharov, G. Harder, Y. Soibehnan and Y. Tschinkel
for useful discussions. In particular, Iowe to G. Harder a crucial suggestion for the
proof of Theorem 3.8.4. This research was partially supported by an NSF grant
and by A.P. Sloan Fellowship. Thc paper was written during my stay at Max
Planck-Institnt für Mathematik in Bonn, whose hospitality and financial support
are gratefully acknowledgcd. I am grateful to Mrs. M. Sarlette for typing the
manuscript.
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§1. Hall algebras.

(1.1) The Euler form. We will say that an Abelian category A is of finite type, if
for any objects A, B E Ob(A) all the gToupS Ext~ (A, B) have finite cardinality and
are zero for almost all i. If Ais an abelian category of finite type, and A, B E Ob(A),
we denote

(1.1.1) (A, B) = I1IExt~(A, B)I(-l)i
;>0

For A E A let A be the dass of A in the Grothendieck group ICoA. Clearly, the
quantity (A, B) depencls only on A and fj and descends to abilinear form (calIed
the Euler fornl) still denoted by

(1.1.2) a, ß ~ (a, ß), ICoA ® JCoA -+ Q*

(1.2) Hall and Ringel algebras. Let A be an Abelian category of finite type. Its
Hall algebra H(A) is the C -vector space with basis [A] for all isolllorphism classes
of objects A E Ob(A). The multiplication is given by

(1.2.1) [A] 0 [B] = L g~B[C]
[Cl

for a fixed object C, where gtjB is the number of subjects AI c C such that AI ~ A
and G/A ~ B, or equivalently, the nurnber of exact sequences

O-+A~C~B-+O

taken Inodulo the (free) action of Aut(A) x Aut(B). This lllultiplication is weH
known to be associative, the coefficient at C in Al 0 ... 0 An being the nunlber of
filtrations of C with quotients Al, ... ,An.

The nlodified multiplication

(1.2.2) [A] * [B] = (B, A) . [A] 0 [B]

is still associative. We will call the Ringel algebra of A and denote R(A) the saUle
vector space as H(A) but with * as Illultiplication.

(1.2.3) Remark. It was C.M. Ringel [R3] who first drew attention to thc twist
(1.2.2). A little earlier and independently, G. Lusztig [Lu2-3] considered several
twistings by bilinear [ornls, withour specially distinguishing the Euler form (1.1.1).
With a certain hindsight, precursors of (1.2.2) can be traced as far back as the
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relabelling of thc principal series reprcsentations so a..c; to make the intertwiners to
act between representations whose weights differ exactly by permutation, see, e.g.
[GN].

(1.3) Moduli space point of view. Let M(A) = Ob(A)/Iso be the set of
isoillOrphisI11 classes of objects of A. The algebras H(A), R(A) can be identified
with the space of functions f : M(A) --+ C with finite support, the operations being

(1.3.1)

(f 0 g)(A) = L f(A')g(A/A')
AICA

(f *g)(A) = L (A/A', A')f(A')g(A/A').
AlcA

This point of view makes very natural the "orbifold" Hennitian scalar product on
H(A) and R(A):

(1.3.2)

01', equivalently,

(1.3.3)

/(A)g(A)
(/,g) = L IAut(A)j

AEM(A)

([A], [BD = 6[A][B]/IAut(A) I·

(1.4.1)

(1.4) Green's comultiplication. Let A be an Abelian category of finite type,
satisfying the following additional condition: every object of A has only finitely
many subobjects. Let r : R(A) --+ R(A) ® R(A) be the map, adjoint to the
Inultiplication Inap llL : R(A) '2) R(A) --+ R(A) with respcct to the scalar product
(1.3.2). It has the fonn

r([A]) = A~A (A/A', A') IAut(A;~~~~~')tl(A/A')1 [A'] 0 [A/A'],

01', in the functionallanguage (1.3), for a function f : M(A) --+ C, the element r(f)
is a function on M(A) x M(A) given by

(1.4.2) r(f)(A', A") = (A", A')
c;EExt l (All ,AI)

f(Cone(€) [-1D

where Cone(~)[-1] is the Iniddle tenn of the extension corresponding to €.
For two objects A, B E A set

(1.4.3) (AlB) = (A, B) . (B, A).

One easily verifies that thc twisted llluitiplication on R(A) '2) R(A) given by

(1.4.4) ([A] ® [BD([C] '2) [DD = (AIB)([A] * (CD '2) ([B] * (DD)

is associative.
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(1.5) Green's theorem. Suppose that A satisfies the conditions 0/ (1.4), and,
in addition, has homological dirnension ::; 1, i. e., Ext':A (A, B) = 0 Jor i ~ 2 and
all A, B. Then r : R(A) -+ R(A) ® R(A) is an algebra homomorphism, ij the
rnultiplication on R(A) ® R(A) is given by (1.4.4).

Note that because of the twist (1.4.4), the theorelll does not Inean that R(A)
is abialgebra in the ordinary sensej it cau be interpreted, however, by saying that
R(A) is abialgebra in an appropriate braided monoidal category of JeoA -graded
vcctor spaces.

In (GrJ, Green considered only thc case when A consists of finite modules over
an F q -algebra. Thc Inodification to the case of fini te fiodnIes over any ring (of
hOlnological diInension 1) is trivial. Thc case of general A, as in (1.5), can be
reduced to this by embedding finite pieces of A into thc catcgories of modules over
appropriate rings, as in Freyd's embedding theorem [Fr].

Sonrces of Green's result cau be fonnd in the works of Lusztig [Lu4] anel Zelevin
sky [Ze] and in more classical studies of the functors of parabolic induction and
rcstriction in represcntation theory [BerZ], evaluation of constant terms of Eisen
stein series [La3] anel so on.

(1.6) Reformulation. As with (A, B), thc quantity (AlB) depends only on A, tJ E
ICoA, giving rise to the form

(1.6.1) (aIß) = (a, ß) . (ß, a) ; KoA ® JeoA -+ Q*

Let C[K:oA] be the gronp algebra of KoA, with basis K co 0: E JeoA and 1l1ultiplica
tion KoKß = K o+ß. Let HS extend thc algebra R(A) by adding to it these sYlnbols
K o which we rnake COllunute with [A] E R(A) by the rule

(1.6.2)

Denote the resulting algebra B(A). So as a vector space B(A) ~ C[KoA] ®c R(A),
with K 0: ® [AJ f---7 K a: A establishing thc isolnorphism.

(1.6.3) Green's theorem (strengthened form). In the assumptions 0/ (1.5),
the mU]J ~ : B(A) -+ B(A) ® B(A) given by:

(1.6.4)

makes B(A) into abialgebra in the ordinar1J sense, i.e., ß is a homomorphism 0/
algebras with respect to the standard (untwisted) multiplication in B(A) 0 B(A).
Moreover, B(A) is a Hopj algebra with respect to the counit € : B(A) -+ C given by

(1.6.5)

7
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and antipode S : B(A) -7 B(A) given by

~ n '"' IItl n;=o IAut(A j /A j _ 1 )1
S(Ko[A] = L..t( -1) L..t . (Ai/Ai-I, Ai-I) JAut(A)1 .

n=1 AoC ...CAn=At=I

(1.6.6) ·[Ao]* [Al/Ao]* ... * [An/An-I] . K;;l KAI

where Ao C ... C An = A runs over arbitrary chains of strict (Ai =I=- Ai+d inclu
sions 0/ length n.

Proof. The faet that 6. is a homolllorphislll of algebras, follows at onee from The
orenl 1.5 and from (1.6.2). To prove that E is a counit, we lllUSt show that it is an
algebra homomorphisIll and that the eOlllpositions

(Id ® €)~, (E ® Id)6. : B(A) -7 B(A) ® C = B(A)

are the identity Inaps. Both these statements are obvious fronl thc nature of mnlti
plieation in H(A), R(A) and B(A). To prove that S is an antipode, we finst show
that the compositions

m(S ® Id)iJ., m(Id ® S)iJ. : B(A) -7 B(A)

coincide with i 0 f where i : C -7 B(A) is the eInbedding of the unit, and rn is the
nnl1tiplication in B(A). Let us show this for the first cornposition, the second oue
heing sinlilar.

Fr0 111 (1.6.4) and (1.6.6), we find that

~ »

((S®Id)iJ.)(Ko[A]) = L L L (-l)n.(A/A',A')·II(A~/A~_I,A~_l)·
A1CA »=1 A~C ...CA~ =AI i=l

IAut(A/A')I· n~ IAut(A'./A'. )1
. J=o J J-I . [A'] [A' /A' ]K- I K- 1 K K [A/A' ]IAut(A) I 0 ... n n-I A 0 ® 0 A

where thc first surn is over all suhobjects A' c A. We can comhine the first and
third SUI11I11ations together and write the above quantity as

~ tU nt
•
Tl IAut(A ·jA . ) 1

'"""'(_l)m-l '""'" II(A./A. A. ) J=O J J-l .
L..t L..t. \ \-1, ,-1 IAut(A)1
m=I AoC ...cAm=A $=1

·[Ao]... [Am- l / Am-2]KA~_1 K;;l ® KaKA m - 1[Am/Am-I],

where Ao C ... C ATn = A runs over all cllains of subobjeets of length m, in which
all the inclusions, except, lnaybe, Am- 1 C Am, are strict. Therefore
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Now notice that for A =I 0 each sumlnand in this SUIll will appear twice: once for
a strictly increasing filtration Ao C ... Am and once for the filtration Ao c ... c
Am = Am-I, These slunmands will enter with opposite signs and so will cancel
each other, and the whole sum will be equal to 0 = i(€(Ko[A])). If A = 0, we get
the surn of thc empty set of summands, which is equal to 1 = i(€(Ko)). TheoreIll
is proved.

(1.7) The bilinear form on B(A). Let us extend the Hermitian form (1.3.2-3)
on the Ringel algebra R(A) to B(A) by putting

(1.7.1) (Ko[A], Kß[E]) = (aIß) ([A], [E]) = (~~l~i~)[~J

In other words, we introduce the form on B(A) = C[.K:oA] ®c R(A) to be the tensor
product of the old fornl on R(A) and the fornl on C[.K:oA] given by (Ko , K ß) =
(aIß).

(1.7.2) Proposition. With respect to the form ( , ) the multiplication and
comultiplication in the Bopf algebra B(A) are adjoint to each other.

Proof. In other words, we need to prove the equality

(1. 7.3) (Ko[A]Kß[B], K,[G]) = (Ko[A] ® Kß[B], ß(K-y[G]))

where on thc right stands tbc Hermitian bilinear form on B(A) ® B(A) given by
tensoring ( , ) with itself. Ta prove (1.7.3), notice that the left hand side is

(A!ß)(Ko+ß[A][B], K,[G]) = (A1ß)(a + ßI,) ([A][B], [G]) =

(1.7.4) = (AIß)(a + ßI,) ([A] ® [B], r([G])) =

= (AIß)(a + ßI,) L (G/G', G') IAut(G')I·IAut(GIG')I.
G1cG IAut(C) I
·(A, G') . (B, G/G'),

while the right hand side of (1.7.3) is

L (G/G' G') IAut(C')1 . IAut(G/G')I.
G1CG' IAut(C)1

(1.7.5) ·Ky[C'] 121 Kc+,[CII
]) =

L (GIG', C') IAut(G')I' IAllt(C/C')1 (al,)(ßI,)(ßIC')·
G'cG IAllt(C)1

·(A, G') . (B, G/G').

Notice now that in order that (A, G') =I 0, we ShOllld have A ~ G', and under this
assumption thc corresponding sllnunands in (1. 7.4) and (1. 7.5) coincide. Proposi
tion is proved.
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§2 Background material related to automorphic forms.

(2.1) Notations and conventions. Let X be a smooth projeetive algebraic
eurve over a finite field F q' In this paper we will be interested in the Hall algebra
of A = Cohx , the catcgory of all eoherent sheaves on X. Let us start by introducing
SOlne notations and eonventions, to be used throughout the rest of the paper.

By gx we denote the genus of X. By a point of X we always mean a 0
diInensional point x (notation: x EX). For such a point x we denote by qx the
eardinality of F q(x), the residue field of x, and by deg(x) the degree [Fq(x) : F qJ.
Thus qx = qdegx. By Pie(X) we denote the Picard group of line bundles on X
(defined over F q). For L E Pie(X) we denote by deg(L) E Z the degree (first
Chern dass) of L. Thus for x E X we have deg(x) = deg(Ox(x)). For a veetor
bllndle V on X of rank 11, we set deg(V) = deg(Anv). The kernel of the degree
hOInomorphisIn Pic(X) -r Z is denoted PicO (X). It is a finite Abelian group.

As usual, we identify Pie(X) with the group of divisors modulo linear equiv-
alence, by associating to a divisor D L: n x . x the line bundle O(D). Thus
degD = deg(V(D)).

(2.2) The adelic language. Automorphic forms. Let Bunn (X) be the set of
isolllorphism classes of rank 11, vector bundles 011 X and BUl1n,d(X) C Bllnn(X) tbc
set of isoIllorphism classes of bundles of degree d.

Let k = F q(X) be tbe field of rational funetions on X, A its ring of adelcs anel

8 C A the ring of integer adeles. Then

(2.2.1)

Let AFn (resp. AFn,d) be the spaee of all eOluplex valued functions on Bunn (X)
(resp. Bunn,d(X)), By (2.2.1) we ean regard such functions as CLnO -invariant
automorphic forn1S on GLnA.

A function f E AFn is called a eusp form if for any veetor bundles V' E
Bunn , (X), V" E Bunn ll (X), 11,' + 11," = 11" 11,',11," > 0, we have

(2.2.2)
eEExt l (V",V')

f(Cone(€)[-1]) = 0,

(2.2.3)

conlpare with (1.4.2). This is equivalent to the standard condition

! f(ug)du = 0
U(k)\U(A)

whcre we view f, by (2.2.1), as a function on CLnA anel U C GLnA is thc unipotent
radieal of a nliniInal parabolie subgroup.

Let AF~usp C AFn1 AF~1:~P C AFn,d be the subspaecs forulcd by cusp fonns.
Thc foIlowing fact is a weIl known eonscquenec of thc reduction theory of Harcler
[Ha2] (MWJ.
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(2.2.4) Proposition. EvenJ function from A~:~P has finite support. The space

A~:~P is finite-dimensional.

(2.3) Hecke operators. Let Coho,x be the category of coherent sheaves on X
with O-dimensional support. By Coh~n(X) we denote the set of isomorphism classes
of such sheaves F which satisfy the additional property dirn(F<9 Ox) ~ n for all
x EX. We have an identification

(2.3.1)

which takes g E GLnA n Matn 8 into the sheaf Coker{g : on -t on}.
For :F E Coho,x and n > 0 we define the operator T:;: : AFn -t AFn by

(2.3.2) (T:;:f)(V) = L f(V' )
v'cv

V/Vi:::.;:

wherc thc surn is over coherent subsheaves V' in V E Bunn(X) with quotient
isomorphie to F. (Since V' is loeally free, f(V' ) is defined.) Clearly, T;: = 0 on
AFn unless F E Coh~n(X). If:F E Coh~n(X), one can describe T:;: in the adelic
language as the operator taking a function f : GLnk \ GLnA/GLn8 -t C into T:;: f
given by .

(2.3.3)

where 1:;: is the characteristic function of thc double coset corresponding to :F by
(2.3.1). For this reason, T:;: is ealled the Hecke operator.

(2.3.4) Proposition. The correspondence [:F] 1---1- T:;: makes AFn into a left module
over the Hall algebra H( CollQ,x), and A~8P c AFn is a submodule.

Prooj. Let M be the set of isornorphislll classes of all coherent sheaves on X, and
C[M] be thc space of all functions M -t C. This is just thc vector space dual to
the Hall algebra H(Cohx ) and is therefore an H(Cohx ) -birnodule. The left action
of [:F] E H(Coho,x) on C[M] (dual to its right action on H(Cohx » is given by the
formula identical to (2.3.2), but in which V, V' are arbitrary sheaves. If we view
AFn as a subspace in C[M] (consisting of funetions vanishing outside Bunn(X»,
then it is preserved by this action, so is an H(Coho,x) -nlodule as claimed.

To see that AF~ti8P c AFn is a submodule, note that in the adelic langllage the
condition for f E AFn to the cuspidal involves left shifts of f, while the Hecke
operators involve right shifts. 0

Let Cohx,x be the category of coherent sheaves on X supported at x (so each
such sheaf has the fornl ffi Ox /I;i 1 where Ix C Ox is thc ideal of x). The following
facts are weIl known.

11



(2.3.5) Proposition. (a) For:F, 9 E CO~,x we have (:F,9) = 1, so the rnultipli
cations 0, * in H( Coho,x) and R( Coh-<\x) coincide.
(b) H( Co~,x) = ®XEX H( Cohx,x) (the restricted tensor product in which almost
all jactors in any decomposable tensor are required to be 1).
(c) Each H( Coho,x) is a commutative polynomial algebra in either 0/ the following
two sets of generators:

(cl)

(c2)

(d) Let A = ~ C[Z1' ... ,zn]Sn be the ring of symmetrie funetions, and define an
isomorphism

Ch : H( Coh-x,x) -t A, [o~n] H- q;n(n-I)/2en (Z1" .. ,zn)

where en is the elementary symmetrie ju,nction. Then for any integer sequenee /-L =
(/-LI 2: J-l2 2: ... ~ J-Lr ~ 0) the element [EB 0 x / I~i] will go into q-E(i-l)tLi PtL (Z1, ... ,Zn; q; I)
where PJ-l(Zl, .. ' ,ZN, t) is the Hall-Littlewood polynomial.

Prao/. Part (a) is easily obtained by reduction by devissage to the case:F = Ox, 9 =
0Y' Part (b) is obvious, while (c) and (cl) cau be found in Macdonald [Mac].

---(2.4) Cusp eigenforms. The sets CusPn. Let Pic(X) be the group of all
homomorphisms (characters) /-L : Pic(X) -t C*. There is an embedding

(2.4.1) ---C* Y Pic(X), t H- tdeg
: L t-+ tdegL

whose cokernel is a finite group of characters of Pico (X). Let us choose representa
tives /-LI, ... ,J-lh, one in each eoset by the iInage of (2.4.1), which are unitary, Le.,
IJLi(L)1 = 1 for any L E Pic(X).

For any eharacter /-L : Pic(X) -t C* we dcnote by AFn(/-L) the space of fUllctiollS
(autoIllorphic fornlS) ! : BUlln(X) -t C satisfying tbe property

(2.4.2) f(V 0 L) = /-L(L)!(V), \iL E Pic(X).

Let AF~U.'lP(/L) c AFn(/L) be the subspaee formed by cusp forms. By (2.2.4)
dilll AF~U.'lP(/-L) < 00. The Hecke operators TF,:F E Coho(X), preserve AFn(/L)
and AF~U.'ll)(/-L). For any algebra hOlllolllorphislll X : H(Coho,x) -+ C denote by
AF~.'lP(/-L)x the corresponding eigenspace, Le., the space of f E AF~.'lP(/-L) such
that

(2.4.3) TF ! = X([:F]) . f,

12
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By the multiplicity one theorem for GLn, see [Sh], the space AF~SP('l}x: has di
mension at most 1. Let Xn(J.L) be the set of X such that dirn AF~tL8P(f.Lh~ = 1. If
X E Xn(f.L), then for any x E X we have

(2.4.4)

We have a direct sum decomposition

(2.4.5) AF~U8P(f.L) = EB AF~8P(J1.)X·

XEXn(~)

Choose a non-zero vector Ix in each sumnland in (2.4.5) (in virtue of (2.4.4), J-l
is detennined by X so it can be dropped from the notation). Let CusPn be the

set U?=l {Ix, X E Xn(J-ld} where {J-ll,'" l J-lh} are our unitary representatives (see
above). Let also

Cusp = Il CusPn·
n~l

(2.5) Rankin L-functions. For j = Ix E CusPn and x E X introduce thc
nUlnbers Ai,x(/), i = 1, ... ,n defincd up to pennutation by the condition

(2.5.1)

where el is thc eleInentary synlnletric function. By (2.3.5) (cl) we have, for any
J-l = (/.LI 2: ... 2: /.Lr 2: 0):

The L-function of f is dcfined by thc product

(2.5.3)
n 1

L(f, t) = }Jg1 - Ai,x(f)tdcg(x)

Dur nonnalization of the Ai,x(/) is chosen so a.s to make L(f, t) satisfy thc functional
equation exchanging t and l/qt rather than t and l/qn t, as is sOlnetirncs done in
the theory of autolllorphic fonns.

We will be interested, however, in a more general dass of L-functions, which we
call Rankin L-functions. Given two cusp cigenforms I E CusPn , 9 E CusPm , their
Rankin L-function LHom(j, g, t) is defined by the product

13



(2.6.1)

n m 1
(2.5.4) LHom(J, g, t) = II IIII ~

1 - z 9 tdeg(x)
xEX i=l ;=1 .\i,;c (f

The notation LHom is cxplained as follows. The Langlands correspondence predicts
that to any I E CusPn one can associate a loeal system [,f on X. Thc funetion
LHom(J, 9, t) is the automorphie counterpart of the L-function of the local system
Honl(.Cf' (,g).

The foUowing rcsult can be found in [JPS) (sec [Bu] for a general survey of thc
Rankin-Selberg 111ethod).

(2.5.5) Theorem. The product {2.5.4} converges Jor Itl < q-1 and defines a ra
tional fnnction in t, still denoted LHom(J, 9, t). /J J #- g, then LHom(J, 9, t) 1-S a
polynomial of degree mn(2gx - 2). 1J f = g, then

_ p/,g(t)
(2.5.6) LHom(/, 9, t) - ( )( )

1 - t 1 - qt

where p/,g is a polynomial oJ degree (2gx - 2)mn + 2. In any event, LHom(f, g, t)
satisfies the Junctional equation

(2.5.7) LH01n(J, g, 1/qt) = €f,gt(2-29X )mn LHom(J, g, t)

where Ef,9 = DXEX (1';;;)md.w for any rational differential form w on X (this

prodTJ.ct is independent of w, see [DeJ).

(2.6) Scalar products and dual Hecke operators. For two automorphic forms
I, 9 E AFn,d, of which at least one has finite support, put

"" J(V)g(v)
(I, g)d = L.., jAut(V) I .

VEBunn,d(X)

Thus (f, 9)d is thc degree d part of the orbifold scalar produet (1.3.2). If J, 9
are autoIllorphic fonns defincd on all Bunn(X), not just Bunn,d(X), we denote by
(f, 9)d thc sealar product of their restrictions to Bunn,d(X). We also write

(2.6.2) I1 f II~= (f, J)d

Note that cusp fonlls have finite support on each Bunn,d(X) by (2.2.4), so their
scalar products are defincd.

We will be interested in the adjoints of thc Hecke operators with respect to these
scalar products. To describe them, we introduce the conccpt of an overbundlc.

Let V be a vector bundle on X. By an overbundle of V we mcan a vector bundle
U of the same rank as V containing V as a coherent subsheaf. So the sheaf U/V
lies in Coho,x. Its iSOI110rphism dass is called the cotype of thc overbundle, and
the isomorphisIll dass of U is called its type. Two overbundles U, U' ~ V are called
cquivalent, if there is an isomorphism U --+ U' identical on V.

14



(2.6.3) Proposition. The nurnbcr- 0/ cquivalence eiasses 0/ overbundles 01 V 01
type U and eotype F is equal to

u IAut(V)1
9V:F' IAut(U) I'

whereg~:F are the same as in (1.2).

Proof. Let e~:F be the number of all exact sequences

o-r V -r U -t :F -t O.

Then g~:F = e~:F/IAut(V)1 . IAut(F)I, while the number of cquivalence classes of
overbundles is equal to e~:F/ lAut (U) I. lAut(F) I, whence the stateluent.

For :F E Coho,x we dcfine the dual Hecke operator T'j : AFn -r AFn by

(2.6.4) (T'j /)(V) L /(U)
U~V

u/v':::!.:F

u IAut(V) If(U)
9v:F IAut(U)1

UEBunl1 (X)

where the first sum is over equivalence classes of overbundles of V of cotype F,
and the second sunl is over all isomorphism classes of bundles. It is clear that
T:F takes AFn,d into AFn,d+hO(:F) and T'j: takes AFn,d into AFn,d-hO(:F). Here
hO(:F) = dimFq HO(X, :F).

(2.6.5) Proposition. For each dEZ the operators

T:F : AFn,d --+ AFn,d+hO(:F) , T'j: AFn,d+hO(:F) -t AFn,d

are adjoint to eaeh other mith respect to the sealar product (2.6.1), i.e., fo1' f E

AFn,d' 9 E AFn,d+hO(:F) with finite support, we have

Proof. This follows at once froln Proposition 2.6.3 and thc definition of the orbifold
scalar product.

Let now / be a cnsp eigenfonn, / E CnsPn , and let XI : H(Coho,x) -t C be thc
algebra homornorphism dcscribing the action of Hecke operators on f:

(2.6.6)

Define a new hOlnonlorphism X'j : H(Coho,x) -r C by

(2.6.7)

15



(2.6.8) Proposition. In the above assumptions the action 0/ the dual Hecke op
enLtors on 1 is given by

T'f: / = X, ([F]) . /.

Proof. Let V(x), x EX, be the sheaf whose sections are sections of V which are
allowed a first order pole at x. Then each equivalence dass of overbundles of V of
cotype O~ can be realized by a unique subsheaf U C V(x) such that V C U C V(x).
In other words, such equivalence classes are in bijection with subsheaves in V(x) of
cotype O~-i. This Ineans that

(2.6.9)

and our stateInent follows from the definitions.

Note that it follows from (2.6.7) and (2.5.2) that

(2.6.11) Proposition. Let f,g E CusPn' Then:
---:---:--

(a) For each F E Co~,x we have xi ([F)) = x, ([F)) .
(b) The number 11 1 Il~ is independent on dEZ.
(c) // / i= g, then (I, g)d = 0 for any d.

Proof. (a) Fix h E Z+. Then for cvery F with hO(F) = h, we have

(2.6.12) X,([FJ) (/, I)d+h = (T:F /, I)d+h = (I, T'f: /)d = xi ([F]) (I, I)d.

Note that (I, I)d > 0 and depends only on d rnodulo n, since /(V0L) = J-L(L)f(V)
for a line bundle L, and J-L is a unitary character. Thus we conclude that for any F
with hO(F) divisible by n we indeed bave the desired equality x'f ([F)) = X,([F]).
However, any two characters of thc Hall algebra coinciding an [F) with hO(F) :=
O(nl0d n) should be equal.

(b) Apply (a) and (2.6.12) with h now being arbitrary.

(c) If f i= 9 then by the nlultiplicity one theorem for GLn , see [Sh], there is
x E X such that the set of the Ailx(!) (with multiplicitics) is not cqual to the set of
the Ai,x(g). It follows that we can find FE Coho,x(X) such that x, ([F)) f; Xg([.FJ)
and, in addition, hO(F) =o(Ill0d n). Thus

x, ([F]) (/, g)d = X, ([F]) (I, 9)d+hO(:F) = (T:F /, 9)d+hO(:F) =
= (I, T'f:g)d = Xg ([F)) (I, g)d
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whence (I, g)d = O.

(2.6.13) Remark. Part (a) ofthe above proposition means that for each x E X the
value of any symmetrie funetion on A1,x(/)-1, ... ,An,x(/)-1 is equal to its value on

A1,x(/), . .. , An,x(/), in other words, that the set of thc Ai,x(!)-1 is equal to the set
of the Ai ,x (/). This is not to be confused with the generalized Ramanuj an-Petersson
conjeeture [FK] which, in our normalization, asserts that Ai,x(/)-1 = Ai,x(/) for
eaeh i, Le., that 1Ai,x (f) I = l.

(2.6.14) Normalization convention. Reeall (2.4.5) that thc set CusPn was ob
tained by ehoosing a nonzero vector /x in each I-dimensional vector space AF~USP(J-l)x'

By Proposition 2.6.11 (b) we can choose Ix so that li/x Ila= 1 for any d. So in the
sequel we will always assume that 11 ! J)~= 1 for any / E CusPn' dEZ.

(2.7) Dualization of bundles and conjugation of forms.

(2.7.1) Proposition. For any :F E CohtJ ,x equivalence dass es 0/ overbundles 0f
V 0/ cotype :F are in bijection with (locally /ree) subsheaves in the dual bu,ndle V*,
0/ the same cotype :F.

Proo/. Let an overbundle U be given. Frorn thc short exact sequence

O--+V-+U-+:F-+O

we get a lang exact sequence for Ext- (-, 0 x), apart of whieh has the form

o -+ U* --+ V'" -+" Ext1 (:F, Ox) -+ 0

Since X is a curve and :F E Coho,x, the sheaf Ext1 (:F,Ox) is (non-canonieally)
isoInorphic to:F. So U* is a sllbsheaf in V* of the same cotype :F. By applying tb
dllalization twice, we find that our eorrespondellce is a bijection.

(2.7.2) Corollary. /f V, W E Bu11.n(X) and:F E CohtJ,x, then

v- W IAut(V)1
gW-:F = 9v:F IAut(W)I·

For an automorphic form f E AFn define fD E AFn by

(2.7.3) Proposition. For any :F E Co!2{j,x and f E AFn we have

Proof. This is an inlInediate conseqllence of (2.7.1)

(2.7.4) Corollary. /f f E CUS]Jn , then there is E E {±1} such that f(V*) = E/(V)
for any V E BUT1n(X).

Proof. From (2.7.3), both I D and f are eigenfonns of the Hecke algebra with the
saUle character XI = XI· So by the lnultiplicity one theorem fD = EI far SOHle

constant E =1= o. Since the dualizatioll and conjugation are involutive, E2 = 1.
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§3. The Hopf algebra of automorphic forms.

(3.1) The setup. We keep the notation of (2.1), and are going to apply the
general formalism of Seetion 1 to the Abelian category A = Cohx . We denote
H = H(A), R = R(A) and B = B(A) its Hall, Ringel and extended Ringel algebra
(see Section 1).

The Grothendieck group JeoA = JCoX is identified with Z EB Pic(X) via the Iuap

(3.1.1) I---t n . 6 x + L 111,x . Ox

xEX

where we view Pic(X) as the quotient of the group of divisors nlodulo principal
divisors.

Wc denote the generator K ox E C[JeoA] siIuply by K and denote K oz ' x E X
simply by Cx ' For a divisor D = I: m x . x we set CD = nc~z. By the above,
CD = 1 for principal D. So for a line bundle L on X there is a well-defined elenlent
CL = CD where D is any divisor such that L ~ Ox(D).

Note that each Ox lies in the kernel of the bilinear fonn (niß) on Ko(X). Thus
each cx , CL is a central elClnent in B. We have there fore a eharacter

(3.1.2) C : Pic(X) ---+ B*, L I---t CL

of Pic(X) with values in the llluitiplicative group of B. As for the generator K, for
any vector bundle V on X we have, by Riemann-Roch theorem

(3.1.3) [V]K = qrk(V)(l-gx)K[V].

Any coherent sheaf F on X can be written as a direet SUIll F = :Ftors EfJ:Flf, where
:Flf is locally free anel :Ftors is a torsion shcaf (Le., has O-dimensional support). The
isomorphism classes of :Ftors , :Fl ! depend on F only. If F l ! i= 0, there are infinitely
Inany subsheaves in F, so the formula (1.6.3) for the comultiplicaton in B produces
an infinite SUffi, i.e., an element. of a certain cOInpletion of B ® B. More precisely,
let B®B be thc space of possibly infinite sums I: b~ ® b~' where

b~' = [:F.~'J1'/'t t t' :FI,:FI' E Coh(X),,.;~,~~' E C[JCoX],

satisfying thc following condition:

(3.1.4) For each dEZ the llluuber of i such that deg :FI,I! = d, is finite, and for
d » °this number is O.

The following fact is easily proved by applying the main lenlma of Green [GI']
plus the fact that thc nunlber of coherent subsheaves of given degree in a vector
bundle is finite.
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(3.1.5) Proposition. B®B is an algebra, and ~ : B -+ B®B given by (1.6.3), is
a homomorphism 0/ algebras.

So we shall say that B is a topologieal Hopf algebra.

(3.2) Generating functions associated to cusp forms. Let f E CusPn be
a ensp eigenforrn on Bunn(X), and X = XI : H(Coho,x) -+ C be thc algebra
homomorphislll giving the action of Hecke operators on f:

(3.2.1) T:F / = X([F]) . f

Consider the following formal power scries with eoefficients in the Ringel algebra
R:

(3.2.2) EI(t) = L /(V)tdeg(V) E R[[t, t- l ]),

VEBuun(X)

the sum over all isoIllorphism classes of rank n vector bundles on X. Note that the
coefficients at each power of t in EI (t) is a finite sunl by (2.2.4).

More generally, for any quasi-character J.L : Pic(X) --+ B* taking values in the
multiplicative group of the center of B we ean form thc series

(3.2.1') Ef(J.Lt) = L /(V)J.L(det V)tdegV E B[[t, t- l
]].

VEBuunX

The notation bceolllcs unambigious once we agree to identify t itself with the qua
sicharacter L !--T tdeg L of Pie(X) . If lL takes values in C * C B*, then /-L (L) =
/-Li (L) Adeg L for sonle A E C* and /-Li E {/-LI,'" ,/-Lh} 1 our set of unitary represcnta
tives (2.4), so E f (jLt) = E f I (At) for some /' E CUSPn and we don' t get anything
new. However, taking /-L = c, tbe eharacter defined by (3.1.2), we get new elenlents,
to be used later in the formulas for conlultiplieation.

Let also

(3.2.2) 'Ij;I (t) = L XI ([FDthO(.'F) jAut(F) I . [F] E R[[t]],
:FECohv(X)

where tbe sunl is over isomorphislTI classcs of all sheaves with O-diInensional support
and hO(F) = dirn HO(X, F). Thus 'Ij;f is a generating funetion for Hecke operators.
If W is any rank n vector bundle such that j(W) #- 0, we have, by (2.7.4):

(3.2.3)
tdegW

1/;1 (t) - '" j(V*)t- deg V IAut(W/V) I . [W/V]
- qdeg W f(W*) L.

VCW
rk(V)=n
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where the Slllll is aver all sllbsheaves in W of fuH rank n, Le., over "effective matrix
divisors". As with Ef (t), we will usc thc series 'lj;f (lJ.t) E B[[t]] for any central
quasicharacter J..L : Pic(X) -+ B*. It is given by

(3.2.4) \I!f(/.Lt) = L x/([FDthO(F)/.L(i")IAllt(F)I· [F]
FECoho(X)

wbere j: is tbe class of F in Ko(X) which lies in the subgroup Pic(X) c K:o(X.), see
(3.1.1). The space R[[t, t-

1
]] of series a(t) = L:t=~oo Titi, Ti E R, infinite in both

directions, is not a ring, but we do have a well-deflned nlultiplication

Also, the use of generating functions is well-suited to thc study of the topological
Hopf algebra B J R. More precisely, we have the following theorem which is the
main result of this section.

(3.3) Theorem. Let / E CusPn , 9 E CusPm be the two c'Usp eigen/orms. Then:
(a) For each F E Coh(X) the coefficient at the basis vector [.1"] E R in each 0/ the
products

is apower series in h, t2 which converges for Itll » It21 to a rational function.
(b) These rational /unctons satisjv the following relations:

(3.3.1)

(3.3.2)

E (t ) * E (t ) = mn(l-gx) LHom(f, 9, t 2/t 1 ) E (t ) * E (t )
f 1 9 2 q LHom(f, g, t2 /q l l) 9 2 / 1

(c) In the topological Hopj algebra B :J R we have the identities:

(3.3.3)

(3.3.4)

where Ef(t ® c) = L:v j(V)tdcg(V) ® Cdct(V)'

(3.3.5)
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(3.3.6)

In this section we will prove only the equality (3.3.1), relegating the rest to
Section 4.

(3.4) Eisenstein series. Proof of (3.3.1). Let f E Cuspn , 9 E CusPrn . Let us
write, for the product in the Hall algebra

(3.4.1)

Then

(3.4.2) &v(f, 9, h, t2) = L f(V')9(V/V')t~eg(V')tgeg(V/VI)

v'cv
rk(V)=n

where V' runs over all subbundles (Le., subsheavcs which are locally direct surn
mands) in V of rank n. This is nothing but the unramified Eisenstein serics assa
ciated to cusp forms 1,9, see [HaI] [Mor] [MW]. We recall the following result.

(3.4.3) Proposition. (a) For any V E BUUn+rn(X) the series (3.4.2) converges
for 1ft I» It21 to a rationallunction.
(b) These rational function satisfy the lunctional equations

& (I t t) = rnn(1-9x) LHom{J, 9, qt2 ltt} & ( f nt -mt)
V ,9, 1l·2 q LHorn(J, 9, t2ltt} V 9, ,q 2, q 1

(c) The poles 01 the rational lunction &v(!, 9, t1, t2) are precisely the poles of the
function

LHom(/, 9, qt2/t 1)
LHom(f, 9, t2/tr)

and the orders 0/ poles ar'e the same.

Proo/. (a) See, for instance, [HaI], [Mor] or [MW], Prop. IV.1.12 .

(b) Let us briefly recall the general fralnework of fllllctional equations of Eisen
stein series [MW] and show what it yields in our particular case. For aspace S let
Fun(S) denote the space of locally constant functions on S (we ignore the growth
conditions in this fonnal remincler). Let 2 n ,m c GLn+mA be thc subgroup

The Eisenstein scries constrllction defincs a nlap
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Eisn,m : Fun(3n,m \ GLn+m(A)) -t Fun(GLn+m(k) \ GLn+m(A)),

(Eis ",)(g) = L ",(-rg), Pn,m - (G~n G~m)
--yEPn,m (k)\GL n +m (k)

(when converges). In general, Eisn,m is defined by analytic continuation over aux
iliary parameters. The functional equation, formally, has the form

where

M : Fun(3n ,m \ GLn+mA) -t Fun(3m ,n \ GLn+mA)

is defined by

1 (( Z
(M<p)(g) = <p

ZEMatn,m(A) In

where dZ = ndZij and fAlk dZij = 1. Our case is obtained from here as follows.
For

! E AFn = Fun(GLnk \ GLnA/GLnO), 9 E AFm

let! 0 9 E Fun(3n,m \ GLn+mA/GLn+mO) be thc function defined uniquely (in
virtue of the Iwasawa decomposition) by

(J 0 g) (~ ~) = f(A)g(B), A E GLnA, B E GLmA.

For A E GLn(A) let deg(A) = L:XEX deg(x) . ordx(a). Then for f E CusPn, 9 E
CusPm we have

tv(!, 9, h, t2) = Eisn,m((ft~eg) 0 (gtgeg
))

so (3.4.3) (b) follows fronl the idcntification

(3.4.4)

M( (Jt~eg)0 (gtgeg
)) = qmn(1-9x) L~~:l;~/~~:/~:;)(g. (qmt2)dcg) 0 (J. (q-mt1)dcg

)

This can be established by using the fact that the reprcsentation of GLnA corre
sponding to ! is, at cvery x EX, a principal series representation, and same for g.

Thus thc operator M which has the fonn Q$)XEX Mx can be calculated by splitt~ng

each Mx into mn I-dirnensional intertwiners, each evaluatcd by integration over kx '
Each such intertwiner contributcs a factor

1 - A' ( )..\. (f)-l( tdeg(x)jtdeg(x) fc
),X 9 1,3': Jx 2 1 d

1 - ..\. ( ) \. (!)-ltdeg(x)/tdeg(x) 8 z
),X 9 1\1,X 2 1 x
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which, being all multiplied, give precisely (3.4.4), onee we recall, that Ja dz = ql- yX

if the Haar measure dz on A is normalized by JA/k dz = l.

(c) This follows from (3.4.4) and the general faet about Eisenstein series of rela
tive rank 1([MW], § IV.3.10, Rel11ark) whieh says that the singularities ofEisenstein
series are in this case precisely the singularities of the intcrtwiner M.

Proposition 3.4.3 is proved.

Now, part (a) of (3.4.3) can be written as an equality in thc Hall algebra of the
category Coh(X) :

( .) E (t ) 0 E (t ) = mn(l-gx) LHoIU(j, 9, qt2/t l) E ( nt ) 0 E ( -mt )
3.4.5 j 1 9 2 q LHom(j, 9, tZ/tl) 9 q 2 j q 1

By using the definition of the Ringel produet * and the Riema!1u-Roch theorem,
we find

Ej(td *Eg(t2) = qmn(1-gx )Ej(qTtd 0 E9(q-~t2)

wheuce the validity of (3.3.1).

(3.5) Algebraic relations in B. For j E CusPn we define elernents Ej,d, dEZ
and aj,d, dEN, by

00

(3.5.1) Ej(t) = L Ej,dtd ; aj(t):= log'lj;f(t) = L aj,d td

dEZ d=l

Thus E /l d , a /,d are SOI11e (finite) elel11ents of B. We now proceed to find SOI11C alge
braic relations al110ng then1 by using the relations (3.3.1-2) for generating functions.
For two different cusp fonus f E Cuspn , 9 E CllSPm let

(3.5.2) Qj,g(lt, t2) = tiZgX -Z)mnLHom(!, 9, tZ/tl)

be the homogeneization of their Rankiu L-funetion, and

(3.5.3)

Qf(t1, tz) = t(lzgx-z)n2+zpj(t2/tl), h LH (/ f t) Pj(t)w ere om" = ( )( ) ,1 - t 1 - qt

be the hOlnogeneization of the nllinerator of LHom(f, f, t). The relations (3.3.1)
cau be written in the polynomial form:

(3.5.4)
(lt -qt2)Qj(qt l' t2)E/(lt)*E/(tz) = ql/mn(l-gx)(qlt -tz)Qj{tt, tz)·Ej(tz)*Ej(td,

(3.5.5) Q f,g(qt 1 , tz)Ej(td *Eg(tz) = q-mn(t-gx)Q f,g(tt, tz)Eg(tz) *E /(lt),! i:- 9

where thc eqllality is understood in thc sattle sense as in Theorem 3.3: as thc
eqllality of rational functions eonstitllting thc coefficients of the LHS and tbc RHS
at any givcn [V], V E BUlln+m(X).
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(3.5.6) Theorem. (a) For each i, j E Z companng the coefficients at ti t~ in both
sides 0/ (3.5.4) or (3.5.5) gives a valid relation among the elements EJ,d' Eg,d E

RCB.
(b) 1/ we write

(3.5.7)

then we have an equality in B:

(3.5.8)

Proof. (a) Consider, say, the equality (3.5.4), anel let some V E Bunn+m(X) be
fixed. The coefficients at V of the two sides of (3.5.4) are power series in tll t 2 con
verging to the saUle rational function, denote it CPv(tll t 2 ), but in different regions:
1h I » It21 for the left hand side and !h I « It21 for the right hand side. So the
coefficient at ti t1 in the left hand ~ide is flttl=Rllt~l=r cpv(tI, t2)tli-lt~j-ldt, dt2,

R » T, while the coefficient at ti t~ in the right hand siele is similar integral, but
taken over the torus Itd = T, It21 = R. However, Proposition 3.4.3 (c) shows that
<pv (tI, t 2 ) has no singularities and thus is a Lallrent palynomial in tI, t2. So the
two integrals coincide, and comparing coefficients indeed gives a valid relation.

(b) From (3.3.2) we find

E 1 LHoIn(j, 9, qn+m-~t2/t l) E
(3.5.9) [ag (t2), J(h)] = og LHom(f, 9, qn+m-! (t2/ td J(td

Moreover, the serics a g (t 2 ) going only in oue direction, thc coefficients at each [V)
in both sides of (3.5.9) are Laurcnt polynoInials in h, t2, so we can proceeel to
conlparing coefficients at each ti t~. This is done by applying thc fonnula log (1 
z) = - L:cl2: 1 zd/d to (3.5.9) and (3.5.7) and yields thc claimeel answcr (3.5.8).

(3.6) The Hermitian form on B(Cohx ). We now proceed to elescribe the
values of the Hernütian fornl (1.7.1) on our generating functions EJ(t), .,pJ(t) (or
af (t) = log 'lj;J (t)). This will autOlllatically give us scalar pfaducts of any products
of the generating functions bccause of the identities

(3.6.1) (xy, z) = (x ~ y, ~(z)), (x, yz) = (~(x), y ® z)

expressing the fact that the multiplication anel the comultiplication in B(Cohx )
are conjugate to each other.

In the following we will make use of the formal power series

(3.6.2)
+00

o(z) = L zn
n=-oo

reprcsenting (in thc sense of distribution theory) the Dirac o-function at z = 1.
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(3.6.3) P roposit ion. The sca/ar products 0 f the gen erating fun ctions E J (t), aJ (t) E

B( Cohx ) are given by

(3.6.4)

(3.6.5)

(3.6.6)

(3.6.7)

(3.6.8)

(CL, x) = 0, Vx E B{ Cohx )

The proof will be given in § 4.

(3.7) More general scalar products. A general elelnent of the subalgebra in
R(Cohx ) generated by the coefficients EJ,d' has the form

(3.7.1) a1 » ... »ar

where f = (/1, ... ,Ir), li E CUSp, is a sequence of CUSp forms, anel cp is a Laurent
polynolnial. In thc standard terminology of thc theory of automorphic forms, such
elelllcnts are called theta-series [Go] 01' pscudo-Eisenstein series [MW). Thc wcll
known formula [La3] MW] for the scalar product of two pseudo-Eiscnsetin scris can
be easily deduced fronl TheoreIll 3.3, Proposition 3.6.5 and general properties of
Hopf algebras. Let us rccall this formula in our notation.

Let B(Bunx) be the quotient algebra of B(Cohx), obtained by putting each
[F], where F is not a vector bundle, to be equal to 0, and each CL to be equal to
1, and let

(3.7.2) PBun : B(Cohx ) -t B(Bunx)

be the natural projection. Notice that if b E B(Cohx) is a linear cOlnbination of
[V] with V being vector bundles, then für any a E B(Cohx) thc scalar product
(b, a) depends only on PBun (a).
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For any Hopf algebra A with eomultiplication ~ we denote ~(r) : A ---7 A®r the
(r - 1) fold iteration of ~, i.c., ~(2) = ~ and ~(r+l) = IdA0(r-l) (8)~. If a scalar
product ( , ) on A satisfies the idcntity (3.6.1), thcn by iterating these idcntities
we find, in particular, that

(3.7.3)

For a sequenee f = (fl, ... ,Ir), fi E CusP
ni

of cusp forms and apermutation
o E Sr let

(3.7.4)

so that the funetional equation for Eisenstein series yields

(3.7.5)

The classical fornulla of Langlands for thc eonstant ternl of a (pseudo) Eisenstein
series has, in our notatioIl, thc fonn

(3.7.6)

This formula follows at onee from (3.3.2) and (3.3.4). By using (3.6.7) and (3.7.3),
we deduee that for g = (91, ... ,91")' 9j E CusPm.' we have

J

(3.7.7)

r

= 01T' L M~(h, ... ,tr ) TI o(ta-IU) . tj).
aESr j=1

9j=!o-I(j),Vj

Then by integrating (3.7.7) against a Laurent polynornial 'IjJ(t~ ... t~) we find

(3.7.8)

aES"
9j=fo - 1 (j)
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(3.8) The algebras 8 and B. Let B C B(Cohx) be the subalgebra generated by
K, CL and the coefficients EJ,d' aJ,d, f E Cusp. Oue would like to have a cOlllplete
description of B by generators and relations. To addrcss this problem, let HS intro
duce an algebra 8 generated by formal sYlnbols EJ,d' aJ,d, K, CL which are subject
only to the relations that the CL are central, that

(3.8.1)

- -
KaJ,d = aJ,dK , f E CusPn'

plus the relations obtained frolll (3.4.4), (3.4.5), (3.4.8) by replacing E with E and
a with ä. So we have a natural surjection

(3.8.2)

and generating functions

EJ(t) = 2:= EJ,dtd ,
dEZ

1rB : B -+ B,

aJ(t) = 2:= äJ,dtd , ;PJ(t) = exp(aJ(t))
d~l

satifying (3.3.1) and (3.4.2). The problenl of explicit determination of thc ideal
Ker(1rs) seelns very interesting. BasicallYl elelllents of Ker(1rs) are some subtle
relations bctwecn residues of Eisenstein serics. As we will see in § 5, these cletnents
should be thought of analogs of Serre relations in quantulll affine algebras which
Inakes it plausible that one can give a cOlnpletely explicit description of the gener
ators of the ideal. Here we will use an approach similar to one used by G. Lusztig
[Lul] for ordinary quantum groups.

Denote by R (resp., Rsun , Ro) thc subalgebra in ß generated only by the EJ,d

and aJ,d (rcsp. only by EJ,d, only by aJ,d) and by R (resp. RBun, R o) the itnage of
R (resp. REun , Ro) nudel' 1rB.

Note that fonnulas (3.3.4-6) (modified by putting tildes over generating func
tions) make ß ioto a topological Hopf algebra, and 1rß into a Hopf homomorphisrn.
Note also that formltlas (3.6.6-10) define a Hennitian scalar product on B, with
respect to which _the rnultiplication and camultiplication are conjugate, i.e., (3.6.1)
holds. Let N eBbe the kernel of this scalar product. Since ('JrB(X), 1rB(Y)) = (x, y)
for any x, y E 8, we have Ker(1rs) c N.

(3.8.3) Proposition. Ker(1rB) = C[JCoX] . (N n R).

Proof. This follows from the fact that the fonn ( ) on R c R(Cohx ), being
the restriction of a positive definite Hermitian form, is itself positive definite and
hence non-degenerate. Thus (Ker 1rB) n R = N n R, and we should only use thc
fact that both Band B have the fann B= C[JCoX] 0 R, B = C[KoX] 0 n.

This proposition shows that the algebra B can be defined entirely in terlllS of
the L-function data rnade explicit in Theorern 3.3 and Proposition 3.6.5. We want
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to finish this section by discllssing the relationship between B, the ufree" algebra i3
and the bigger algebra B(Cohx ) a little bit more closely.

Let R(Bunx) C R(Cohx ) be thc sllbalgebra generated by elenIents (V] whcre V
is a vector bundle. By restricting 7rB to the two subalgebras below and composing
it with natural enlbeddings, we get hOlllomorphisms

7ra : Ra -+ R(Coho,x ), 7fBun: RBun -+ R(Bllnx ).

(3.8.4) Theorem. The homornorphism 7fBun is surjective, i. e. RSun = R(Bunx).

In other words, any elenlent [V], V E Bunn(X) can be cxprcssed as a polyno
mial in the E j ,d, i.e., in thc fonn (3.7.1). This stateInent is similar to thc spectral
deconlposition theoreIn (MW] but is different since here we consider the coefficients
of thc Laurent expansion of the rational functions Eh (h) ...E fr (t r ) in the dOlnain
of convergence of the series defining these functions (and these coefficients are au
tOIllorphic fornls with finite support on cach BUlln,d(X)), while spectral decompo
sition theorem deals, in our notation, with the coefficients of Laurent expansions
of the saIlle functions hut on the unit torus lti I = 1 (and these coefficients are, in
general, only square-integrable).

We will prove (3.8.4) a little later. As for the hOInomorphism 7fo, we would like
to state the following conjecture.

(3.8.5) Conjecture. The rrl.ap 7fo is injective, i. e., the (commuting) elements
a f,d, f E Cusp, d ~ 1, are algebraically independent over C.

Note that since (:F, Q) = 1 for any :F, Q E Coho,x, the fornnI1a (1.4.1) Inakes
R(Coho,x) = H(Coho,x) into a Hopf algebra (with cOInultiplication denoted by
r). This is just the tensor product over all x E X of the Hopf algebras studied by
Zelevinsky [Ze]. With respect to r every 'ljJj(t) is gToup-like: r(1/Jf(t)) == 'l/;f(t) ®
'ljJj(t), so aj(t) is primitive: r(aj(t)) = aj(t)!&>l + l!&>aj(t), and the same is true for
each aj,d. Now, primitive elements in a cOlllmutative and cocommutative Hopf C
-algebra are algebraically dependent if and only if they are linearly dcpendent. By
using (3.6.6), we gct the following refonnulation of the conjecture. Let CusP<N =
Ui~N CusPi' -

(3.8.6) Reformulation. Let N be fixed, and € be small enough. Consider the
self-adjoint rnatrix integral operator on the circle Itl = € whose matrix indices run
over the set CUSP~N and whose kernel is given by

f E CusPn , g E CusPm , m, n ::; N

Then this operator is strictly positive definite.

This conjectural property can be regarded as a certain strengthcning of the
nulltiplicity one theoreIn for GLn .

(3.9) Proof of Theorem 3.8.4. We will proceed in three steps.
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Step 1: Use of the reduction theon/. We recall S0111e basic facts about stable vec
tor bundles, see [RN), [8tu] for 1110re details. For any vector bundle V on X let
tt(V) = deg(V)/rk(V) denote its "slope". A bundle V is called semistable, if for
any subbundle V' c V we have tt(V') :s; tt(VIV'). An arbitrary bundle V possesses
a canonical Rarcler-NarasiInhan filtration

V. = (VI C ... C v;. = V)

with the properties that for each i the quotient gri(V) = Vi/Vi-l is senüstable and
tt(gri (V)) > j1.(gri+ 1(V)). Thus V is senlistable if and only if its Harder-NarasiInhan
filtration consists of only one layer.

Let A E Z be a positive integer. Let HS say that a vector bundle V is A-unstable,
if it is not serrlistablc anel for at least one i we have tt(gri (V)) + A < p;(gri-l (V)).
Denote by Bun>Ad thc set of isonlorphisnl classes of A-unstable bundles on X ofn ,

rank n anel degree d, anel by Bun~,~ = BUlln,d(X) - Bun~,~ its conlplelnent.

(3.9.1) Lemma. (a) For each A > 0 the set Bun~,~ is finite.

(b) For fixed n, d we can find A > 0 such that whenever V E Bun~,~ and i is such

that tt (gri (V)) + A < p; (gri -1 (V)), th en in the Hall algebra we have the equality
[V] = [Vi] 0 [V/Vi].

Proof of (3.9.1). (a) This is an ea..,y consequence of the reduction theory, sec, c.g.,
[Stu].

(b) If E is any vcctor bundle on X, then there is 0 E Z such that for any line
bundle on X of degree 2: 0 we have H1(X, E®L) == 0, HO(X, (E®L)*) = 0 (8erre's
theorem). Moreover, if we havc an algebraic family of bundles parametrized by a
scheIne S of finite type, we can find 0 good for all the bundles in the fanüly.

We apply this to the "universal" situation. Let Bunn,d(X) be the moduli space
of semistable vector bundles over X of rank n anel degree d. It is a projective
algebraic variety defined over F q' Tensoring with a line bundle of degree 1 defines
an isolnorphislll Bunn,d(X) ---t Bunn,n+d(X), We conclude therefore thc following:

(3.9.2) Lemma. For each ml, m2 there exists a number 8mllm~ > 0 with the
following property: If W i , i = 1,2, is a semistable bundle on X 01 rank rr~i and
p;(W1 ) + oml ,m2 < p;(W2 ), then

To return to the proof of (3.9.1), take A greater than all thc Oml,m2' mi :s; n. If
V satisfies the condition of (3.9.1), then by (3.9.2) we have

from which we deduce that

Ext1(V/Vi, Vi) = Hom(Vi, V/Vi) == o.

Thc vanishing of Ext1 lllcans that V ~ Vi E9 (V/Vi) and thc vanishing of HOlll
means that there exists a unique subbundle in Vi E9 (V/Vi) of type Vi and cotype
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V/Vi. Using the vanishing of Ext1 one more tiIne, we find that [Vi] 0 [V/Vi]
(Vi EB (V/Vi)] = [V]. Leluma (3.9.1) is proved.

Ster 2: Representation of a function as an infinite sum of Eisenstein coefficients. Let
R(Bulln,x) be the subspace in R(Cohx ) spanned by basis vectors [V] where V is
a rank 11, vcctor bundle. We a.re going to Uf,e the fonnula for the scalar product of
two Eisenstein series in order to represent an elelnent h E R(Bunn,x) as a possibly
infinite linear combination of coefficients of Eisenstein series.

Fix n > 0, fix sOlne real numbers al » ... » an > 0 (enough to take ai > qai+d
and a total order::; on the set CusP<n = Ui<n CusPi' If f E CusPi' write n(f) = i.
Denote also CusPn the set of sequences f = (/1 ~ ... ~ Ir), fi E CUSP<n, En(fd =
n. We will also write Er(t) for Eh (h) ... E Ir (tr), t = (h, ... ,tr)· -

(3.9.3) Lemma. If h E R(Bu1l.n,x) is orthogonal to each element Er(t), f =
(lI,· .. ,Ir) E CUSPn' Itil = ai, then h = O. .

Proo]. The assumptions imply that (Er(t), h) = 0 identically as a rational function
in h ... tr · Thus froln the functional equations (3.7.5) we find that for any pernlU
tation 0" E Sr and Itil = ai the product E'a(l)(tr) ... E'a(r) (tr ) is orthogonal to h
as well. This nleans that h is orthogonal to all pseudo-Eisenstein series and thus
h = 0 by [MW], Th. 11.11.2.

Now, given h E R(Bunn,x), we can try to find an elclnent h' = LrecusPn E(f, <pr)
such that (Er(t), h - h') = 0 for any f E CusPn' For a given f we denote by
S(f) C Sr the subgroup of permutations (J such that fcr(i) :;:: fi, Vi, and will look
for <Pr invariant under S(f). By (3.7.9) the condition for (Er(t), h) = (Er(t), h') is
that

(3.9.4) (Er(t), h)

Thus <pr(t) = <1>r([-l), where

(3.9.5) ...n. ( ) = (Er (t), h)
'±'r t '" r ( )'

L...tl1ES(r) Mcr t

Thc function <pr(t) is indeed invariant under S(f), hut it is only a rational fnnc
tion, not a Laurent polynomial, becallse of the zeros of the denolninator in <I>r(t).
So in order to get a representation of h' as a surn of coefficients of Eisenstein series,
we should first cxpand <Pr.

Fix f = (fl :::; ~ fr) anel considcr the coordinate vector space Rr with the
standard basis eIl , er' Let f r C R r be thc convex cone with apex 0 generated
by thc vectors Cj - Ci for i < j such that fi = fj. For a Laurent series LWEZ r awtW

in r variables we caU the set of w such that aw =1= 0 the support of thc series.
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(3.9.7)

(3.9.6) Lemma. The Junction <Pr(t) can be expanded into a Laurent series

artW
W

wEZrn(rr+rr)

whose support is contained in sorne translation of the cone r r.

Proof. First, the nllIllerator (Er(t), h) is a finite linear combination of (Er(t), [V]), V E
Bunn(X), Le., of Eisenstein scries Ev(f}, ... , fr, t}, ... , tr ). The poles of any such se
ries come froln the poles of

M r (t) = rr qninj(l-gx) LHoln(fi' fj, tj/td, l7 E S(f)
U 0< 0 CO»~ (") LHom(fi' !j, tj/qti)

't ):UI U)

Each factor here is aseries in non-negative powers of tj/ti, starting with 1. So
each M~(t) has support in a translation of rr. Now, for the denominator 'Lt M~(t)
we have, by the salne reason, an expansion 'LtwErrnzr cwtW with Co 1= O. Thus its
inverse adnüts the geoluetric series expansion

1 1 00 ( )m
Mr = - L - L (cw/co)t

W

'Lt u(t) CO m=O wE(rrnzr)-{o}

which is aseries supported in f r . Lenlllla 3.9.6 is proved.

Thus we can write h' as an infinite series

(3.9.8) !L' = L E(f,4'r) = L L a~Eh,Wl· ..Efr,wr'
rEcU8P n rEcusP n wEZrn(rf+rr)

wherc Ef,d is the d-th coefficient of Ef(t).

(3.9.9) Lemma. For any ,,\ > 0 (LU but finitely rnany tenns of the series (3.9.8),
regarded as Junctions on BUTln (X), vanish outside Bun~,~,

This iInplies, in particular, that the series converges, as aseries of functions on
Bunu(X).

Proof. It is enough to conisder one f at a time. In order that E!I ,Wl ••• E fr,w r be
nonzero on V, there should be a flag VI C ... C Vr = V of subbundles with
deg(Vi!Vi-I) = Wi. Thus, if for at least one i we have

(3.9.10) (where fi E CUSPni)'

then V 111USt have a destabilizing fiag with at least one gap in the slopes greater
than A, which iInplies that in the Hardcr-NarasiInhan filtration at least one gap in
the slopes will be greater than A, i.c., that V E Bun~~. It relnains to notice that if
Ii = !j then, of course ni = nj so for all but finitely ~lany integer points lying in a
translation of f r , thc condition (3.9.10) will be satisfied for SOlne i. Lelnll1a 3.9.10
is proved.

So h' is a weIl defined function on Bunn(X) and the scalar product (Er(t), h') is
indeccl defined for any f E CusPn by (3.7.9) and is cqual to (Er(t), h) by construc
tion. So we get thc following fact.
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(3.9.11) Lemma. The series in the right hand side 0/ {3.9.8} converges to h.

Step 3: Completion of fhe proof. Fix n and assurne, by inductioll, that any h E

R(Bunm,x) with rn < n lies in the irnage of 1TBun' Fix dEZ and a big enough
A E Z. By Step 1, all [V] with V E Bun~~ lie in Im(1TBun). So we h to be

equal to (V]' V E Bun~~. By Lcrumas 3.9.9 a~d 3.9.11, we cau, by truncating the
series (3.9.8), find a finite linear combination h" of elements from Im(1TBun) which
coincides with h on Bun~,~. But then h - h" lies in Im(1TBun) by Step 1. This
proves the theorern.
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§4. Proof of Theorem 3.3 and Proposition 3.6.3.

Recall that thc equality (3.3.1) has already been proved. So we first prove the
rest of the assertions of Theorem 3.3.

(4.1) Proof of (3.3. 2). Let fr (Cohx) be the cOlnpletion of the Hall algebra
H(Cohx ) consisting by all, possibly infinite, sums L:AEcohx f(A)[A]. Clearly

H(Cohx ) is a binlodule over the algebra H(Cohx). We denote the bimodule struc
ture by o.

(4.1.1) Proposition. FOT any :F E Co!l{),x and any f : Bunn(X) -+ C we have
equalities in H( Cohx ):

(4.1.1a) [:F] 0 L f(V)[V] = L f(V) [V EI7 :F],
VEBun n (X)

(4.1.1b)
(VEBLllnn(X) f(V)[V))) 0 [F] - L L (TFIF,f)(W)·

F'cF WEBun n (X)

.1Aut(F')I·IAut(F/F')!. nhO(F')[W :F']
IAut(F)1 q EI7.

Proof. The statenlent (a) follows from thc equality (F] 0 [V] = [V EI7 F] holding
for any F E Coho,x, V E Bunn(X), because Ext1(V,F) = Hom(F, V) = O. To
see part (b), recall (1.2.1) the notation g~B for the structure constants in thc Hall
algebra. Our statenlent follows from the next lelnma about these constants.

(4.1.2) Lemma. Let V, W E Bu'nnX und F, F' E Co!l{),x. Then

WffiF' ""' W IAut(F')I·IAut(F")1 nho(F')
gv,F = L...J 9VFII IAut(F)1 . q

F"ECoho,x

Indeed, supposing thc lenuna true, we have

(L !(V)[V]) (Fl) = L g~JF' f(V)[W EB F'] =
v V,WEBunnX

:;:' ECoho,x

= L L IAut(F')I, IAut(F")I f(V)[W EI7 F'] . qnhO(FI
)

V W F' F" ]Aut(F) I, ,

"" " f(V) IAut(F')l· IAut(F/F')I . [W F'J. nho(F)
L...J L...J L...J IAllt(F) I ffi q

r'CF W vcw
wlv::=.:;:' I:;:'

= '" '""'(T I f) (W) IAllt(F') I . IAut(F/ :F') I. nho(F' ) (W :F'J
L...J L...J :FIF IA ü(F)j q ffi,

:;:Ie:;: w 1
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as clahned.

Proo! 01 Lemma 4.1.2. If G is a finite gTOUp acting on a finite set S, WB caU the
orbifold nlunber of elements in S nlodulo G thc quantity

I

ISI 1
TG1 = L IStab(s)1

{8}

where {s} are all the G-orbits in S, with s E {s} being a chosen representative and
Stab(s) C G being its stabilizer.

Now, let V, W, :F',:;= be given. The subsheaf :;=' c W EB:;=' is defined intrinsically,
as the Inaximal torsion subsheaf, so g;:~' = 1. It follows that

g~~:F1 = jAut(W EB :F') I.C,

whcre C is the orbifold number of diagrams ("crosses" )

0

1
w

1
(4.1.3) 0 )V a ) WEB:;=' ß ) :F ) 0

I'
:F'

1
o

modulo the product of thc groups of automorphisms of all five objects. Byelemen
tary homological algebra, every cross can be cOlnpleted to a 3 x 3 diagraul with
exact rows and COIUI11nS, from which we want to retain the outer frame

(4.1.4)

o

o

o

---+) V"

V

1
---+) V'

o

---+) W

---+) :F'
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__-+) Pli

1
---+) p,

1
o

---+) 0

---+) 0



Here, for instance, :F' = Inl(ß,) etc. Notice that we havc v' = 0 since it should
be a torsion sheaf ernbedded in V. Thus PI "" Fand V" ~ V. For each F"
let C(F") be the orbifold nurnbcr of crosses giving frarnes with the upper right
corner p" isolllorphic to F", so that C = L:.rll C (F") " Let also F (F") be the
orbifold number 0 f [raInes l i.e., arbitrary cl iagrams of the fonn (4.1.4) in which
:F" = F", PI = F', V" = V, (modulo the product of the groups of autonlorphisms
of all 8 objects constituting the frame).

The Inain result of Green ([Gr], Theorenl 2) says that C(;:") = (F", V')2. F(F")
which is equal to just F(;:") since V' = 0 and thus (F", V') = 1. On the other
hand,

" .r w lAut (V" )I. lAut (F") I . lAut (F' )I"lAut (V') I
F(;: ) = 9j:1 j:1I " 9v II j:1I· lAut(V) I. IAut(W) I. IAut(F) I . IAutF' I

as it follows froln the general fact that g~B is the orbifold uUInber of exact sequences

O--+A--+C--+B--+O

modulo Aut(A) x Aut(B).
Recalling our identifications, we find that

( ") .r w IAut(F") I
F F = gFIFII9v.r1l

• IAut(W)I"IAut(F)I.

Notice also tbat

IAut(W ffi F') I = IAut(W) I. IAut(F') I. IHoIn(W, F') I=

= qnhO(.r' ) IAut(W) I . IAut(F') I.

Tbus

gV;'1F
' = IAut(W EB F')] . C = IAut(W ffi F')I· L C(P") =

= IAut(W EB F)I· L F(F") =

_ nho(:F') " '. ,",.r w IAut(F")1 _
- q IAut(W) I IAut(F) I LJ 9.r'.r" gVF" IA (W) I . IA ( ) I -

:FII ut ut F

_ nho(F')":F W IAut(F') 1 . IAut(F") I

- q f;;-:g:FIFlIgV.r1l IAut(r)1

as claimed. Lenul1a 4.1.2 ancl thus Proposition 4.1.1 are proved.

For the prodllct in tbe Ringel algebra. R we find fronl (4.1.1):
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(4.1.5a)

(4.1.5b)

[F] * L !(V)[V] = qnhO(F)/2 L j(V)[V EB F]
VEBunnX V

( L !(V)[V]) * [F] = q-nhO(F)/2 . (L !(V)[V]) 0 [F] =
VEBunnX V

= ~ -nho(FF')/2 (T !) (W) IAut(F') I . lAuter/ F') I. nhOfr') [W F']
F~Fq F/F' IAut(F)1 q ffi.

Passing llOW fronl just one ba..c;;is vector [F] to the generating function

1fJg(t) = L Xg([F])thO(F)IAut(F)I' [F], 9 E CusPm
F

we find, for ! E CusPn:

(4.1.6) VJg(t2) *Ef(t 1 ) =

L Xg([FJ)!(V)q+nhO(F)/2I Aut(F)! . .t~O(F)tfeg(V) (V EI) FJ.
FECoho,x

VEBunn(X)

To find the product in the opposite order, we use (4.1.5b) together with the fact
that f is a Hecke eigenfonn, and find

9;;/F" Xl ((F"J)! (W)·
FECoho,x WEBullnX F',F/I ECoho,x

'Xg ((F])q-n(hO(F")-hO (F' ))/2IAut(F') I . IAut(F") I·

.t~O (F) t~eg W _hO (F/I) [W ffi F'J,

whcre we have also replaced the summation over subsheaves :;:' c :;: by the sum
mation over arbitrary pairs of isomorphism classes F', F", with the factor g;'F/I
counting the nUlnber of subsheaves of type F' and cotype F". Bince Xg is a char
acter of the Hall algebra, anel I:F g~/F/I [F] = [F'] 0 [F"), we cau replace the RHS
of (4.1.7) by

(4.1.8)
WEBunnX ;:' ,F"ECoho,x

Xl ([F"Df(W)Xg ([F'])Xg ([F"])·

.qnhO(:F')/2-nhO(F")/2IAut(F') I . IAut(F") I . t~O(F' )+ho(F
II

) • [W Ef1 F').

This can be writtcn as the procluct
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(4.1.9)

{ L L Xg([F'])f(W)qnhO(F')/2 ·IAut(F')I· t~O(FI)t~eg(W) . [W E9 F']} X

WEBunnX F'ECoho,x

x { L Xf([F"])Xg([F"])qnhO(F")/2 . IAUt(:FII )!(t2/tt)hO(F")} ,
FI/ECoho,x

of which the first factor is identical, up to renaming the slunmation arguments,
with the RHS of (4.1.6), i.e., it is equal to 'l/Jg(t2) * Ef(td. The sccond factor has
the [onn A(t2/q~td, where

(4.1.10) A(t) = L Xf([.:F])Xg([F]) . IAut(.:F)lthO(F)
FECoho,x

For x E X and an integer sequcllce /L = (/LI 2:: ... 2:: /Lr 2:: 0) denote :Fx,~ =
EB 0/It: i • Since every :F E Coho,x has a unique decomposition into the direct sum
of sheaves of the [onn :Fx,~ (one for each x EX), wc can decompose A(t) into the
Euler product:

(4.1.11) A(t) = II Ax(tdeg(x)),
xEX

Ax(t) = L Xf([.rx,~])Xg([:Fx,tL]) ·IAut(.rx,tL)lt 1tL1 ,
tL

where I/LI = ~ {ti' By (2.5.2) and (2.6.13),

(4 1 12) ([ 'L]) - E(i-l)tLi P ( ? A (f)-1 !!jl \ (f)-1 -1). . Xf .rx,tL = qx tL qx 1,x , ... ,qx An,x ;qx

- (('7:::]) - E(i-1)tL" P ( !llf! \ () m;1 A () -1)Xg .rx,tL = qx I tL qx Al,x 9 , ... ,qx m,x 9 ; qx

where PtL is the Hall-Littlewood polynomial. It is known ([Mac], eh. 111, formula
(4.4)) that

(4.1.13)

where

(4.1.14) b - q-ltLl-2E(i-l)~i . IAut(..r. )1tL - x x,~ .
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Therefore

1 - q~-l Aj!J'fg~t
A (t) = TI X Ai,z I

x ~>.. () ,
.. 1 - q----r-~t
"',) x Ai,z tf)

and so

(4.1.15)

Since, as we already saw,

n±tn

A(t) = LHoln(j, 9,: : t)
LHom(f, 9, q~-lt)

EI(td * 'lj;g(t2) = A(t2/q.g.i})\l1g(t2) *EI(tl),

we have provcd the fornulla (3.3.2).

(4.2) Proof of (3.3.3). Recalling that the bilinear form (a, ß) vanishes on
iCo(Coho,x) and that Xf is a h011lo11lorphis11l H(Coho,x) -t C, we find, fr0111 (1.6.3):

FECoho,x

= L L XI ([Fj)thO(J') JAut(F) Ig~,J''' IAut(~2l~J~~lt(F") I . [F'] <:9 CF' [F"] =
F :F',:F"

= L XI ([F'J)Xf ([F"J)th
O(:F')+ho(F") . IAut(F' I. lAut(F")·

as claimed.

(4.3) Proof of (3.3.4). Let ro : AFn -t EBi+i=n AFi ® AFj be the linear map
dual to the Hall multiplication AFp 0 AFj

O -t AFP+j (with rcspect to thc orbifold
scalar product (1.3.2) on each AFP). ThllS for f E AFn and vector bundlcs W', W"
of ranks i , j we have

(4.3.1) (1'of)(W', W") = " v IAut(W')I· IAut(W") Ij(V)
LJ 9w'w" lAut(V) I '

VEBunnX

and f is a CUsp fonn if 1'o(j) = 1 ® f + f 01. Let now f E CusPn be given. Then,
by definition

(4.3.2) D..Ef(t) = L !(V)tdeg(V) ß([VJ) =
VEBuIln(X)
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where U and 9 can be, apriori, any coherent sheaves on X. However, if 9&9 i=- 0,
U can be elnbedded as a subsheaf into V and so is locally free. The sheaf 9 may
not be locally free, and we write it as 9 = W EB:F where W is a vector bundle, :F
is a torsion sheaf (their isonlorphism classes are deternüned by g). Further, if we
have an exact sequcnce

(4.3.3) O-rU-+V-rWEB:F-rO

we can consider thc unqiue subbundlc (i.e., subsheaf which is locally a direct sum
mand) (j ::) U, rk(U) = rk U. Thc sequence (4.3.3) gives thus two sequences

o-+O-rV-+W-+O

O-+U-+O-+:F-+O

and we conclude that

(4.3.4)

Note also that

(4.3.5)

v '""'" a:F9U,Wffi:F = LJ 9u:F90W
UEBun(X)

IAut(W EB :F)! = IAut(W)I.jAut(:F)I' qrk(W).hO(.'F)

Keeping these two formulas in mind and substituting 9 = WEB:F into (4.3.2), wc
find

t:J.E
j
(t) = '""'" (W :F U) 0 v IAut(Ü) 1. IAut(W) 1. IAut(U) I . IAut(:F) I.

LJ_ EB, 9u:F90w IAut(V)I' IAut(U)1
V,U,W,U,:F

where, in addition, we have multiplied and divided by IAut(Ü)I. In this sum,
V E Bunn(X), while V, W, fj are isomorphism classes of vector bundles of arbitrary
rank, and :F E Coho,x. By (4.3.1) we can write the result of summation over V in
ternlS of Ta, getting

(4.3.7) b..E ( ) = '""'" 0 ( f) (0 W) IAut(U) 1. l~ut(:F) I.
j t ~ 9U:F TO, Aut(U)1

U,W,U,:F
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·(W E9 F, U)qrk(W).hO(:F)tdcgO+degW[UJ ® Ku[W EB F]

Since f is a cusp fornl, (rof)(O, W) = 0 unless f) = 0 or W = O. Summation with
0=0 gives 1 ® Ej(t). If W = 0, the slunInation gives

(4.3.8) ~ gSF /(0) 'Aut(~I'l;t~,ut(F)1(F, U)tdesU[U] 0 Ku[F] =
U,U,:F

= L(T}" I)(U) 'lAut(F)lq~hO(:F)thO(:F)+degU[u]® Ku[F] =
U,:F

=L Xj ([F])1(U) IAut(F) Iq- ~hO(:F)thO(:F)+deg U[U] ® K u[F]
U,:F

where we useel Propositions (2.6.8) anel 2.6.11 to identify the action of Tr. Now,
the last expression in (4.3.8) factors into thc product

By using the equality Ku = KnCdet(U) we cau rewrite this as

E j (t ® c) (1 ® K n 7j; j (q- ~ t) )

thus proving (3.3.4).

(4.4) End of the proof of Theorem 3.3. It rerllains to prove the equalities
(3.3.5) and (3.3.6) elescribing thc counit anel the antipode. Now, (3.3.5) is obvious
from the definition (1.6.5) of E. To see the first equality in (3.3.6), notice that

(4.4.1) S('l/J/(t)) = L Xj([F]) 'IAut(F)I' thO(:F)S([F]) =
:FECoho,x

00

= L L(-1)m L Xj([F]) TI1Aut(Fi/Fi-dl' TI thO(:Fd:Fi+d.
:F m=l :FoC ...C.r.m=:F i i

.TI [Fi / Fi-d . TI c;'jl/.ri_l .
i ,

By replacing the sUllllnation ovcr F anel thcn over Hags of subshcavcs Fo C ... C

Fm = :F in a given F by tbe sunlmation over (independent) isomorphism classes of
{h = F,/F i - 1 with coefficient gta ...9m (the nlunbcr of filtrations on F with quotients
90, ... , 9m) and using the fact that XI is a character of the Hall algebra, we bring
(4.6.1) to the form
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00

1 + L (-1)m('l/lf(C- 1t) - l)m
m=l

Le., to tbe geonletric series for 1./Jf(C- 1t)-1, as claimed. To prove tbe second equality
in (3.3.6), we write, for f E CUSPn:

L f(V)tdeg(V) S([V]) =
VEBun n (X)

00 m

L L(_l)m L j(V)tdeg(V) II(9i/~h-l'{h-I)'
VEBIJn n (X) n=l 9oC ... cgm=V i=l

0;:0IAut(9j/9j-I)! -n -1

. IAut(V) 1 [90J ... [9m/gm-IJ . K Cdet(V)

Since f is a cusp form, the reasoning siInilar to that in (4.3), shows that only Hags
go c ... c 9m = V with rk(9i) = rk(V), Vi, contribute to the total sumo But when
we restrict the summation to such Hags (in which we thus have 9i/9i-l E Coho,x
for i > 0) we imlnediately get -Ef(C-lt)'lj;f(q-~t)-lK-n by thc same reason as
above (sununation of geornetric scries) plus the applieation of tbc Riemann-Roeh
theorenl to aeeount for O(9i/9i-I,9i-l)'

Theorem 3.3 is eornpletely proved.

(4.5) Proof ofProposition 3.6.3. The eql1ality (3.6.4) is obvious: non-isomorphie
objects give orthogonal elenIents in the Hall algebra. To see (3.6.5) notice that cusp
eigenforms with different eigenvalues of Hecke operators are orthogonal, by (2.6.11),
so (E/(t l ), Eg (t 2 )) = 0 for j =f. g. If f = g, the equality (3.6.5) follows at onee fronI
the definition and the assumption (2.6.14) that 11 f II~= 1. So wc coneentrate on
the proof of (3.6.6). Notiee that Wf(t) can be written as tbc Euler produet

(4.5.1)

Wf(t) = II Wf,x(tdeg(x)), Wf,x(t) = LXf([Fx'JlD ·IAut(Fx,J~)j·t lJl1 . [Fx'JlJ
xEX Jl

where J-L runs over all partitions {LI ~ ... ;::: IJn ~ 0, with IMl = 'L, Mi and F X1Jl =
EB CJx / I!: i having the same meaning as in (4.1), nlore precisely, after (4.1.10). Thus
we have:

(4.5.2)

and therefore

(4.5.3)

af (t) = L a f,x (tdeg(x)), a /,x (t) = log 1/Jf,x (t),
xEX

(a f (id, ag(t2)) = L (a f,x (t~eg(x)), ag,x (t~eg(x))).

xEX
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We will evahIate each summand in this SUln. Let

(4.5.4)

be the isolllorphism discussed in (2.3.5d).
In [Mac] 1 Ch. 111, fonnula (4.8) 1 Macdonald defined a certain scalar product

on A[t] with values in Q[t, t-I]. We denote by ( , )Macd the Q -valued scalar
product on A obtained fronl this Q[t , t- I ] -vailled scalar product by specializing
to t = q;l. Let us, for the tinle heing, abbreviate H(Cohx,x) to siluply Hand
introduce on thc algebra H the grading H = EBd>O H d , where H d is linearly spanned
by :Fx,~, IJ-LI = d. -

(4.5.5) Lemma. Let Ui E H di , i = 1,2. /f d1 i=- d2 , then (Ul' U2) = 0, and if
d1 = d2 = d, then

Proof. The first statelnent is obvious. The second follows frorn the eqllality (formula
111 (4.9) of [Mac])

(p~ (z; q;;l), Q~I (z; q;I)) Macd = O~~/,

wherc Q~I (Zj q;l) = b~1 P~I (z, q;l) and b~ is defincd in (4.1.14), while on the other
hand,

The lcnlma implies that

(4.5.6) (af,x (h), ag,x (t2)) = (Ch(af,x (q;; 1t1)), Ch(ag,x (t2))) Macd'

Let us therefore find Ch(af,x(t)). Let us orrIit thc mention of the paralnetcr in thc
Hall polynonüals, which we will always irnplicitly understand to be equal to q;;l.
We start by writing

n-1

Ch (W j,x(t)) = L q;;2 L(i-l)~i p~ (q;r Ax(f))p~(z)IAut(:Fx,~)Itl~1 =
~

n-1

= LqJtlb~p~(q;r Ax(f))p~(z)ltl~
~

where we llsed (4.1.12) and set Ax(f) = (Ax,l(f), ... 1 ).,x,n(f)) as wen as z

(ZI, ... ,ZN)' By thc formllia qlloted in (4.1.13), we find:
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and hence

whcre Pd is the d - th power surn syrnlllctric fllnction. Now, by fonllula 111 (4.11)
of [Mac],

d
(pd, Pd' )Macd = -d 0dd"

1 - qx

By using (4.5.6), we now find

n±m _

_ 1 TI 1 - qx 2 Ax,i(f)Ax,j(g)t1t 2
- og n±m -1 _ '

i,j 1 - qx 2 Ax,i(f)Ax,j(g)t1t2

and (3.6.8) is obtained by performing the summation over x EX, and noticing
(2.6.13) that the set of the Ax,j(g) is the same as the set of the Ax,j(g)-l.
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§5. Quantum affine algebras.

In this section we cornpare Hopf algebras formed by autolnorphic fonns with
quantulll affine algebras. For our purposes it is convenient to treat the quantization
parameter q as a constant rather than as an indeterminate variable.

(5.1) Drinfeld's realization of Uq(Q). Fix a nonzero complex number q. Let g bc
a finite-dimensional sernisinlple Lie algebra whose Cartan matrix A =11 aij ll"j=l,... ,'.
is sylnnlctric and let g be the corresponding Kac-Moody algbcra (central extension
of g[t, t- 1

]). Thc quantization Uq(g) can be defined in two ways: the first (root
realization) uses the systenl of simple roots for the affine root system of g and
procccds directly froln the affine Cartan Inatrix A of g (of size (r + 1) x (r + 1)).
The other, thc so-called loop realization of Drinfeld [Drl-2] (see also [CP]) is the
C-algebra generated by the symbols

xt(n),xi(n),i = 1, ... ,r,n E Z, ktn,i = 1, ... ,r,n 2: 0

and the central element c. They are subject to some relations wmch are best written
in tenns of formal generating functions

F,±(t) = L xt(n)t+n
,

nEZ

The relations have the form:

00

'Pt(t) = L ktnt±n.
n=O

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)

(5.1.5)

[F/ (tl)' Fj- (t2)] = Oij { 0 (~12) 'Pi (CI/ 2t2) - 0 ( ~t21 ) 'Pt (c1/ 2h) } o(ql/2 _q-I/2)-1,

44



(5.1.6)

(5.1. 7)

where m = 1 - aij and Sym stands for the suru over all the permutations of

t l ,··· ,tm'
The relations (5.1.7) are the analogs of the Serre relations in finite-diInensional

semisiInple Lie algebras.

Let Uq(~), (resp. Uq(~)) denote the subalgebra in Uq(g) generated by the
elelnents xt(n) (resp. xi(n)) only, which are subject to relations (5.1.2), (5.1.7).

Let also Uq(b+) denote the sllbalgebra generated by the xt(n), 11, E Z and by the

elements kt(n),n 2: 0 Sitnilarly for Uq(b==). They are the quantizations of the
enveloping algebras of the Lie algebras

where g = n+ EB h EB n- is the standard decomposition of g into tbe nilpotent and
Cartan subalgebra.c;.

(5.2) The case g = Sl2 and sheaves on pI. Consider the simplest case g = Sl2.

In this case tbere is only one root, so we will denote the generators and generating
functions as x±(11,), p± (t) etc. The algebra Uq (b+) is generated by c alld by the
coefficients of the two power series P+ (t), cp+ (t ).

On tbe other hand, let us suppose that q is a prime power and spccialize the
theory of § 3 to the case of the sin'lplest algebraic curvc X, nalnely the projective
line p~ . Let B = B(Cohpl) bc the cxtended Ringel algebra of the category of

q

coherent sheaves on pI. The group Pic(X) consists of sheaves 0(71,), n E Z. Thus
tbe algebra B is obtained from tbe algebra R(Cohpl) by adding two elelnents
K = K 0 and C = CO(I)' The set Cusp consists of onc element: thc trivial character
1 of PiC(PI) = Z. Thus there are only two generating functions

E(t) = L [O(n)]tn E B[[t, t- I
]],

nEZ

'lj;(t) = L lAut ODI . tdcgD[OD] E 1 + tB[[t]]
DEDiv+(P')

where Div+ (PI) is the set of effective divisors on pI and 0 D is the torsion shcaf
Opl/Opl(-D).

Let R(Bun(pl)) eBbe tbc subalgebra generated by elements [V]' where V is
a vector bundle. Let BeB be the subalgebra generated by [V] as above togetber
with K, c and the coefficients of 'lj; (t) .
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(5.2.1) Theorem. The algeb1'a R(Bun(pl)) is isorrtorphie to Uq(;t-) C Uq(;L2)'
and B is isomorphie to Uq (b+).

Proof. The function LHoIll(l, 1, t), i.c., the zeta-function of pI, has the fonu

(5.2.2)
1

( (t) = (1 - t)(1 - qt)

Thus the functional cquation for the Eisenstein series (3.3.1), when brought to the
polynolnial fornl (3.5.4) gives:

(5.2.3)

which is identical to the defining relation (5.1.2) for Uq (Sl2) (in which i = j
1, an = 2). ThtL~ the correspondence xt(n) H [O(n)] gives a homomoprhism

, : Uq(~) --+ R(Bun(pl)). To show that 'Y is an isomorphism, note that every
vector bundle V on pI can be represented as V = EBiEZ O(i)m i . Moreover, the
fi Itration V j = EBi>i 0 (i) mi is defined intrinsically (this is the Harder-Narasimhan
filtration, already discussed in (3.9)). It follows that

[V] = q-~ Li<j m i m j (i-i+ 1)[O(b)7nb ] :+: ••• * [O(a)m a ]

where {a, a + 1, ... ,b} is any interval in Z containing all i such that mi =I=- O. Note
also that

[O(in * [O(i)m'] = q~ [m:ml O(i)m+m',

which implies that [V] is actually a luonomial in the [O( i)]. Thus, is surjec
tive. To see that / is injective, Le., that there are no fllrther relations anlong the
[O(i)] except those followillg from (5.2.2), remark that we just have shown that thc
monomials

(5.2.4)

constitute aC-basis in R(Bun(pi )). On the other hand, the relations (5.2.3) (after
passing to the coefficients) can be used to express any 1l10noIuial as a linear combi
nation of nlononlials (5.2.4). Since thc lattcr lnonomials are linearly independent
in R(Bun(pl )), there can be no further relations and so 'Y is an isomorphisIll.

Let us now turn to the algebra B. The cOlnmutation relation (3.3.2) reads in our
case (again, use (5.2.2)) as folIows:

(5.2.5)
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while in Uq(b+) we have, by (5.1.3):

(5.2.6)

Thus the correspondcnce

---defincs a hornomorphislll Uq(b+) ~ B. It is surjcctive by the definitior:-of B.
Its injcctivity follows from the injectivity of the homomorphism l : Uq(n+) ~
R(Bun(pl)) above and the fact that the coefficients of 7j;(t) are algebraically inde
pendent over C. This latter fact is proved by the sanle argument as given in (3.8.5):
the coefficients of log 7j;(t), being linearly independent and primitvc with respect to
a Hopf algebra structure, are algebraically independent. Theorem (5.2.1) is proved.

(5.2.7) Remark. It is instructive to compare Theorem 5.2.1 with rcsults of llingel
[RI-3] and Lusztig [Lu1-3] on representations of quivers. Naruely, let r be a quiver,
Le., a finite oriented graph without edges-Ioops. Let f - nlod be the category of
reprcsentations of f over F q, Le., rulcs which associate to any vertex i E Vert(f)
a finite-dimensional F q -vector space Vi, and. to every oriented edge i ~ j a
linear nlap Ve : Vi ---7 Vj. This is an Abclian catcgory satisfying our finiteness
conditions (1.1), so its Ringel algebra R(r - ruod) is defined. For i E Vert(f) let
V (i) be the representation assigning F q to thc vertcx i and 0 to other vertices. Let
A = 11 aij Ili,jEV ert (r) be the Cartan matrix associated to f, i.c., aii = 2 and aij is
minus the nuruber of cdges (rcgardlcss of thc orientation) joining 'i and j, if i -::j:. j.
Let gr be tbe Kac-Moody Lie algebra with thc Cartan matrix A and Uq(gr) be its
q-quantization. This is (see, e.g., [Lu 1]) thc algebra generated by symbols et, K i

(with K i bcing invcrtible) subject to the relations:

(5.2.8)

(5.2.9)

± I ±a /2
[ + _] Ki-K.- 1

K •eJ' K.- = q ij eJ", e e ~ •• • i , j = Uij q _ q_ 1 '

I-a""t J

(-1)' [1 -/ij
] (etllet (etll-aij-l = o.

1=0 q

Let Uq(Nr)bc the subalgebra generated by the et. Then thc subalgebra in R(f
fiod) generatcd by thc [V(i)], is isornorphic to Uq(Nr ) so that [V(i)] corrcsponds
to et.

Now, ::d2 is the Kac-Moody algebra associated to the Cartan matrix (!2 -;2),

anel its Dynkin graph is Ail
) = {. =:; .}. So the general results about repre

sentations of quivers are applicablc to this case and realizc Uq (NA (l)) C Uq ( ;"2)
1

inside R(AiI
) - mod). So we have realizations of two "nilpotent" subalgebras,
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Uq(;+), Uq(N) c Uq (Sl2) in terms of Ringel algebras of two Abelian eategories:

Cohpl (sheaves on P].. ) and All) - 1l10d. One may wonder what these two eate-
q

gorics have in comnlon, and the answer is that their derived categories are equiv-
alent. This is a particular case of a theorem of Beilinson [Be], as reformulated by
Bondal [Bo] and Geigle-Lenzing [GL]. This suggests a deeper relation between de
rived categories and quantum group-like objects, which will be studied in aseparate
paper.

(5.3) The case of a general curve X. Considering now the case of an arbitrary
slnooth projective curve X/F q we find, by cOlllparing Theorem 3.5 with formulas
of (5.1), that thc algebra B(Coh~ (or, rather, its subalgebra B defined in (3.8)) is

analogous to the subalgebra Uq(b+) C Uq(g) for a huge Kac-Moody algebra g. Let
us sketch this analogy in the following table:

Theory of quantum affine algebras

The set of positive roots of g

The entries of the Cartan matrix of g

Symnletry of Cartan matrix

Pointwise-llppertriangular subalgebra
Uq(ii+)

Pointwise-Cartan subalgebra
Uq(h[tJ)

Root deeoInposition of Uq(n+)

Components of xt (td ... xi: (t n )

at a given basis veetor of Uq(g)

Serre relations

?

Full algebra Uq (g)

Me Kay correspondence

Theory of automorphic forms

The set Cusp of cusp cigcnforrns

The coeffcients of Rankin L-funetions
LHom(f, g, t)

Functional equations of L-functions

The algebra R(Bun(X)), Le. , the
algebra of unramified forms

The algebra of cIassical Hecke
operators

Spectral decoInposition of the spaee
of autolllorphic fonns

Eisenstein series

?

Selberg traee fürmllia

?

Langlands corrcspündence

We have also inc1uded in this table several coneepts whose counterparts are not
irnmediately elear. Thus, Serfe relations should correspond to "extra" func:tional
equatiüns für Eisenstein series, Le., elements üf the kernel of thc map 'Trß : B -t B
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in (3.8.2), which was described in (3.8) only implictly, by means of the kernel of
a suitable quadratic fonn on ß. Note that the prcsence of such relations does
not contradict the spcctral decornposition theorem for automorphic forms [MW]
which, as we already pointcd out (3.8.4), is only concerned with the values of the
(analytically continued) products E!I (t1) ... E f r ( t r ) for Iti I = 1, while the extra
relations may look likc distributions whose support does not meet the torus Itil = 1
at all. This is exactly thc case with Serre relations (5.1.7). Nanlely, if we allow
ourselves to divide equalities involving generating fllnctions by any polynomials
in h, ... l tn , then (5.1.7) would "follow" from (5.1.2), as oue can easily check by
"bringing" the LHS of (5.1.7) to a nonnal form in which the factor Fj±{s) goes last
in every Inonolnial (of course, such a manipulation is illegal!). Moreover, in this
particular case it is enough to divide by polynomials of the form (ti - qCftj), a E ~Z,

so thc need for (5.1.7) cannot be observed after restriction to the torus Itil = 1 where
such polynolnials do not vanish. However, there is no way to deduce (5.1.7) from
the quadratic relations obtained by expanding (5.1.2). This just Ineans that in the
algebra defined by (5.1.2) alone the right hand side of (5.1.7) is a distribution with
support of positive codimension.

The analog of the Selberg fonnula in the theory of affine Lie algcbras is COlll
pletely unclear at the nlonlent. According to our analogy, it should be a statenlent
about the trace of a Cartan elernent acting on thc enveloping algebra of the uppcr
triangular subalgebra.

As for the ana.log of the Uq (g), we will construct such an analog in thc ncxt
section by following Drinfelcl's quantum double construction and using Green's
comultiplication.
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§6. The quantum double of the algebra of automorphic forms.

(6.0) Motivation. Our aim in this section is to construct the autonlorphic ana
log of the fuH quantum affine algebra Uq(g) out of the Hopf algebra B(A) which
should be, nlorally, just one half of it. This will be done by the Drinfeld double
construction. For any Hopf algebra :=: its Drinfeld double [Dr 3} [CP} is the tensor
product :=: ®c 3* with certain twisted multiplication (see below).

The reason for using this construction is that it is known to solve, in a certain
sense, the following model problenl: recover the quantum Kac-Moody algebra Uq(g)
from its Hopf subalgebra Uq(b+). Recall (5.2.7) tbat Uq(g) is generated by symbolser, K i . The subalgebra Uq(b+) is, by definition, generated by et and K i . The
cornultiplication in it has the fonn:

(6.0.1) ~(Ki) = K i ~ Ki, ~(et) = 1 0 e; + et 0 Ki.

However, the recovery of Uq(g) frorn the Uq(b+) by this rnethod is not so straightfor
ward. To help motivate the constructions of this section, let us recall tbe principal
features of (and subtleties involved in) this recovery.

(6.0.2) The subalgebras Uq(n±) generated by the et, are in natural duality, so
adding (Uq(n+))* as apart of (Uq(b+))* supplies the missing subalgebra Uq(n-).

(6.0.3) However, we get also the dual of the "Cartan" subalgebra Uq(h) generated
by thc K i . So by fonnally applying thc double construction to Uq(b+), we get an
algebra bigger that Uq(g) because of this dual. So in order to get Uq(g), we need
to impose certain identifications in the double. (The construction of the restricted
double later in this section does just that, in the context of Hall algebras.)

(6.0.4) In addition, the Hopf algebra Uq(h) is not self-dual. It is the algebra of
functions on T, the Inaxirnal torus in the Lie group corresponding to g, and the
dual algebra will be algebra of functions on T (the lattice of characters of T) with
pointwise multiplication. Formal dualization of Uq(h) with respect to the basis
of monomials in the K i gives a basis of delta-functions on T, in particular, the
unit element in the algebra of functions on Twill be represented by an infinite
surn of such delta-functions. If the Cartan rnatrix A is non-degenerate, one can
realize elernent~of Uq(h) by certain infinite sums in thc cOIllpletion of the algebra
offunctons on T. After this one can perfonn the identification rnentioned in (6.0.3).

(6.0.5) If the Cartan Inatrix is degenerate (as is the case with affine algebras), then
one has to add to Uq(h) sorne essentially new elements from Uq(h)* which pair with
the center (the kernel of the Cartan rnatrix) in a nondegenerate way. In the affine
case the new elenlent (which is essentially one) has importallt geornetric Hwaning:
it correspollds to the "rotation of the loop" and is responsible for the appearance
of elliptic functions in the theory of representatiolls of affine algebras.

In what follows, we will encounter thc analogs of all these phenomena for the
Hopf algebras of autorllorphic fornls.

(6.1) Heisenberg and Drinfeld doubles: generalities. Along with the jllst
mentioned quantlllll double of Drinfeld it will be convenient for us to use, as an
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intermediate step, thc so-called Heisenbcrg double, introduced in [AF] [ST]. So we
start by recalling SOBle basic properties of these doubles. Since Hall algebras corne
with a natural basis, we will use the coordinate-dependcnt approach, as in [Kas]
(see [ST] for a I110re standard exposition). In this reminder we will ignore subtleties
related to duali~ationof infinite-dimensional spaces, since we will pay due attention
to them in the concrcte situations in which we will use the doubles.

Let '3 be a Hopf algebra over C, with comultiplication .6., counit € and antipode
S. Let {ei}, i E I, be a basis of 3 and {ei} be the dual basis of 3*. Let HS write
the structure constants of =: with respect to our basis:

(6.1.1) .6.(ek) = LJ-L~ei 0 ej,
i,j

1 = LEiei, €(ed = Ei, S(ei) = L sIe;, S-l(ei) = L a1ej'
j j

As usual, .6. makes 3* into an algebra by

(6.1.2) eiei = L fL~ ek.
k

The Heisenberg double H D(3) is, by definition, the algebra generated by the synl
bols Zi, Zi, i EI, subject to thc relations:

(6.1.3) ZiZj = L m:jZk,
k

Zi zj = LJ-L~ Zk,
k

(6.1.4) Z .Zi - '""" j bcZaZ
l - L.-t rnabJii c·

a,b,c

Thus the lllUP 3*0c3 --+ H D(3) givcn by thc mnltiplication, i.e., byei@ej H Zi Zj,
is an isomorphisnl of veetor spaces: any other product ean be brought by (6.1.4) to
the nonnal fornl in which the Zi stand on the left.

Thcre is a certain asYlnmetry in the definition of thc Heiscnbcrg double: re
placing 3 with 3* gives a different algebra. We will denote H D(3*) by fID('2).
Explicitly, it is generated by thc sYlubols Zi, zi 1 i E I subjeet to the relations:

(6.1.3') Zizj = L rL~ Zk ,
k

(6.1.4') Zi Z. = " uO;bm i Z ZC) L.-t ,...,) bc a

a,b,c

The Drinfeld double DD(3) is thc algebra generated by thc synlbols Wi, W i , i E I,
subject to the relations

(6.1.5) WiWj = I: rn7j Wk'
k
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(6.1.6) ~ lI.C!"bm j W W C = '"'" m j H~ewawL..J rl be a L..J abrI c·
a,b,e a,b,e

By using thc antipode one can transfonn (6.1.6) into a relation giving a kind of
normal forrn for elernents of DD(B):

(6.1.7)

This is thc standard clescription [Dr 3] (CP] of the Drinfeld double.
Thc algebra DD(B) is a Hopf algebra witb respect to tbe comultiplication given

by

(6.1.8)
i,; i ,;

(note the transposition in the sccond formula), the counit

(6.1.9)

and the antipode given by

(6.1.10). S(Wd = z=S!Wj , S(Wi) = z=S{W i
.

j

The algebras H D(B), fID(3) are not Hopf algebras. However, thcre is thc following
result due to R. Kashaev [Kas].

(6 .1.11) P roposition. The correspondence

W k -t Z=Jl~Zi ® Zj,
i,; i,i

defines an embedding K, : DD(B) Y H D(3) ® H D('3*).

It is this elnbedding that makes the Heiscllbcrg doubles hnportant to uso

Proof. Let us first prove the existence of the hOlllonlorpbism "" and then its injec
tivity. To prove thc existence, we need to check that thc relations (6.1.5-6) defining
DD(3) are satisfied for tbe proposed itnages of Wi , Wi. For (6.1.5) it is obvious
since .6. : 3 -t 2 (9 Sand m* : 3* -t S* ® 2* (the map dual to the multiplication)
are algebra hOlnomorphisms. To verify (6.1.6) denote by Land R its left and right
hand sides. Thcn:

a,b,e a,b,c,p,q,r,s

(l,b,C,p,q,r.lI
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where J.t~Wqb and m~suv are the structure constants for the 3-fold cOlnultiplication
and multiplication. SimilarlYl

a,b,e a,b,e,d,p,q,r,8

a,b,c,d,p,q,r,.ll
u,v.w

" bruv ZPZ IO\Z~ Z~wL...J /-Li mvwpb r'<Y u ,

b,r,u,w,p,v

which is the salne as L up to renalning the summation indices. So we indeed have
thc claimed hOlnomorphism K,. To see that I), is injective, note that .6. : 3 --+ 3 ® 3
and m* : 3* --+ 3* ® 3* are injective because of the unit and counit in 3. Since
DD(2) = =: ® S>l< as a vector space, and I),[s = .6. while 1),13" is the composition of
m* and the permutation, I), is injective.

(6.2) The restricted Heisenberg doubles of the Ringel algebra. We now
specialize to thc case when '2 = B(A) = C[KoAJ 0 R(A) is thc extendcd R,ingel
algebra of an Abelian category A satisfying the assumptions of (1.4) (we assulne ,
in particular, that A has hOluological diInension 1). The bilinear form (O'Iß) on
KoA nlay be degencrate, and we denote by I its kernel. Since Q*, the target of
our fonn, has no torsion, I has the following property: if nO' E I for S0111e Tl. E Z,
0; E KoA, then 0:' E I. This ilnplies that I has a c0l11plelllent, a subgroup J C KoA
such that KoA = I EI1 J. In the sequel we fix such a c0l11plel11ent and denote 1rI, 1rJ

the projections to I 01' J along thc other sumnland.

A natural basis of'2 = B(A) is given by eaA = Ka[AJ, a E KoA, A E A. In this
basis, the ll1ultiplication and COlll1utiplication have the form:

(6.2.1)

where g<jB is thc sanle as in (1.2),

(6.2.2) " IAut(A)I·jAut(B)1 c
.6.(e"c) = L...J(B, A) IAut(C)1 9ABe--y,A ® e,+A,B'

A,B

Thus the structure constants are given by

(6.2.3) rn'c = { (A1ß)(B, A)g~B' if , = Ci + ß
aA,ßB 0, if , =1= a + ß

~
1
I

(6.2.4)
{

(B A) IAut(A) I. IAllt(B) I c
It~~,ßB = ' IAut(C)1 gAB,

0, otherwise
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This gives the multiplication of the dual generators in H D('2) in the fornl

{

(B A) L IAut(A)I·jAut(B)J G zoG

(6.2.5) zOA ZßB = 'c ]Aut(C)l gAB ,

0, otherwise

if ß = l' + A,

In particular, the Zoo are orthogonal ideInpotents. They fonn thc algebra dual
to the coalgebra C[KoA], Le., the algebra of functions on JeoA with pointwise
nlultiplication. More prccisely, Zoo corresponds to the function equal to 1 at 0' and
to 0 elsewhere. In particular, the unit eleIncnt is represented by the infinite surn
Lo Zoo.

This shows that we need to work with certain infinite SUIUS lying in thc comple
tion of the algebra HD(B(A)) generated by the ZoA, zoA. For A E Ob(A) and a
honlomorphisnl X : KoA -+ C* wc introduce the eleIllents

(6.2.6)
. zoA

ZÄ = 0
A

IAut(A)I'
oE""o

KX = L x(O')Zoo.
KoA

We set also K o = Zoo, Z1 = ZOA.

If 0' E lCoA, we let Xo : JeoA -7 Q* be thc character taking ß to (O'jß), and write
K O for KXo. Note that we have the following identities:

(6.2.7)

(6.2.8)

(6.2.9)

Z~z~ = Lg~BZ6l
C

Z ±K (A-Iß)±lK Z± ZA±KX = x(A-)=F1KXZ
A
±,

A ß = ß A'

which show that wc have two copies of the Ringel algebra R(A) inside the comple
tion of H D(B(A)).

(6.2.10) Proposition. The subspace in the completion 0/ HD(B(A)) spanned by
eleTnents of the fo'Ti11, ZÄ KoKxZ~, is an algebra, i. e., the product of any two such
elements is a linear combination of finitely many elements of this form.

We will call this algebra thc algebraic Hcisenberg double of B(A) and denotc it
HDalg(B(A)).

To prove (6.2.10), note that the identities (6.2.7-9) give an almost complete
recipe for Illllltiplying any ZÄKoKXZ~ with any ZÄ,Ko,KX' Z;, cxcept for the

product Z~ZÄI which we need to express throllgh Z'MZ'jif, In order to find this
expression, denote, for any objects A, B, M, N of A, by g:tf the orbifold number
of exact sequences

(6.2.11) 0-7M~B4A-4N-+0

\
I

Illodulo automorphisrns of A and B, Le., (see the proof of Lenlnla 4.2) the total
number of such sequenccs divided by IAut(A) 1·IAut(B) I. Proposition 6.2.10 follows
fronl the next fact which is also useful by itself.
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(6.2.12) Proposition. In the completion 0/ HD{B(A» we have the identities:

z1 ZB = L gift (N - M, B - M)KfJ_MZMZj:,.
M,N

Proof. Let :FfBN bc thc set of all exact sequences (6.2.11). Also, for any three
objects A, B, C let ECjB be the set of exact sequences

o~ A -t C ~ B ~ O.

Thus
MN l:Fff' I

gAB = IAut(A)j . IAut(B)I'

Notice now that

c IECjBI
gAB = IAut(A)I' IAut(B)I'

(6.2.13) F MN
AB Il (EttB X EfA) / Aut(L),

LEOb(A)jIso

with Aut(A) acting freely. This just means that any long exact sequence (6.2.10)
can bc split into two short sequences with L = Im(ep). From the cross-symmetry
relations (6.1.4) in the Heisenberg double and the explicit form of the structure
constants given above, we find:

Z ZßB = '" (L M) . (N L) . IAut(L)j·IAut(N)I.
DA L.J' , IAut(A) I

M,L,N

IE~LI IEtNI ZßMz- _
IAut(L)I' IAut(M)1 IAut(L)I'IAut(N)I' L,N -

= L (j3 - M, M) , (N, 13 - M) , IAut(J~~~t(Mll ZßM ZB-M,N,
M,N

where we used (6.2.12) and thc identity L = B - 1\1 holding whenever E~L =I- 0.
From this we deduce that

ZßB "" - - - - - - - - - -1 MN ZßM
ZOA'IAut(Bll = ~(B-M,M).(N,B-M)(MIB-Ml gAB KS-MIAut(Mll,ZO,N,

whence the statelnent of the proposition.

Finally, we define thc algebra Heis(A) 1 called the restricted Heisenberg double
of B(A), by impasing thc fallowing identifications in H Dul9 (B(A)):

(6.2.14)

where 1rJ was defined in (6.1). Thus, in the case when the farnl (aIß) is non
degenerate, this identifies each KX with same product of (complex) powers of the
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Keil while in the degenerate case we have also elements KX for characters X of
JCoA = I ffi J trivial on J, i.e., characters of I. These elements are analogs of the
"rotation of thc loop" generators in the (quantum) Kac-Moody algcbras.

Thc other , "checked", Heisenberg double fID(B(A)) can be treatcd in a similar
way. Its generators are denoted Za:A, Za:A, alld we set
(6.2.15)

~+ ~

ZA = ZOA, k X = L x(a)zaO.
O:EK:oA

The sllbspace spanned by the ZÄ k akxzjj is again a subalgebra, denoted HD al9 (B (A)).
Its generators satisfy the same identitics as in (6.2.7-9), while (6.2.12) is now rc
placed by

(6.2.16) ZÄ zjj = L (B - M, M) . (N, B - M) .9f:K B - M ZtZN'
M,N

As before, we define the restricted double Heisv (A) by quotienting fID aI9(B(A))
by the relations k a = k- 1

( )'
7f J 0:

(6.3) The restricted Drinfeld double of the Ringel algebra. As in the case of
Heisenberg doubles, let Wo:A, Wa:A be the generators of DD(B(A)) corresponding
to thc basis vcctor eaA = Ka[A]. Sirnilarly to thc above, we set

wt = W OA ,
woA

WA" = L IAut(A)I' Ko: = Woo,
oEKoA

KX = L x(a)WaO
.

aEKoA

We also write K O = KXo, where Xo(ß) = (aIß). We denote by DDaI9(B(A))
thc subspace in the cOlnpletion of DD(B(A)) spanned by elenIents of the form
WtKa:KxWB".

(6.3.1) Proposition. (a) DDaI9(B(A)) is an algebra.
(b) DDaI9 (B(A)) is a Hopf algebra with respect to the comultiplication given on

generators by

(6.3.2)

(6.3.3)

(6.3.4)

6.(w+) = ~ (A/A' A') IAut(A')I'IAut(A/A')1 W+ K - W+
A A7e:A' IAut(A)/ A' ® A' A/A'

6.(W-) = ~ (A/A' A') [Aut(A')I·IAut(A/A')1 W- KA' IV. W-
A A7e:A' IAut(A) I A/A' '<Y A"

the counit given by
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(6.3.5)

and the antipode given by

(6.3.6)
-1

S(KX) = KX ,

W + W+ W+ K- 1
. A o A 1 /Ao '" An/An-I' A'

(6.3.8)
_ ~ n rrtl n.7=O IAut(Aj/Aj-dl

S(WA ) = L...-(-1) L . (Ai/Ai-I, Ai-I) jAtLt(A)1 .
n=l Aoe ... CAn=A l=l

K- A . W A- /A ... W A- /A W A- .
n n-1 1 0 0

(c) The correspondence

) W + '"' (A/A' A') IAut(A')I'IAut(A/A')I Z + K~ Z~+
(6.3.9 A >-+ A7e'A' IAllt(A)1 A,0.4' A(A"

( ) W - '"' (A/A' A') IAut(A')I·IAut(A/A')1 Z- K A Z-
6.3.10 A >-+ A7e'A' IAllt(A)1 A(A' 0 A',

(6.3.11) K a ~ K a ® k a , KX ~ KChi ® k x

defines an algebra homomorphism

K: DDalg(B(A)) Y HDal9(B(A)) ® HDal9(B(A)).

Proof. (a) This follows from (6.1.7) together with the identities

WxW~ = L(B,A)g~BWE, WXKß = (AIß)=f1KßWX, WX·KX = X(Ä)=f1KxWt,
c

I I

KaKx = KXKa , KXKx = KXX ,

which are verified in thc same way as (6.2.7-9). The statements (b), (c) follow by
a straightforward application of definitions, checking that they indeed make sense
on the elenlcnts given by infinite sums we consider and applying thc fact that,
in general, DD('2) is a Hopf algebra and the Inap K from proposition 6.2.12 is a
hOlllomorphislll.

We now define the restricted Drinfeld double U(A) by inlposing in nnalg(B(A))
the relations K Ct = K;;J\a)" The notation is chosen to suggest the analogy with
tbc quantum universal enveloping algebra Uq(g) of a Lie algebra g. In fact, when
A = r - lllOd is the category of F q-reprcsentations of a Dynkin quiver r, then
U(A) = Uq(g), where g is the semisimple Lie algebra corresponding to f.
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(6.3.12) Proposition. (a) The Hopj algebm structure on DDal9 (B(A)) descends
to U(A).

(b) The homomorphism", defined in (6.3.9-11) descends to a homomorphism

x: U(A) 4 Heis(A) ® HeisV (A).

The proof is straightforwarel, by chccking the compatibility of the relations Ka =
K- 1

( ) with the Hopf algebra structure anel with 1'\,.
'fr J a

(6.4) The Heisenberg double of the algebra of automorphic farms. We
now further specialize to the case when A is the category of coherent sheaves on
a curve X/F q anel we keep the notations and assunlptions of §2-3. Recall that we
have the exact seqllence

(6.4.1) o--+ Pic(X) -ir JCo(X) ~ Z -+ 0,

where rk is the generic rank hOlnomorphisln, anel i(L) = L - 1. The image of i is
precisely I, the kernel of the form (nIß). A natural splitting of the sequence (6.4.1)
anel thus a natural choice of a conlpleluent J to I, is provided by the maps

det : Ko(X} --+ Pic(X), e: Z -+ JCo(X}

given by det(V) = j\rk(V\V), if V is a vector bundle, anel by e(l) = 6. Thus the
Cartan elelnents of the restricted Heisenberg double are:

K = K o , CL = KL-o, L E Pic(X), dx = Kx(det), X : Pic(X) --+ C*.

The elCInents CL are central, while thc dx are the "rotation of the loop" elements.
They comlnute with the other generators by the rule:

In particular, for ;\ E C* we will denote d(A) = dXA ' where X,,\ : Pic(X) -+ C*
is the character given by X>.(L) = Adeg(L). This eleluent d(;\) is a fanliliar degree
operator:

d(A)W$ = A=fdcg(V)W$d(;\), V E Bun(X),

d(A)Wj: = ;\±hO(."F)Wj:d(A), :F E Coho,x.

We write Heis for Heis(Cohx) anel Hcisv for Heisv (Cohx ). The Cartan elements
of Heisv will be clenoted by K, CL, dx, according to our general conventions.

For a cusp fonn f E CusPn we introduce the generating functions

(6.4.2) Et(t) = L f(V)tdeg(V)Z~ E Heis[[t,t- 1 ]],

VEBunn(X)

Ej (t) = L f(V*)t- deg(V) Zv E Heis[[t, t- I ]],

VEBulln(X)
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'ltj (t) = L XI ([FJ)thO(J~")IAut(F) jZ; E Heis[[t]],
:FECoho,;t'

'ltj (t) = L XI ([F])t-hO(:F) [Aut(F) IZ~ E Heis[[t- 1]].

FECoho,z

Similar generating functions in Heisv will be denoted by ej(t), ~j(t). Notice
that, as in (4.5.1), we have Euler product expansions

'lty(t) = TI 'ltY,x(tdeg(x)),
xEX

wj,x (t) = L XI ([FXI~])IAut(Fxl~)Itl~l Z~:I;,~
~=(~1~ ···~1Ln~O)

and siInilarly for \II f,x (t), We will also use the logarithmic generating functions

ay(t) = log wy(t) = L aY,x(t), aj,x(t) = log \J!Y,x(t)·
xEX

The relations between generating functions with the same superscript (+ or -)
are the saUle as given in Theorem 3.3, so we concentrate on relations involving
generating functions with different signs in the superscript.

(6.5) Theorem. (a) In the algebra Heis we have the following identities for any
f E Cuspn, g E CusPm:

(6.5.1)

(6.5.2)

(6.5.3)

(6.5.4)

(b) In Heisv we have the following identities:

(6.5.5)

(6.5,6)

(6.5.7)
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(6.5.8)

Proof. We will prove only part (a), part (b) heing similar. Thc equality (6.5.1)
follows from Proposition 6.2.12 since the only morphism from a torsion sheaf to a
vector bundle is the zero nlorhism.

Let us prove (6.5.2). By Proposition 6.2.12,

(6.5.9) wt(h)Ej(t2) = L L Xg([F])f(V*) ·IAut(F)I·
.:FECoho,x VEBunn (X)

.thO(.:F)t- dcg(V) '""'" W.:F" K - (TfI _ W- T _ TfI) . Z- z+
1 2 L...J g.:FV .:F-:FII .r ,.r.r W.:F1t •

W,.:FIIECohx

In order that g!it" i=- 0, Le., that there exist at least one exact sequencc

(6,5.10) o -+ W -+ V 2+ F -+ F fI -+ 0,

:F" must lie in Coho,x, and W in BUlin (X). Thcrefore K F -Fit lies in the center
and is the saUle as C:t -:t". Also, we have

By using (6.2.13), we now write (introducing :F' to be IIn(ep) in (6.5.10)):

.-([ 'L])f(V'" )thO(.:F)t- deg(V) - -nhO (.:F)/2 Z- Z+Xg .r 1 2 C.:F' q W .:F'"

We now use thc fact that Xg is a character of the Hall algebra, together with the
properties of thc (dual) Hecke operators (4.3) to transform this SUfi into

L Xg ((:F'])Xg([F"]) IAut(F') I . IAut(F") I. (T.:F' f)(W*),

W,.:F',.:F"

. (t / n/2)hO(.:F')thO(.:F")t-hO (.:F' )t- dcg(W) Z- z+
1c q 1 2 2 W .:FII .

Since f is an eigenfunction of Hecke operat.ors, this can be factored into the product

( L Xg([F"])' IAut(F") I . f(W*)t~O(.:FfI)t~ deg(W) ZwZJ;,,) X

W,.:F"

60



x (~Xg([F'])Xj([F']) . IAut(F')1 . (t 1clt2qn/2)) hO(J")) =

= EI (t2)Wt (tt} . A(hc/t2qn/2),

where A(t), given by (4.1.10), is equal to the ratio

LHom (f,g,q~t)

( .!!.±..!:!!)'LHoIll f, g, q 2 -lt

as we saw in (4.1.14). This proves the eqllality (6.5.2).

We now prove (6.5.3). Ey definition,

L f (V)g(w*)t1eg(V)t; deg(W) ztZw =
VEBunn(X)
WEBunm(X)

L gif~KW-M' (:F - M, W - NI) . f(V)g(w*)t1eg(V)t; deg(W) ZMZj;.,
V,W,M,:F

where M,:F run over all the isoillorphism classes of coherent sheaves. However,
since fand 9 are CllSP forms, thc reasoning siInilar to that in the proof of (3.3.4)
(see (4.4)) shows that we cao restrict the summation to M equal either W or 0,
withüllt changing the sumo The contribution from M = W givcs E; (t2)Et (tt},
while computing the contribution from M = 0 we find (note that m = n because
M=O):

[E+(t) E-(t)] = ~ W IAllt(.F)IK_f(V) (W*).tdeg(V)t-deg(w)(F W)Z+
/ l, 9 2 L..J gw.rIAllt(V)1 W 9 1 2 ,.r

V,W,.r

= '"'" (TVf) (W) . IAut(.F) I. (W*)Km tdeg(W)+hO(.r)t - deg(W) -mhO(.r)/2 Z+
L..J.r IAut(V) 1 9 Cdet(W) 1 2 q :F
W,F

= (~XI ([F]) . IAut(F) I . (tdq7n/2)h
O

(J') Z; ) ,K'n,

(
f(W)g(W*) (h) deg(W) )

, ~ IAut(W) I t2 Cdet(W)·

If f i= g, then für any d we have, by (2.6.11) and (2.7.4):

(6.5.11)
f(W)g(W*)

IAut(W)1
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and when / = g we get the formula (6.5.3), because of the assunlptions (2.6.14) we
filade on the nonnalization of / E Cuspn'

Finally, let HS prove (6.5.4). Keeping / and g fixed, let

let)
LHom (g, /, qmtn-lt)

log ---....,......----...,....
LHom (g, /, qmtnt)

= L lx(tdeg(x)),

xEX

where lx is the logarithm of the ratio of the Euler factors corresponding to x. By
taking logaritlun of (6.5.4) and using the notation (6.4.3), we find that it is enough
to prove, for each x EX, the equality

By introducing the Taylor coefficients of ay,x anel Ix:

(6.5.12)
00

ay,x(t) = L aY,x,dt±d,
d=O

00

Lx (t) = L lx,dtd ,
d=O

we ean rewrite the elesired equality as

(6.5.13)

This is a statelnent about the Heisenberg double of the Hopf subalgebra 1ix C

B(Cohx ) generated hy [.r], .r E Coho,x(X) and by the element Cx ' The function
'l/Jj,x(t) taking values in this subalgebra, has the coproduct

This is provecl in thc salne way as (3.3.3). So for aj,X(t) = log(7./Jj,x(t)) we have:

or, in the coefficient language,

So let HS look at the following general situation. Let V be a Z-graded vcctor space.
Consider the commutative Hopf algebra S = S·(V)®C[c, c-1] with conulltiplication

~(V)=V0cdcg(v) + l®v, ~(c)=c0c.

For v E V let Z;; bc thc corresponding elelncnt of H D(S). For if> E V* let Z;
bc the elcnlent of H D(S) corresponding to the linear ronn S --+ C which on each
S· (V) 0 cm is thc derivation a/8rj> in the sylnmetric algebra. let also Z;, Z;; be

the similar eleluents of of fID(S).
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(6.5.14) Lemma. In the described situation we have, for homogeneous v E V, cP E
V*,

[Zv+, Z;] = A.(v)cdeg(v) , (Z"'- Z"'+J A.()
'f' "P 4;' v =!pV.

The first fornulla in this lemma ilnplics the equality (6.5.13) (we have added the
sccond fornulla to give a hint of thc proof of (6.5.8)). Indeed, take V to be the
space of prinütive elements of the comnllltative and cocomlnutative Hopf algebra
1-lx /(c-x-1). It is graded by deg[F) = hO(F)/ deg(x). The algebra S dcfined above
is just ll x itself. Taking v = af x d, we find that zt = a+f d' while a f- d = Z;• , ,x, ,x, 'f'

where cP is the linear functional on V given by

'"' af,x 1d(F)w(F) __
cP(w) = L.-J IAut(F)l = (w, af,x,d).

FECoho,~ (X)

Ta deduce (6.5.13), it relnains to recall the fonnula (4.5.7) for the scalar product
of the al,x (t) .

As for Lelnlna 6.5.14, it immediately reduces to the particular case whcn dim(V) =
1, i.e., S = C[x, c, c- 1] with ß(x) = x®cd + 1®x' and ß(c) = c®c. The treatment
of this case is elementary and is left to the reader.

Theorem 6.5 is proved.

(6.6) The Drinfeld double of the algebra of automorphic forms. Let U =
U(A) be the restricted Drinfeld double of thc Hopf algebra B(A), A = Cohx ,
see (6.3). To make the formulas below lllore symnletric, we extend U by adding
square roots of the central elClnents CL, L E Pic(X). This means that we choose an

identification Pic(X) ~ ZEBEB Z /mi anel eInbed Pic(X) into the group jPic(X)) =
!Z Ei' EB Z/2rn i in an obviou.'3 way. We set

U(C 1
/

2
) = U ®C[Pic(X)] C [ jPic(X))] .

Thus, for any L E Pic(X) therc is a central element C~2 E U(C 1/ 2 ).

For a cusp for f E CusPn we introduce the following generating functions with
cocfficients in U (c1/2 ) :

(6.6.1)
YI+(t) = L f(V)tdeg(V)WJ, Y

I
- (t) = L f(V*)t- deg(V)Wv,

VEBunn(X) VEBunn(X)

<1>+ (t) = L XI ([F])thO(F) . IAut(F) I .cy2W;,

FECoho.x

<ll- (t) = L Xf([F])t-hO(F). IAut(F) I.cy2Wi ·
FECoho,x

Now we can fonnulate the rnain rcsult of this paper.
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(6.7) Theorem. The above generating functions satisfy the following identities,
JOT any f E CUSPn, 9 E CUSPm:

(6.7.1)

(6.7.2)

(6.7.3)

(6.7.4)

Y±(t )Y±(t ) = mn(l-gx) LHom(!,9, t2 /h) Y±(t )Y±(t )
f 1 9 2 q LHom(/,g,t2 /qt 1 ) 9 2 f 1,

(
LHorn (I 9 qT C=F1/2t2/t) ) ±1

Y±(t )cI>+(t ) = ' , 1 cI>+(t )Y±(t )
f 1 2 LH (I .lf - 1 =F 1/2 t /t ) 9 2 f 1,om ,g, q C 2 1

(6.7.5)

[yt (tl) 'y9- (tZ)] = 0/.9 { 0 ( ~tzl ) Kn<I!j (q -n/Zcl/Zt1) - 0 C:)K-n<I![ (qn/ZC-l/ZtZ)} ,

(6.7.7)

Proof. We use the elubedding x : U(A) Y Heis(A) ® HeisV (A) given by Propo
sition 6.3.12 (h). Fronl Theorenl 3.5 we find that on the generating functions the
embedding is as follows:
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CL f---7 CL ® CL, K f---7 K ® k.

Our result follows froln these fornnllas and from Theorem 6.5 giving relations in
the Heisenberg doubles.

(6.5) Final remarks. C0111paring (6.7) with the relations (5.1) clescribing quan
turn affine algebras, we see that there is inclecd an ahnost conlpletc sirnilarity.
Thc only difference worth lnentioning is related to the zero-moeles of thc Car
tan generators. In quantulll affine algebras there are as many such zero rnodcs
<Pt (0) = <pi (0)-1 as there are silnple roots. In the autornorphic case there is only
one such generator K, conüng from the K-thcory of thc curve X (thc gencrating
functions <I>y (t) have constaut term 1). This suggests that it 111ay be lnore natural
to consider, as: e.g., in [:rvlW] , the space rr of all cusp eigenfonns on Bun(X), i..c.,
of functions

f . t deg , V f---7 f(V)tdeg(V}, f E ensp, t E C*

anel nlake it into al-dimensional cOlllplex lnanifold (disjoint union of copies of
C* para111teri/jcd by thc set Cusp). Then instead of writing E1(t), cI!:p(t), we can

write E±(1r), cI!±(1r) where 1r = f . t dcg E 11. So the whole algebra will look more
like an sl2-current algebra but with currents being defined on the space rr. We
have therefore a kind of eonfonnal field thcory on the space of eusp fonn.'3, which
strengthens certain analogies fr0111 [Kap].

(b) As with thc generating functions \J!y(t) of Reis, the iJ!y(t) can be written as

Euler proclucts nXEX iPY,x(t). In the sauw way as we provecl (6.7.6), one obtains

that for different x the <Py,x(t) conunute with each other, while

is thc ratio siInilar to that in (6.7.6) but fonned by thc Euler factors at x of thc
L-funetions appearing there. This lneans that for any x, f the coefficicnts a±f l

,X,(

of thc expansion of aY,x(t) := 10g(<I>~x(t)) fonn, apart fro111 nonnalization, free
bosons:

[a+ a- ] =0 , . ("(AX'j(g))d) .qd(rn+n-2}/2cd(qd_ 1)(cd _l)/,x,d.' d,x,d' d+d ,0 ~ A .(1) x x·
.. X,l
1,J

According to the point of vicw going back to Y.I. Manin and B. Mazur, ouc should
visualize any I-diInensional aritlunetie schellle ./Y as a kinel of 3-111anifolel anel closcel
points x E X as orientcd circles in this 3-1nanifold. Thus thc Frobenius elelnent
(which is only a conjugacy class in the funelalnental gTOUp) is visuali/jed as the Inon
odrolny around thc circlc (which, as an ele111ent of the fundalllcntal group, is also
defincd only up to conjngacy since uo base point is chosen on thc circle), Legeuch'c
sYlnbols a.s linking numbcrs and so on. Fro111 this point of view, it is natural to think
of the operators (algebra elelncnts) a /,x,d for fixcd f anel varying x, d as fonning a
free boson field A f on thc "3-lnanifolel" X; 1110l'e precisely, for ±d > 0, the operator
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a~xld is thc dth Fourier cOlllponcnt of At along thc "circle" Spec(Fq(J";)). The

bOSOI1s a~xld anel thcir SUJI1S ovcr x E X (i.c., the Taylor cOll1ponents of log iI>7(t))
will be uscd in a subsequcnt paper to construct representations of U in the spirit
of [F.J].
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